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Abstract:  During the last two decades, the problem of short-term scheduling of 

multiproduct and multipurpose batch plants has gained increasing attention in the 

academic, research, and manufacturing communities, predominantly because of the 

challenges and the high economic incentives.  In the last 10 years, numerous 

formulations have been proposed in the literature based on continuous 

representations of time.  The continuous-time formulations have proliferated 

because of their established advantages over discrete-time representations and in 

the quest to reduce the integrality gap and the resulting computational complexities.  

The various continuous-time models can be broadly classified into three distinct 

categories: slot-based, global event-based, and unit-specific event-based 

formulations.  In this paper, we compare and evaluate the performance of six such 

models, based on our implementations using several benchmark example problems 

from the literature. Two different objective functions, maximization of profit and 

minimization of makespan, are considered, and the models are assessed with 

respect to different metrics such as the problem size (in terms of the number of 

binary variables, continuous variables, and constraints), computational times (on 

the same computer), and number of nodes needed to reach zero integrality gap. Two 

additional computational studies with resource constraints such as utility 

requirements are also considered. 

 
1. Introduction  
 
The problem of short-term scheduling of multiproduct and multipurpose batch plants has received 

significant attention from both academic and industrial researchers in the past few years, primarily 
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because of the challenges and the high economic tradeoffs involved.  Recently, Floudas and Lin1, 2 

presented state-of-the-art reviews comparing various discrete and continuous time-based 

formulations. The different continuous-time models proposed in the literature can be broadly 

classified into three distinct categories: slot-based, global event-based, and unit-specific event-

based formulations.  

One of the first methods used to formulate continuous-time models for the scheduling of 

network-represented or sequential processes is based on the concept of time slots. Time slots 

represent the time horizon in terms of ordered blocks of unknown, variable lengths, or slots, as 

presented by Pinto and Grossmann,3-6 Karimi and McDonald,7 Lamba and Karimi,8, 9 and recently 

by Sundaramoorthy and Karimi.10 In addition, alternate methods have been developed which define 

continuous variables directly to represent the timings of tasks without the use of time slots. These 

methods, for both network-represented and sequential processes, can be classified into two 

different representations of time, global event-based models and unit-specific event-based models. 

Global event-based models use a set of events that are common across all units, and the event 

points are defined for either the beginning or end (or both) of each task in each unit.  Research 

contributions following this direction include those presented by Zhang and Sargent,11, 12 Mockus 

and Reklaitis,13-15 Schilling and Pantelides,16, 17 Mendez and co-workers,18-20 Castro and co-

workers.,21,22 Mendez and Cerda,23 Majozi and Zhu,24 Lee et al.,25 Burkard et al.,26 Wang and 

Guignard,27 and Maravelias and Grossmann.28  Note that the concept of time slots has changed over 

a period of time.  Earlier models were based on the assignment of tasks to time slots, while in the 

recent models, continuous variables are used to directly assign tasks to different time points; and 

hence, these are more similar to global event-based models. The only difference seems to be that 

the length of the common-time grid is referred to as the time slot explicitly in some slot-based 

formulations (for instance by Sundaramoorthy and Karimi10).    

On the other hand, unit-specific event-based models, originally developed by Floudas and 

co-workers,29-36 define events on a unit basis, allowing tasks corresponding to the same event point 

but in different units to take place at different times.  This representation is considered the most 

general, compact, and “true” continuous-time model (as is demonstrated later in this paper) used in 

short-term scheduling.  Another unit-specific event-based continuous-time model was developed 

by Giannelos and Georgiadis.37 However, because of special sequencing restrictions of the same 

start and finish times on tasks consuming or producing the same state, it is effectively transformed 

into a global event-based model. Their formulation is similar to that by Ierapetritou and Floudas;29 
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however, because of the special sequencing constraints, their model leads to suboptimal solutions 

for batch plants as noted by Sundaramoorthy and Karimi10 and also as demonstrated later in this 

paper. Most of the above-mentioned formulations have been based on either state-task network 

(STN) or resource-task network (RTN) process representations, except the model of 

Sundaramoorthy and Karimi,10 which is based on generalized recipe diagrams. 

The different time representations are summarized in Figure 1.  In the uniform time 

discretization depicted in Figure 1a, the time horizon is divided into intervals of equal length that 

are common across all units.   

 
Figure 1.  Different time representations. 

 
Parts b–d of Figure 1 illustrate the different variations in the continuous-time representations. In the 

slot-based continuous-time representation of Figure 1b, the time horizon is divided into time 

intervals of unequal and unknown lengths, and  typically tasks need to start and finish at an event 

(n slots are equivalent to n+1 events). In the global event-based continuous-time representation of 

Figure 1c, only the start times of the tasks need to be at an event point and the events considered 

are common across all units.  In the unit-specific event-based time representation of Figure 1d, only 
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the start time of each task in a unit has to be at an event point, whereas the occurrences of each 

event can be different across different units.   For the specific instance of the four tasks considered 

on three units in parts b–d of Figure 1, the slot-based representation requires 5 slots (or 6 events), 

the global event-based representation requires 4 events, while the unit-specific event-based 

representation requires consideration of only 2 events. It should be noted that hybrid methods have 

also been developed38 which combine mixed-integer linear programming (MILP) models with 

constraint programming. These are not within the scope of the presented comparison, which aims at 

evaluating pure MILP approaches for the aforementioned classes.  

In this paper, we compare the ability of closing the integrality gap and evaluate the 

performance of the above-mentioned short-term scheduling formulations based on our 

implementations of these models.  Specifically, we compare the slot-based models 

(Sundaramoorthy and Karimi10) versus global event-based models (Maravelias and Grossmann28 

and Castro and co-workers.21,22) versus the unit-specific event-based models (Ierapetritou and 

Floudas29 and Giannelos and Georgiadis37), and study the computational effectiveness of each. 

Both network-represented and sequential processes are considered along with two scheduling 

objectives: maximization of profit and minimization of makespan. We also introduce two 

computational studies that compare the models of Maravelias and Grossmann,28 Castro et al.,22 and 

Janak et al.35 for resource constraints.  

The rest of the paper is organized as follows. In Section 2, we describe the different 

performance metrics with which the above-mentioned models are compared. The formulations for 

the different models used for comparison in this study are briefly discussed in Section 3, followed 

by the illustration of the benchmark examples in Section 4. The computational results and 

discussion for problems without resource constraints are detailed in Section 5 followed by 

computational studies with resource constraints in Section 6. The implemented formulations for 

each model are summarized in the appendices. 

 

2. Description of Performance Metrics 
 

Numerous formulations proposed in the literature, often claiming superiority over each other, exist 

for short-term scheduling of batch plants using continuous-time representations.  Hence, for a fair 

and legitimate comparison of the different models with respect to their computational effectiveness, 

the following metrics are defined: 
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(a) Benchmark examples:  The examples chosen are standard benchmark examples from the 

recent literature, used by many of the researchers in short-term scheduling of multipurpose batch 

plants.  Both the STN- and RTN-based process representations are considered with variable batch 

sizes and processing times.  The resource constraints considered are only those related to the raw 

material and equipment availability in the first three examples. Resource constraints related to 

utility requirements are considered in examples 4 and 5.  The various models are evaluated for 

multiple instances of each problem with different time horizons and demand distributions and with 

respect to two dissimilar objective functions, maximization of profit and minimization of 

makespan.  The latter objective of makespan minimization is considered to be more rigorous for 

assessing the performance of different models, as most of the models proposed in the literature 

have difficulties in closing the integrality gaps for this case. 

(b) Completion to global optimality: While solving an optimization problem, completion to 

optimality in order to close the integrality gap is important for a fair comparison of different 

models. Unlike some of the comparisons reported in the literature, in this paper, all the problems 

are solved to zero integrality gap, except in some cases when one or more models take excessive 

computational time to solve to the reported global optimal solution, compared to the other models. 

For each model and for each instance of the various examples, we study parametrically the increase 

of the number of events or slots until there is no further improvement in the objective function, as 

suggested by Ierapetritou & Floudas29. 

(c) Computer hardware and software: The computer hardware and software used for 

comparing different models also has a noteworthy influence on the computational time taken to 

solve to zero integrality gap (as is also noted recently by Sundaramoorthy and Karimi10). The 

performance of the same model would be different on computers with different hardware (speed, 

RAM, etc.). Also, the computational performance would be different with a different version of the 

optimization software used (for instance, different versions of GAMS and its solvers).  Hence, for a 

valid comparison, all the models are implemented on the same computer (3 GHz Pentium 4 with 2 

GB RAM) and under similar conditions (GAMS distribution 21.1, CPLEX 8.1.0). For the solvers, 

only the default option values are used.  

(d) Model implementation: In contrast to most of the comparisons reported in the literature, in 

this paper, the various formulations are compared based on our own implementation of the above-

mentioned models.  Before applying each model to the benchmark problems considered in this 
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paper, each of the models is first reproduced against the examples presented in the original paper, 

to match the reported model statistics (number of variables and constraints) as best as possible. 

Sometimes, the reported statistics do not match with our implementation, possibly because of the 

usage of additional constraints not reported in the relevant paper. The model formulations we 

implemented are reported in the appendices.  

(e) Model statistics:  The number of binary variables and constraints resulting from a model 

has a significant impact on its computational performance.  The different models are compared 

with respect to the resulting number of binary variables, the total number of continuous variables 

and constraints used, the total number of nodes explored to reach zero integrality gap, the 

computational times (CPU seconds) on the same computer, the objective function value at the 

relaxed node, and the number of nonzero elements in the resulting coefficient matrix. Although the 

number of nodes explored does not depend on the computer hardware, is often found to be mildly 

dependent on the order in which the constraints are written, for instance, while implementing the 

models in GAMS.39 Also, the M value used in the big-M constraints may affect the value of the 

objective function at the relaxed node, and also may affect the computational time. However, we 

used a common value of M for all the models instead of exploring the best value of M for each 

model that requires big-M constraints.  

 

3. Descriptions of Different Continuous-Time Models for Batch Plants 
 

Six different continuous-time models for batch plants are considered in this comparative study. 

They have been selected on the basis of representing all possible classes: slot-based, global event-

based, and unit-specific event-based models. Also, the papers of Castro and co-workers.,21,22 

Giannelos and Georgiadis,37 Maravelias and Grossmann,28 and Sundaramoorthy and Karimi10 each 

provided comparisons with other approaches. The key features and the differences among the 

various continuous-time models compared in this paper are briefly discussed below, in 

chronological order. 

