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Abstract. A deterministic global optimization approach is proposed for nonconvex constrained nonlinear
programming problems. Partitioning of the variables, along with the introduction of transformation
variables, if necessary, convert the original problem into primal and relaxed dual subproblems that
provide valid upper and lower bounds respectively on the globa optimum. Theoretical properties are
presented which allow for arigorous solution of the relaxed dual problem. Proofs of ¢-finite convergence
and e-global optimality are provided. The approach is shown to be particularly suited to (a) quadratic
programming problems, (b) quadratically constrained problems, and (c) unconstrained and constrained
optimization of polynomial and rational polynomial functions. The theoretical approach is illustrated
through a few example problems. Finally, some further developments in the approach are briefly
discussed.
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1. Introduction

Global optimization of nonconvex programming problems has generated alot of interest in recent years.
Surveys, books and applications for global optimization are available by Dixon and Szego (Refs. 1 and
2), Archetti and Schoen (Ref. 3), Pardalos and Rosen (Refs. 4 and 5), Torn and Zilinskas (Ref. 6),
Ratschek and Rokne (Ref. 7), Mockus (Ref. 8), Horst and Tuy (Ref. 9) and Floudas and Pardalos
(Refs. 10 and 11). The deterministic approaches for global optimization can be largely classified as :
(a) Lipschitzian methods (e.g. Ref. 12); (b) Branch and bound methods (e.g. Refs. 13-15); (c) Cutting
Plane Methods (e.g. Ref. 16); (d) Difference of convex (D.C.) and Reverse convex function methods
(e.g. Refs. 17 and 18); (e) Outer approximation methods (e.g. Refs. 19 and 20); (f) Primal-Dual methods
(e.0. Refs. 21-23); (g) Linearization methods (e.g. Ref. 24); and (h) Interval methods (e.g. Ref. 25).
Recent developmentsin global optimization approaches can be found in Ref. 11.

In this paper, a primal-relaxed dual approach for global optimization is proposed ( earlier versions of
thiswork have appeared in Floudas and Visweswaran (Ref. 26) and Visweswaran and Floudas (Ref. 27)
). Itisrelated to the work of Geoffrion (Ref. 28) and Wolsey (Ref. 29). It does not require Property (P)
stated in Ref. 28, and it differs from the resource decomposition algorithm of Wolsey (Ref. 29) in the
way therelaxed dual problemisformulated and solved. A statement of the global optimization problem
isgivenin Section 2, while Section 3 presents the relevant part of duality theory (Extensive discussion of
duality theory for decomposition can befoundin Flippo (Ref. 30) ). Section 4 containsthe new theoretical
results. Section 5 illustrates the branch-and-bound nature of the proposed algorithm and discusses some
propertiesof the branching that can be used toimprovethe efficiency of thealgorithm. Section 6 describes
the global optimization algorithm. Section 7 provides the proofs of finite e-convergence and ¢-global
optimality. The application of the algorithm to two illustrating examplesis considered in Sections 8 and
9, while Section 10 contains ageometrical interpretation of the algorithm. Sections11 and 12 discussthe
extensions of Section 4 to quadratically constrained problems and problemswith polynomial functions.

2. Statement of the Problem

The global optimization problem addressed in this paper is stated as:
Determine aglobally e-optimal solution of the following problem:

min f(z,y), (1a)

st gley) <0, (1b)



h(z,y) = 0, (1)
r € X, (1d)
y €Y, (1e)

where X € £* and Y € R™ are non-empty, compact, convex sets, ¢g(z, y) is an m-vector of inequality
constraints and h(z,y) is a p-vector of equality constraints. In this paper, it will be assumed that X
consists of bounds on the « variables, and will be incorporated into the constraint set g(z,y) < 0. Itis
assumed that the functions f(z,y), g(z,y) and k(x, y), dong with any Lagrange function formulated for
the problem, are continuous, piecewise differentiable and given in analytical form. The variables y are
defined such that the following conditions are sati sfied:

Conditions (A)

(@ f(z,y)isconvexinz for every fixed y, and convex in y for every fixed .
(b) g(z,y) isconvexin x for every fixed y, and convex in y for every fixed z.
(€) h(z,y)iseaffinein z for every fixed y, and affinein y for every fixed z.

To identify the classes of mathematical programming problems that can be represented within the
framework of (1) and satisfy Conditions (A), the concepts of partitioning and transformations are used.
Using these concepts (see Ref. 22), it can be shown that the proposed approach is applicable to prob-
lems involving quadratic and/or polynomial/rational polynomial terms in the objective function and/or
constraints. Therefore, the classes of problems addressed by this paper include bilinear programming
problems, general quadratic programming problems, quadratic problems with quadratic constraints,
polynomial and rational polynomial programming problems among others.

Recently, Hansen and Jaumard (Ref. 31) have proposed an algorithm for the efficient bilinearization
of quadratic and polynomial function problems, rational polynomials, and problemsinvolving hyperbolic
functions. For agiven problem in these classes, the algorithm providesthe set of new variables that must
beintroduced in order to convert the problem into bilinear form. The bilinearization can be achieved with
the objective of minimizing either the number of complicating variables (in the context of this paper, this
issimply the number of y variables) or the number of variables that must be introduced in order to make
the problem completely bilinear. Moreover, given abilinear problem with variable subsets » and y, the
algorithm can also be used to identify any changesin these subsets that will result in asmaller number of
either the = or the y variables.



3. Duality Theory

Define the following problem as the Primal Problem :

min  f(z,y"), (29)
st glz,y*) <0, (2b)
h(z,y*) = 0, (20)

where y* € Y. Here, it is assumed that the bounds on the = variables are incorporated into the first set
of constraints. Since this problem is simply (1) solved for fixed values of y = y*, it represents an upper
bound on the optimal value of (1).

Using the concept of projection (Ref. 28), (1) can be converted to an equivalent formulation, featuring
an inner and outer optimization problem :

min - o(y), (39)

st w(y) = min f(z,y), (3b)
s.it. h(z,y) =0, (30)

g(z,y) <0, (3d)

y € YNV, (3¢

V = {y : h(z,y)=0, g(z,y) <O for some z}. (3)

From Conditions (A) and Slater’s constraint qualification, (2) satisfies the conditions of the Strong
Duality Theorem (Theorem 6.2.4 of Ref. 32). Then, the solution of (2), for any fixed y = y*, isidentical
to the solution of its corresponding dual problemonY N V. Thatis,

rTLinf(x,yk) Y S't' g(x7yk) § 07 h(x77yk) = 07
= supinf {f(z,y*) + \Th(z,y®) + 4Tg(z,y%)}  Vyrevny,

uz0
A

where, A and ;. are the Lagrange multipliers corresponding to the equality and inequality constraints of
the primal problem (2). Define

v(y) = sup inf {f(z,y) + \Th(z,y) + p"g(z,y)} YyeVnV.
u>0



From the definition of supremum, the maximization over A and ;. can berelaxed to:

v(y) > inf { f(z,y)+ \Th(z,y) + p"g(z,y) } V>0, N

Assuming that there existsafeasi bl e solution to theinner minimization problem (theanaysisfor infeasible
primal problemsis presented |ater on in section 4.2), the dual representation of v(y ) leadsto thefollowing
formulation, equivalent to (3) :

min v(y), (49)

s v(y) > min{ f(z,y) + \h(z,y) + pTg(2,y) ), Vp >0, (4b)
y € YNV, (4c)
V={y:h(z,y)=0,9(z,y) <0 for somez }. (4d)

By dropping the last two constraints from (4), the Relaxed Dual is obtained:

min s, (59)

yeY
“B

st pp > min{f(z,y) + N h(z,y) + pTg(z,y)}, Yu >0, X, (5b)

where u g isascalar.
The inner minimization problem, denoted as inner relaxed dual, is

min L(z,y, A", u*), (6)

Liz,y, A, (%) = fz,y) + A h(z,y) + 1% g2, y), (7)

and involves minimzing the Lagrange function L(z, y, \*, 1*) formulated from (2) at the kth iteration.

