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Abstract. A deterministic global optimization approach is proposed for nonconvex constrained nonlinear

programming problems. Partitioning of the variables, along with the introduction of transformation

variables, if necessary, convert the original problem into primal and relaxed dual subproblems that

provide valid upper and lower bounds respectively on the global optimum. Theoretical properties are

presented which allow for a rigorous solution of the relaxed dual problem. Proofs of � -finite convergence

and � -global optimality are provided. The approach is shown to be particularly suited to (a) quadratic

programming problems, (b) quadratically constrained problems, and (c) unconstrained and constrained

optimization of polynomial and rational polynomial functions. The theoretical approach is illustrated

through a few example problems. Finally, some further developments in the approach are briefly

discussed.
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1. Introduction

Global optimization of nonconvex programming problems has generated a lot of interest in recent years.

Surveys, books and applications for global optimization are available by Dixon and Szego (Refs. 1 and

2), Archetti and Schoen (Ref. 3), Pardalos and Rosen (Refs. 4 and 5), Torn and Zilinskas (Ref. 6),

Ratschek and Rokne (Ref. 7), Mockus (Ref. 8), Horst and Tuy (Ref. 9) and Floudas and Pardalos

(Refs. 10 and 11). The deterministic approaches for global optimization can be largely classified as :

(a) Lipschitzian methods (e.g. Ref. 12); (b) Branch and bound methods (e.g. Refs. 13-15); (c) Cutting

Plane Methods (e.g. Ref. 16); (d) Difference of convex (D.C.) and Reverse convex function methods

(e.g. Refs. 17 and 18); (e) Outer approximation methods (e.g. Refs. 19 and 20); (f) Primal-Dual methods

(e.g. Refs. 21-23); (g) Linearization methods (e.g. Ref. 24); and (h) Interval methods (e.g. Ref. 25).

Recent developments in global optimization approaches can be found in Ref. 11.

In this paper, a primal-relaxed dual approach for global optimization is proposed ( earlier versions of

this work have appeared in Floudas and Visweswaran (Ref. 26) and Visweswaran and Floudas (Ref. 27)

). It is related to the work of Geoffrion (Ref. 28) and Wolsey (Ref. 29). It does not require Property (P)

stated in Ref. 28, and it differs from the resource decomposition algorithm of Wolsey (Ref. 29) in the

way the relaxed dual problem is formulated and solved. A statement of the global optimization problem

is given in Section 2, while Section 3 presents the relevant part of duality theory (Extensive discussion of

duality theory for decomposition can be found in Flippo (Ref. 30) ). Section 4 contains the new theoretical

results. Section 5 illustrates the branch-and-bound nature of the proposed algorithm and discusses some

properties of the branching that can be used to improve the efficiency of the algorithm. Section 6 describes

the global optimization algorithm. Section 7 provides the proofs of finite � -convergence and � -global

optimality. The application of the algorithm to two illustrating examples is considered in Sections 8 and

9, while Section 10 contains a geometrical interpretation of the algorithm. Sections 11 and 12 discuss the

extensions of Section 4 to quadratically constrained problems and problems with polynomial functions.

2. Statement of the Problem

The global optimization problem addressed in this paper is stated as:

Determine a globally � -optimal solution of the following problem:

min��� � ���	��

���

 (1a)������� � ����
������ 0



(1b)
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(1e)

where
# !+*-,

and
'"!+*-,

2 are non-empty, compact, convex sets, � �	��
���� is an . -vector of inequality

constraints and
������
����

is a / -vector of equality constraints. In this paper, it will be assumed that
#

consists of bounds on the
�

variables, and will be incorporated into the constraint set � ����
����0� 0. It is

assumed that the functions
�1����
����

, � �	��
���� and
�2�	��
����

, along with any Lagrange function formulated for

the problem, are continuous, piecewise differentiable and given in analytical form. The variables
�

are

defined such that the following conditions are satisfied:

Conditions (A)

(a)
�1����
����

is convex in
�

for every fixed
�
, and convex in

�
for every fixed

�
.

(b) � ����
���� is convex in
�

for every fixed
�
, and convex in

�
for every fixed

�
.

(c)
������
����

is affine in
�

for every fixed
�
, and affine in

�
for every fixed

�
.

To identify the classes of mathematical programming problems that can be represented within the

framework of (1) and satisfy Conditions (A), the concepts of partitioning and transformations are used.

Using these concepts (see Ref. 22), it can be shown that the proposed approach is applicable to prob-

lems involving quadratic and/or polynomial/rational polynomial terms in the objective function and/or

constraints. Therefore, the classes of problems addressed by this paper include bilinear programming

problems, general quadratic programming problems, quadratic problems with quadratic constraints,

polynomial and rational polynomial programming problems among others.

Recently, Hansen and Jaumard (Ref. 31) have proposed an algorithm for the efficient bilinearization

of quadratic and polynomial function problems, rational polynomials, and problems involving hyperbolic

functions. For a given problem in these classes, the algorithm provides the set of new variables that must

be introduced in order to convert the problem into bilinear form. The bilinearization can be achieved with

the objective of minimizing either the number of complicating variables (in the context of this paper, this

is simply the number of
�

variables) or the number of variables that must be introduced in order to make

the problem completely bilinear. Moreover, given a bilinear problem with variable subsets
�

and
�
, the

algorithm can also be used to identify any changes in these subsets that will result in a smaller number of

either the
�

or the
�

variables.



3. Duality Theory

Define the following problem as the Primal Problem :

min� ���	��
��435�


(2a)���6�7�8� ����
�� 3 �9� 0



(2b)������
�� 3 �%�

0



(2c)

where
� 3 !:'

. Here, it is assumed that the bounds on the
�

variables are incorporated into the first set

of constraints. Since this problem is simply (1) solved for fixed values of
�;�<� 3

, it represents an upper

bound on the optimal value of (1).

Using the concept of projection (Ref. 28), (1) can be converted to an equivalent formulation, featuring

an inner and outer optimization problem :

min� = ������
 (3a)���6�7� = �	���+� min� �1����
�����

(3b)������� ���	��

���>� 0



(3c)� �	��

���)� 0



(3d)�?! 'A@%B>

(3e)B C DE�

:
���	��

���>�

0

 � ����
����)� 0

��FEG � F .IH ��J � (3f)

From Conditions (A) and Slater’s constraint qualification, (2) satisfies the conditions of the Strong

Duality Theorem (Theorem 6.2.4 of Ref. 32). Then, the solution of (2), for any fixed
�K�<� 3

, is identical

to the solution of its corresponding dual problem on
'L@IB

. That is,

minM �1����
�� 3 �N
 �������$� �	��

� 3 �)� 0

 ������
5
�� 3 �)�

0

�

supO�P
0Q infM R ���	��
�� 3 ��SUTWV�������
�� 3 ��SYXZV � ����
�� 3 ��[ \]� 3 !�'A@IBN


where,
T

and
X

are the Lagrange multipliers corresponding to the equality and inequality constraints of

the primal problem (2). Define

= �	���^� supO_P
0Q inf� R �1����
�����SUT V �2�	��
�����S`X V � �	��
���� [ \]�;!�'A@IB �



From the definition of supremum, the maximization over
T

and
X

can be relaxed to :

= �	���ba inf� R ������
�����SUT V ������
����2SYX V � ����
���� [ \cX�a
0

-T �

Assuming that there exists a feasible solution to the inner minimization problem (the analysis for infeasible

primal problems is presented later on in section 4.2), the dual representation of = ����� leads to the following

formulation, equivalent to (3) :

min� = �	���

 (4a)���6�7� = �	���%a min� Dd�1����
����2SeT V ������
����2SYX V � ����
����NJ�
 \�XIa
0

7T

(4b)�&!('A@%B>

(4c)B C DE�

:
�2�	��
����N�

0

 � ����
����N� 0

�2FEG � F .9H �;J � (4d)

By dropping the last two constraints from (4), the Relaxed Dual is obtained:

min�gf�hOji XZk)
 (5a)

���6�7� Xlk8a min� DE���	��

����SUT V �2�	��
�����S`X V � �	��
����
J�
 \1XIa
0

)T;


(5b)

where
X k

is a scalar.

The inner minimization problem, denoted as inner relaxed dual, is

min� m �	��

�Z
7TW3n
�XZ3E��
 (6)

m ����
��l
7TW3n
�XZ3o�)�p���	��

����SeTq3 V ������
����2S`Xl3 V � ����
�����
 (7)

and involves minimzing the Lagrange function m ����
��l
7T 3 

X 3 � formulated from (2) at the r th iteration.

Remark 3.1. (a) The primal problem (2) represents an upper bound on the original problem (1). The

relaxed dual problem (5), on the other hand, contains fewer constraints than (4) and hence provides a

valid lower bound for (1).

(b) In the form given by (5) the relaxed dual problem can be very difficult to solve, since it contains the

inner relaxed dual problem, which is parametric in
�
.



4. Mathematical Properties

The mathematical properties will be presented first assuming feasible primal problems. The properties

for infeasible primal problems will be considered in Section 4.2.

4.1. Feasible Primal Problems

At iteration r , define
� 3

to be the solution of the
�

variables for the r th primal problem (which is solved

for
�c�s� 3

). Also define
X 3

and
T 3

to be the corresponding optimal Lagrange multipliers for inequality

and equality constraints respectively. Then, the following Lemma can be stated.

Lemma 4.1.

(a) The solution of each primal problem
�	tu�

is the global solution of that problem.

(b) The Lagrange function of the r�vxw iteration, m ����
��l
7T 3 
�X 3 � , is convex in
�

for every fixed
�

and convex

in
�

for every fixed
�

.

(c) The solution of the inner relaxed dual problem is its global solution for each fixed
�y�<��z

.