3.1. Unit-Specific Event-Based Model of Ierapetritou and Floudas29 (I&F). The authors 

presented the original concept of event points which correspond to a sequence of time instances 

located along the time axis of each unit, each representing the beginning of a task or the utilization 

of the unit. The location of event points is different for each unit, allowing different tasks to start at 
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different times in each unit for the same event point. The timings of tasks are accounted through 

special sequencing constraints involving big-M constraints. No resources other than materials and 

equipment are considered.  Although the model originally claimed its superiority due to both 

decoupling of task and unit events and nonuniform-time grid, later it became evident that it is 

primarily the introduction of the unit-specific events that gives the model the resulting cutting edge 

and makes it a class apart from all other models proposed in the literature. The resulting model 

requires less event points compared to the corresponding global-event or slot-based models, thus 

yielding better computational results, although big-M constraints are used. This model was later 

extended by Janak et al.,35, 36 allowing tasks to spread over multiple events to accurately account for 

the utilization of different resources and storage policies. For the comparative study, in this paper, 

we use a slightly modified version of Ierapetritou and Floudas,29 as presented in Appendix A.  

3.2. Global Event-Based Model of Castro and co-workers.21, 22 (CBM, CBMN). Castro et 

al.21 (CBM) proposed a formulation using RTN representation for short-term scheduling of batch 

plants. The time horizon is divided into several global events that are common across all units. 

Binary variables are defined for assigning both start and end times of different tasks to the 

corresponding global events. Because of the unified treatment of various resources in the RTN 

framework, no special sequencing constraints are required. All the balances are written in terms of 

a single excess resource constraint, which implicitly includes the balances on the status and batch 

amounts of each unit. This model has no big-M constraints except for those that relate the extents 

of each task to the corresponding binary variables. Because of the provision for end times of tasks 

to be before the end times of the corresponding time slots, the processing time of each task on a 

given unit is not exactly represented but has an additional waiting period.  Although the authors 

claimed superiority over the STN based event-driven formulation of Ierapetritou and Floudas,29 it 

was established later (Ierapetritou and Floudas31) that the claims were based on incorrect data 

obtained from rounding off the parameter values used. Later, Castro et al.22 (CBMN) proposed an 

improved model by eliminating some of the redundant binary and continuous variables and 

proposed new timing constraints that result in compact problem statistics and improved relaxed 

solutions. They compared the results for two different models (MN and MO) with the new and old 

timing constraints, respectively.  On the basis of the request of a reviewer to compare with the new 

model of Castro et al.,22 we choose the MN model for comparison because it has fewer constraints 

and better LP relaxed solution over the MO model. We also compare the performance of the MN 

model with that of Castro et al.21 The models we implemented are reported in Appendix B. It 
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should be noted that, in the model of Castro et al.,22 there is an additional parameter (Δt) that 

defines a limit on the maximum number of events over which a task can occur, and it has a 

significant impact on the solution obtained, the computational time, and the problem statistics. At 

each event point, we need to iterate over this parameter to get the global optimal solution.    

3.3. Unit-Specific Event-Based Model of Giannelos and Georgiadis37 (G&G). The authors 

proposed an STN represented, unit-specific event-based formulation for short-term scheduling of 

multipurpose batch plants. This is a slight variation of the model proposed by Ierapetritou and 

Floudas,29 wherein the authors relaxed the task durations using buffer times and implicitly 

eliminated the various big-M constraints of Ierapetritou and Floudas.29 However, the authors 

introduced special duration and sequencing constraints that effectively transform the nonuniform 

time grid to a uniform one (global events) for the purposes of material balance and storage 

constraints. The start times (end times) of the tasks producing/consuming the same state were, 

respectively, forced to be the same, leading to suboptimal solutions, as observed by 

Sundaramoorthy and Karimi10 and also as demonstrated later in this paper. The model we 

implemented is reported in Appendix C. 

3.4. Global Event-Based Model of Maravelias and Grossmann28 (M&G).  This is a recent 

global event-based model using STN process representation. The model accounts for resource 

constraints other than equipment (utilities), various storage policies (unlimited, finite, zero wait, 

and no intermediate storage), and sequence-dependent changeover times and allows for batch 

mixing/splitting. This model reduces to the case of no resources, and it was used as such for 

comparison to other approaches (see Maravelias and Grossmann28). Global event points are used 

that are common across all units, and tasks are allowed to be processed over multiple events.  

Different binary variables are used to denote if a task starts, or continues over multiple events, or if 

it finishes processing a batch at a given event point. Also, a new class of tightening inequalities is 

proposed for tightening the relaxed LP solutions. The model we implemented for the computational 

studies in Section 5 is based on the reduction to no resources (refer to Appendix D), and it is 

included in this comparative study on the grounds that Maravelias and Grossmann28 compared it to 

other continuous-time models without resources. Janak et al.35,36 extended the basic event-based 

formulation of Ierapetritou and Floudas29  to allow tasks to extend over multiple events in order to 

accurately account for different resource constraints and storage policies and provided a 

comparison for the case of resource constraints. At the request of a reviewer, we employ the 

 8



models of Maravelias and Grossmann,28 along with the models of Castro et al.22 and Janak et al.35,36 

in a comparative study with resource constraints described in Section 6. 

3.5. Slot-Based Model of Sundaramoorthy and Karimi10 (S&K).  Among the various slot-

based formulations proposed in the literature, this is a recent model available for the short-term 

scheduling of multipurpose batch plants. The authors claim superior performance for the models 

they compared with, including those based on global events and that of Giannelos and 

Georgiadis.37 They use generalized recipe diagrams for process representation, wherein a storage 

task is used to model the mixing and splitting of the same material streams. No resources other than 

materials and equipment are considered, and transfer and setup times are lumped into the batch 

processing times of tasks. The time horizon is divided into multiple time slots of varying lengths, 

and tasks are allowed to continue processing over multiple time slots.  For each unit, binary 

variables are used to assign the beginning of each task to various time slots, and [0,1] continuous 

variables are used to denote tasks that continue over multiple slots and to denote tasks that release 

their batch amount at the end of a slot.  An additional zero task is defined for modeling idling of 

units and to occupy extra redundant slots.  Even though this model is categorized as slot-based, 

tasks are allowed to finish before the end of the time slot, making the model inherently similar to 

the global event-based models, except for the differences in accounting the various balances.  

Several balances are proposed based on status of each unit, material and storage constraints, and a 

new way of writing the balance on the time remaining on each unit, leading to a compact model. 

Some of the examples reported in their paper are not solved to zero integrality gap.  In contrast to 

the authors’ claim of ‘absolutely’ no big-M constraints, the readers can easily verify that there are 

typographical mistakes in the balances for the batch amount in a unit (constraints 11 and 12 of the 

original paper; see also Appendix E) which, if corrected, are similar to big-M constraints. Except 

for these constraints, the resulting model has no other big-M constraints. The model we 

implemented is reported in Appendix E. 

 

4. Description of the Benchmark Examples 
 

In this section, examples without resource constraints such as utility requirements are considered, 

and additional examples that include resource constraints are discussed later in Section 6. The 

following three benchmark examples, which have been studied by many authors, are considered 
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from the short-term scheduling literature10 for multipurpose batch plants with variable batch 

processing times.  For simplicity, the process representations and the data for all three examples are 

shown using the STN representation.  The processing time of task i on unit j is assumed to be a 

linear function, αij +βijB, of its batch size, B. 

4.1. Example 1. This is a simple motivating example from Sundaramoorthy and Karimi10 

involving a multipurpose batch plant that requires one raw material and produces two intermediates 

and one final product.  The raw material is processed in three sequential tasks, where the first task 

is suitable in two units (J1 and J2), the second task is suitable in one unit (J3), and the third task is 

suitable in two units (J4 and J5). The STN for this motivating example is shown in Figure 2.   

 

 
 

Figure 2. State-task network representation for example 1. 

A task which can be performed in different units is considered as multiple, separate tasks, thus 

leading to five separate tasks (i=1,…,5), each suitable in one unit. The relevant data10 of the 

constant (αij) and linear (βij) coefficients for processing times of different tasks (i), the suitable 

units (j), and their minimum ( ) and maximum ( ) batch sizes for all three examples 

considered are shown in Table 1.  The storage capacities, initial stock levels, and prices of each 

state for all three examples are given in Table 2.   The initial stock level for all intermediates is 

assumed to be zero and unlimited storage capacity is assumed for all states. 

min
ijB max

ijB

4. 2. Example 2. This is a standard example for short-term scheduling of multipurpose batch 

plants and has been studied comprehensively by several authors.  Two different products are 

produced through five processing stages: heating, reactions 1, 2, and 3, and separation, as shown in 

the STN representation of the plant flow sheet in Figure 3.  Since each of the reaction tasks can 

take place in two different reactors, each reaction is represented by two separate tasks. The relevant 

data10, 28 is shown in Tables 1 and 2. The initial stock level for all intermediates is assumed to be 

zero and unlimited storage capacity is assumed for all states. 
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Table 1. Data of Coefficients of Processing Times of Tasks, Limits on Batch Sizes of Units for Examples 1-3 
 
Task(i)  Unit(j)  αij  βij  (mu) (mu) min

ijB max
ijB

 
Example 1 

Task1 (i = 1)   Unit1  1.333  0.01333  ---  100 
           (i = 2)   Unit2  1.333  0.01333  ---  150 
Task2 (i = 3)   Unit3  1.000  0.00500  ---  200 
Task3 (i = 4)   Unit4  0.667  0.00445  ---  150 
           (i = 5)   Unit5  0.667  0.00445  ---  150 

Example 2 

Heating    (i = 1)  Heater 0.667  0.00667  ---  100 
Reaction1 (i = 2) Reactor1 1.334  0.02664  ---    50 
                (i = 3)  Reactor2 1.334  0.01665  ---    80 
Reaction2 (i = 4) Reactor1 1.334  0.02664  ---    50 
                (i = 5)  Reactor2 1.334  0.01665  ---    80 
Reaction3 (i = 6) Reactor1 0.667  0.01332  ---    50 
                 (i = 7) Reactor2 0.667  0.008325 ---    80 
Separation(i = 8) Separator 1.3342  0.00666  ---  200 