Remark 3.1. (a) The primal problem (2) represents an upper bound on the original problem (1). The
relaxed dual problem (5), on the other hand, contains fewer constraints than (4) and hence provides a
valid lower bound for (1).

(b) Intheform given by (5) the relaxed dual problem can be very difficult to solve, sinceit containsthe
inner relaxed dual problem, which is parametricin y.



4. Mathematical Properties

The mathematical properties will be presented first assuming feasible primal problems. The properties
for infeasible primal problemswill be considered in Section 4.2.

4.1. Feasible Primal Problems

At iteration k, define 2* to be the solution of the z variables for the kth primal problem (whichis solved
for y = y*). Also define ;% and \* to be the corresponding optimal Lagrange multipliers for inequality
and equality constraints respectively. Then, the following Lemma can be stated.

Lemma4.l.
(a) The solution of each primal problem (P) isthe global solution of that problem.

(b) TheLagrangefunction of the k* iteration, L(x,y, AF, u*), isconvex inx for every fixed y and convex
iny for every fixed x.

(c) Thesolution of theinner relaxed dual problemisits global solution for each fixed y = y2.

(d)  minL(z,y% N k) > min Lz, y?, 0, pk) [ Yy = y?,

zk

where L(z, y%, X*, 1*)|“ is the linearization of the Lagrange function L(z,y?, A\, ;*) at z*, the

zk

solution of the k** primal subproblem.

Proof. The proof of these statementsfollows from the application of Conditions (A) of Section 2 and the
definition of the Lagrange function. O

Definition 4.1. Define the vector ¢*(y) (consisting of elements g% (y)) asfollows:
g*(y) = Vel(a,y, X, p¥) e, and  gf(y) = VaL(z,y, N, 1F)] o,

where z; istheith z variable,: = 1,2, ..., n. Then, it can be seen that for every fixed y, the linearization
of the Lagrange function at z* is given by

n

L(z,y, N B B0 = L(a®,y, Ne k) 4+ g% (y) - (o — 2%) = L(*y, M5 0F) + 3 6k (y) - (2 — 2B).
=1

Based upon this form of the Lagrange function, the following definition is made:



Definition 4.2. Atiteration &, defineevery variable z; for which ¢¥(y) isafunction of y to beaconnected
variable. Also define 7* to be the set of al such connected variables.

Property 4.1. The optimal solution of theinner relaxed dual (IRD) problem, with the Lagrange function
replaced by its linearization at z*, depends only on those z;, for which ¢¥(y) is afunction of y (i.e. the
connected = variables.)

Proof. Thelinearization of the Lagrange function can be written as

Lz, y, N p®) 0 = Lk, y, M%) + 37 6 (y) - (20— %) + b (y) (25 — o). (8)
=1
17

From the KKT gradient conditions for the kth primal problem,
Vo L(zF, yF X %) = g¥(yF) =0 Vi=1,2....n. 9)
Using (9), theinner relaxed dual can be written as
L@y, X*, (%) = minL(a,y, ¥, p*) > min Lz, y, \¥, %)

> min { Lk, e )+ 30k ) (o= ab) + (65(0) - g5y = ) )

i#]

Now, suppose that ¢¥(y) isnot afunction of y. Then, ¢%(y) = ¢%(y*). Therefore,

L¥(@, 5, X%, 14 > Lok, g, N¥, i¥) + mind 3 gk(y) - (z: — 2). }
2
Hence, the linearization of the Lagrange function does not depend on z;, and the minimization of the
Lagrange function in itslinearized form with respect to x; will not have any effect on the solution of the

Inner Relaxed Dual problem. O

Remark 4.1. This property is important from the computational point of view. It implies that the
inner relaxed dual could be replaced by a problem involving the minimization of the linearization of
the Lagrange function over the set of connected = variables. This can help reduce the computational
requirements by several orders of magnitude.

Property 4.2. Suppose that the optimal solution of theinner relaxed dual occursat 7 ; that is, for every

yeyY,
L*(Z,y, \*, p*) = min L(z,y, \¥, u*).



Then, for every k,

L(2Bsy, X, uF) o7

L*(@,y, M5, p%) > min < with Vo L(z,y, M, p%)],0 >0 Vai” =2k} ¥y (10)
B,eCB
’ Ve, L(z,y, )\k,/tk)| <0 fﬂ = q;ZU

where ¥ and z¥ are the lower and upper bounds on the connected = variables respectively, B;
indicates a combination of lower/upper bounds of these variables, 2/ is the vector of lower/upper
bounds corresponding to the bound combination B;, and C'B isthe set of al bound combinations.

Proof. By itsdefinition, 7 must satisfy the following inequality:

L*(Z,y, X, p¥) > min Lz, y, A, g Yy (11)

Using the definition of L(z,y, \*, u*)|%, the right hand side of (11) is given by

min L(z,y, \*, pu*)[or = min[L(a*,y, \*, 1*) + 37 Vi, L(z, 5, X, %) (25 — 28)]

ierk

= L(2®,y, \*, p®) + min 30 Vo Lia,y, N %) | (s — ).

ierk

For any fixed y = y¢, the operators for minimization and summation can be exchanged. Hence,

min L(z,y, \*, pu*)[30 = L(z*,y, A5, p¥) + Yo min Vo, L(w,y, M, p¥) | (2 — %), (12)

ierk

Consider the i th component of the second term on the right hand side. It islinear in z;. Hence, the
minimum of this term will lie at a bound of z;, the specific nature of the bound(lower or upper) being
determined by the sign of V,, L(z, y, A*, 4/*)|_.. Two cases are possible:

(a) If VmiL(:Cayv)‘kmuk”zk 2 O’

nlinvzi L(;L',y7)\k“uk)|mk(”€1 - .If:) > vIzL(x7y7)‘k71uk)|zk(xf - .il,‘f) .

nllnvl‘z L(l’,y, )‘kwuk”a;k'(‘r’i - Jif) > szL(‘Tvyv )‘k7luk)|zk($fj - ‘rf) :



These two cases can be combined to yield the following result:

MINVe, Lz, y, A, ) (s = a8) > Ve L,y M) o (2 — o),

w}LGTG (13)
zf Yy Vg L(z,y, A puF)| . >0

{ zy Yy Ve L(z,y, N p*)| .. <0

2

B]
.Ii =

Combining (11), (12) and (13), it can be seen that

L@y, N k) > Lk, 0 %) 4 3 Ve Ly, X ) e (27 — 28), (143)
ierk
where
SZZZ'B] = l'zL Vy . Va:iL(x7y7 )‘kaﬂk”mk Z 0 (14b)
l’iB] = «'Ifzj Vy . VZI‘L(maya)‘kwuk”mk S 0 (14C)

From this, it is evident that for any fixed y = y¢, there exists a combination of bounds B; for the
connected = variables such that

i

min Lz, y?, M, pF) > L% y? N8, %) + 30 Vo L,y 0, %) (2 — 2F)
ierk

> LByt Nk ke |or

zk -

Hence, for every discretized y = y¢, by fixing the values of the = variables at a combination of bounds
Bj inthelinearized Lagrange function and taking the minimum over all possible combinations of bounds
B; € CB, alower bound onthevalueof L*(z, y?, \*, ;*) isobtained. Sincethisistruefor every y = y¢,
(10) must hold for all . O

Definition 4.3. The constraints requiring the positivity or negativity of the gradients of a particular
Lagrange function w.r.t ; are called the qualifying constraints of that L agrange function.

Property 4.3. If g¥(y) arelinear in y Vi, then the qualifying constraints form alinear set of constraints
iny.

Proof. It followsfrom the definition of ¢*(y). O

Property 4.4. At the Kthiteration,



(i) Define (7 )X to be the optimal value of the Relaxed Dual Problem. That is,

( 3\

min s
min\K __ i
(™) =91 o4 pp > minL(z,y, A%, 1F) k=12 (K1)

KB > rTlinL($7y7 )‘KMMK)

(i) Define UL(k, K) to be the Lagrange function from the £th iteration (k¢ < K’) whose qualifying
constraints are satisfied at y*, the fixed value of the y variables for the K'th primal problem, and
let 2B be the corresponding combination of bounds of the = variables for this Lagrange function.
Note that 22 can be different for different iterationsk = 1,2, ..., K — 1.