(d) min�{m �	��
��4z|
7T 3 
�X 3 �}a min�"m �	��

�4z|
7T 3 
�X 3 �5~ ��� ,M�� \��u�<�4z
,

where m �	��

� z 
7T 3 
�X 3 �5~ ��� ,M � is the linearization of the Lagrange function m �	��

� z 
7T 3 
�X 3 � at
� 3

, the

solution of the r�vxw primal subproblem.

Proof. The proof of these statements follows from the application of Conditions (A) of Section 2 and the

definition of the Lagrange function. �
Definition 4.1. Define the vector � 3 �	��� (consisting of elements � 3� �	��� ) as follows :� 3������^� � M m ����
��l
7TW3o

XZ3E�5~ M � 
 and � 3� �����^� � M�� m ����
��l
7TW3o
�Xl3o�5~ M � 

where

� � is the ith
�

variable, � � 1


2

 ����� 
�� . Then, it can be seen that for every fixed

�
, the linearization

of the Lagrange function at
� 3

is given by

m ����
��l
7TW3o

XZ3o�|~ ��� ,M � � m �	��3n
��l
7TW3o

XZ3o��S � 3o�	���1���	���+��3E�+� m �	��3o
��l
7TW3n
�XZ3E��S ,���� 1

� 3� �	���1���	� � �b��3� � �
Based upon this form of the Lagrange function, the following definition is made:



Definition 4.2. At iteration r , define every variable
� � for which � 3� �	��� is a function of

�
to be a connected

variable. Also define � 3� to be the set of all such connected variables.

Property 4.1. The optimal solution of the inner relaxed dual (IRD) problem, with the Lagrange function

replaced by its linearization at
� 3

, depends only on those
� � , for which � 3� �	��� is a function of

�
(i.e. the

connected
�

variables.)

Proof. The linearization of the Lagrange function can be written as

m ����
��l
7T 3 

X 3 �|~ ��� ,M � � m ��� 3 
��l
7T 3 
�X 3 ��S ,� �6�
1����7� � 3� �����1����� � �`� 3� ��S � 3� �	���
��� � �`� 3� � � (8)

From the KKT gradient conditions for the r th primal problem,� M�� m �	��3�
���3E
7TW3�
�XZ3n�>� � 3� �	�435�)� 0
\ � � 1



2

 ����� 
�� � (9)

Using (9), the inner relaxed dual can be written as

m)� � ��
��l
7TW3o
�Xl3o�I� minM8m ����
��l
7TW3o
�Xl3��}a minM�m �	��
��Z
�Tq3E

XZ3o�|~ ��� ,M �a
minM D m ��� 3 
��l
7T 3 
�X 3 ��S ,� ���

1����|� � 3� �	��������� � �`� 3� ��Sp� � 3� �����1� � 3� �	� 3 �j�
��� � �`� 3� � � J
Now, suppose that � 3� �	��� is not a function of

�
. Then, � 3� �����)� � 3� �	� 3 � . Therefore,

m � � ��

�Z
7T 3 
�X 3 �-a m �	� 3 
��l
7T 3 
�X 3 ��S minM D ,� ���
1����|� � 3� �	���1�n��� � �`� 3� � � J

Hence, the linearization of the Lagrange function does not depend on
� � , and the minimization of the

Lagrange function in its linearized form with respect to
� � will not have any effect on the solution of the

Inner Relaxed Dual problem. �
Remark 4.1. This property is important from the computational point of view. It implies that the

inner relaxed dual could be replaced by a problem involving the minimization of the linearization of

the Lagrange function over the set of connected
�

variables. This can help reduce the computational

requirements by several orders of magnitude.

Property 4.2. Suppose that the optimal solution of the inner relaxed dual occurs at
�

; that is, for every��!9'
, m � � ��
��l
7T 3 

X 3 ��� minM m �	��
��Z
�T 3 
�X 3 � �



Then, for every r ,
m)� � ��
��l
7TW3n
�XZ3o��a mini � f7� i

����  ���¡ m ��� k � 
��l
7T 3 
�X 3 �5~ ��� ,M�� 
¢ � � � � M�� m �	��
��Z
�T 3 
�X 3 �|~ M � a 0
\�� k �� �p��£�� M�� m �	��
��Z
�T 3 
�X 3 �|~ M�� � 0
\�� k �� �p�l¤�


�¥ ���¦���§ \]� � (10)

where
��£� and

� ¤� are the lower and upper bounds on the connected
�

variables respectively, ¨ �
indicates a combination of lower/upper bounds of these variables,

� k �
is the vector of lower/upper

bounds corresponding to the bound combination ¨ � , and ©ª¨ is the set of all bound combinations.

Proof. By its definition,
�

must satisfy the following inequality:

m)� � ��
��l
7TW3n
�XZ3E�}a minM m ����
��l
7TW3o
�Xl3o�5~ ��� ,M � \]� � (11)

Using the definition of m ����
��l
7T 3 

X 3 �5~ ��� ,M � , the right hand side of (11) is given by

minM m ����
��l
7TW3o
�Xl3o�5~ ��� ,M � � min� [ m �	��3o
��l
7TW3n
�XZ3E��S �� f
«¬�­ � M�� m �	��

�Z
7TW3n
�XZ3E�5~ M � � ��� � �+��3� � ]� m ����3n
��l
7TW3o
�Xl3���S min� �� f
«¬�­ � M�� m �	��

�Z
7TW3n
�XZ3n�5~ M � � �	� � �`��3� � �
For any fixed

�y�<��z
, the operators for minimization and summation can be exchanged. Hence,

min� m ����
��l
7T 3 

X 3 �|~ ��� ,M�� � m ��� 3 
��l
7T 3 
�X 3 ��S �� f
« �­ min� � � M�� m �	��
��Z
�T 3 
�X 3 �|~ M�� � ��� � �`� 3� � � (12)

Consider the i th component of the second term on the right hand side. It is linear in
� � . Hence, the

minimum of this term will lie at a bound of
� � , the specific nature of the bound(lower or upper) being

determined by the sign of
� M�� m ����
��l
7T 3 
�X 3 �5~ M�� . Two cases are possible:

(a) If
� M�� m ����
��l
7T 3 
�X 3 �5~ M�� a 0,

min� � � M�� m ����
��l
7T 3 

X 3 �|~ M � � �	� � �`� 3� �)a<� M�� m ����
��l
7T 3 
�X 3 �5~ M � � ��� £� �`� 3� � �
(b) If

� M�� m ����
��l
7T 3 
�X 3 �|~ M�� � 0, then

min� � � M�� m ����
��l
7TW3o
�Xl3o�5~ M � � ��� � �`��3� �}a®� M�� m ����
��l
7TW3o

XZ3E�5~ M � � �	� ¤� �`��3� � �



These two cases can be combined to yield the following result:

min� � � M�� m ����
��l
7TW3o
�Xl3o�5~ M � � ��� � �`��3� �}a®� M�� m ����
��l
7TW3o

XZ3E�5~ M � � �	� k �� �`��3� ��
¢ � H G H (13)� k �� � �  ¡ ��£� \]�
:
� M�� m ����
��l
7T 3 
�X 3 �|~ M � a 0�l¤� \]�

:
� M�� m ����
��l
7T 3 
�X 3 �|~ M�� � 0

Combining (11), (12) and (13), it can be seen that

m)� � ��
��Z
�Tq3n
�Xl3o�¯a m �	��3n
��l
7TW3o

XZ3o��S �� f
«°�­ � M�� m ����
��l
7TW3n
�XZ3E�5~ M � � ���
k �� �`��3� �

 (14a)¢ � H G H � k �� �<� £� \1�

:
� M�� m ����
��l
7T 3 

X 3 �|~ M � a 0 (14b)� k �� �<� ¤� \��

:
� M�� m �	��

�Z
7TW3n
�XZ3E�5~ M � � 0 (14c)

From this, it is evident that for any fixed
�U�?� z

, there exists a combination of bounds ¨ � for the

connected
�

variables such that

min� m ����
�� z 
�T 3 
�X 3 ��a m �	� 3 
�� z 
7T 3 
�X 3 ��S �� f
« �­ � M�� m �	��

� z 
7T 3 

X 3 �5~ M � � �	�
k �� �`� 3� �a m �	� k � 
�� z 
7T 3 
�X 3 �5~ ��� ,M�� �

Hence, for every discretized
�;�±� z

, by fixing the values of the
�

variables at a combination of bounds¨ � in the linearized Lagrange function and taking the minimum over all possible combinations of bounds¨ � ! ©ª¨ , a lower bound on the value of m � � ��
���z5
7T 3 

X 3 � is obtained. Since this is true for every
�y�<��z

,

(10) must hold for all
�
. �

Definition 4.3. The constraints requiring the positivity or negativity of the gradients of a particular

Lagrange function w.r.t
� � are called the qualifying constraints of that Lagrange function.

Property 4.3. If � 3� ����� are linear in
�²\ � , then the qualifying constraints form a linear set of constraints

in y.

Proof. It follows from the definition of � 3 ����� . �
Property 4.4. At the Kth iteration,



(i) Define
�	X�³ � ,k �	´

to be the optimal value of the Relaxed Dual Problem. That is,

��X ³ � ,k � ´ �
�����������  ����������¡

min�gf�hO i X k
������� X k a

minM8m �	��

�Z
7TW3n
�XZ3n� r � 1


2 ������� ��µ¶� 1

�X k a
minM8m �	��

�Z
7T ´ 
�X ´ �

¥ ����������¦����������§
�

(ii) Define ·¸m � r 
�µ:� to be the Lagrange function from the r th iteration ( r®¹ µ ) whose qualifying

constraints are satisfied at
��´

, the fixed value of the
�

variables for the
µ

th primal problem, and

let
� k �

be the corresponding combination of bounds of the
�

variables for this Lagrange function.

Note that
� k �

can be different for different iterations r � 1


2

 ����� 
�µ¶� 1.