Example 3 

Heating1 (i = 1)   Heater  0.667  0.00667  ---  100 
Heating2 (i = 2)   Heater  1.000  0.01000  ---  100 
Reaction1(i = 3)  Reactor1 1.333  0.01333  ---  100 
                (i = 4)  Reactor2 1.333  0.00889  ---  150 
Reaction2(i = 5)  Reactor1 0.667  0.00667  ---  100 
                (i = 6)  Reactor2 0.667  0.00445  ---  150 
Reaction3(i = 7)  Reactor1 1.333  0.01330  ---  100 
                (i = 8)  Reactor2 1.333  0.00889  ---  150 
Separation(i = 9) Separator 2.000  0.00667  ---  300 
Mixing   (i = 10) Mixer1 1.333  0.00667  20  200 
              (i = 11)  Mixer2 1.333  0.00667  20  200 
 

4.3. Example 3. This is a relatively complex example from Sundaramoorthy and Karimi10 

involving 11 tasks that can be performed in 6 units producing 13 states.  The STN for this example 

is shown in Figure 4. This problem has several common characteristics of a multipurpose batch 

plant (i.e., a unit can perform either a single task or multiple tasks, a task can be performed in 

multiple units, etc.).  Additionally, some of the intermediates have nonzero initial stock levels and 

unlimited storage capacity is assumed for all states.  The relevant data10 is shown in Tables 1 and 2. 
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Table 2. Data of Storage Capacities, Initial Stock Levels, and Prices of Various States for Examples 1-3a 

      example 1                         example 2         example 3 
 
 storage       initial price       storage initial  price     storage       initial  price 
             capacity      stock ($/mu)         capacity      stock ($/mu)      capacity      stock ($/mu) 
state         (mu)       (mu)                                (mu) (mu)                         (mu)         (mu) 
 
S1  UL        AA              0         UL  AA      0        UL  AA    0 
S2  UL        0                  0         UL  AA      0        UL  AA    0 
S3  UL        0                  0         UL  AA      0        UL  0    0 
S4  UL        0                  5         UL  0      0        UL  0    0 
S5                                     UL  0      0        UL              0    0 
S6                                            UL  0      0        UL  50    0 
S7                                     UL  0      0        UL  50    0 
S8                                     UL  0      10        UL  AA    0 
S9                                     UL  0      10        UL              0    0 
S10                                                       UL  0    0 
S11                                                      UL  AA    0 
S12                                                      UL  0    5 
S13                                                      UL  0    5 
 
a UL = Unlimited;  AA = available as and when required. 

 

 
 

Figure 3. State-task network representation for example 2. 
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Figure 4. State-task network representation for example 3. 
 

5. Computational Studies without Resource Constraints 
 

Each of the six short-term scheduling models that are compared for examples without resource 

constraints are implemented and solved for all the above three examples with respect to two diverse 

objective functions: maximization of profit and minimization of makespan.  The results using 

maximization of profit are discussed first in Section 5.1, followed by the results for minimization 

of makespan in Section 5.2. Under each category, several instances of demand distributions and 

different time horizons are considered for each example as done by Sundaramoorthy and Karimi.10  

All the resulting MILP models are solved in GAMS distribution 21.1 using CPLEX 8.1.0 on the 

same computer (3 GHz Pentium 4 with 2 GB RAM). The best performing model in each of the 

instances of different examples is shown on bold face in all the subsequent tables. It should be 

noted that, in the results by Sundaramoorthy and Karimi10 the number of events reported in all the 

examples is misleading in the comparison tables. They need an additional event (k = 0) at the 

beginning of the time horizon as their numbering of events is from k = 0 to K, although they do not 

allow any tasks to start at k = K. Hence, what they appear to have reported is the number of slots, 

which is always one less than the total number of global events. In all the subsequent results 

reported in this study for the model of Sundaramoorthy and Karimi,10 we show n event points to 

represent n-1 slots for a valid comparison with the other global-event and unit-specific event-based 

models. 
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5.1. Maximization of Profit. The computational results for each of the three examples are 

discussed below for the case of maximization of profit.  

5.1.1. Example 1. This motivating example is solved for three different time horizons. The 

model statistics and computational results for all three cases are shown in Table 3.  

Table 3. Model Statistics and Computational Results for Example 1 under Maximization of Profit 
 
model        events    cpu            nodes   RMILP       MILP      binary      continuous  constraints       nonzeros 
                      time (s)        ($)           ($)          variables  variables 
 

Example 1a (H = 8) 

S&K          5       0.05              13   2000.0        1840.2        40        215                 192                   642 
M&G          5       0.03           2   2000.0        1840.2        40        195                 520                 1425 
CBM          5       0.04            0   2000.0        1840.2        70        115                 201                   655 
CBMN(Δt=1) 5       0.01           0   2000.0        1840.2        20          70                   86                   274 
            (Δt=2) 5       0.02           7   2000.0        1840.2        35          85                 116                   414 
G&G          4       0.01           0   2000.0        1840.2        20          76                 122                   355 
I&F          4       0.01           1   2000.0        1840.2        10          48                   69                   176 
          5       0.05             160   2804.6        1840.2        15          62                   92                   245 

Example 1b (H = 12) 

S&K          9     26.83            27176   4481.0        3463.6         80       415                  408                 1358 
M&G          9     29.52            26514   4563.8        3463.6         80       375                1000                 3415 
CBM               9     26.93            23485   5237.6        3463.6       220       301                  553                 2099 
CBMN(Δt=1) 9       0.23                606   4419.9        3301.6a       40       130                  162                   546 
            (Δt=2) 9     10.32            21874   5237.6        3463.6         75       165                  232                   886 
G&G          6       0.03                  22   3890.0        3301.6a       30       114                  182                   541 
I&F          6       0.03                  24   4000.0        3463.6         20          76                 115                   314 
          7       0.19                589   4857.6        3463.6         25          90                 138                   383 

Example 1c (H = 16) 

S&K         12        5328.22       3408476   6312.6         5038.1        110       565                  570                 1895 
                      13    >67000b         36297619     6381.9         5038.1        120       615                  624                 2074 
M&G         12       37675.13     17465450   6332.8         5038.1        110       510                1360                 5275 
                      13    >67000c         20693001     6391.4         5038.1        120       555                1480                 5965 
CBM             12         32456.61   14385711   7737.6         5038.1        385       493                  922                 3707 
                      13    >67000d         22948021     8237.6         5038.1        450       567                1065                 4343 
CBMN(Δt=2)12         1086.08       1642027   7737.6        5000.0a      105       225                  319                 1240 
           (Δt=3) 12         3911.14       4087336   7737.6        5038.1        150       270                  409                 1680   
           (Δt=3) 13        40466.83    44252075     8237.6       5038.1        165       295                  448                 1848 
G&G         11                3.40            9533   6236.0        4840.9a         55       209                  332                 1006 
I&F           9                1.76            6596   6601.5        5038.1          35       118                  184                   521 
         10              20.60          89748   6601.5        5038.1          40       132                  207                   590 
 
a Suboptimal solution.   b Relative Gap = 1.24 %.  c Relative Gap = 6.54%.  d Relative Gap = 2.92%. 

 

In the first scenario, for H = 8 h (example 1a), both the slot-based and global event-based models 

require 5 events, while the unit-specific event-based models require only 4 events. All the models 
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perform equally well with respect to the computational time for this simple case. The model of 

Castro et al.22 (CBMN), solved for Δt = 1, has the best model statistics among the slot-based/global 

event-based models, while the modified model of Ierapetritou and Floudas29 presented in this paper 

performs the best with respect to the model statistics among all models. In all the results, the 

models are solved with additional event points until there is no further improvement in the 

objective function in order to ensure the optimal objective is obtained. 

In the second scenario, we consider H = 12 h (example 1b).  In this case, both the slot-

based and global event-based models require 9 events, where only 6 events are required by the 

unit-specific event-based models. However, the model of Giannelos and Georgiadis37 gives a 

suboptimal solution ($3301.6).  This occurs not only for this example but also for several other 

instances of the other examples considered later, as is also shown recently by Sundaramoorthy and 

Karimi.10 Note that we increased the number of events considered from 6 to 10, and their model is 

not able to find the global optimal solution ($3463.6), which is obtained by all the other models. 

When we remove the special sequencing constraints posed by Giannelos and Georgiadis,37 then 

their model is similar to that of Ierapetritou and Floudas29 and gives the global optimal solution.  

This indicates that the special sequencing constraints for enforcing the same start and finish times 

for all tasks consuming/producing the same state that were used by Giannelos and Georgiadis37 are 

incorrect and lead to suboptimal solutions. The model of Castro et al.22 (Δt = 2) performs better 

among the slot-based/global event-based models with respect to the computational time and 

problem statistics. However, it should be noted that their model22 gives a suboptimal solution for Δt 

= 1, and hence, for a fair comparison with other models, we should add the CPU times and the 

number of nodes for all instances of Δt that need to be tested at each event point. The model of 

Castro et al.21 (CBM) has the largest number of binary variables among all the models. The model 

of Ierapetritou and Floudas29 performs the best among all the models, not only with respect to the 

model statistics but also with respect to the computational time. This indicates that, although there 

are big-M constraints in this model, the requirement of fewer events enables this model to 

outperform all other models. 

Similar conclusions hold true for the third scenario of this example, which considers H = 16 

h (example 1c), as is seen in Table 3.  For this case, the slot-based/global event-based models 

require 12 event points compared to the model of Ierapetritou and Floudas,29 which requires only 9 

events and, hence, is computationally superior to all of the other models. The model of Giannelos 

and Georgiadis37 gives a suboptimal solution ($4840.9), while all the other models are able to find 
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the global optimal solution ($5038.1). The model of Castro et al.22 (CBMN) gives a suboptimal 

solution ($5000) for Δt = 2, and hence, for fair comparison, we consider the total CPU time of 

4997.22 s for Δt = 2 and Δt = 3 at 12 events. So, the model of Castro et al.22 performs better among 

slot-based/global event-based models with respect to the computational time. Among all the 

models, the model of Maravelias and Grossmann28 has the largest number of constraints and 

nonzeros while the model of Sundaramoorthy and Karimi10 has the largest number of continuous 

variables. The Gantt charts for this case are shown in Figures 5 and 6 for the models of Ierapetritou 

and Floudas29 and Castro et al.,22 respectively.   

 

 
Figure 5. Gantt chart for example 1c (9 events) using I&F model under maximization of profit. 

 

 
Figure 6. Gantt chart for example 1c (12 events) using CBMN model under maximization of profit. 
 

Note that, for the model of Castro et al.22 in Figure 6, there is an additional event at the end at 

which no task occurs (so a total of 12 events). When we consider an additional slot/event point, the 

slot-based/global event-based models take excessive CPU times (shown in Table 3), while the unit-

specific event-based model of Ierapetritou and Floudas29 takes only 21 s to find the same global 

optimal solution. 
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5.1.2. Example 2. This example problem is also solved for two different time horizons. The 

model statistics and computational results for both the cases are shown in Table 4.  