(iii) Define the following subproblem (15) :

TynGIp UB
B
s.1.
1B > L( 7y7)‘k71u )|hn
.. B, : .
pier (K, By) = Vo, L(z,y, N, pF) e <0 if w7 =af ¢ Vj e ULk, K) (15)

Ve L(z,y, N k) o >0 ifal =28 | k=12..K—-1

pp > L(zBy, MK B b
Vﬂ?iL(x7y7)‘K7,uK)|mK <0 Zf ;EZ-BZ =Y
Vo L(z,y, N, 18| e 20 if 2P = of

2 Y,

where p%° (K, B;) is the stored solution of the above subproblem solved at iteration K with the =
variables set to the combination of bounds B; in the Lagrange function.

(iv) Defineps™ = m|n e (K, By) to be the minimum of the stored solutions of all the subproblems
of theform (15) solved at the K'th iteration.

Then,
(W™ = MIN[ug™, _min_ g7 (k. B)] (16)

BlecB



where p3°" (k, B;) are the stored solutions from previousiterations (k < K).

Proof.

(a) For iteration 1: For £ = 1, from Property 4.2.,

min L(z,y, )\1,#1) > Bn;iCnB Ve L(z,y, )\1,#1)|$1 <0 f x?l = ;z:fj , V.
z 1

Ve L(z,y, X pt) 0 >0 if zPr = zk
Sincethis holdsfor al y,

L(:EBZ7 y? Al? ILLl)
min {min ey 2% ) | 2 min g i 3V Ly M) <O if 2P = o
V-’L‘z‘L('rvyv)‘lmul”zl 2 0 Zf J;'iBl = ZL’,{J
The operators on the right hand side can be interchanged since L(z5,y, A\, u*) depends only on y.

Therefore,
L(:EBl7y7Al7 IL[/l)
. . 1 1 . . 1 1 . Bl _ U
gllll;]{nllnl)(m,y,)\ ) [ )} > BrlT;ICnB min Ve L(z,y, 5 p7) 0 <0 of 27t = x;

Vo L(z,y, N4, pY)| . >0 if 2Bt = 2L
i Ho) g i ;

Equivalently, this can be written as

i s
min s "B L1 1

(i) vey — st pup > Lz y, A ph)

R Y pp > minL(z,y, A4 pb) [ = mees | Vo, L(z, y, AL pt) ]| <0 if Pt =al

Vo L(z,y, XY, pY)| . >0 if 2Bt = 2L
2 ; x 2 2

At this stage, there are no stored solutions from previous iterations. Hence, for iteration 1, the property
IS proved.

(b) For iteration 2: We have

4 3\

mo o
min\2 __ kB
(HE™)" = 4 s.l. UB > rlenL(:(;,y,)\l, uh)

UB > nlinL(:z:, y, A2, %)




From Property 4.2, we have that

(4" > MIN

min
BpE€CB
Bp#B,

s.t.

B

KB Z L(mev Y, )‘17 :Ml)

min up 3
YEY,nup
Ve L(z,y, N pt) o <0 if ;L’?p =2V ,u"z
Ve L(z,y, XY pt)| o >0 if 1’in = zF
> min L(z,y, \?, ;%)

7

, (@)

where B, representsacombination of bounds of the = variables, B; isthe specific combination of bounds
corresponding to the Lagrange function from thefirst iteration whose qualifying constraints are satisfied

ay =y? and

/

s.t.

K“B 2 L(xB] y Y )‘17 lul)

KB > nlin[’(wvyv)‘27 luz)

min upg \

yeEY,up

Ve L(z,y, X pt)] o <0 if 1’?] =2V
Ve L(z,y, XY pt)| . >0 if 1’?] = gk

Due to the presence of an additional set of constraints, it is obvious that

min <
Bp€eCB
Bp#B;

/

Therefore,

s.t.

“B 2 L(:CBp7y7)‘lvﬂl)
. B
Va:i[f(wvyv)‘lnulﬂml <0 if T, = l’fj > min ,ugor(l, Bp) .

min

yeEY,up

02 \

— BpeCB

Ve L(x y,)\l, 1 .>0 1 g;-Bp = oL Bp# B,
h 2 lu x 2 2

B > nlinL(x7y7)‘271u2)

man

(1B

)22 MIN[ min pu5™ (1, By), pp’ ]

Bp#B,

(18)



Hence, it only remainsto beshownthat /4% > %5* , where ;%3* is given as

( . )
min

yev B

HpB

s.t.
pp > Lz y, AL ) Er

1
1 2 . z
_ o
i = L Vo L(z,y N ) <O if 2B = o7
Ve L(z,y, Nyt 0 >0 if 2’ = ok
up > L(zBy, N2 pu2) [

viﬂiL(x?y? )‘27 /LLZ)LEZ § O lf [E,L-Bl = ."[},EJ
sz‘L(:E?y? )‘27 ,MZ)LEZ 2 O Zf :L’Z-Bl = ;[jL

2 J

(19)

Now, in the RHS of (19), the Lagrange function from the first iteration has the value of = set to the
appropriate bound (z27), and is therefore a function only of y. Hence, the Brlr;iCnB operator applies only
to the second set of constraints, i.e., those corresponding to the 2 primal problem. Hence, (19) is
equivalent to

min up

LB

s.t.
pp > L(zBy, N ) o7

z1
ne" 2 Vo L(w,y, Ay pt) ] <0 if 2 = af : (20)
Ve L(z,y, XY pt)| . >0 if x?ﬂ = gk
L(:EBZ? Y, )‘27 /’LZ)KZS
. . B
pp > Min o Vo L(z,y, N p?)], <0 if o)t =]

Ve L(z,y, N2 p1?)| . >0 if oB = b

2 J

\

The use of Property 4.2 leads to

zk

minL(z,y, A% p?) > min § YV, L(z,y, A2 p?)],. <0 if a7t =a¥ 5. (22)

~ BeCB i

Vﬂ:iL(xvya)‘zaﬂz)L:Z 2 0 Zf xiBl = $1.L
Hence, from (20) and (21), the second set of constraints on the RHS of (19) is simply arelaxed form
of the second set of constraints of the RHS of (18). Hence, for &£ = 2, the property holds. Similarly, by
induction, the property can be proved for any . a



Remark 4.2. Notice that the RHS of (16) represents (a) the solution of a number of subproblems
each of which corresponds to a unique combination of bounds B; of the connected » variables, and (b)
the selection of the minimum solution from all these subproblems and the stored solutions of previous
subproblems that have not already been selected. The solution of the different subproblems correspond
to partitioning the y space and solving the problem in each subspace.

Property 4.5. The solution of each subproblem in the form given by (15) isits global solution.

Proof. The Lagrange functions as used in the (15) are convex functions of y. From Property 4.3, the
gradientsof the Lagrangefunctionsw.r.t z; arelinear iny. Therefore, subproblem (15) satisfiesthe global
optimality conditions (Ref. 32). O

4.2. Infeasible Primal Problems

In cases where the primal problem (2) is infeasible, another problem must be solved for generating the
appropriate values of A and ;2. One possible formulation for this problemis

m D
mn > o + Y (B +5), (224)
CARLC | i=1
h(z,y) + 67 =B~ = 0, (22b)
g(CL‘, y) -« § 07 (22C)

where o; , 8 and ] are dack variables that are introduced in order to minimize the sum of the
infeasibilities in the constraints. In problem (22), for every fixed y*, the objective function is linear, the
equality constraints are linear and the inequality constraints are convex. If § = fj a; + fj (BF + B7),
then, the strong duality theorem provides = =

min 0 s.i. g(z,y)—a <0, h(z,y)+pT -8 =0,
= max min {04+ (h(z,y) + 8% = 87) + pl (g(x,9) — )}, (23)

n120 =
A

where )\; and ;; are the Lagrange multipliers for the equality and inequality constraints for the solution
of (22) for fixed y = y*. If § isthe optimal solution of (22), then (23), together with the optimality
conditions for this problem, implies that

0 = maxmin{\{ h(z,y) + pig(w,y)} -

n12>0



Since we seek to minimize the infeasibilities 4, this can be used as a constraint for the relaxed dual
problemin the following form:

max min{A1 h(z,y) + p1g(z,y)} = 0.

n12>0

A relaxed form of this constraint is
minL,(xaya)‘ly /Ll) § 07 (24)

where
L'(z,y, M, p1) = AL h(e,y) + il g(x,y). (25)
It can be easily shown that the Properties 4.1-4.5 presented in Section 4.1 are all applicable directly for
the case of infeasible primal problemsby simply replacing iz by Oand L(x, y, Ak, u*) by L' (z,y, A, u¥).
The constraints to be added along with the Lagrange function to the Relaxed Dual problem are again of
theform
Vo L' (2, y, X, p)|or <0, or Vg L'(w,y, M5, pf)ox >0,

depending on whether the variable z; is at its upper or itslower bound respectively.