(iii) Define the following subproblem (15) :

X2º v�»¬¼k ��µI
 ¨ � �)�

���������������������������  ��������������������������¡

min�½f7hO i X k
�4�6��� Xlk+a m �	� k � 
��l
7T 3 

X 3 �|~ ��� ,M��� M�� m ����
��l
7T 3 
�X 3 �|~ M � � 0 � ��� k �� �p� ¤�� M�� m ����
��l
7T 3 
�X 3 �|~ M�� a 0 � ��� k �� �p��£�

¥ ���¦���§ \�¾�! ·¸m � r 
�µ:�r � 1


2 ������� µ¿� 1

X k a m ��� klÀ 

�Z
7TW´Á
�Xl´¸�5~ ��� ,M�Â� M�� m ����
��l
7T ´ 
�X ´ �|~ M Â � 0 � �Ã� klÀ� �®� ¤�� M�� m ����
��l
7TW´Á
�XZ´¸�|~ M�Â a 0 � �Ã� klÀ� �®��£�

¥ ��������������������������¦��������������������������§

(15)

where
X º v�»¬¼k ��µ%
 ¨ � � is the stored solution of the above subproblem solved at iteration

µ
with the

�
variables set to the combination of bounds ¨ � in the Lagrange function.

(iv) Define
XZÄk ´ �

minklÀ�ÅÇÆqk X º v�»¬¼k ��µI
 ¨ � � to be the minimum of the stored solutions of all the subproblems

of the form (15) solved at the
µ

th iteration.

Then, �	X ³ � ,k � ´ aAÈ �qÉbÊ X Äk ´ 
 min� �
1
�
2
� Ë Ë Ë � Â2Ì

1
i À f�� i X�º vx»°¼k � r 
 ¨ � �	Í2
 (16)



where
X º vx»°¼k � r 
 ¨ � � are the stored solutions from previous iterations ( r]¹ µ ).

Proof.

(a) For iteration 1: For r � 1, from Property 4.2.,

minM8m �	��

�Z
7T 1 
�X 1 �}a mini À f7� i
���  ��¡ m ��� k À 
��l
7T 1 
�X 1 �� M�� m ����
��l
7T 1 
�X 1 �5~ M

1

�
0 � �;� klÀ� �Î� ¤�� M�� m ����
��l
7T 1 
�X 1 �5~ M

1

a
0 � �;� k À� �Î� £� ¥

��¦��§ 
 \1� �
Since this holds for all

�
,

min�½f7h]Ï minM8m �	��

�Z
7T 1 
�X 1 ��ÐIa min�½f7h
���  ��¡ mini À f�� i

���  ��¡ m ��� klÀ 
��l
7T 1 
�X 1 �� M�� m ����
��l
7T 1 
�X 1 �5~ M
1

�
0 � �;� klÀ� �<� ¤�� M�� m ����
��l
7T 1 
�X 1 �5~ M

1

a
0 � �;� klÀ� �<��£� ¥

��¦��§ ¥
��¦��§ �

The operators on the right hand side can be interchanged since m �	� k À 

�Z
7T 1 
�X 1 � depends only on
�
.

Therefore,

min�½f7h]Ï min�"m �	��

�Z
7T 1 
�X 1 ��ÐIa mini À f7� i
���  ��¡ min�gf�h

���  ��¡ m ��� klÀ 
��l
7T 1 
�X 1 �� M�� m ����
��l
7T 1 
�X 1 �5~ M
1

�
0 � �;� k À� �<� ¤�� M�� m ����
��l
7T 1 
�X 1 �5~ M

1

a
0 � �;� klÀ� �<��£� ¥

��¦��§ ¥
��¦��§ �

Equivalently, this can be written as

�	X ³ � ,k � 1 � �  ¡ min�½f7hOji X k������� X k a min�¶m �	��
��Z
�T 1 
�X 1 � ¥
¦
§ a mini À f�� i

������  �����¡
min�gf�h�� Oji X k���6�7� X k a m ��� klÀ 
��l
7T 1 
�X 1 �� M�� m �	��
��Z
�T 1 
�X 1 �|~ M

1

�
0 � �]� k�À� �<� ¤�� M�� m �	��
��Z
�T 1 
�X 1 �|~ M

1

a
0 � �]� k�À� �<��£�

¥ �����¦�����§
�

At this stage, there are no stored solutions from previous iterations. Hence, for iteration 1, the property

is proved.

(b) For iteration 2: We have

�	X ³ � ,k � 2 �
�����������  ����������¡

min�gf�hO i X k
������� X k a

minM�m �	��
��Z
�T 1 
�X 1 �X k a
minM�m �	��
��Z
�T 2 
�X 2 �

¥ ����������¦����������§
�



From Property 4.2, we have that

�	X ³ � ,k � 2 a<È �WÉ
���������  ��������¡ mini7Ñ f7� ii7Ñ �� i �

���������  ��������¡
min�½f7h�� O i X k������� X k a m �	� k Ñ 
��Z
�T 1 
�X 1 �� M�� m �	��
��Z
�T 1 
�X 1 �|~ M

1

�
0 � �Ã� k Ñ� �p� ¤�� M�� m �	��
��Z
�T 1 
�X 1 �|~ M

1

a
0 � �Ã� k Ñ� �p��£�X k a

minM8m ����
��l
7T 2 
�X 2 �
¥ ��������¦��������§

 X Ä�Äk 2

¥ ��������¦��������§



(17)

where ¨-Ò represents a combination of bounds of the
�

variables, ¨ � is the specific combination of bounds

corresponding to the Lagrange function from the first iteration whose qualifying constraints are satisfied

at
���<� 2, and

X Ä�Äk 2 �
���������  ��������¡

min�gf7h�� O i XZk������� X k a m ��� k � 
��l
7T 1 
�X 1 �� M�� m ����
��l
7T 1 

X 1 �|~ M
1

�
0 � �;� k �� �Î� ¤�� M�� m ����
��l
7T 1 

X 1 �|~ M

1

a
0 � �;� k �� �Î��£�X k a

minM8m ����
��l
7T 2 

X 2 �
¥ ��������¦��������§
� (18)

Due to the presence of an additional set of constraints, it is obvious that

mini7Ñ f7� ii Ñ �� i �
���������  ��������¡

min�gf7h�� O i X k������� X k a m ��� k Ñ 
��l
7T 1 
�X 1 �� M�� m ����
��l
7T 1 

X 1 �|~ M
1

�
0 � �;� k Ñ� �<� ¤�� M�� m ����
��l
7T 1 

X 1 �|~ M

1

a
0 � �;� k Ñ� �<��£�XZk`a

minM8m ����
��l
7T 2 

X 2 �
¥ ��������¦��������§
a

mini7Ñ f�� ii Ñ �� i � X º v�»¬¼k �
1

 ¨ Ò � �

Therefore, �	X ³ � ,k � 2 a<È �qÉbÊ mini7Ñ f�� ii Ñ �� i � X�º vx»°¼k �
1

 ¨-Ò �

)X Ä�Äk 2 Í �



Hence, it only remains to be shown that
X Ä�Äk 2 a®X Äk 2 
 where

X Äk 2 is given as

X Äk 2 � minklÀ�ÅEÆWk

������������������������  �����������������������¡

min�gf�hOji X k
������� X k a m �	� k � 

�Z
7T 1 
�X 1 �5~ ��� ,M

1� M�� m �	��
��Z
�T 1 
�X 1 �|~ M
1

�
0 � �]� k �� �<�l¤�� M�� m �	��
��Z
�T 1 
�X 1 �|~ M

1

a
0 � �]� k �� �<��£�X k a m ��� klÀ 
��l
7T 2 

X 2 �|~ ��� ,M

2� M�� m ����
��l
7T 2 

X 2 �|~ M
2

�
0 � �Ã� k À� �®�l¤�� M�� m ����
��l
7T 2 

X 2 �|~ M

2

a
0 � �Ã� klÀ� �®��£�

¥ �����������������������¦�����������������������§

� (19)

Now, in the RHS of (19), the Lagrange function from the first iteration has the value of
�

set to the

appropriate bound (
� k �

), and is therefore a function only of
�
. Hence, the mini À f�� i operator applies only

to the second set of constraints, i.e., those corresponding to the 2
,|z

primal problem. Hence, (19) is

equivalent to

X k Ä 2 a

�����������������������  ����������������������¡

min�g� Oji X k
������� X k a m �	� k � 
��Z
�T 1 
�X 1 �|~ ��� ,M

1� M�� m ����
��l
7T 1 

X 1 �|~ M
1

�
0 � �;� k �� �Î� ¤�� M�� m ����
��l
7T 1 

X 1 �|~ M

1

a
0 � �;� k �� �Î� £�

Xlk+a
mini À f7� i

����  ���¡ m
��� klÀ 
��l
7T 2 
�X 2 �5~ ��� ,M

2� M�� m �	��

�Z
7T 2 
�X 2 �5~ M
2

�
0 � ��� k À� �p� ¤�� M�� m �	��

�Z
7T 2 
�X 2 �5~ M

2

a
0 � ��� klÀ� �p��£�

¥ ����������������������¦����������������������§

� (20)

The use of Property 4.2 leads to

min�{m ����
��l
7T 2 
�X 2 �`a mini À f�� i
����  ���¡ m
�	� k À 
��l
7T 2 
�X 2 �5~ ��� ,M �� M�� m �	��
��Z
�T 2 
�X 2 �|~ M

2

�
0 � �]� k�À� �<� ¤�� M�� m �	��
��Z
�T 2 
�X 2 �|~ M

2

a
0 � �]� k�À� �<��£�

¥ ���¦���§ � (21)

Hence, from (20) and (21), the second set of constraints on the RHS of (19) is simply a relaxed form

of the second set of constraints of the RHS of (18). Hence, for r � 2, the property holds. Similarly, by

induction, the property can be proved for any r . �



Remark 4.2. Notice that the RHS of (16) represents (a) the solution of a number of subproblems

each of which corresponds to a unique combination of bounds ¨ � of the connected
�

variables, and (b)

the selection of the minimum solution from all these subproblems and the stored solutions of previous

subproblems that have not already been selected. The solution of the different subproblems correspond

to partitioning the
�

space and solving the problem in each subspace.