Table 4.  Model Statistics and Computational Results for Example 2 under Maximization of Profit 
 
model        events        CPU          nodes   RMILP       MILP      binary        continuous     constraints       nonzeros 
                        time (s)        ($)           ($)          variables     variables 
 

Example 2a (H = 8) 

S&K          5              0.07                  4   1730.9         1498.6          48              235                  249                    859 
M&G          5              0.16                26   1730.9         1498.6          64              360                  826                  2457 
CBM               5              0.07                  8   1812.1         1498.6        112              184                  322                  1105 
CBMN(Δt=1) 5              0.01                  4   1730.9         1498.6          32              104                  114                    439 
G&G          4              0.03                14   1812.1         1498.6          32              142                  234                    820 
I&F          4              0.03                13   1812.1         1498.6          18                90                  165                    485 
          5              0.28              883   2305.3         1498.6          26              115                  216                    672 

Example 2b (H = 12) 

S&K          7               1.93            1234     3002.5         2610.1         72              367                  387                  1363 
          8             29.63          16678     3167.8         2610.3         84              433                  456                  1615 
          9           561.58        288574     3265.2         2646.8         96              499                  525                  1867 
        10       10889.61      3438353     3315.8         2646.8       108              565                  594                  2119 
        11    >67000b         17270000    3343.4         2646.8a      120              631                  663                  2371 
M&G          7              2.15               814     3002.5         2610.1         96              526                1210                  4019 
          8            58.31           17679    3167.8         2610.3       112              609                1402                  4884 
          9        2317.38         611206     3265.2         2646.8       128              692                1594                  5805 
        10   >67000c          10737753   3315.8         2646.8      144              775                1786                  6782 
        11   >67000d            9060850   3343.4         2658.5       160              858                1978                  7815 
CBM               7              1.38             1421     3190.5         2610.1       216              316                  572                  2146 
          8            35.81           30202     3788.3         2610.3       280              394                  721                  2791 
          9        1090.53         680222     4297.9         2646.8       352              480                  886                  3519 
        10      40355.97     19225950     4770.8         2646.8       432              574                1067                  4330 
        11   >67000e         13393455     5228.7         2627.9a      520              676                1264                  5224 
CBMN(Δt=2) 7              0.63             1039     3045.0         2610.1         88              188                  224                  1050 
          8            14.39           32463     3391.0         2610.3       104              218                  261                  1238 
          9          331.72         593182     3730.5         2646.8       120              248                  298                  1426 
        10        4366.09       6018234     4070.0         2646.8       136              278                  335                  1614 
        11   >67000f          80602289    4409.5         2646.8a      152              308                  372                  1802 
G&G          6(to 11)     0.33               701     3190.5         2564.6a        48              208                  348                  1238 
I&F          7              6.19           14962     3788.3         2658.5         42              165                  318                  1046 
          8          105.64         211617     4297.9         2658.5         50              190                  369                  1233 

 

a Suboptimal solution.   b Relative Gap = 1.59%.  c Relative Gap = 3.16%.  d Relative Gap = 5.12%. e Relative Gap = 
28.16%. f Relative Gap = 2.58%. 

 

In the first scenario, for H = 8 h (example 2a), both the slot-based and global event-based models 

require 5 events, while the unit-specific event-based models require only 4 events. All the models 

perform equally well with respect to the computational time for this simple case. The model of 

Castro et al.22 (CBMN) for Δt = 1 has better problem statistics among slot-based/global event-based 

models, while the model of Ierapetritou and Floudas29 performs the best among all models with 
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respect to the model statistics. The model of Castro et al.21 (CBM) requires the largest number of 

binary variables, while the model of Maravelias and Grossmann28 requires the largest number of 

continuous variables, constraints, and nonzeros for this case.   

In the second scenario, we consider H = 12 h (example 2b).  In the paper by 

Sundaramoorthy and Karimi,10 they report the results for this case for the first feasible solution of 7 

events only using finite intermediate storage for the intermediate states. In this work, as already 

mentioned, we solve the problem to its global optimal solution and for zero integrality gap, 

assuming unlimited intermediate storage for all states. For this case, the slot-based/global event-

based models require at least 11 event points compared to the model of Ierapetritou and Floudas,29 

which requires only 7 events. The slot-based/global event-based models are not solved until zero 

integrality gap as they take excessive computational time and because the model of Ierapetritou and 

Floudas29 solves to the global optimal solution in just 6.19 s. The model of Giannelos and 

Georgiadis37 gives a suboptimal solution ($2564.6). The slot-based/global event-based models take 

excessive computational time, and only the model of Maravelias and Grossmann28 is able to solve 

to the global optimal solution. The model of Castro et al.21 (CBM) has poor LP relaxation and 

requires more binary variables. The Gantt charts for this case are shown in Figures 7 and 8 for the 

models of Ierapetritou and Floudas29 and Maravelias and Grossmann,28 respectively. 

 

 
 
Figure 7. Gantt chart for example 2b (7 events) using I&F model under maximization of profit. 

 

 
 
Figure 8. Gantt chart for example 2b (11 events) using M&G model under maximization of profit. 

Small slot (0.087 hr)
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Interestingly, in the Gantt chart of Figure 8 for the model of Maravelias and Grossmann,28 it can be 

observed that, it corresponds to the requirement of a very tiny slot of duration 0.087 h (in the 

second slot) for the slot-based/global event-based models to find the reported global optimal 

solution. This is evidenced by the excessive CPU time taken by the slot-based model of 

Sundaramoorthy and Karimi10 for which the global optimal solution is not obtained. However, in 

the Gantt chart of Figure 7 for the model of Ierapetritou and Floudas,29 it is evident that such a slot 

would not be necessary as they use a unit-specific event-based model.  Hence, this case emphasizes 

the important difference between the slot-based/global event-based models and the unit-specific 

event-based models. Because of the different alignment of the start times of different units, 

sometimes the slot-based/global event-based models may require very small slots which can result 

in a very large number of event points, and may prohibit the realization of global optimal solution 

in reasonable CPU time compared to the unit-specific event-based models. The unit-specific event-

based models consider the time horizon in a “true” continuous-time form without requiring such 

tiny time slots and lead to the requirement of a relatively lower number of event points.  Thus, this 

example clearly demonstrates the distinct advantages of the unit-specific event-based models over 

the slot-based/global event-based models, despite the presence of big-M constraints in the former. 

The model of Ierapetritou and Floudas29 takes only 6.19 s compared to the model of Maravelias 

and Grossmann,28 which takes >67 000 s for obtaining the same global optimal solution. The model 

of Sundaramoorthy and Karimi,10 although has no big-M constraints, is not able to find the global 

optimal solution in reasonable CPU time. 

5.1.3. Example 3. This relatively complex example is solved for two different time horizons. 

The model statistics and computational results for both the cases are shown in Table 5.  In the first 

scenario, for H = 8 h (example 3a), both the slot-based and global event-based models require 7 

events, while the unit-specific event-based models require only 5 events. The model of Giannelos 

and Georgiadis37 gives a suboptimal solution ($1274.5), while all the other models are able to find 

the global optimal solution ($1583.4). The model of Castro et al.22 (CBMN) for Δt = 2 performs 

best with respect to the computational time among the slot-based/global event-based models, 

although it requires more binary variables compared to the model of Sundaramoorthy and Karimi.10 

The model of Maravelias and Grossmann28 has the largest number of continuous variables, 

constraints, and nonzeros for this case. The model of Ierapetritou and Floudas29 performs the best 

with respect to both the model statistics and the computational time when compared to all of the 

other models.  
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Table 5.  Model Statistics and Computational Results for Example 3 under Maximization of Profit 
 
model        events       CPU       nodes   RMILP       MILP      binary        continuous     constraints       nonzeros 
                         time (s)        ($)           ($)          variables     variables 
 

Example 3a (H = 8) 

S&K          7        184.46       145888   2513.8        1583.4          102             597                  584                  2061 
M&G          7      1012.68       429949   2560.6        1583.4          132             717                1667                  5601 
CBM               7          19.82         13130   2809.4        1583.4          297             433                  841                  3049 
CBMN(Δt=2) 7            6.90         10361   2606.5        1583.4          121             264                  343                  1495 
G&G          5            0.35             807        2100.0        1274.5a          55             244                  392                  1335 
I&F          5            0.38           1176        2100.0        1583.4           30             155                  303                    875 
          6          25.92         57346        2847.8        1583.4           41             190                  377                  1139 

Example 3b (H = 12) 

S&K          9       372.92          94640   3867.3        3041.3          136             783                  792                  2789 
        10   >71000b     12781125        4029.7        3041.3          153             876                  896                  3153 
M&G          9   19708.33      2254227   3867.3        3041.3          176             943                2195                  8114 
        10   >71000c      5857914          4029.7        2981.7a         198           1056                2459                  9492 
CBM               9      290.84           80123   4059.4        3041.3           484            658                1307                  5001 
        10  16416.31       3194816        4615.6        3041.3           594             787                1576                  6154 
CBMN(Δt=2) 9      107.97           47798   3864.3        3041.3          165             348                  457                  2031 
        10    1173.82         751686        4189.8        3041.3          187             390                  514                  2299 
G&G           6          1.18             2750        2871.9        2443.2a           66             290                  469                  1608 
I&F           7        18.33           15871        3465.6        3041.3            52             225                  451                  1403 
          8        50.48           41925        4059.4        3041.3            63             260                  525                  1667 
 
a Suboptimal solution.  b Relative Gap = 3.76%.  c Relative Gap = 12.85%. 

 

Similar conclusions can be drawn for the second scenario where H = 12 h (example 3b). In this 

case, both the slot-based and global event-based models require 9 events, while only 7 events are 

required by the unit-specific event-based models. The model of Giannelos and Georgiadis37 again 

gives a suboptimal solution ($2443.2), while all the other models are able to find the global optimal 

solution ($3041.3). The model of Castro et al.22 (CBMN) for Δt = 2 performs best for this case with 

respect to the computational time among the slot-based/global event-based models, although it 

requires more binary variables compared to the model of Sundaramoorthy and Karimi10. The model 

of Maravelias and Grossmann28 has the largest number of continuous variables, constraints, and 

nonzeros for this case as well. The model of Ierapetritou and Floudas29 again performs the best 

both with respect to the model statistics and the computational time when compared to all the other 

models. The Gantt charts for this case are shown in Figures 9 and 10 for the models of Ierapetritou 

and Floudas29 and Castro et al.,22 respectively.  When we consider an additional slot/event point, 

the models of Sundaramoorthy and Karimi10 and Maravelias and Grossmann28 take excessive CPU 

times (> 71000 s, as shown in Table 5), while the models of Castro and co-workers.21,22 perform 
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better. The model of Ierapetritou and Floudas29 again performs the best at higher event points as 

well.  