Remark 4.3. Constraint (24) does not contain x5 (the objective function for the lower bound problem);
at first glance, it does not appear to be auseful cut for the relaxed dual problem. However, it can be seen
that this constraintisalwaysviolated at y = y* (thefixed value of y for theiteration k at which therelaxed
primal problem was solved, leading to (24)). The introduction of (24) ensures that no cycling occursin
the relaxed dual problem, i.e. this eliminates the possibility of the relaxed dual problem returning the
value y* at any subsequent iteration. Hence, the constraints of the form (24) are useful asfeasibility cuts
for the relaxed dual problems.

Remark 4.4. It should be noted that if the implicitly defined set V' can be introduced into the dual
problem, then solutions for i found by the relaxed dual problem will always be feasible for the primal
problems. Thisispossiblefor unconstrained problemsor for problemswhereit is possibleto incorporate
the constraint set explicitly into therelaxed dual problemswithout destroying the convexity of the problem
(for example, general quadratic problems with linear constraints). Hence, for these cases, there will be
no infeasible primal problems.

Remark 4.5. The Lagrange functionsbeing introduced into the relaxed dual problemsfor iterationswhen
the primal isinfeasibleare of theform given by (24). However, thisisnot the only possible formul ation of



the constraint that can be used in the relaxed dual problem. For example, at any iteration, ug > MLBP,
where M L3P jsthe lower bound obtained from the relaxed dual problems upto that iteration. Using this
and (24), another constraint that can be added to the relaxed dual problemis

pp > MEBD L minL/(z,y, A1, ).

5. Partition of the y-Spacein the Relaxed Dual

Section 4 presented properties, based on which the relaxed dual problem can be reduced to aformulation
containing only constraints and not inner optimization problems. However, a number of subproblems
corresponding to all combinationsof bounds B; € C' B need to be solved at every iteration. The solutions
of theprimal problemsare usedto formulate L agrangefunctionsthat are usedintherelaxed dual problems.
At any giveniteration, therefore, the relaxed dual subproblemswill contain a Lagrange function from the
current iteration, and one from each of the previousiterations. The criterion of selection of the Lagrange
functions from the previous iterations is very important, since it defines the region in which a particular
relaxed dual subproblem is solved.

At every iteration K, the primal problem (2) is solved for a fixed value of y = y*. If the primal
problem is infeasible, then a relaxed primal problem of the form (22) is solved. In either case, the
resulting Lagrange multipliers for the various constraints are stored.

5.1. Selection of Previous L agrange Functions

Before solving the relaxed dual subproblems, the Lagrangians from all the previous iterations that can
be used as constraints for the current relaxed dual subproblems are determined. To achieve this, the
qualifying constraints of every such Lagrange function (i.e. fromiterations1, 2, ..., K — 1) are evaluated
at y¥. If the qualifying constraints are satisfied at 4%, then the Lagrange function and its accompanying
qualifying constraints are sel ected to be constraintsfor the current rel axed dual subproblems. Thisisdone
even if the primal problem was infeasible for the iteration in question. Exactly one Lagrange function
will be selected from each of the previous iterations. In these Lagrange functions, the = variables are
then set to the appropriate combination of bounds. Hence, these Lagrange functions, as included in the
current relaxed dual subproblems, are functions only of .



5.2. Partition in the y-space

Once the Lagrange functions from the previous iterations have been selected, the relaxed dua problem
is then solved for each combination of =2 . In each case, the Lagrange function formulated from the
current primal problem is chosen as a constraint for the relaxed dual problem, with = replaced by 5.
In addition to this, the corresponding qualifying constraints for the Lagrange function are added to the
relaxed dual problem.

It should be noted that for each combination of the z variables, there is a corresponding set of
qualifying constraints in terms of the y variables. Since the relaxed dual subproblems are solved for
different combinationsof bounds, each relaxed dual subproblem hasaunique set of qualifying constraints
associated with it. Therefore, each of these relaxed dual subproblems solved corresponds to a different
region in the y-space of the original problem. The actual region for which a particular relaxed dual
subproblem is solved is determined by the corresponding set of qualifying constraintsthat are associated
with that Lagrange function. Therefore, the solution of the relaxed dual subproblems can be viewed asa
branch-and-bound procedure where the feasible region in terms of the y variablesis partitioned into 2V %
subregions (where N 7X isthe number of connected z variablesat the K'** iteraton) and each rel axed dual
subproblem corresponds to a node of the branch-and-bound tree and is solved for a particular subregion
in the y-space. However, the nodes in the tree are generated dynamically through the solution of the
various subproblems at every iteration.

After the relaxed dual problem has been solved for every possible combination of the bounds =2, the
only remaining task is to determine a new lower bound for the original problem and select a fixed value
of y for the next primal problem. Thisis done by taking the minimum of all the stored values of ;5 as
the lower bound, and the corresponding solutions for 4 asthe y%** for the next primal. Once a particular
pp and y have been selected, they are no longer considered for future iterations. Thisis to ensure that
the relaxed dual problem will not return the same value of 4 and ;. during successive iterations.

Finally, the check for convergenceis done. If the lower bound from the relaxed dual problem comes
within ¢ of the upper bound from the primal problems, the optimal solution to the origina problem has
been found and the algorithm terminates. Otherwise, the algorithm continues with the updated stored set
of solutionsfrom the relaxed dual problems and a new fixed value of y for the primal problem.



5.3. Progress of the lower bound

When arelaxed dual subproblemissolved, it contains Lagrange functionsfrom previousiterationswhose
gualifying constraints are satisfied at the current fixed value of y. The solution of this subproblem liesin
a cone defined by the qualifying constraints of the selected Lagrange functions. Therefore, in all future
iterations, this set of Lagrange functions (and the accompanying qualifying constraints) will be present if
the fixed value of y for that iteration liesinside this cone. Hence, there is a subsequencein the stored set
of solutions of the relaxed dual subproblemsthat will alwayslie inside this cone. Therefore, the solution
of all the relaxed dua subproblems can be viewed as the union of subsequences lying inside different
cones, and the lower bound from the relaxed dual subproblemsat any iteration is simply the minimum of
these subsequences.

5.4. Properties of the Relaxed Dual

Since the relaxed dual problem is based upon the partition of the space of y variables, the position of
the current fixed value for y (that is, the value of y¥) plays a very important role in the solution of the
subproblems. If, for some iteration K, y* lies at a boundary of the constraint region, then some of
the relaxed dual problems will give redundant solutions, and it is possible to avoid solving these of the
subproblems without losing the rigorous nature of the algorithm. To identify such cases, use is made of
the structure of the Lagrange function that isused in the relaxed dual problem. Based upon thisstructure,
new properties have been developed that help to improve the efficiency of the algorithm by reducing the
number of relaxed dual subproblemsthat need to be solved at each iteration. These propertiesaong with
the computationa improvements arising from their application are discussed in detail in Visweswaran
and Floudas (Ref. 33).