Property 4.5. The solution of each subproblem in the form given by (15) is its global solution.

Proof. The Lagrange functions as used in the (15) are convex functions of y. From Property 4.3, the

gradients of the Lagrange functions w.r.t
� � are linear in

�
. Therefore, subproblem (15) satisfies the global

optimality conditions (Ref. 32). �
4.2. Infeasible Primal Problems

In cases where the primal problem (2) is infeasible, another problem must be solved for generating the

appropriate values of
T

and
X

. One possible formulation for this problem is

minÓ½Ô � Ó Ì � Õ P
0� ³� ��� 1 Ö � S

Ò� ��� 1

�	×�Ø� SY×�Ù� ��
 (22a)������
�����S`×1Ø;�+×>Ù �
0



(22b)� ����
������ Ö �
0



(22c)

where Ö � ,
× Ø� and

× Ù� are slack variables that are introduced in order to minimize the sum of the

infeasibilities in the constraints. In problem (22), for every fixed
� 3

, the objective function is linear, the

equality constraints are linear and the inequality constraints are convex. If Ú � ³Û��� 1 Ö � S ÒÛ��� 1

��× Ø� Se× Ù� � ,
then, the strong duality theorem provides

min Ú �������(� ����
������ Ö � 0

 �2�	��
�����SY× Ø �b× Ù �

0

�

maxO
1

P
0Q minM R Ú SeTWV1 �½������
����2S`× Ø �`× Ù ��S`XlV1 � � ����
������ Ö � [ 


(23)

where
T

1 and
X

1 are the Lagrange multipliers for the equality and inequality constraints for the solution

of (22) for fixed
�+�"� 3

. If Ú is the optimal solution of (22), then (23), together with the optimality

conditions for this problem, implies that

Ú � maxQ
1O

1

P
0

min� DoT V1 ������
�����S`X V1 � ����
�����J �



Since we seek to minimize the infeasibilities Ú , this can be used as a constraint for the relaxed dual

problem in the following form :

maxQ
1O

1

P
0

min� DoT V1 ���	��

����S`X V1 � �	��

���
J²� 0 �
A relaxed form of this constraint is

min�"m Ä �	��

�Z
7T 1

�X

1
�}�

0



(24)

where m Ä ����
��l
7T 1


X

1
�)�<T V

1

���	��

����S`X V
1
� �	��

��� � (25)

It can be easily shown that the Properties 4.1-4.5 presented in Section 4.1 are all applicable directly for

the case of infeasible primal problems by simply replacing
X k

by 0 and m �	��
��Z
�T 3 
�X 3 � by m Ä ����
��l
7T 31 
�X 31 � .
The constraints to be added along with the Lagrange function to the Relaxed Dual problem are again of

the form � M�� m Ä ����
��l
7T 31 

X 31 �|~ M�� � 0

 F�G � M�� m Ä �	��
��Z
�T 31 

X 31 �|~ M�� a 0



depending on whether the variable

� � is at its upper or its lower bound respectively.

Remark 4.3. Constraint (24) does not contain
X k

(the objective function for the lower bound problem);

at first glance, it does not appear to be a useful cut for the relaxed dual problem. However, it can be seen

that this constraint is always violated at
�K�<� 3

(the fixed value of
�

for the iteration r at which the relaxed

primal problem was solved, leading to (24)). The introduction of (24) ensures that no cycling occurs in

the relaxed dual problem, i.e. this eliminates the possibility of the relaxed dual problem returning the

value
� 3

at any subsequent iteration. Hence, the constraints of the form (24) are useful as feasibility cuts

for the relaxed dual problems.

Remark 4.4. It should be noted that if the implicitly defined set
B

can be introduced into the dual

problem, then solutions for
�

found by the relaxed dual problem will always be feasible for the primal

problems. This is possible for unconstrained problems or for problems where it is possible to incorporate

the constraint set explicitly into the relaxed dual problems without destroying the convexity of the problem

(for example, general quadratic problems with linear constraints). Hence, for these cases, there will be

no infeasible primal problems.

Remark 4.5. The Lagrange functions being introduced into the relaxed dual problems for iterations when

the primal is infeasible are of the form given by (24). However, this is not the only possible formulation of



the constraint that can be used in the relaxed dual problem. For example, at any iteration,
X k a<ÈA£ k�Ü

,

where
È<£ k2Ü

is the lower bound obtained from the relaxed dual problems upto that iteration. Using this

and (24), another constraint that can be added to the relaxed dual problem isX k a<È £ k2Ü S
min� m Ä �	��
��Z
�T 1


�X
1
� �

5. Partition of the Ý -Space in the Relaxed Dual

Section 4 presented properties, based on which the relaxed dual problem can be reduced to a formulation

containing only constraints and not inner optimization problems. However, a number of subproblems

corresponding to all combinations of bounds ¨ � ! ©ª¨ need to be solved at every iteration. The solutions

of the primal problems are used to formulate Lagrange functions that are used in the relaxed dual problems.

At any given iteration, therefore, the relaxed dual subproblems will contain a Lagrange function from the

current iteration, and one from each of the previous iterations. The criterion of selection of the Lagrange

functions from the previous iterations is very important, since it defines the region in which a particular

relaxed dual subproblem is solved.

At every iteration
µ

, the primal problem (2) is solved for a fixed value of
�+�{� 3

. If the primal

problem is infeasible, then a relaxed primal problem of the form (22) is solved. In either case, the

resulting Lagrange multipliers for the various constraints are stored.

5.1. Selection of Previous Lagrange Functions

Before solving the relaxed dual subproblems, the Lagrangians from all the previous iterations that can

be used as constraints for the current relaxed dual subproblems are determined. To achieve this, the

qualifying constraints of every such Lagrange function (i.e. from iterations 1


2

 ����� 
�µÞ� 1) are evaluated

at
� ´

. If the qualifying constraints are satisfied at
� ´

, then the Lagrange function and its accompanying

qualifying constraints are selected to be constraints for the current relaxed dual subproblems. This is done

even if the primal problem was infeasible for the iteration in question. Exactly one Lagrange function

will be selected from each of the previous iterations. In these Lagrange functions, the
�

variables are

then set to the appropriate combination of bounds. Hence, these Lagrange functions, as included in the

current relaxed dual subproblems, are functions only of
�
.



5.2. Partition in the ß -space

Once the Lagrange functions from the previous iterations have been selected, the relaxed dual problem

is then solved for each combination of
� klÀ

. In each case, the Lagrange function formulated from the

current primal problem is chosen as a constraint for the relaxed dual problem, with
�

replaced by
� k À

.

In addition to this, the corresponding qualifying constraints for the Lagrange function are added to the

relaxed dual problem.

It should be noted that for each combination of the
�

variables, there is a corresponding set of

qualifying constraints in terms of the
�

variables. Since the relaxed dual subproblems are solved for

different combinations of bounds, each relaxed dual subproblem has a unique set of qualifying constraints

associated with it. Therefore, each of these relaxed dual subproblems solved corresponds to a different

region in the
�
-space of the original problem. The actual region for which a particular relaxed dual

subproblem is solved is determined by the corresponding set of qualifying constraints that are associated

with that Lagrange function. Therefore, the solution of the relaxed dual subproblems can be viewed as a

branch-and-bound procedure where the feasible region in terms of the
�

variables is partitioned into 2 à�á Â­
subregions (where ÉI� ´� is the number of connected

�
variables at the

µ vxw iteraton) and each relaxed dual

subproblem corresponds to a node of the branch-and-bound tree and is solved for a particular subregion

in the
�
-space. However, the nodes in the tree are generated dynamically through the solution of the

various subproblems at every iteration.

After the relaxed dual problem has been solved for every possible combination of the bounds
� k� , the

only remaining task is to determine a new lower bound for the original problem and select a fixed value

of
�

for the next primal problem. This is done by taking the minimum of all the stored values of
X k

as

the lower bound, and the corresponding solutions for
�

as the
��´ Ø 1 for the next primal. Once a particularXZk

and
�

have been selected, they are no longer considered for future iterations. This is to ensure that

the relaxed dual problem will not return the same value of
�

and
X k

during successive iterations.

Finally, the check for convergence is done. If the lower bound from the relaxed dual problem comes

within � of the upper bound from the primal problems, the optimal solution to the original problem has

been found and the algorithm terminates. Otherwise, the algorithm continues with the updated stored set

of solutions from the relaxed dual problems and a new fixed value of
�

for the primal problem.



5.3. Progress of the lower bound

When a relaxed dual subproblem is solved, it contains Lagrange functions from previous iterations whose

qualifying constraints are satisfied at the current fixed value of
�
. The solution of this subproblem lies in

a cone defined by the qualifying constraints of the selected Lagrange functions. Therefore, in all future

iterations, this set of Lagrange functions (and the accompanying qualifying constraints) will be present if

the fixed value of
�

for that iteration lies inside this cone. Hence, there is a subsequence in the stored set

of solutions of the relaxed dual subproblems that will always lie inside this cone. Therefore, the solution

of all the relaxed dual subproblems can be viewed as the union of subsequences lying inside different

cones, and the lower bound from the relaxed dual subproblems at any iteration is simply the minimum of

these subsequences.