 
 
Figure 9. Gantt chart for example 3b (7 events) using I&F model under maximization of profit. 

 

 
 
Figure 10. Gantt chart for example 3b (9 events) using CBMN model under maximization of profit. 
 

The CPU times for representative examples of all the models (except Giannelos and Georgiadis,37 

as it gives suboptimal solutions) for the objective of maximization of profit are depicted in Figure 

11.  It should be noted that, the models of Sundaramoorthy and Karimi10 and Castro and co-

workers.21,22 yield suboptimal solutions for example 2b. The number of binary variables for each 

model is shown in Figure 12.  Thus, with respect to the objective of maximization of profit, in all 

the instances of the three examples considered, it can be seen that the unit-specific event-based 
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model of Ierapetritou and Floudas29 performs the best in terms of both problem size and 

computational performance and is orders of magnitude better than the other models. If we consider 

the cumulative CPU time of increasing events until the same optimal solution is found for each 

model, then it is evident from Tables 3–5 that, the solution statistics for both the slot-based and 

global event-based models would be even more inferior compared to the unit-specific event-based 

model. 
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Figure 11. CPU times of different models for maximization of profit. 

0

100

200

300

400

500

600

Ex 1c Ex 2b Ex 3b

N
um

be
r o

f B
in

ar
y 

Va
ria

bl
es

S&K M&G CBM CBMN I&F

 
 
 

 

 

 

 

 

 

 

 

 
                                 Note: S&K, CBM, and CBMN yield suboptimal solutions for Ex2b 

Figure 12. Number of binary variables in different models for maximization of profit. 

5.2. Minimization of Makespan. Finding optimal solutions for problems where the 

minimization of the makespan is the objective function is reported in the literature to be the most 

difficult scheduling problem to solve, even for simple examples. Although Sundaramoorthy and 
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Karimi10 claim that their model performs very well for this objective function, it can be seen later 

that, for some instances, their model also does not find the global optimal solutions (even at higher 

event points) which are obtained by the unit-specific event-based model of Ierapetritou and 

Floudas.29 In the results reported in Sundaramoorthy and Karimi,10 for most of the examples using 

makespan minimization, each problem is not solved to zero integrality gap, using finite storage for 

the intermediate states. However, in this work, we solved all the models for all the examples to zero 

integrality gap assuming unlimited intermediate storage for all states, and by considering an 

increasing number of event points in order to find the global optimal solutions. 

The computational results for each of the three examples are discussed below for the 

objective of minimization of makespan. The data for all three examples is the same except we 

consider fixed demands and the time horizon (H) is varied.  For all the models that have big-M 

constraints (Maravelias and Grossmann28 and Ierapetritou and Floudas29), we need to specify the 

horizon time as well. For fair comparison, we consider the same values of H used by 

Sundaramoorthy and Karimi.10 Note that there is no need to specify H for the model of Giannelos 

and Georgiadis37 when solving makespan minimization problems.  

5.2.1. Example 1. This motivating example is solved for two different demand scenarios. The 

model statistics and computational results for both cases are shown in Table 6. In the first scenario 

(example 1a), we consider a demand for state S4 (D4 = 2000 mu), and H = 50 h is used for the 

models involving big-M constraints. It can be observed that the optimal solution obtained by the 

model of Ierapetritou and Floudas29 for 12 events (28.439 h) is better than the best solutions 

obtained by all other models, even at higher event points. For the models of Sundaramoorthy and 

Karimi10, Maravelias and Grossmann,28 and Castro et al.,21 using 16 events, it takes relatively 

longer time compared to Castro et al.,22 even though better solutions are not obtained.  The model 

of Giannelos and Georgiadis37 results in a suboptimal solution using 12–15 event points. For 17 

events, the models of Sundaramoorthy and Karimi10 and Castro et al.22 (CBMN using Δt = 2) the 

optimal solution found is 28.773 h, for which both the models take more than 80000 s. The model 

of Ierapetritou and Floudas29 outperforms all the other models in terms of computational time and 

problem size and finds the global optimal solution of 27.881 h using 14 events with a CPU time of 

just 41.89 s. The Gantt chart for this case is shown in Figure 13 for the model of Ierapetritou and 

Floudas.29  
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Table 6.  Model Statistics and Computational Results for Example 1 under Minimization of Makespan 
 
model   events    H          CPU         nodes            RMILP         MILP      binary     continuous  constraints  nonzeros 
                              time (s)               (h)               (h)         variables  variables 
 

Example 1a (D4=2000 mu) 

S&K         13   --             1.18            362  27.126       29.772         120          615              624             2074 
           14   --           31.54        15622  25.702       29.772         130          665              678             2253 
           15   --         728.05      400789  25.142       29.439         140          715              732             2432 
           16   --     37877.69  12064418  24.871       29.106         150          765              786             2611 
           17   --    >80000b     17279722 24.716       28.773a        160          815              840             2790 
M&G         13   50           2.19             394  27.126       29.772         120          556            1485             6056 
         14              645.06       139488  25.335       29.772         130          601            1605             6786 
         15          25253.81     5273904  25.024       29.439         140          646            1725             7551 
           16           >90000c    11258561 24.834       29.106a        150          691            1845             8351 
CBM             13   --            0.50                   6 23.313       29.772         450          568            1066             4404 
                      14   --          14.90             4262 21.049       29.772         520          647            1219             5095 
           15   --      2163.55         454549 19.049       29.439         595          731            1382             5836 
           16   --    64850.69       9852772 17.049       29.106a        675          820            1555             6627 
CBMN(Δt=1)13   --            0.02                   0 27.126       29.772           60          191              239               824 
           (Δt=1) 14   --            0.11                 65 25.824       29.772           65          206              258               892 
           (Δt=1) 15   --            0.28               417 25.358       29.772           70          221              277               960 
           (Δt=2) 15   --        235.90         236250 19.049       29.439         135          286              407             1605 
           (Δt=2) 16   --    27994.64     23426601 17.049       29.106         145          306              436             1723 
           (Δt=2) 17   --   >80000d       80105289 15.049       28.773a        155          326              465             1841 
G&G             12   --            0.03                   0 27.126       29.772           60          228              367             1108 
                      15   --            1.87             3529 25.064       29.772a          75          285              457             1387 
I&F               12   50          0.12               208 24.236       28.439           50          160              253               732 
                      13                 2.26             7863 24.236       27.903           55          174              276               801 
                      14               41.89         134961 24.236       27.881           60          188              299               870 
                      15             950.64       2693556 24.236       27.881           65          202              322               939 

Example 1b (D4= 4000 mu) 

S&K        23   --         101.03         34598 51.362       56.432         220         1115            1164             3864 
        24   --     15814.03     4164921 49.939       56.432a        230         1165            1218             4043 
M&G        23  100   21974.42    2525960  51.362       56.432         220         1006            2685           14931 
        24            >90000e     5129168 49.572       57.765a

        230         1051            2805           16011 
CBM             23   --             6.09             185 43.313       56.432       1375         1583            3046           13564 
               24   --       2016.50       136348 41.049       56.432a      1495         1712            3299           14755 
CBMN(Δt=1)23   --             0.05                 0  51.362       56.432         110           341              429             1504 
            (Δt=2)24   --             0.20               72 50.061       56.432         115           356              448             1572 
            (Δt=2)25   --      >80000 f    34358380 39.049       56.099a        235           486              697             2785 
G&G             22   --             0.07                 0 51.362       56.432         110           418              667             2038 
                      24   --             1.53           1707 49.594       56.432a        120           456              727             2224 
I&F               22  100          6.48          19019 48.473       52.433         100           300              483             1422 
                      23              384.12        832372 48.473       52.072         105           314              506             1491 
 
a Suboptimal solution.  b Relative Gap = 4.22%.  c Relative Gap = 7.38%. d Relative Gap = 0.12%. e Relative Gap = 
11.01%. f Relative Gap = 2.18%. 

 

Similar conclusions hold true for the second scenario (example 1b) where the demand is D4 = 4000 

mu, and H = 100 h is used for the models involving big-M constraints. The model of Ierapetritou 
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and Floudas29 outperforms the other models and finds the global optimal solution of 52.072 h using 

23 events with a CPU time of 384.12 s. 

 
 
Figure 13. Gantt chart for example 1a (14 events) using I&F model under minimization of makespan. 
 

5.2.2. Example 2. This problem is solved with demands for states S8 and S9 (D8 = D9 = 200 

mu) and H = 50 h is used for the models involving big-M constraints. The model statistics and 

computational results are shown in Table 7.   

Table 7.  Model Statistics and Computational Results for Example 2 under Minimization of Makespan 
 
model   events      H            CPU         nodes        RMILP         MILP      binary    continuous  constraints      nonzeros 
                                 time (s)             (h)                (h)       variables    variables 
 

Example 2 (D8 = D9 = 200 mu) 

S&K          9     --           10.98             5378 18.685       19.789           96          556              528                1936 
        10     --         519.35         142108 18.685       19.340         108          622              597                2188 
        11     --     11853.03       2840768     18.685       19.340         120          688              666                2440 
M&G          9    50           66.55           15674     18.685       19.789         128          693            1598               5869 
        10               5693.53       1066939     18.685       19.340         144          776            1790               6850 
        11              >80000b       5019315 18.685       19.340         160          859            1982                7887 
CBM              9     --             7.75             6426 12.555       19.789         352          481              888                3584 
        10     --         727.23         441130   9.889       19.340         432          575            1069                4403 
        11     --     32258.74     13776145            7.223       19.340         520          677            1266                5305 
CBMN(Δt=1) 9     --             0.71             1809 18.685       19.789           64          193              216                  872 
           (Δt=1)10     --           50.49         134189     18.685       19.789           72          215              241                  979 
           (Δt=2)10     --           56.11         109917 15.654       19.340         136          279              337                1623 
           (Δt=2)11     --       5535.27       8389012 12.988       19.340         152          309              374                1811 
G&G          8     --             1.97             3804     12.555       19.789           64          274              475                1675 
        10     --       1614.35       1182082 10.475       19.789a          80          340              589                2093 
I&F          8    50             0.78             1008     12.738       19.764           45          190              367                1211 
          9                   74.26         111907     12.477       19.340           53          215              418                1398 
         10               1672.11       2079454     12.435       19.340           61          240              469                1585 

 
a Suboptimal solution.  b Relative Gap = 2.03%. 
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For this case, all the models except one are able to find the optimal solution of 19.34 h; however, 

the model of Ierpateritou & Floudas29 requires 1 less event point.  The model of Giannelos and 

Georgiadis37 did not find the optimal solution using 8–10 event points.  The model of Maravelias 

and Grossmann28 has the largest computational time and the largest number of continuous 

variables, constraints, and nonzeros. The model of Castro et al.22 (CBMN) performs better among 

slot-based/global event-based models as it takes an overall of 106.6 s using 10 events (for Δt = 1 

and Δt = 2). The model of Ierapetritou and Floudas29 has the least number of binary and continuous 

variables and performs the best with respect to the computational time as well using only 9 events. 