6. The Global OPtimization (GOP) Algorithm

The GOP algorithm can be formally stated in the following steps:

STEP 0 —Initialization of parameters:

Define the storage parameters p°m (K™=, B;) , y**" (K™=, B;) and y*( K™=, B;) over the set of
bounds C' B and the maximum expected number of iterations K™=, Define PY3P and M*BP asthe
upper and lower bounds obtained from the primal and relaxed dual problems respectively. Set

pEr (K™, B;) = U, PYPP = U, and M*PP = L.



where U is avery large positive number and L is a very large negative number. Select an initial set of
values y* for the complicating variables. Set the counter K equal to 1, and sets K f¢2* and K*fees to
empty sets. Select a convergence tolerance parameter e.

STEP 1—Primal problem:

Store the value of y*. Solve the primal problem (2) for y = y¥. If the primal problem is feasible,
update the set K f¢2* to contain K, and store the optimal Lagrange multipliers ¥ and p¥. Update the
upper bound so that

PUBD — M]N(PUBD, PK(yK))

where P (y¥) isthe solution of the current (K th) primal problem. If the primal problem isinfeasible,
update the set K**fe2s to contain K, and solve the relaxed primal subproblem (22) with y = y*. Store
the values of the optimal Lagrange multipliers \¥ and .

STEP 2 — Sdlection of Lagrange functions from the previous iterations:

For k = 1,2,..., K — 1, evaluate all the qualifying constraints of every Lagrange function from
iteration &, (i.e., corresponding to each set of bounds of = ) at y*. Select the one Lagrange function
from every iteration each of whose qualifying constraints are satisfied at y* to beinthe set U L(k, K),
i.e., to be present in the current relaxed dual problems along with its qualifying constraints.

STEP 3 — Relaxed Dual Problem:
Formulate the Lagrange functions corresponding to the current primal problem. Add this as a
constraint to the relaxed dual problem. Then:

(&) ldentify the set of connected x variables /..
(b) Select a combination of the bounds of the connected variablesin x, say B, = B;.

(c) Solve the relaxed dual problem (15). Note that this problem shows the constraints that must be
used for iterations when the primal problemisfeasible. For iterations when the primal problemis
infeasible, substitute O for xp and L’ for L in the constraints corresponding to that iteration. See
Section 4.2 for more details on the form of these constraints.

Store the solution in p°" (K, B;) and y**" (K, By).

(d) Select anew combination of boundsfor z, say B; = Bs.



() Repeat (c) and (d) until the relaxed dua problem has been solved at each set of bounds of the
connected variablesin z, i.efor every B, € CB.

STEP 4 — Selecting a new lower bound and y%+1:

From the stored set ;z3t°", select the minimum 72" (including the solutionsfrom the current iteration).
Also, select the corresponding stored value of y*" (k, B;) asy™". Set MZBD = ymin and y&+1 = ymin,
Delete ym*" and y™" from the stored set.

STEP 5 — Check for convergence:
Check if MEBD > pUBD _ ¢ |Fyes, STOP Else, set K = K + 1 and returnto step 1.

Remark 6.1. In Step 2 of the GOP agorithm, one Lagrange function from each of the previous
iterations is selected on the basis of satisfaction of its qualifying constraints at ¥ . If it so happens that
forsomej € {1,2,...,n1},

V%L(‘rvy = yKv )‘knuk>|zk =0
then, this implies that the Lagrange functions from the kth iteration with z; set to either its upper or

lower bound are eligible constraints for the current relaxed dual subproblems. Since the accompanying
gualifying constraints are also included, this means that

VEJL('ra Y, )‘kv luk)|a;k =0

for the current relaxed dual subproblems. Thiscould potentially lead to someregions of y being unavail-
able for the relaxed dual subproblems. This can be avoided by introducing the qualifying constraintsin
aperturbed form :

Vo, L@y, X p¥) e > 8 if @ =af (26a)
Vi, L(z,y, Mo )| < =8 if ap? = af (26b)

where § isavery small positive number. Thisensuresthat both (26a) and (26b) cannot be simultaneously
satisfied at y¥, and consequently exactly one Lagrange function (and its accompanying qualifying
constraints) will be present from each of the previous iterations for the current relaxed dual problems.

7. Finite e-Convergence and e-Global Optimality

Thissection presentsthetheoretical proof of the convergenceand global optimality of the GOP algorithm.
The convergence proof is based upon the results of Geoffrion (Ref. 28).



Lemma 7.1. If the sequence of solutions < y* > of the relaxed dual problem convergesto 77 , and the
corresponding Lagrange multipliers for the primal problem (2) convergeto (A, 7z), then

L(Q;B] 3 yv X? ﬁ) |lil? - P(?) fOT any JZBJ

where P(7) represents the optimal solution of the primal problem at 7.
Proof. Thelinearization of the Lagrange function evaluated at =2 can be written as

LBy, N p®) 20 = L(a*,y, M %) + 08 (y) — g* (")) - (2P = %) vB; e OB
By the Strong Duality Theorem, L(z*, y*, \* 1*) isequal to P(y*) for every y*. Then,
As yF =y, L(®y, N P — PT). (27)
Since g*(y) isavector of linear functions of v,
As =7, g*(y) — 9(m).
From this, and (27), we obtain the desired result. O

Lemma 7.2. For afixed y = y* for the kth primal problem, let U/ (y*) be the set of optimal multipliers.
If y* — gand \* — X, — 77, then (N, 77) € U(7).
Proof. The proof for this Lemma comes from showing that U/(y) is an upper semicontinuous mapping
at y. To do this, we employ the characterization of U/(y) as the set of optimal solutions of the dual of the
primal problem; that is,

Uly)={p>0X: L*(Z,y,\, p) = max L*(E,y,)\k,,uk)}

nF >0k

Now, L*(Z,y, \*, u*) = min L(z,y, ¥, u*) isacontinuousfunction, sinceit isalinear sum of continuous
functions of y. Then, application of Theorem 1.5 of Meyer (Ref. 34) proves the desired result. 0

Lemma 7.3. Let P(y) be the set of optimal solutions of the primal problem for fixed values of y; then,
if y* — 7, P(y) isupper semicontinuous at 7.

Proof. Sincethe set U(y) isassumed to be nonempty for all y, then from the Strong Duality Theorem,
we have that

P(y) = max L (T,y, A p) Vyey



Since Y is a compact set, the local uniform boundedness of U(y) implies the uniform boundedness
of U(y) on all of Y. Therefore, there exists a compact set U/* such that U(y) C U* for all y inY'.
The constraint (A, 1) € U* can then be added without disturbing the equality. Since L*(Z,y, A, i) isa
continuous function, P(y) is upper semicontinuous at 7 (Maximum Theorem of Berge, Ref. 35). a

Theorem 7.1. (Finite e-conver gence) If the following conditions hold:

(&) X and Y are nonempty compact convex sets,andY C V,
(b) Conditions (A),
(© f(z,y),g(z,y)and h(x,y) arecontinuouson X x Y, and

(d) Theset UU(y) of optimal multipliersfor the primal problem is nonempty for al y € Y and uniformly
bounded in some neighborhood of every such point,

then,
For any given ¢ > 0, the GOP algorithm terminatesin a finite number of steps.