5.4. Properties of the Relaxed Dual

Since the relaxed dual problem is based upon the partition of the space of
�

variables, the position of

the current fixed value for
�

(that is, the value of
��´

) plays a very important role in the solution of the

subproblems. If, for some iteration
µ

,
�4´

lies at a boundary of the constraint region, then some of

the relaxed dual problems will give redundant solutions, and it is possible to avoid solving these of the

subproblems without losing the rigorous nature of the algorithm. To identify such cases, use is made of

the structure of the Lagrange function that is used in the relaxed dual problem. Based upon this structure,

new properties have been developed that help to improve the efficiency of the algorithm by reducing the

number of relaxed dual subproblems that need to be solved at each iteration. These properties along with

the computational improvements arising from their application are discussed in detail in Visweswaran

and Floudas (Ref. 33).

6. The Global OPtimization (GOP) Algorithm

The GOP algorithm can be formally stated in the following steps:

STEP 0 – Initialization of parameters:

Define the storage parameters
X º vx»°¼k ��µ ³Nâ M 
 ¨ � � ,

� º vx»°¼ ��µ ³Nâ M 
 ¨ � � and
� 3 �	µ ³>â M 
 ¨ � � over the set of

bounds ©ª¨ and the maximum expected number of iterations
µ ³Nâ M

. Define ã ¤ k�Ü and
ÈA£ k�Ü

as the

upper and lower bounds obtained from the primal and relaxed dual problems respectively. SetX º vx»°¼k ��µ ³Nâ M 
 ¨ � �>� · 
 ã ¤ k�Ü � · 
IäW�2åªÈ £ k2Ü � m �



where · is a very large positive number and m is a very large negative number. Select an initial set of

values
� 1 for the complicating variables. Set the counter

µ
equal to 1, and sets

µ�æ�ç°â º
and

µ � ,Çæ_ç¬â º
to

empty sets. Select a convergence tolerance parameter � .
STEP 1 – Primal problem:

Store the value of
� ´

. Solve the primal problem (2) for
�è�é� ´

. If the primal problem is feasible,

update the set
µ�æ�ç¬â º

to contain K, and store the optimal Lagrange multipliers
TW´

and
XZ´

. Update the

upper bound so that ã ¤ k2Ü �<È �WÉ � ã ¤ k�Ü 
 ã ´ ��� ´ ���
where ã ´¸�	�4´Á� is the solution of the current (

µ
th) primal problem. If the primal problem is infeasible,

update the set
µ � ,Çæ�ç°â º

to contain K, and solve the relaxed primal subproblem (22) with
� �é��´

. Store

the values of the optimal Lagrange multipliers
TW

1́ and
Xl

1́ .

STEP 2 – Selection of Lagrange functions from the previous iterations:

For r � 1


2

 ����� 

µê� 1, evaluate all the qualifying constraints of every Lagrange function from

iteration r , ( i.e., corresponding to each set of bounds of
�

) at
� ´

. Select the one Lagrange function

from every iteration each of whose qualifying constraints are satisfied at
��´

to be in the set ·ëm � r 
�µ:� ,
i.e., to be present in the current relaxed dual problems along with its qualifying constraints.

STEP 3 – Relaxed Dual Problem:

Formulate the Lagrange functions corresponding to the current primal problem. Add this as a

constraint to the relaxed dual problem. Then:

(a) Identify the set of connected
�

variables � � .
(b) Select a combination of the bounds of the connected variables in

�
, say ¨ � � ¨ 1.

(c) Solve the relaxed dual problem (15). Note that this problem shows the constraints that must be

used for iterations when the primal problem is feasible. For iterations when the primal problem is

infeasible, substitute 0 for
X k

and m Ä for m in the constraints corresponding to that iteration. See

Section 4.2 for more details on the form of these constraints.

Store the solution in
X º vx»°¼k �	µI
 ¨ � � and

� º vx»°¼ ��µI
 ¨ � � .
(d) Select a new combination of bounds for

�
, say ¨ � � ¨ 2.



(e) Repeat (c) and (d) until the relaxed dual problem has been solved at each set of bounds of the

connected variables in
�

, i.e for every ¨ � ! ©ª¨ .

STEP 4 – Selecting a new lower bound and
�4´ Ø 1:

From the stored set
X º v�»¬¼k , select the minimum

X�³ � ,k
(including the solutions from the current iteration).

Also, select the corresponding stored value of
� º v�»¬¼ � r 
 ¨ � � as

� ³ � ,
. Set

È £ k�Ü �pX ³ � ,k
, and

� ´ Ø 1 �<� ³ � , .
Delete

X ³ � ,k
and
� ³ � ,

from the stored set.

STEP 5 – Check for convergence:

Check if
È £ k�Ü a ã ¤ k2Ü � � . IF yes , STOP. Else, set

µê�Îµ�S
1 and return to step 1.

Remark 6.1. In Step 2 of the GOP algorithm, one Lagrange function from each of the previous

iterations is selected on the basis of satisfaction of its qualifying constraints at
�4´

. If it so happens that

for some
¾;!+D

1


2

 ����� 
��

1
J
, � Mj� m �	��

�y�<� ´ 
7TW3�

XZ3E�5~ M � � 0

then, this implies that the Lagrange functions from the r th iteration with
� � set to either its upper or

lower bound are eligible constraints for the current relaxed dual subproblems. Since the accompanying

qualifying constraints are also included, this means that� Mj� m ����
��l
7T 3 
�X 3 �5~ M�� � 0

for the current relaxed dual subproblems. This could potentially lead to some regions of
�

being unavail-

able for the relaxed dual subproblems. This can be avoided by introducing the qualifying constraints in

a perturbed form : � Mj� m �	��

�Z
7TW3n
�XZ3E�5~ M � a ì � �;� k �� �<� £� (26a)� Mj� m �	��

�Z
7T 3 
�X 3 �5~ M � � �¸ì � �Ã� k �� �<� ¤� (26b)

where
ì

is a very small positive number. This ensures that both (26a) and (26b) cannot be simultaneously

satisfied at
�4´

, and consequently exactly one Lagrange function (and its accompanying qualifying

constraints) will be present from each of the previous iterations for the current relaxed dual problems.

7. Finite í -Convergence and í -Global Optimality

This section presents the theoretical proof of the convergence and global optimality of the GOP algorithm.

The convergence proof is based upon the results of Geoffrion (Ref. 28).



Lemma 7.1. If the sequence of solutions ¹ � 3Ãî of the relaxed dual problem converges to
�

, and the

corresponding Lagrange multipliers for the primal problem (2) converge to
� T�
 X��

, then

m ��� k � 
 ��
 T�
 X��|~ ��� ,M�� � ã � �q� �2FEG¸äW�2�¸� k �
where ã � ��� represents the optimal solution of the primal problem at

�
.

Proof. The linearization of the Lagrange function evaluated at
� k �

can be written as

m ��� k � 
��l
7TW3o

XZ3E�5~ ��� ,M�� � m �	��3o
��l
7TW3n
�XZ3o��S Ê � 3n������� � 3��	�43E��Íï����� k � �`��3E� \ ¨ � ! ©²¨
By the Strong Duality Theorem, m �	� 3 
�� 3 
7T 3 
�X 3 � is equal to ã �	� 3 � for every

� 3
. Then,ð � �43¸ñ ��
 m ����3o

�Z
7TW3n
�XZ3n�5~ ò � òªñ ã � ��� � (27)

Since � 3 �	��� is a vector of linear functions of
�
,ð � � 3 ñ �Z
 � 3 �	���>ñ � � ��� �

From this, and (27), we obtain the desired result. �
Lemma 7.2. For a fixed

�;�s� 3
for the r th primal problem, let · �	� 3 � be the set of optimal multipliers.

If
� 3 ñ �

and
T 3 ñ T�
�X 3 ñ X

, then
� T�
 X��}! · � ��� .

Proof. The proof for this Lemma comes from showing that · ����� is an upper semicontinuous mapping

at
�
. To do this, we employ the characterization of · �	��� as the set of optimal solutions of the dual of the

primal problem; that is ,

· �����)�LDEX�a 0

7T

: m�� � �2
��l
7T�
�X��)� maxO � P
0
� Q � m)� � ��
��l
7TW3o
�Xl3��
J

Now, m � � ��

�Z
7T 3 
�X 3 �>� minM�m �	��
��Z
�T 3 
�X 3 � is a continuous function, since it is a linear sum of continuous

functions of y. Then, application of Theorem 1.5 of Meyer (Ref. 34) proves the desired result. �
Lemma 7.3. Let ã ����� be the set of optimal solutions of the primal problem for fixed values of

�
; then,

if
� 3 ñ �

, ã ����� is upper semicontinuous at
�
.

Proof. Since the set · �	��� is assumed to be nonempty for all
�
, then from the Strong Duality Theorem,

we have that ã �	���)� maxó�ô 0 õ ö m � � ��
��l
7T�
�X�� \1�K!�'



Since
'

is a compact set, the local uniform boundedness of · ����� implies the uniform boundedness

of · �	��� on all of
'

. Therefore, there exists a compact set · � such that · �����Ã÷ · � for all
�

in
'

.

The constraint
�gT�
�X��ª! · � can then be added without disturbing the equality. Since m � � ��
��l
7T�
�X�� is a

continuous function, ã ����� is upper semicontinuous at
�

(Maximum Theorem of Berge, Ref. 35). �
Theorem 7.1. (Finite � -convergence) If the following conditions hold:

(a)
#

and
'

are nonempty compact convex sets, and
'&÷øB

,

(b) Conditions (A),

(c)
���	��
����

, � �	��

��� and
������
����

are continuous on
# ù%'

, and

(d) The set · ����� of optimal multipliers for the primal problem is nonempty for all
��!9'

and uniformly

bounded in some neighborhood of every such point,

then,

For any given � î 0, the GOP algorithm terminates in a finite number of steps.