The Gantt charts for this case are shown in Figures 14 and 15 for the models of Ierapetritou and 

Floudas29 and Castro et al.,22 respectively. 

 
 

Figure 14. Gantt chart for example 2 (9 events) using I&F model under minimization of makespan. 
 

 
 
Figure 15. Gantt chart for example 2 (10 events) using CBMN model under minimization of makespan. 
 

5.2.3. Example 3. This relatively complex example is solved for two different demand 

scenarios. The model statistics and computational results for both the cases are shown in Table 8. 

In the first scenario (example 3a), we consider demands for state S12 and S13 (D12 = 100mu, D13 = 

200 mu), and H = 50 h is used for the models involving big-M constraints. All the models are 

solved for an increasing number of event points. The slot-based/global event-based models require 

11 events to find the optimal solution of 13.367 h. The model of Maravelias and Grossmann28 takes 

excessive CPU time (>80 000 s with 3.1% gap) and has the largest number of continuous variables, 
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constraints, and nonzeros. The model of Castro et al.21 solves faster among the slot-based/global 

event-based models using 11 events, although it has very poor LP relaxation. There is no 

improvement in the model of Giannelos and Georgiadis37 from 7–9 events, and each yields a 

suboptimal solution. The model of Ierapetritou & Floudas29 requires just 7 events and outperforms 

the other models in terms of both exceptional computational performance (0.38 s vs 2514.97 s 

taken by Castro et al.21) and least problem size. The Gantt charts for this case are shown in Figures 

16 and 17 for the models of Ierapetritou and Floudas29 and Castro et al.,21 respectively.  

Table 8.  Model Statistics and Computational Results for Example 3 under Minimization of Makespan 
 
model   events      H            CPU         nodes        RMILP         MILP      binary     continuous  costraints    nonzeros 
                                 time (s)             (h)                (h)         variables  variables 
 

Example 3a (D12 = 100 mu, D13 = 200 mu) 

S&K            8     --             0.28                 36 12.317       14.366         119          690              689             2425 
            9     --           13.32             5156 11.621       13.589         136          783              793             2789 
          10     --         226.83           53789 11.417       13.532         153          876              897             3153 
          11     --       4340.65         821194        11.335       13.367         170          969            1001             3517 
          12     --    >800001        11858901       11.295       13.367         187        1062            1105             3881 
M&G            8    50             1.15               316        12.317       14.366         154          831            1937             6905 
            9                 126.77           21366        11.621       13.589         176          944            2201             8208 
          10               3949.36         605450        11.417       13.532         198        1057            2465             9592 
          11           >800002          7481387 11.335       13.367         220        1170            2729           11057 
CBM                8     --             0.62                 68 10.941       14.366         385          541            1064             4044 
           9     --             5.89             2762   8.941       13.589         484          659            1309             5090 
         10     --           53.42           22452   6.941       13.532         594          788            1578             6254 
         11     --       2514.97         673460   4.941       13.367         715          928            1871             7536 
         12     --     >800003       20380858           3.825       13.367         847        1079            2188             8936 
CBMN(Δt=2)  8     --             0.23                 67         12.192       14.366         143          307              402             1776 
            (Δt=2)  9     --             2.23             2566 10.192       13.589         165          349              459             2044 
           (Δt=2) 10     --           14.73           17426   8.192       13.532         187          391              516             2312 
           (Δt=2) 11     --         312.07         326752   6.192       13.532         209          433              573             2580 
           (Δt=3) 11     --     20230.89     16842943            6.192       13.367         297          521              725             3494 
           (Δt=3) 12     --     11547.29       5054232            4.635       13.367         330          574              801             3877 
G&G           7     --             0.25               338 11.066       14.616           77          336              558             1902 
           9     --             3.36             3960 10.167       14.616a          99          428              712             2448 
I&F           7    50             0.38               458        11.066       13.367           52          225              452             1413 
           8                     2.89             3506        10.000       13.367           63          260              526             1677 

Example 3b (D12 = D13 = 250 mu) 

S&K          11     --          981.01        226238 14.535       17.357 a        170          969            1001             3517 
M&G          11    100   62724.36      5802875        14.535       17.357 a        220        1170            2729           11057 
CBM               11     --           38.14             9627 10.722       17.357 a        715          928            1871             7536 
CBMN(Δt=2) 11     --           31.57           28079 12.494       17.357 a        209          433              573             2580 
G&G          10     --           59.26           84970        12.763       18.978 a        110          474              789             2721 
I&F          10    100          2.50             2668        12.500       17.025           85          330              674             2205 
          11                396.58         424617        12.500       17.025           96          365              748             2469 
 
a Suboptimal solution; Relative Gap: 1.01 %1,  3.055 %2, 3.29 %3 
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When we consider an additional slot/event point, except the model of Castro et al.,22 the slot-

based/global event-based models take excessive CPU times (>80 000 s, as shown in Table 8) while 

the unit-specific event-based model of Ierapetritou and Floudas29 takes only 2.89 s to find the same 

global optimal solution. 

 
Figure 16. Gantt chart for example 3a (7 events) using I&F model under minimization of makespan. 
 

 
 
Figure 17. Gantt chart for example 3a (11 events) using CBM model under minimization of makespan. 
 

Similar conclusions hold true for the second scenario (example 3b), where the demands are D12 = 

D13 = 250 mu and H = 100 h is used for the models involving big-M constraints. All the slot-

based/global event-based models require 11 events to find the suboptimal solution of 17.357 h.  

The model of Giannelos and Georgiadis37 gives a suboptimal solution (18.978 h) using 10 events. 
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The model of Castro et al.22 using 11 events (for Δt = 2) solves faster among the slot-based/global 

event-based models, but it provides a suboptimal solution. However, the model of Ierapetritou & 

Floudas29 finds the global optimal solution of 17.025 h in 2.5 s and, hence, outperforms the other 

models. 

The CPU times for representative examples of all the models (except Giannelos and 

Georgiadis37 as it gives suboptimal solutions) for the objective of minimization of makespan are 

depicted in Figure 18. The number of binary variables for each model is shown in Figure 19.   
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Figure 18. CPU times of different models for minimization of makespan. 
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Figure 19. Number of binary variables in different models for minimization of makespan. 

 



It should be noted that, all the slot-based/global event-based models of Sundaramoorthy and 

Karimi10, Maravelias and Grossmann,28 and Castro and co-workers21,22 yield suboptimal solutions 

for example 1a, example 1b, and example 3b. It can be observed that, for the objective of 

minimization of makespan as well, the unit-specific event-based model of Ierapetritou & Floudas29 

outperforms all the other models by orders of magnitude and is able to find global optimal solutions 

in all cases. If we consider the cumulative CPU time of increasing events until the global optimal 

solution is found for each model, then it is evident from Tables 6–8 that the solution statistics for 

both the slot-based and global event-based models would be even more inferior compared to the 

unit-specific event-based model. 

6. Computational Studies with Resource Constraints 

Even though a comparative study of approaches with resource constraints was provided in Janak et 

al.,35,36 at the request of a reviewer, we consider here additional examples that include resource 

constraints such as utility requirements and mixed storage policies. For the global event-based 

formulations, the models of Maravelias and Grossmann28 and Castro et al.,22 and for the unit-

specific event-based formulations, the model of Janak et al.,35,36 are considered in the comparative 

study. 

6.1. Example 4. This example, which includes resource constraints, variable batch sizes and 

processing times, and utility requirements, was solved by Maravelias and Grossmann28 and Janak 

et al.35 The STN for this example is shown in Figure 20, and the corresponding data28,35 is given in 

Tables 9 and 10.  

 

Figure 20. STN for example 4 
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Table 9.  State Related Data for Example 4  
    F1 F2 I1 I2 I3 P1 P2 

max
sST (kg) 1000 1000 200 100 500 1000 1000 
0

sST (kg)   400   400     0     0     0       0       0  
prices($/kg)       0       0     0     0     0     30     40       

Table 10. Task Related Data for Example 4a  
 
         T1               T2                T3              T4            T1           T2           T3          T4 
     capmin capmax α     β        α        β        α       β        α      β     γiHS  δiHS    γiCW δiCW γiHS δiHS  γiCW δiCW 
R1  40     80      0.5  0.025  0.75  0.0375          6    0.25   4    0.3 
R2  25     50  0.5  0.4      0.75  0.06            4    0.25   3    0.3 
R3  40     80       0.25  0.0125  0.5  0.025   8      0.4   4    0.5 
acapmin/capmax in kg, α  in h, β in h/kg, γ in kg/min, and  δ  in kg/min per kg of batch. 

 
There are two types of reactors available for the process (types I and II), with two reactors of type I 

(R1 and R2) and one reactor of type II (R3) with four reactions suitable in them. Reactions T1 and 

T2 require a type I reactor, whereas reactions T3 and T4 require a type II reactor. Additionally, 

reactions T1 and T3 are endothermic, where the required heat is provided by steam (HS) available 

in limited amounts. Reactions T2 and T4 are exothermic, and the required cooling water (CW) is 

also available in limited amounts. Each reactor allows variable batch sizes, where the minimum 

batch size is half the capacity of the reactor. The processing times and the utility requirements 

include a fixed time and a variable term that is proportional to the batch size. The processing times 

are set so that the minimum batch size is processed in 60% of the time needed for the maximum 

batch size. For the raw materials and final products, unlimited storage is available, while for the 

intermediates, finite storage is available. Two different cases of this example studied in the 

literature28,35 are considered that differ in the resource availability.  In the first case (example 4a), 

we assume that the availability of both HS and CW is 40 kg/min, and in the second case (example 

4b), it is 30 kg/min. Also, two different objective functions, maximization of profit and 

minimization of makespan, are considered.  