Proof. Fix ¢ > 0 arbitrarily. Suppose that the GOP algorithm does not converge in a finite number
of iterations (that is, (u3™") < PUBP —¢). Let < y*, (") > be the sequence of optimal solutions
to the relaxed dual problem at successive iterations k. Note that any solution from the stored set, if
selected as the minimum for a given iteration, is removed from the stored set. Therefore, by taking a
subsequence, if necessary, we may assume that < y*, (u7") > convergesto (7, uz) suchthat 7 € Y.
At every iteration, there is an accumulation of constraints from previous iterations. This implies that
p™™ is a nondecreasing sequence which is bounded above by the optimal value of the original problem.
Also, at every iteration, y* isin the compact set Y. Similarly, since U(y) is uniformly bounded for all
y € Y, we may assume that the corresponding sequence of multipliers for the primal problems (A, ;%)
convergesto (), 7), and that the the sol utions of the corresponding primal problems (z*, P(y*)) converge
to (z, P(y) ). From Lemma7.2, we havethat (A, 7) € U(y). FromLemma7.1,

L, g, X Dl = P(y)  for any 2 (28)
Now, at every iteration &, due to accumulation of constraints,

mink n
it > LBy ROk k) |5

x
lin

for some combination of boundsz%:. Therefore, by continuity of (257, y, \*, 1*)| %7 and (28), weobtain
wg™ > P(7). The upper semicontinuity of P(y) at 7 (Lemma 3), then impliesthat 3" > P(y*) — e



for al k sufficiently large, which contradicts the assumption that the termination criterion in Step 5 is
never met. O

Remark 7.1. It should be noted that for the general nonconvex nonlinear problem, condition (d) above
may be difficult to prove (or disprove.) However, for the problems considered in this paper (namely
problems satisfying Conditions (A)), it is easy to show that condition (d) is always satisfied. The proof
for this comes from the fact that the set of variables is assumed to be bounded. Hence, the only way a
multiplier for a constraint can be unbounded isif that constraint has a variable whose coefficient is zero.
However, in such a case, the variable will simply vanish from the constraint, and will not directly affect
the multiplier for that constraint. In the case of iterations where the primal problem is infeasible, the
relaxed primal problem (22) is solved. Again, the same argument (as above) holds for this problem too.

Theorem 7.2. (Global Optimality) If the conditions stated in Theorem 7.1 hold, then

(i) The solution of the Relaxed Dual (RD) problemin Step (3) of the agorithm in Section 6 will always
be avalid underestimator of the solution of problem (1).

(i) The GOP agorithm will terminate at the global optimum of (1).
Proof.

(i) From Property 4.4, the solution of the relaxed dual problemin Step(3) will underestimate the solution
of the relaxed dual problem (5). Since (5) has fewer constraints than the dual of the original
problem, it represents alower bound on the solution of (1). Hence, the solution of the relaxed dual
problem in Step (3) will always be a valid underestimator of the optimal solution of (1).

(i) The primal problem at every iteration represents an upper bound for the original problem (1), while
therelaxed dual problem contains fewer constraints than the original problem and thusrepresentsa
valid lower bound on the solution of (1). Therefore, since the termination of the algorithm is based
on the difference between the lowest upper bound (from the primal problems) and the largest lower
bound (from the relaxed dual problems), the algorithm will terminate when these two bounds are
both within ¢ of the solution of (1). From Theorem 7.1, the algorithm terminatesin afinite number
of steps. Hence, the GOP algorithm terminates at an e-global optimum of (1). O

Remark 7.2. It has been assumed throughout the theoretical development outlined in this paper that
some form of constraint qualification (for example, Slater’s qualification) holds for the problem being



solved. If such a condition cannot be satisfied, then it is possible that for some fixed values of y, the
primal problem will be over-specified, i.e. there are more constraintsthan variables. Usually, thisimplies
a linear dependency in some of the constraints. It should be noted that for such problems, the GOP
algorithm cannot be guaranteed to converge to the optimal solution.

8. lllustration for Bilinear Problems

In this section, the GOP algorithm is illustrated through application to the following bilinear problem
suggested by one of the referees :

min —y , st. zy=0, —-1<z,y<1.
m!y
The optimal solution is —1, and occursat (0, 1). Consider the starting point of y = 0.

Iteration 1: For y! = 0, the primal problem can be written as
min O, st. =1—-2<0, z-1<0.

The solution of this problem is 0. Since the objective is constant, all the multipliers are zero. The
Lagrange function formulated from this problemis  L(z,y, A}, u*) = —y. From this, it can be seen
that the gradient of the Lagrange function wir.t. = is zero. Hence, the bound used for = in the Lagrange
function does not affect the solution, i.e. only onerelaxed dual problem needsto be solved. Thisproblem
isgiven below :

mn pp,  stoopp > Li(y,Apt)=-y, -1-y<0, y-1<0.

The solution of thisproblemisy = 1, ug = —1. Thus, after the first iteration, the upper bound on the
global solution is 0 and the lower bound is —1. The value of y = 1 is chosen as the fixed value for the
primal problem of the next iteration.

Iteration 2 : For y? = 1, the primal problem is given below :
min —1, st. =0, -1—-2<0, z-1<0.

The solution of this problem yields = 0, and \?> = 2 = ;5 = 0. The objective function valueis —1.
Thisis lower than the solution of the first primal problem, and hence becomes the new upper bound on
the global solution.

At this point, the lower and upper bounds from the primal and relaxed dual subproblems are equal.
Hence, the agorithm can be terminated, having converged to the global solution.



9. Illustration For Polynomial Problems

Consider the application of the GOP agorithm to the following problem:
myin —6y + 4.5y% — 3 sit. 0<y<3.

This problem hasa global solution of -4.5at y = 3, and alocal solutionof -2.5at y = 1.
The introduction of two new variables z; and x, and two constraints (z; — y = O and z, — 21y = 0)
enables the problem to be rewritten in the following equivalent form :

min —6y + 4.5z, — x2y , st. xp=y, wxa=x1y, O0<ux,y <3, 0<z,<9.
y

It should be noted that the bounds on the x variables need not be considered explicitly, since the
equivalence relations restrict the values of x; and x, depending on what values y can take.
Consider the starting point of y = 2 for the application of the (GOP) algorithm.

Iteration 1: For y* = 2, the primal problem can be written as
min —12 + 2.5z, , st. x1—2=0, x,—2x1=0.

The solution of this problemis z; = 2, z; = 4, \} = =5, and \} = —2.5, where \} and \} are the
Lagrange multipliers corresponding to the two new constraints. The objective function has avalue of -2,
and provides first upper bound on the global optimum.

The Lagrange function formulated from this problemis

L(z,y, )\%, )\%) = —6y + 451, — x2y — 5(x1 — y) — 2.5(x2 — x1y) = (2521 —22) - (y — 2) — v .

Thus, the gradient of the Lagrange function w.r.t z; and x, hastheformy —2 > Oory — 2 < 0. Since
there are two = variables, there are four (2%) subproblems solved in the relaxed dual, as shown below :

Problem1l Problem2 Problem3  Problem4

Boundsfor z 81 =(0,0) zB2=(3,0) 2B =(0,9) 2B =(3,9)
Qualifying Constraintforz;, y—2>0 y—-2<0 y—-2>0 y—-2<0
Qualifying Constraintforz, y—-2<0 y—-2<0 y—-2>0 y—-2>0

It can be seen that for Problems 1 and 4, the qualifying constraints for z; and z, are simultaneously
of thefoomy — 2 > 0and y — 2 < 0. For these two problems, therefore, the introduction of these
constraintsis equivalent to fixing y = 2. Hence, the solutions of these problemswill simply be the point
y = 2, up = —2. Hence, it isonly necessary to solve problems 2 and 3.

These two relaxed dual subproblemsto be solved are shown below:



(i) (Problem?2) For 292 =3, 252 =0,y —2< 0.
The relaxed dual subproblemis
min pp, st opp > LBy, M 0\)) =65y —15, y—-2<0, 0<y<3.
The solution of thisproblemisy = 0, ug = —15.
(ii) (Problem3) For 22 =0,25* =9,y —2> 0.
The relaxed dual subproblem is
min g , sit. pp > LyaBy, ML) =—-10y+18, y—-2>0, 0<y<3.
The solution of thisproblemisy = 3, up = —12.

Thus, after the first iteration, there are two solutions of (ip,y) in the stored set. From these, the
solution corresponding to the minimum pp is chosen. In this case, this corresponds to the solution
us = —15, y = 0. Hence, the fixed value of y for the second iteration is 8 . The selected solution is
then deleted from the stored set.

Iteration 2 : For the second iteration, the primal problem, with 42 = 0, is given below :
min 45z,, sit. =0, 2,=0.