Proof. Fix � î 0 arbitrarily. Suppose that the GOP algorithm does not converge in a finite number

of iterations (that is,
��X�ú �6û �k � ¹Þã ¤ k2Ü � � ). Let ¹ � 3 
5�	X2ú �6û �i � î

be the sequence of optimal solutions

to the relaxed dual problem at successive iterations r . Note that any solution from the stored set, if

selected as the minimum for a given iteration, is removed from the stored set. Therefore, by taking a

subsequence, if necessary, we may assume that ¹ � 3 
|��X2ú ��û �i � î
converges to

� ��
 X ú ��ûi �
such that

�è!�'
.

At every iteration, there is an accumulation of constraints from previous iterations. This implies thatX�³ � ,i
is a nondecreasing sequence which is bounded above by the optimal value of the original problem.

Also, at every iteration,
� 3

is in the compact set
'

. Similarly, since · ����� is uniformly bounded for all�;!^'
, we may assume that the corresponding sequence of multipliers for the primal problems

�gT 3 

X 3 �
converges to

� T�
 X��
, and that the the solutions of the corresponding primal problems (

� 3 
 ã �	� 3 � ) converge

to
� ��
 ã � �q�)� . From Lemma 7.2, we have that

� T�
 X��}! · � ��� . From Lemma 7.1,

m ��� k � 
 ��
 T�
 X��|~ ��� ,M � � ã � �q� �2FEG¸äW�2�¸� k �
(28)

Now, at every iteration r , due to accumulation of constraints,X ú ��û �k a m ��� k � 
���3�Ø 1 
�Tq3ü
�XZ3E�5~ ��� ,M��
for some combination of bounds

� k �
. Therefore, by continuity of m �	� k � 
��Z
�T 3 
�X 3 �5~ ��� ,M�� and (28), we obtainX ú ��ûk a ã � � ). The upper semicontinuity of ã �	��� at

�
(Lemma 3), then implies that

X ú �6û �k a ã ��� 3 �N� �



for all k sufficiently large, which contradicts the assumption that the termination criterion in Step 5 is

never met. �
Remark 7.1. It should be noted that for the general nonconvex nonlinear problem, condition (d) above

may be difficult to prove (or disprove.) However, for the problems considered in this paper (namely

problems satisfying Conditions (A)), it is easy to show that condition (d) is always satisfied. The proof

for this comes from the fact that the set of variables is assumed to be bounded. Hence, the only way a

multiplier for a constraint can be unbounded is if that constraint has a variable whose coefficient is zero.

However, in such a case, the variable will simply vanish from the constraint, and will not directly affect

the multiplier for that constraint. In the case of iterations where the primal problem is infeasible, the

relaxed primal problem (22) is solved. Again, the same argument (as above) holds for this problem too.

Theorem 7.2. (Global Optimality) If the conditions stated in Theorem 7.1 hold, then

(i) The solution of the Relaxed Dual (RD) problem in Step (3) of the algorithm in Section 6 will always

be a valid underestimator of the solution of problem (1).

(ii) The GOP algorithm will terminate at the global optimum of (1).

Proof.

(i) From Property 4.4, the solution of the relaxed dual problem in Step(3) will underestimate the solution

of the relaxed dual problem (5). Since (5) has fewer constraints than the dual of the original

problem, it represents a lower bound on the solution of (1). Hence, the solution of the relaxed dual

problem in Step (3) will always be a valid underestimator of the optimal solution of (1).

(ii) The primal problem at every iteration represents an upper bound for the original problem (1), while

the relaxed dual problem contains fewer constraints than the original problem and thus represents a

valid lower bound on the solution of (1). Therefore, since the termination of the algorithm is based

on the difference between the lowest upper bound (from the primal problems) and the largest lower

bound (from the relaxed dual problems), the algorithm will terminate when these two bounds are

both within � of the solution of (1). From Theorem 7.1, the algorithm terminates in a finite number

of steps. Hence, the GOP algorithm terminates at an � -global optimum of (1). �
Remark 7.2. It has been assumed throughout the theoretical development outlined in this paper that

some form of constraint qualification (for example, Slater’s qualification) holds for the problem being



solved. If such a condition cannot be satisfied, then it is possible that for some fixed values of
�
, the

primal problem will be over-specified, i.e. there are more constraints than variables. Usually, this implies

a linear dependency in some of the constraints. It should be noted that for such problems, the GOP

algorithm cannot be guaranteed to converge to the optimal solution.

8. Illustration for Bilinear Problems

In this section, the GOP algorithm is illustrated through application to the following bilinear problem

suggested by one of the referees :

minM õ ò �ë�u
 ������� �l��� 0

 �

1
�®��
����

1 �
The optimal solution is

�
1, and occurs at

�
0


1
�
. Consider the starting point of

�K�
0.

Iteration 1 : For
� 1 � 0, the primal problem can be written as

minM 0

 ������� �

1
�+�%�

0

 �Ã�

1
�

0 �
The solution of this problem is 0. Since the objective is constant, all the multipliers are zero. The

Lagrange function formulated from this problem is m �	��
��Z
�T 1 
�X 1 �ª�{�¸� . From this, it can be seen

that the gradient of the Lagrange function w.r.t.
�

is zero. Hence, the bound used for
�

in the Lagrange

function does not affect the solution, i.e. only one relaxed dual problem needs to be solved. This problem

is given below :

minò X k 
 �4�6��� X k a m 1
1

���l
7T 1 

X 1 �)�±�ë�K
 �
1
�`�Ã�

0

 �u�

1
�

0 �
The solution of this problem is

� �
1

-X k �ý�

1. Thus, after the first iteration, the upper bound on the

global solution is 0 and the lower bound is
�

1. The value of
�;�

1 is chosen as the fixed value for the

primal problem of the next iteration.

Iteration 2 : For
� 2 � 1, the primal problem is given below :

minM �
1

 ���6�7� �;� 0


 �
1
�`�è�

0

 �Ã�

1
�

0 �
The solution of this problem yields

�I�
0, and

T 2 �sX 2
1

�sX 2
2

�
0. The objective function value is

�
1.

This is lower than the solution of the first primal problem, and hence becomes the new upper bound on

the global solution.

At this point, the lower and upper bounds from the primal and relaxed dual subproblems are equal.

Hence, the algorithm can be terminated, having converged to the global solution.



9. Illustration For Polynomial Problems

Consider the application of the GOP algorithm to the following problem :

minò �
6
�¸S

4 � 5 � 2 �`� 3 ������� 0
�<���

3 �
This problem has a global solution of -4.5 at

�K�
3, and a local solution of -2.5 at

�y�
1.

The introduction of two new variables
�

1 and
�

2 and two constraints (
�

1
�`�y�

0 and
�

2
�`�

1
���

0)

enables the problem to be rewritten in the following equivalent form :

minò �
6
�þS

4 � 5 � 2
�`�

2
�K
 ������� �

1
�<�K
 �

2
�®�

1
�y


0
�<�

1

����

3



0
�®�

2
�

9 �
It should be noted that the bounds on the

�
variables need not be considered explicitly, since the

equivalence relations restrict the values of
�

1 and
�

2 depending on what values
�

can take.

Consider the starting point of
�y�

2 for the application of the (GOP) algorithm.

Iteration 1 : For
� 1 � 2, the primal problem can be written as

minM �
12
S

2 � 5 � 2

 ������� �

1
�

2
�

0

 �

2
�

2
�

1
�

0 �
The solution of this problem is

�
1
�

2,
�

2
�

4,
T 1

1

�ÿ�
5, and

T 1
2

�(�
2 � 5, where

T 1
1 and

T 1
2 are the

Lagrange multipliers corresponding to the two new constraints. The objective function has a value of -2,

and provides first upper bound on the global optimum.

The Lagrange function formulated from this problem is

m �	��
��Z
�T 1
1


7T 1
2

���ø�
6
�¸S

4 � 5 � 2
�`�

2
�u�

5
�	�

1
�`�����

2 � 5 �	� 2
�`�

1
���)�s�

2 � 5 � 1
�`�

2
�1���	�u�

2
�1�+� �

Thus, the gradient of the Lagrange function w.r.t
�

1 and
�

2 has the form
�u�

2
a

0 or
�u�

2
�

0. Since

there are two
�

variables, there are four (22) subproblems solved in the relaxed dual, as shown below :

Problem 1 Problem 2 Problem 3 Problem 4

Bounds for
� � k

1
�L�

0


0
�ÿ� k

2
�±�

3


0
�ÿ� k

3
�±�

0


9
�ÿ� k

4
�±�

3


9
�

��������� 	�
��
���
Constraint for

�
1
� �

2
a

0
�u�

2
�

0
�ª�

2
a

0
�u�

2
�

0
��������� 	�
��
���

Constraint for
�

2
� �

2
�

0
�u�

2
�

0
�ª�

2
a

0
�u�

2
a

0

It can be seen that for Problems 1 and 4, the qualifying constraints for
�

1 and
�

2 are simultaneously

of the form
���

2
a

0 and
�;�

2
�

0. For these two problems, therefore, the introduction of these

constraints is equivalent to fixing
�y�

2. Hence, the solutions of these problems will simply be the point�y�
2

�X k �±�

2. Hence, it is only necessary to solve problems 2 and 3.

These two relaxed dual subproblems to be solved are shown below:



(i) (Problem 2) For
� k

2
1

�
3,
� k

2
2

�
0,
�ª�

2
�

0.

The relaxed dual subproblem is

minò X k 
 ���6�7� X k a m 1
1

��� k
2

��l
7T 1

1


7T 1
2

�)�
6 � 5 �ª� 15


 �ª�
2
�

0



0
�<�Ã�

3 �
The solution of this problem is

���
0

NX k �±�

15 .

(ii) (Problem 3) For
� k

3
1

�
0,
� k

3
2

�
9,
�þ�

2
a

0.

The relaxed dual subproblem is

minò X k 
 ������� X k a m 1
2

��� k
3

��l
7T 1

1


�T 1
2

�)�±�
10
�¸S

18

 �þ�

2
a

0



0
�A�Ã�

3 �
The solution of this problem is

���
3

NX k �±�

12.