6.1.1. Maximization of Profit.  For the objective of maximization of profit and a time horizon 

of 8 h, the optimal solution is $5904.0 in the first case (example 4a) and $5227.778 in the second 

case (example 4b). The computational results in terms of the model statistics and the CPU times are 

reported in Table 11 for the models of Maravelias and Grossmann28 (M&G), Janak et al.35 (JLF), 

and Castro et al.22 (CBMN).  
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6.1.2. Minimization of Makespan. For the objective of minimization of makespan, the optimal 

solution is 8.5 h in the first case (example 4a) and 9.025 h in the second case (example 4b). The 

computational results in terms of the model statistics and the CPU times are reported in Table 12 

for the models of Maravelias and Grossmann28 (M&G), Janak et al.35 (JLF), and Castro et al.22 

(CBMN). For the models involving big-M constraints,28,35 a common value of M =10 is used.  

Table 11. Model Statistics and Computational Results for Example 4 under Maximization of Profit 
 
model        events        CPU       nodes   RMILP       MILP      binary        continuous     constraints       nonzeros 
                         time (s)        ($)           ($)          variables     variables 
 

Example 4a 

M&G          7             1.22 680   8870.5        5904.0        72                545                1082                 4184 
CBMN(Δt=1) 7             0.30 376   8875.4        5482.04a     36               140                  175                   741 
            (Δt=2) 7             1.07        1312        10396.7        5904.0        66                170                 250                  1216 
JLF          6             1.03 294 10981.8        5904.0        45                273               1304                  4606 

Example 4b 

M&G          6              0.27           67   7267.1        5227.8         60               470                  925                 3411 
CBMN(Δt=1) 6              0.09           96   7685.7        5000.0a        30               121                  148                   622 
            (Δt=2) 6              0.16         112   8360.3        5227.8         54               145                  208                 1002 
JLF          5              0.15   26   6414.7        5227.8         33               220                1028                 3265 
a Suboptimal solution 

Table 12. Model Statistics and Computational Results for Example 4 under Minimization of Makespan 
 
Model        Events        CPU       Nodes   RMILP       MILP      Binary        Continuous     Constraints       Nonzeros 
                         time (s)     (h)       (h)       variables     variables 
 

Example 4a 

M&G          8             9.20        3331    5.48            8.5             84               620                1241                 5039 
CBMN(Δt=1) 8             0.77 995    5.47            9.25a         42                159                 204                   861 
            (Δt=2) 8             5.89        5641    2.37            8.5             78               195                 294                  1431 
JLF          7             1.95         180    6.27            8.5             57               326               1601                  6234 

Example 4b 

M&G          7             0.74          197    5.85            9.025         72               545                1084                  4209 
CBMN(Δt=1) 7             0.24          229    5.81            9.25a          36               140                  177                    742 
            (Δt=2) 7             0.72          491    3.05            9.025         66               170                  252                   1217 
JLF          6             0.59   10    6.35            9.025         45               273                1317                  4693 
a Suboptimal solution 

For both the objective functions, the unit-specific event-based model of Janak et al.35 requires 1 

event point less and has the least number of binary variables compared to the global event-based 

models of Maravelias and Grossmann28 and Castro et al.22. The model of Castro et al.22 (using Δt = 

2) requires the least number of continuous variables, constraints and nonzeros. It should be noted 
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that the model of Castro et al.22 (CBMN) yields suboptimal solution for Δt = 1 in both the cases 

and hence, the overall CPU time and the number of nodes (for both Δt = 1 and Δt = 2) should be 

considered.  

6. 2. Example 5. This example comprises of resource constraints, mixed storage policies, 

variable batch sizes and processing times, and utility requirements that was solved by Maravelias 

and Grossmann,28 Janak et al.,35 and Castro et al.22. The STN for this example is shown in Figure 

21, and the relevant data is given in Tables 13 and 14.  

 

Figure 21. STN for example 5 

Table 13.  State Related Data for Example 5  

         F1   F2  S1  S2  S3  S4  S5  S6  I1  I2   P1  P2  P3 
max

sST (kg)   ∞     ∞    0   0    15   40   0    0    ∞   ∞   ∞  ∞   ∞ 
0

sST (kg)    100  100  0   0      0   10   0    0     0   0    0   0    0 
prices($/kg)                     1   1    1 

Table 14. Task Related Data for Example 5a  
 
              T1     T2   T3    T4    T5      T6    T7    T8    T9    T10 
unit    U1    U2   U3    U1   U4      U4   U5   U6    U5    U6 
capmax     5      8      6       5      8         8      3      4       3      4 
α             2      1      1       2      2         2      4      2       2      3 
utility    LPS  CW  LPS HPS  LPS  HPS  CW  LPS  CW  CW 
γ    3       4      4       3      8         4      5      5       5      3 
δ             2       2      3       2      4         3      4      3       3      3 
acapmax in kg, α  in h, γ in kg/min, and δ  in kg/min per kg of batch. 

The plant consists of 6 units involving 10 processing tasks and 14 states. Unlimited intermediate 

storage (UIS) is available for raw materials F1 and F2, intermediates I1 and I2, and final products 

P1–P3 and WS. Finite intermediate storage (FIS) is available for states S3 and S4, while no 
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intermediate storage (NIS) is available for states S2 and S6, and a zero-wait (ZW) policy applies 

for states S1 and S5. There are three different renewable utilities: cooling water (CW), low-

pressure steam (LPS), and high-pressure steam (HPS). Tasks T2, T7, T9, and T10 require CW; 

tasks T1, T3, T5, and T8 require LPS; and tasks T4 and T6 require HPS. The maximum 

availabilities of CW, LPS, and HPS are 25, 40, and 20 kg/min, respectively. The objective function 

is maximization of profit, and two instances of time horizons of 12 h (example 5a) and 14 h 

(example 5b) are considered.  

For the objective of maximization of profit and a time horizon of 12 h, the optimal solution 

is $13000 in the first case (example 5a), and for a time horizon of 14 h, the optimal solution is 

$16350 in the second case (example 5b). The computational results in terms of the model statistics 

and the CPU times are reported in Table 15 for the models of Maravelias and Grossmann28 (M&G), 

Janak et al.35 (JLF), and Castro et al.22 (CBMN).  

Table 15. Model Statistics and Computational Results for Example 5 under Maximization of Profit 
 
model        events        CPU       nodes   RMILP       MILP      binary        continuous     constraints       nonzeros 
                         time (s)        ($)           ($)         variables     variables 
 

Example 5a (H = 12) 

M&G          9           63.63      18150 18423.5        13000         160              993                2184                 7282 
CBMN(Δt=1) 9             0.26 291 18388.7        10000a         80              320                  464                  1618 
            (Δt=2) 9             4.35        3767        21063.3        13000         150              390                 688                  2668 
JLF          8             1.33 115 24000           13000         109              743               3100                11309 

Example 5b (H = 14) 

M&G          8              0.89           94 18648.6        16350         140              875                1923                 6163 
CBMN(Δt=1) 8              0.06             1 18473.7        15000a         70              286                  409                 1422 
            (Δt=2) 8              0.15           10 18696.4        16350         130             346                  601                  2322 
JLF          7              0.42   48 18960.4        16350           91             643                2690                  9258 
a Suboptimal solution 

It should be noted that, for the model of Janak et al.,35 two additional storage tasks are defined 

explicitly, while for the models of Maravelias and Grossmann28 and Castro et al.,22 no storage tasks 

are required. The unit-specific event-based model of Janak et al.35 requires 1 event point less and 

has the least number of binary variables compared to the global event-based models of Maravelias 

and Grossmann28 and Castro et al.22 The model of Castro et al.22 (using Δt = 2) requires the least 

number of continuous variables, constraints, and nonzeros. It should be noted that the model of 

Castro et al.22 (CBMN) yields a suboptimal solution for Δt = 1 in both cases, and hence, the overall 

CPU time and the number of nodes (for both Δt = 1 and Δt = 2) need to be considered. 
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7. Conclusion  
 
In this paper, we compare and assess the performance of various continuous-time models proposed 

in the literature for short-term scheduling of multipurpose batch plants. These models are broadly 

classified into three distinct categories: slot-based, global event-based, and unit-specific event-

based formulations.  On the basis of our implementation, the models are compared using several 

benchmark example problems from the literature. Two different objective functions, maximization 

of profit and minimization of makespan, are considered, and the models are compared with respect 

to different metrics such as problem size (in terms of the number of variables and constraints), 

computational times (on the same computer), and number of nodes taken to reach zero integrality 

gap. It is observed that, both the slot-based and global event-based models always require the same 

number of event points, while the unit-specific event-based models require less event points to 

solve a problem to global optimality.  Thus, the unit-specific event-based models result in smaller 

problem sizes compared to both slot-based and global event-based models and are computationally 

superior. In all the examples considered for the objective of maximization of profit, the model of 

Castro et al.22 performs better among the slot-based/global event-based models, and it usually 

requires the smaller number of continuous variables and constraints, while the model of Maravelias 

and Grossmann28 generally has the largest number of constraints and nonzeros. For example 2b, the 

models of Sundaramoorthy and Karimi,10 and Castro and co-workers21,22 yield suboptimal 

solutions. In constrast, for the objective of minimization of makespan, all the slot-based/global 

event-based models perform weakly in most of the instances of the examples compared to the unit-

specific event-based model of Ierapetritou and Floudas.29 For examples 1a, 1b, and 3b 

Sundaramoorthy and Karimi,10 Maravelias and Grossmann,28 and Castro and co-workers.21,22 result 

in suboptimal solutions. The model of Giannelos and Georgiadis37 yields suboptimal solutions most 

of the time because of the special sequencing constraints enforced in their model. The unit-specific 

event-based model of Ierapetritou and Floudas29 attains the global optimal solution in all examples, 

and performs the best in terms of both computational performance and problem size. When 

resource constraints such as utility requirements are considered in the additional two examples it is 

observed that the unit-specific event-based model of Janak et al.35 requires 1 less event point and 

the minimum number of binary variables compared to the global event-based models of Maravelias 

and Grossmann28 and Castro et al.22 
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Appendix A:  Unit-Specific Event-Based Model of Ierapetritou and Floudas29 (I&F) 

The following is the model used in this paper for the unit-specific event-based formulation of 

Ierapetritou and Floudas.29   

For the objective of maximization of profit: 

0
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    ' ' '     , , ', , ' , , ', ', 0, 0,ij i j si sis i i j j suit suit i i j j n Nρ ρ∀ ∈ ≠ ≠ < > ∀ < (A.6) 