Itssolutionyields z1 = 0, 2, = 0, A2 = 0, A3 = —4.5, and objective value of 0.
The Lagrange function formulated from the second primal problem is

L(z,y, )\i, )\%) = —6y + 4.51, — x2y + O(z1 — y) — 4.5(x2 — 21y) = (4.501 — 22) - (y — 0) — 6y .

Again, it can beeasily seenthat only two relaxed dual subproblemsneed to be solved, for the combinations
of bounds (3, 0) and (0, 9) respectively for 21 and x,. Before solving these problems, al agrange function
needsto be selected from thefirst iteration. In order to do this, the qualifying constraintsfor the Lagrange
functions are checked at y2 = 0. This indicates that the Lagrange function formulated for Problem 3 of
the first iteration (with the qualifying constraint y — 2 < 0 for both =, and ;) can be present for the
current relaxed dual subproblems.

The two relaxed dual subproblems solved at the second iteration are shown below:

(i) (Problem?2) For 232 = 3,252 =0,y — 0 < 0.
min pp, st pp>Ly=65y-15 y-2<0, pp=Li=75y, y-0<0, 0<y<3

The solution of thisproblemisy = 0, ug = 0.



(ii) (Problem3) For 22 = 0,25* =9,y — 0> 0.
myin pp, s.t. pp>Li=65y—15 y—2<0, pug>1IL3=-15y, y—0>0, 0<y<3.
The solution of thisproblemisy = 0.6976, g = —10.4651.

At the end of the second iteration, there are two stored solutions left, namely y = 3, ug = —12 and
y = 0.6976, up = —10.4651. From these, the first solution is chosen as the one with the smaller value
of up. Therefore, the new lower bound for the problem is —10.4651, and the fixed value of y for the next
primal problemisy = 3.

Iteration 3 : The primal problem is solved for 42 = 3. The solution of this problem yields z; = 3,
o =9, A3 = —4.5,and \3 = —1.5. The objectivefunction hasavalue of -4.5. Sincethisislessthan the
best solution from previous iterations, the new upper bound for the global solutionis-4.5. The Lagrange
function formulated from the third primal problemis

Lz,y, )\i, /\g) = —6y + 451, — xoy — 4.5(x1 — y) — 1.5(x2 — x1y) = (L.52z1 — x2) - (y — 3) — 1.5y

Again, tworelaxed dual problemsare solved, one each for the combinations of bounds (3, 0) and (0, 9) for
x1 and z,. Before solving these problems, a Lagrange function from each of the previous two iterations
isselected. Thisleadsto theselection of .1 and 1.5 from thefirst and second iterations respectively, since
their qualifying constraints are satisfied at y° = 3.

The two solutions of the two relaxed dual subproblems are y = 2.423, up = —6.2308 and y =
3, up = —4.5. Thus, at the end of the third iteration, there are two solutions less than the upper bound
on the global solution (i.e. lessthan -4.5). From these, the solution of y = 0.6976, ug = —10.4651 is
selected. Hence, the new lower bound on the global solutionis —10.4651 and the fixed value of y for the
next iteration is y* = 0.6976.

The algorithm continues in this fashion until the lower and upper bounds are within ¢, taking 17
iterations to converge to the global solution.

10. Geometrical Interpretation

The application of the GOP algorithm to the second illustrating example (Section 9) can be interpreted
geometrically. At every iteration, the solution of the primal problem for afixed valueof y = y* issimply
an evaluation of the objective function at y*. The two Lagrange functions used for the relaxed dual



problems are underestimators of the objective function for y < ¥ and y > y*, and these two Lagrange
functionsintersect at y = y*. Consider thefirst relaxed dual problem, for which the Lagrange functionis
evaluated at z1 = 3 and x, = 0, and thedomain of y isrestrictedtoy < y*. Fromapreviousiteration k,
if y* < yX, thenthe Lagrangefunction from that iteration evaluated at z; = 0, z» = 9 will underestimate
the objective function for all values of i between y* and ¥, and therefore will be present in the current
relaxed dual problem. Conversely, for an iteration k& where y* > y¥, the Lagrange function from that
iteration evaluated at 2 = (3,0) will underestimate the objective function for all values of y between
y¥ and y*, and therefore will be present in the relaxed dual problem. The converse holds for the other
relaxed dual problem for the current iteration. The solutions of these two relaxed dual problems will lie
between y* and the nearest 4* on either side of .

By storing the solutions of each of the relaxed dual problems at the current iteration, we ensure that
the algorithm can, if necessary, return a value of y from either side of y* for the (K + 1)th iteration.
At the same time, the criterion for selecting the Lagrange functions from previous iterations results in
the creation of an underestimating function for the objective function that resembles a series of valleys
and peaks, with the valleys representing the stored solutions of the relaxed dual problems at different
iterations.

For a starting point of y! = 2, the sequence of points generated by the algorithm is graphically
illustrated in Figures 1-4. f(y) isthe optimal value of the primal problem for different fixed values of y,
and in this case happens to beidentical to the original function. For the first iteration (Figure 1), with an
optimal value of -2 for the primal problem, L} and L3 are the Lagrangians evaluated at the two sets of
bounds (3, 0) and (0, 9) respectively for (z1, x2). Ascan be seen, each Lagrange function underestimates
the objective function for one side of * = 2. The solutionsof the two relaxed dual problemsgive (0,-15)
and (3,-12) for (y, up). Thesetwo values are stored. Then, the solution providing the lower up, i.e.
(0,-15) is selected, and deleted from the stored set.

For the second iteration, 32 = O for the primal problem, and the optimal solution is 0. From the
solution of this problem, two new Lagrange functions are generated, which areindicated by 7. and L3 in
Figure 2. For the first relaxed dual problem in this iteration, the Lagrange function L? is present, along
with L. The solution of this problemis (y = 0,us = 0). For the second relaxed dual problem, .
is present from iteration 1, and 3 is present from the current iteration. The solution of this problemis
a (y = 0.698, up = —10.465). These two solutions are stored. From the stored set, the lowest value,
whichis up = —12, is selected as the new lower bound, and the corresponding y = 3 is selected as the
fixed value for the next iteration. The selected solutiony = 3, g = —12 isdeleted from the stored set.



From the third iteration, with an optimal value of -4.5 for the primal problem, the two Lagrange functions
obtained are L3 and L3, shown in Figure 3. For thisiteration, L3 and 3 are present from the previous
iterations as constraints. The solution of the two relaxed dual problems lie at (2.423,-6.24) and (3,-4.5).
These are stored, and the least value of all the stored solutions (g = —10.465) is selected as the new
bound. The corresponding y = 0.698 is the fixed value of y for the next primal problem. The algorithm
continues in this manner until the lower bound comeswithin ¢ of -4.5 .

Figure 4 shows the underestimating function that is effectively obtained after four iterations. The
lower bound from the fourth iteration is simply the lowest valley of this underestimating function.

11. Quadratic Problemswith Quadratic Constraints
The quadratic programming problem with quadratic constraints has the following form:

min ¢z + 2TQux,
x

st. zTApz+ Bz —b, <0, m=12..p,
2T Apz +Ca — by, = 0, m=p+Lp+2..p+q,
Dx—d <0,
Erxr—e =20

?

where x an n-vector of variables, and ¢, d and ¢ are constant vectors. @, B, C, D, and E are constant
matrices. A,, isann x n matrix corresponding to the mth quadratic constraint, and &,, is a constant for
that constraint. It isassumed that the bounds on the variables are explicitly incorporated into the problem
in the third constraint set.

By defining a new set of variablesy = z, this problem can be rewritten in the following form :

min Tz + 2TQy,
m,y

st. zTApz+ Bz —b, <0, m=12..p,
2T Apz +Cz — by, = 0, m=p+Lp+2..p+q,
Dx—d <0,
EFrxr—e =0,
xr—y = 0.



For someproblems, it may not be necessary tointroduceay variablefor every x variable. Theintroduction
of the variables as shown above is only one of several possible waysof converting the problemto aform
satisfying Conditions (A). The reader is referred to Hansen and Jaumard (Ref. 31) for more information
on the efficient bilinearization of these problems. The reader isalso referred to Visweswaran and Floudas
(Ref. 27) for complete details and several examples of application to quadratic problems with linear
constraints.