Thus, after the first iteration, there are two solutions of (
X k 

�

) in the stored set. From these, the

solution corresponding to the minimum
X k

is chosen. In this case, this corresponds to the solutionX k �¶�
15

0�I�

0. Hence, the fixed value of
�

for the second iteration is 8 . The selected solution is

then deleted from the stored set.

Iteration 2 : For the second iteration, the primal problem, with
� 2 � 0, is given below :

minM 4 � 5 � 2

 ������� �

1
�

0

 �

2
�

0 �
Its solution yields

�
1
�

0,
�

2
�

0,
T 2

1

�
0,
T 2

2

�ø�
4 � 5, and objective value of 0.

The Lagrange function formulated from the second primal problem is

m �	��

�Z
7T 2
1


7T 2
2

�)�±�
6
�²S

4 � 5 � 2
�`�

2
�þS

0
���

1
�`�����

4 � 5 ��� 2
�`�

1
���)�s�

4 � 5 � 1
�`�

2
�N�o�	�u�

0
�1�

6
� �

Again, it can be easily seen that only two relaxed dual subproblems need to be solved, for the combinations

of bounds
�
3


0
�

and
�
0


9
�

respectively for
�

1 and
�

2. Before solving these problems, a Lagrange function

needs to be selected from the first iteration. In order to do this, the qualifying constraints for the Lagrange

functions are checked at
� 2 � 0. This indicates that the Lagrange function formulated for Problem 3 of

the first iteration (with the qualifying constraint
���

2
�

0 for both
�

1 and
�

2) can be present for the

current relaxed dual subproblems.

The two relaxed dual subproblems solved at the second iteration are shown below:

(i) (Problem 2) For
� k

2
1

�
3,
� k

2
2

�
0,
�ª�

0
�

0.

minò X k 
 ������� X k a m 1
1

�
6 � 5 �l� 15


 �l�
2
�

0

 X k a m 2

1

�
7 � 5 �l
 �Z�

0
�

0



0
�<�Ã�

3 �
The solution of this problem is

���
0

NXZk^�

0.



(ii) (Problem 3) For
� k

3
1

�
0,
� k

3
2

�
9,
�þ�

0
a

0.

minò X k 
 ������� X k a m 1
1

�
6 � 5 �l� 15


 �l�
2
�

0

 X k a m 2

2

�±�
15
�l
 �l�

0
a

0



0
�<�Ã�

3 �
The solution of this problem is

���
0 � 6976


1X k �ø�
10 � 4651.

At the end of the second iteration, there are two stored solutions left, namely
�+�

3

�XZkL� �

12 and�;�
0 � 6976



X k �&�
10 � 4651. From these, the first solution is chosen as the one with the smaller value

of
X k

. Therefore, the new lower bound for the problem is
�

10 � 4651, and the fixed value of
�

for the next

primal problem is
�K�

3.

Iteration 3 : The primal problem is solved for
� 3 � 3. The solution of this problem yields

�
1
�

3,�
2
�

9,
T 3

1

�±�
4 � 5, and

T 3
2

�ø�
1 � 5. The objective function has a value of -4.5. Since this is less than the

best solution from previous iterations, the new upper bound for the global solution is -4.5. The Lagrange

function formulated from the third primal problem is

m ����
��l
7T 3
1


�T 3
2

�)�±�
6
�¸S

4 � 5 � 2
�`�

2
� �

4 � 5 ��� 1
�`���1�

1 � 5 ��� 2
�+�

1
���>�±�

1 � 5 � 1
�b�

2
�1�����ª�

3
�1�

1 � 5 �
Again, two relaxed dual problems are solved, one each for the combinations of bounds

�
3


0
�
and
�
0


9
�
for�

1 and
�

2. Before solving these problems, a Lagrange function from each of the previous two iterations

is selected. This leads to the selection of m 1
2 and m 2

2 from the first and second iterations respectively, since

their qualifying constraints are satisfied at
� 3 � 3.

The two solutions of the two relaxed dual subproblems are
�U�

2 � 423

�X k �¯�

6 � 2308 and
�U�

3

�XlkU�&�

4 � 5. Thus, at the end of the third iteration, there are two solutions less than the upper bound

on the global solution (i.e. less than -4.5). From these, the solution of
�è�

0 � 6976


X k �¶�

10 � 4651 is

selected. Hence, the new lower bound on the global solution is
�

10 � 4651 and the fixed value of
�

for the

next iteration is
� 4 � 0 � 6976.

The algorithm continues in this fashion until the lower and upper bounds are within � , taking 17

iterations to converge to the global solution.

10. Geometrical Interpretation

The application of the GOP algorithm to the second illustrating example (Section 9) can be interpreted

geometrically. At every iteration, the solution of the primal problem for a fixed value of
�y�Î�4´

is simply

an evaluation of the objective function at
��´

. The two Lagrange functions used for the relaxed dual



problems are underestimators of the objective function for
���<�4´

and
�;ap�4´

, and these two Lagrange

functions intersect at
�y�<��´

. Consider the first relaxed dual problem, for which the Lagrange function is

evaluated at
�

1
�

3
äW�2åÁ�

2
�

0, and the domain of
�

is restricted to
�Ã�<�4´

. From a previous iteration r ,
if
� 3 �®��´

, then the Lagrange function from that iteration evaluated at
�

1
�

0

��

2
�

9 will underestimate

the objective function for all values of
�

between
� 3

and
� ´

, and therefore will be present in the current

relaxed dual problem. Conversely, for an iteration r where
� 3 aÞ��´

, the Lagrange function from that

iteration evaluated at
� k �¶�

3


0
�

will underestimate the objective function for all values of
�

between� ´
and

� 3
, and therefore will be present in the relaxed dual problem. The converse holds for the other

relaxed dual problem for the current iteration. The solutions of these two relaxed dual problems will lie

between
�4´

and the nearest
� 3

on either side of
�4´

.

By storing the solutions of each of the relaxed dual problems at the current iteration, we ensure that

the algorithm can, if necessary, return a value of
�

from either side of
� ´

for the
��µ(S

1
�
th iteration.

At the same time, the criterion for selecting the Lagrange functions from previous iterations results in

the creation of an underestimating function for the objective function that resembles a series of valleys

and peaks, with the valleys representing the stored solutions of the relaxed dual problems at different

iterations.

For a starting point of
� 1 � 2, the sequence of points generated by the algorithm is graphically

illustrated in Figures 1-4.
�������

is the optimal value of the primal problem for different fixed values of
�
,

and in this case happens to be identical to the original function. For the first iteration (Figure 1), with an

optimal value of -2 for the primal problem, m 1
1 and m 1

2 are the Lagrangians evaluated at the two sets of

bounds
�
3


0
�

and
�
0


9
�

respectively for
���

1

��

2
�
. As can be seen, each Lagrange function underestimates

the objective function for one side of
� 1 � 2. The solutions of the two relaxed dual problems give (0,-15)

and (3,-12) for
�	�Z
�X k �

. These two values are stored. Then, the solution providing the lower
X k

, i.e.

(0,-15) is selected, and deleted from the stored set.

For the second iteration,
� 2 � 0 for the primal problem, and the optimal solution is 0. From the

solution of this problem, two new Lagrange functions are generated, which are indicated by m 2
1 and m 2

2 in

Figure 2. For the first relaxed dual problem in this iteration, the Lagrange function m 2
1 is present, along

with m 1
1. The solution of this problem is

�	�:�
0

�X k �

0
�
. For the second relaxed dual problem, m 1

2

is present from iteration 1, and m 2
2 is present from the current iteration. The solution of this problem is

at
���I�

0 � 698

�X k �&�

10 � 465
�
. These two solutions are stored. From the stored set, the lowest value,

which is
X k �Þ�

12, is selected as the new lower bound, and the corresponding
�;�

3 is selected as the

fixed value for the next iteration. The selected solution
�c�

3


X k �±�

12 is deleted from the stored set.



From the third iteration, with an optimal value of -4.5 for the primal problem, the two Lagrange functions

obtained are m 3
1 and m 3

2, shown in Figure 3. For this iteration, m 1
2 and m 2

2 are present from the previous

iterations as constraints. The solution of the two relaxed dual problems lie at (2.423,-6.24) and (3,-4.5).

These are stored, and the least value of all the stored solutions
�	X k �¶�

10 � 465
�

is selected as the new

bound. The corresponding
�K�

0 � 698 is the fixed value of
�

for the next primal problem. The algorithm

continues in this manner until the lower bound comes within � of -4.5 .

Figure 4 shows the underestimating function that is effectively obtained after four iterations. The

lower bound from the fourth iteration is simply the lowest valley of this underestimating function.

11. Quadratic Problems with Quadratic Constraints

The quadratic programming problem with quadratic constraints has the following form:

minM �
Vl�ÞS ��V��²��


������� ��Vlð ³ �yS ¨ �K��� ³ � 0

 . � 1



2

 ����� 
 / 
� V ð ³ �yS © �K��� ³ � 0


 . � / S 1

 / S 2


 ����� 
 / S��ª

� �;�+å±�

0



� �K� H � 0



where
�

an
�

-vector of variables, and � ,
å

and H are constant vectors.
�

, ¨ , © ,
�

, and
�

are constant

matrices.
ð ³ is an

�:ù%�
matrix corresponding to the . th quadratic constraint, and

� ³ is a constant for

that constraint. It is assumed that the bounds on the variables are explicitly incorporated into the problem

in the third constraint set.