The primal problem is solved for y = »*, and its solution provides the optimal multiplier vectors %,
M5, ik, A5 and v* respectively for the five sets of constraints. Using the KKT gradient conditions, the
L agrange function can be formulated as

T T T T T T T
L(J},y,)\ﬁ,,u?,)\g,,ug,l/):JTT(Q—I-(/L? 7)‘§ )A)(y_yk) (:ul 7)‘k )b_:ug d_)‘g e_l/k Y.

Hence, the qualifying constraints to be added to the relaxed dual problem take the form

p+q

Q+Zulm/1ml+ YoM An)(y—v*) <0 uf 2P =2]
m=p+1
p+q

Q+Zu1 Ami+ Y X An)(y—y*) >0 if 2P =af

m=p+1

where the subscript : myrefers to the :th row of the matrices ) and A,,, i.e., the rows corresponding to
the variable x; in the matrices. Similarly, the qualifying constraints for iterations with infeasible primal
problems can be generated.

11.1. Example: The Pooling Problem

A complete nonlinear programming NL P formul ation for the pooling problem (Refs. 12 and 31) isshown
below :
min  6A + 13B + 10(C, + Cy) — 92 — 15y ,

s.t. P,+P,—A-B =0, p-(P,+P)—-34A—-B =0,
t—P,—C, =0, y—P,—C, =0,
p-Po+2-C,—25: <0, p-P+2-C,—15 <0,
0<z<zY 0<y<y9Y A B, C, Cy P, P, >0,

where p isthe sulfur quality of the pool; itslower and upper bounds are 1 and 3 respectively. A and B are
two input streams to the pool, and P, and P, are the two output streams from the pool. These streams



are mixed with bypass streams €', and C,, to produce two final output streams having qualities of = and
y respectively.

Projection on the pool quality p makes the primal problem linear in the remaining variables. It can
be seen that only the variables P, and P, are directly connected with the variable p. Hence, the relaxed
dual needsto be solved at the bounds of only these two variables.

The GOP algorithm was applied to this problem with the upper bounds on = and y being 100 and
200 respectively. The problem exhibits a strong local minimum at p = 2.5, with the optimal solution
v(y) actually being discontinuous. The algorithm found the global optimum of —750 at p = 1.5 from
several starting points, required an average of 10 iterations to converge. (Note: An extensive treatment
of the application of the GOP algorithm to this problem and other quadratically constrained problemsis
provided in Visweswaran and Floudas (Ref. 27) ).

12. Polynomial Functions

A vast number of problems involve the minimization of polynomial functions of one or more variables.
This section presents the application of the GOP algorithm to polynomial functions of a single variable.
The general approach can be easily extended to include functions of more than one variable, and can also
be applied for polynomial constraints as well as rational polynomial functions.
Consider the unconstrained minimization problem
min  f(y) = ao + a1y + azy® + ... + asy® (29)

yeEY

where y is a single variable. The presence of either negative coefficients a; or the presence of odd
powers of y in the function can give rise to nonconvexities. Let r be the highest power of y such that
a,y" isnonconvex in y for y € Y. Then, by introducing (r — 1) transformation variables, this problem
can be decomposed into convex primal and relaxed dual problems, enabling the application of the GOP
algorithm.

Consider the following transformations:

2 T
ro=1 xT1=vy, T2=y =21y, ... Tr =Y = Tp_1Y .

Projecting on y, the primal problem for this formulation becomes, for afixed value of y = y*,

min Y az + Y ai(y™),
2=0

i=r+1



st zi—ziiw® =0, =12 .1,

1}0:1.

The Lagrange function for this problem is given by

Lz y,)\K Zaz:ziz—l— E a;y’ —I-Z)\ Ti — Ti_1Y)
=r+1

where \X are the Lagrange multipliers for the equality constraints. Using the KKT gradient conditions
for the primal problem, the Lagrange function can be simplified to

L LE » Y, )‘K Z)‘H-l y)T‘L + Z aiyi - )‘g ’
=r+1

where )‘f{+1 = Oand \f istheLagrangemultiplier for thelast constraint. Thus, for every z;, thequalifying
constraint to be put into the relaxed dual problem is of the form

y —y<0,0r y¥—y>0

It istherefore sufficient to solve the relaxed dual for these two regions of y, with x; set to the appropriate
bounds, for then there will be a Lagrange function for each of the regions y < y* and y > 4*, which
will underestimate the optimal value of the problem (29) for every y in that region. The bounds for x;
for these two relaxed dual problems can be selected as follows:

(1) FOI’yK—yZO:If/\ > 0, then z; = =¥ ; otherwise, z; = 27.
(1) FOI’yK—y§O:|f)\ > 0, then z; = 2V ; otherwise, z; = zF.
Using these combinations of bounds, the two relaxed dual problems can be solved for the appropriate

regions of y.

12.1. Example: Rosenbrock’sfunction

This example considers the minimization of Rosenbrock’s function, which is given by :

fle1,91) = aler— 2 + (31— b)%,

wherea = 100 and b = 1. Thisfunction hasitsglobal minimumof Oat ;3 = 1,y; = 1.



The problem can be converted to aform satisfying Conditions (A) by the introduction of two transfor-
mationvariablesz, = y1, 23 = 21— Y3 = x1— z2y1 . By projecting ony,, the primal problem becomes
convex in xz1, x and x3, and the relaxed dual problem is a convex problemin y; . Since the Lagrange
function at iteration & will be convex in x5, it islinearized around =%, the solution of the primal problem
at that iteration.

When the GOP algorithm was applied to the problem in thisform, it converged to the global optimum
of 0 starting from al starting points. The number of iterations required for convergence depended on the
starting point, with an average of 10 iterations.

Remark 12.1. It should be noted that this class of problems has some very interesting features arising
from the nature of the transformationsthat give adirect one-to-one correspondence between the x variable
set and the single y variable. Consequently, it ispossibleto utilize thisrelationship to improve the bounds
for the z variablesiteratively. Thisleadsto avery efficient agorithm for solving problems of this class,
and is discussed in further detail in Visweswaran and Floudas (Ref. 36).

Conclusions

In this paper, anew deterministic global optimization approach is proposed for the solution of nonconvex
programming problems of a specific structure. The proposed approach covers the genera quadratic
programming problem, quadratic programming problems with quadratic constraints, and problems with
polynomial and rational polynomial functions in their objective function and/or constraints. New the-
oretical properties are proposed that enable the rigorous solution of the relaxed dual problem. Based
upon these properties, a globa optimization algorithm has been developed. The algorithm is shown to
have finite e-convergence and e-global optimality. The agorithm has been illustrated geometrically and
numerically through a simple example. The application of the algorithm to specific classes of problems
is given through the development of the theory, and application to some example problems.

The nature of the solution of the relaxed dual subproblems permits the exploitation of the structure
of the Lagrange functions used in these subproblems. By developing new properties based upon this
structure, it is possible to eliminate a large number of the relaxed dual subproblems without destroying
the rigorous nature of the algorithm. The propertiesthat achieve thisresult are given in Visweswaran and
Floudas (Ref. 33). In addition, it is possible to solve the relaxed dual subproblems simultaneously as a
single MILP problem by introducing binary variables representing the sign of the qualifying constraints.
Thisisdiscussed in Floudas et al (Ref. 37).



For the case of polynomial functionsin one variable, the nature of the transformationsprovide adirect
one-to-one correspondence between the x variable set and the single i variable. Thisrelationship can be
used to iteratively improve the bounds for the = variables. This leads to a very efficient algorithm for
solving problems of this class, and is discussed in further detail in Visweswaran and Floudas (Ref. 36).

The GOP agorithm can be applied to several other classes of problems, most notably bilevel pro-
gramming problems, linear and nonlinear complementarity problems, and integer quadratic programming
problems. Work on these and other classes of problems, aswell aswork on improving the computational
efficiency of the algorithm, is currently in progress, and will be reported in future publications.
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