By defining a new set of variables
�y�<�

, this problem can be rewritten in the following form :

minM õ ò �
V �ÞS � V �²�u


������� ��Vlð ³ �yS ¨ �K��� ³ � 0

 . � 1



2

 ����� 
 / 
��V�ð ³ �yS © �K��� ³ � 0


 . � / S 1

 / S 2


 ����� 
 / S��ª

� �;�+å±�

0



� �K� H � 0

�y�`�L�

0 �



For some problems, it may not be necessary to introduce a
�

variable for every
�

variable. The introduction

of the variables as shown above is only one of several possible ways of converting the problem to a form

satisfying Conditions (A). The reader is referred to Hansen and Jaumard (Ref. 31) for more information

on the efficient bilinearization of these problems. The reader is also referred to Visweswaran and Floudas

(Ref. 27) for complete details and several examples of application to quadratic problems with linear

constraints.

The primal problem is solved for
�K�<� 3

, and its solution provides the optimal multiplier vectors
X 3

1 ,T 3
1 ,
X 3

2 ,
T 3

2 and �
3

respectively for the five sets of constraints. Using the KKT gradient conditions, the

Lagrange function can be formulated as

m ����
��l
7T 31 

X 31 
7T 32 
�X 32 
 � �>�<��V1���eS®�	X 31 V 
�T 31 V �½ðþ�
���u�b� 3 � V �®��X 31 V 
7T 31 V ���)�`X 32 V åþ�UT 32 V H � �
3 V � �

Hence, the qualifying constraints to be added to the relaxed dual problem take the form

��� � S Ò�³ � 1

X 3
1 ú ð ³ � S Ò Ø���³ � Ò Ø 1

T 3
1 ú ð ³ � � � ���ª�`� 3 ��� 0 � � � k� �<� ¤�

��� � S Ò�³ � 1

X 3
1 ú ð ³ � S Ò Ø���³ � Ò Ø 1

T 3
1 ú ð ³ � � � ���ª�`� 3 ��a 0 � � � k� �<� £�

where the subscript � myrefers to the � th row of the matrices
�

and
ð ³ , i.e., the rows corresponding to

the variable
� � in the matrices. Similarly, the qualifying constraints for iterations with infeasible primal

problems can be generated.

11.1. Example : The Pooling Problem

A complete nonlinear programming NLP formulation for the pooling problem (Refs. 12 and 31) is shown

below :

min 6
ðUS

13 ¨ S 10
� © M S © ò �1� 9

���
15
�K


������� ã M S ã ò �`ð®� ¨ �
0

 / ��� ã M S ã ò �1� 3

ð®� ¨ �
0

�K� ã M � © M � 0


 �u� ã ò � © ò � 0



/ � ã M S 2
� © M � 2 � 5 �é� 0


 / � ã ò S 2
� © ò � 1 � 5 �L� 0



0
�<�I�®� ¤ 


0
�<�L� � ¤ 
 ð 
 ¨ 
 © M 
 © ò 
 ã M 
 ã ò a 0 �

where / is the sulfur quality of the pool; its lower and upper bounds are 1 and 3 respectively. A and B are

two input streams to the pool, and ã M and ã ò are the two output streams from the pool. These streams



are mixed with bypass streams © M and © ò to produce two final output streams having qualities of
�

and�
respectively.

Projection on the pool quality / makes the primal problem linear in the remaining variables. It can

be seen that only the variables ã M and ã ò are directly connected with the variable / . Hence, the relaxed

dual needs to be solved at the bounds of only these two variables.

The GOP algorithm was applied to this problem with the upper bounds on
�

and
�

being 100 and

200 respectively. The problem exhibits a strong local minimum at / � 2 � 5, with the optimal solution= ����� actually being discontinuous. The algorithm found the global optimum of
�

750 at / � 1 � 5 from

several starting points, required an average of 10 iterations to converge. (Note : An extensive treatment

of the application of the GOP algorithm to this problem and other quadratically constrained problems is

provided in Visweswaran and Floudas (Ref. 27) ).

12. Polynomial Functions

A vast number of problems involve the minimization of polynomial functions of one or more variables.

This section presents the application of the GOP algorithm to polynomial functions of a single variable.

The general approach can be easily extended to include functions of more than one variable, and can also

be applied for polynomial constraints as well as rational polynomial functions.

Consider the unconstrained minimization problem

min�½f7h �1�����>�<ä
0
S`ä

1
�¸S`ä

2
� 2 S ����������� S`ä º �qº (29)

where y is a single variable. The presence of either negative coefficients
ä � or the presence of odd

powers of
�

in the function can give rise to nonconvexities. Let
G

be the highest power of
�

such thatä ¼ � ¼ is nonconvex in
�

for
� !b'

. Then, by introducing
��G¸�

1
�

transformation variables, this problem

can be decomposed into convex primal and relaxed dual problems, enabling the application of the GOP

algorithm.

Consider the following transformations:�
0
�

1

 �

1
�Î�Z
 �

2
�p� 2 �p�

1
�l
 �5�|� � ¼ �<� ¼ �<� ¼ Ù 1

� �
Projecting on

�
, the primal problem for this formulation becomes, for a fixed value of

�y�<� ´
,

min� ¼� ��� 0

ä � � � S º���� ¼ Ø 1

ä � ��� ´ � � 




���6�7� � � �`� � Ù 1
� ´ �

0

 � � 1



2

 ����� 
�Gd
�

0
�

1 �
The Lagrange function for this problem is given by

m ����
��l
7T ´ �)� ¼� ��� 0

ä � � � S º���� ¼ Ø 1

ä � � � S ¼� ��� 1

T ´� �	� � �`� � Ù 1
���N


where
TW´� are the Lagrange multipliers for the equality constraints. Using the KKT gradient conditions

for the primal problem, the Lagrange function can be simplified to

m ����
��l
7T ´ �)� ¼���� 0

T ´� Ø 1

�	� ´ �b��� � � S º���� ¼ Ø 1

ä � � � �UT 0́



where

T ´¼ Ø 1

�
0 and

T
0́ is the Lagrange multiplier for the last constraint. Thus, for every

� � , the qualifying

constraint to be put into the relaxed dual problem is of the form� ´ �`���
0

>FEG � ´ �`��a

0

It is therefore sufficient to solve the relaxed dual for these two regions of
�
, with

� � set to the appropriate

bounds, for then there will be a Lagrange function for each of the regions
�%�Þ��´

and
�Iaé�4´

, which

will underestimate the optimal value of the problem (29) for every
�

in that region. The bounds for
� �

for these two relaxed dual problems can be selected as follows:

(i) For
��´`�`��a

0 : If
Tq´� Ø 1

a
0


then

� � �<��£� ; otherwise,
� � �<� ¤� .

(i) For
��´`�`���

0 : If
Tq´� Ø 1

a
0


then

� � �<� ¤� ; otherwise,
� � �<��£� .

Using these combinations of bounds, the two relaxed dual problems can be solved for the appropriate

regions of
�
.

12.1. Example : Rosenbrock’s function

This example considers the minimization of Rosenbrock’s function, which is given by :�1���
1


�

1
�)�<äZ�	�

1
�`� 2

1

� 2 S®�	�
1
����� 2 


where
ä��

100 and
�}�

1. This function has its global minimum of 0 at
�

1
�

1

��

1
�

1.



The problem can be converted to a form satisfying Conditions (A) by the introduction of two transfor-

mation variables
�

2
�®�

1

 �

3
�p�

1
�è� 2

1

�®�
1
�è�

2
�

1
� By projecting on

�
1, the primal problem becomes

convex in
�

1,
�

2 and
�

3, and the relaxed dual problem is a convex problem in
�

1 . Since the Lagrange

function at iteration
µ

will be convex in
�

3, it is linearized around
��´

, the solution of the primal problem

at that iteration.

When the GOP algorithm was applied to the problem in this form, it converged to the global optimum

of 0 starting from all starting points. The number of iterations required for convergence depended on the

starting point, with an average of 10 iterations.

Remark 12.1. It should be noted that this class of problems has some very interesting features arising

from the nature of the transformations that give a direct one-to-one correspondence between the
�

variable

set and the single
�

variable. Consequently, it is possible to utilize this relationship to improve the bounds

for the
�

variables iteratively. This leads to a very efficient algorithm for solving problems of this class,

and is discussed in further detail in Visweswaran and Floudas (Ref. 36).

Conclusions

In this paper, a new deterministic global optimization approach is proposed for the solution of nonconvex

programming problems of a specific structure. The proposed approach covers the general quadratic

programming problem, quadratic programming problems with quadratic constraints, and problems with

polynomial and rational polynomial functions in their objective function and/or constraints. New the-

oretical properties are proposed that enable the rigorous solution of the relaxed dual problem. Based

upon these properties, a global optimization algorithm has been developed. The algorithm is shown to

have finite � -convergence and � -global optimality. The algorithm has been illustrated geometrically and

numerically through a simple example. The application of the algorithm to specific classes of problems

is given through the development of the theory, and application to some example problems.

The nature of the solution of the relaxed dual subproblems permits the exploitation of the structure

of the Lagrange functions used in these subproblems. By developing new properties based upon this

structure, it is possible to eliminate a large number of the relaxed dual subproblems without destroying

the rigorous nature of the algorithm. The properties that achieve this result are given in Visweswaran and

Floudas (Ref. 33). In addition, it is possible to solve the relaxed dual subproblems simultaneously as a

single MILP problem by introducing binary variables representing the sign of the qualifying constraints.

This is discussed in Floudas et al (Ref. 37).



For the case of polynomial functions in one variable, the nature of the transformations provide a direct

one-to-one correspondence between the
�

variable set and the single
�

variable. This relationship can be

used to iteratively improve the bounds for the
�

variables. This leads to a very efficient algorithm for

solving problems of this class, and is discussed in further detail in Visweswaran and Floudas (Ref. 36).

The GOP algorithm can be applied to several other classes of problems, most notably bilevel pro-

gramming problems, linear and nonlinear complementarity problems, and integer quadratic programming

problems. Work on these and other classes of problems, as well as work on improving the computational

efficiency of the algorithm, is currently in progress, and will be reported in future publications.
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