( , , ) ( , , ) ( , , )      ,ij ij ijts i j N w i j N b i j N H i j suitα β+ + ≤ ∀ ∈      (A.7) 
( , , )      , ,ijts i j n H i j suit n≤ ∀ ∈ ∀         (A.8) 

max( , )    ,sST s n ST s FIS n≤ ∀ ∈ ∀
=

        (A.9) 
( , , ) ( , , ) ( , , ) 0     , 0ijw i j n b i j n ts i j n i j suit= = = ∀ ∈      (A.10) 

 
For the objective of minimization of makespan:  
 
Min   MS           (A.11) 

0

 ( , ) ( , , )si

si ij

s
s i j suit

ST s N b i j N Demand
ρ

ρ
∈ > ∈

⎛ ⎞
+⎜ ⎟⎜ ⎟

⎝ ⎠
∑ ∑ ∑ ≥                          (A.12) 

( , , ) ( , , ) ( , , )      ,ij ij ijts i j N w i j N b i j N MS i j suitα β+ + ≤ ∀ ∈      (A.13) 
 

The model for makespan minimization is composed of constraints A.2-A.6 and A.9-A.13. The 

original model of Ierapetritou and Floudas29 is slightly modified here with some of the dependent 

variables being eliminated, and the constraints for the same task in the same unit and different tasks 

in the same unit are combined into one equation in eq. A.5.  Also, in contrast to the original model, 

the only big-M constraints are in constraint A.6. This led to improved LP relaxations in some of the 

examples. If the problem involves sequence-dependent changeovers, then the constraint A.5 will 

also have big-M terms. Additionally, tasks that cannot occur at certain events are identified and the 

corresponding variables are fixed to zero in our implementation.  
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Appendix B:  Global Event-Based Models of Castro and co-workers 21, 22 (CBM, CBMN) 

The following is the model used in this paper for the global event-based formulation of Castro et 

al.21 (CBM).   

For the objective of maximization of profit: 

Max Profit  ( , )r
r

price R r t T= ∑ =                            (B.1) 

( ') ( ) ( , , ') ( , , ')          , , ' 'i iT t T t N i t t i t t i t t t tα β ξ− ≥ + ∀ ∈ >      (B.2) 

'

( , ) ( , , ')         ,
t t

N i t N i t t i t t T
>

= ∀∑ ∈ <        (B.3) 

'

( , ) ( , , ')         ,
t t

i t i t t i t t Tξ ξ
>

= ∀∑ ∈ <        (B.4) 

min max( , ) ( , ) ( , )         ,i iV N i t i t V N i t i t t Tξ≤ ≤ ∀ ∈ <       (B.5) 
min max( , , ') ( , , ') ( , , ')         , , ' ' ,i iV N i t t i t t V N i t t i t t t t t Tξ≤ ≤ ∀ ∈ > <     (B.6) 

( ) ( )0
11

'

( , ) ( , 1) ( , ) ( , ) ( , ', ) ( , ', )     ,r ri ri ri ritt
i i t t

R r t R R r t N i t i t N i t t i t t r tμ ν ξ μ ν ξ
>=

<

= + − + + + + ∀∑ ∑∑   

            (B.7) 
min max( , )          ,r iR R r t R r t≤ ≤ ∀         (B.8) 
( )          T t H t≤ ∀

=
          (B.9) 

( ) 0          1T t t= ∀           (B.10) 
( , , ') ( , , ') 0        ' 1    'N i t t i t t t or t tξ= = ∀ = ≤        (B.11) 
( , ) ( , ) ( , , ') ( , , ') 0        N i t i t N i t t i t t t Tξ ξ= = = = ∀ =      (B.12) 

For the objective of minimization of makespan: 

Min   MS           (B.13) 
TtDemandtrR r =≥      ),(             (B.14) 

( )                   T t MS t T≤ =           (B.15) 
 
The model for makespan minimization is composed of constraints B.2-B.8 and B.10-B.15.  

The following is the model used in this paper for the global event-based formulation of 

Castro et al.22 (CBMN).  The variables N(i,t) and ξ(i,t) are eliminated from the model of Castro et 

al.,21 and for each event we have an additional iteration over a parameter Δt. 

For the objective of maximization of profit: 

Max Profit  ( , )r
r

price R r t T= ∑ =                            (B.16) 

( )( ') ( ) ( , , ') ( , , ')      , , ', ' ,EQ
ri i i

i

T t T t N i t t i t t r R t t t t t t t Tμ α β ξ− ≥ + ∀ ∈ < ≤ Δ + ≠∑   (B.17) 

min max( , , ') ( , , ') ( , , ')     , , ', ' ,i iV N i t t i t t V N i t t i t t t t t t t Tξ≤ ≤ ∀ < ≤ Δ + ≠    (B.18) 
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( )
( )

0
11

'

'

( , ) ( , 1) ( , , ') ( , , ')

                                              ( , ', ) ( , ', )      ,

r ri ritt
i t t t t

ri ri
i t t t t

R r t R R r t N i t t i t t

N i t t i t t r t

μ ν ξ

μ ν ξ

>=
< ≤Δ +

−Δ ≤ <

= + − + +

+ +

∑ ∑

∑ ∑ ∀
   (B.19) 

min max( , )          ,r iR R r t R r t≤ ≤ ∀         (B.20) 
( )          T t H t≤ ∀

=
          (B.21) 

( ) 0          1T t t= ∀           (B.22) 
( , , ') ( , , ') 0        ' 1    '     N i t t i t t t or t t or t Tξ= = ∀ = ≤ ∀ =      (B.23) 

 
The model for makespan minimization is composed of constraints B.13-B.15, B.17-B.20, and 

B.22-B.23.  

For zero-wait tasks, the following constraint needs to be added: 

( )( ') ( ) 1 ( , , ') ( , , ') ( , , ')      

                                                            , , ', ' ,

ZW ZW
ri ri i i

i I i I

EQ

T t T t H N i t t N i t t i t t

r R t t t t t t t T

μ μ α β ξ
∈ ∈

⎛ ⎞
− ≤ − + +⎜ ⎟

⎝ ⎠
∀ ∈ < ≤ Δ + ≠

∑ ∑   (B.24) 

 
Appendix C:  Unit-Specific Event-Based Model of Giannelos and Georgiadis37 (G&G) 

The following is the model used in this paper for the unit-specific event-based formulation of 

Giannelos and Georgiadis.37   

For the objective of maximization of profit: 

)(profitMax sSTFprice
s

s∑=         (C.1) 

njnix
ijsuiti

,           1),( ∀≤∑
∈

         (C.2) 

niBnixnibBnix ii ,             ),(),(),( maxmin ∀≤≤       (C.3) 
nsnibnibnsSTnsST

sisi i
si

i
si ,      ),()1,()1,(),(

00
∀+−+−= ∑∑

<∈>∈ ρρ

ρρ       (C.4) 

sNibNsSTsSTF
sii

si ∀+= ∑
>∈

     ),(),()(
0ρ

ρ          (C.5) 

ninibnixninini ii ,        ),(),(),()1,(),( ∀+++−≥ βαθττ        (C.6) 
)(,0,0,',',,         ),'(),( '

p
ssisi IHEADiiiniisnini =>>≠∈∀= ρρττ     (C.7) 

)),(),((),'(),'( )),(),((),(),( nibnixnininibnixnini iiii βαθτβαθτ +−−=+−−      
      (C.8) )(,0,0,',',, '

c
ssisi IHEADiiiniis =<<≠∈∀ ρρ

)('),(,',,   ),'(),'((),'(),'()1,( ''
c
s

p
sii IHEADiIHEADiniisnibnixninini ==∈∀+−−=− βαθττ    

            (C.9) 
)(,,,',',,         ),'(),( ' jHEADisuitsuitiiniijnini jiij =≠∈∀= ττ     (C.10) 

iHNi ∀≤                ),(τ          (C.11) 
nFISsSTnsST s ∀∈∀≤ ,      ),( max         (C.12) 
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For the objective of minimization of makespan:  

Min   MS           (C.13) 
sDemandsSTF s ∀≥      )(              (C.14) 
iMSNi ∀≤                 ),(τ           (C.15) 

 
The model for makespan minimization consists of constraints C.2-C.10 and C.12-C.15.  

 
Appendix D:  Global Event-Based Model of Maravelias and Grossmann28 (M&G) 

The following is the model used in this paper for the global event-based formulation of Maravelias 

and Grossmann.28   

For the objective of maximization of profit: 

Max Profit  ( , )s
s

price ST s N= ∑                            (D.1) 

( , ) 1           ,
iji suit

Ws i n j n
∈

≤ ∀∑          (D.2) 

( , ) 1           ,
iji suit

Wf i n j n
∈

≤ ∀∑          (D.3) 

( , )= ( , )           
n n

Ws i n Wf i n i∀∑ ∑         (D.4) 

'

( ( , ') ( , ')) 1           ,
iji suit n n

Ws i n Wf i n j n
∈ ≤

− ≤∑ ∑ ∀        (D.5) 

( , ) ( , ) ( , )          ,i iD i n Ws i n Bs i n i nα β= + ∀

>

>

∀

       (D.6) 

( , ) ( , ) ( , ) (1 ( , ))          ,Tf i n Ts i n D i n H Ws i n i n≤ + + − ∀      (D.7) 

( , ) ( , ) ( , ) (1 ( , ))          ,Tf i n Ts i n D i n H Ws i n i n≥ + − − ∀      (D.8) 

( , ) ( , 1)  ( , )          , 1Tf i n Tf i n H Ws i n i n− − ≤ ∀       (D.9) 

( , ) ( , 1) ( , )          , 1Tf i n Tf i n D i n i n− − ≥ ∀        (D.10) 

( , ) ( )          ,Ts i n T n i n=          (D.11) 

( , 1) ( ) (1 ( , ))          , 1Tf i n T n H Wf i n i n− ≤ + − ∀ >       (D.12) 
min max( , ) ( , ) ( , )              ,i iWs i n B Bs i n Ws i n B i n≤ ≤ ∀       (D.13) 
min max( , ) ( , ) ( , )              ,i iWf i n B Bf i n Wf i n B i n≤ ≤ ∀       (D.14) 

min max

' ' ' '

( , ') ( , ') ( , ) ( , ') ( , ')   ,i i
n n n n n n n n

B Ws i n Wf i n Bp i n B Ws i n Wf i n i n
< ≤ < ≤

⎛ ⎞ ⎛ ⎞− ≤ ≤ −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑ ∑ ∑ ∀  (D.15) 

( , 1) ( , 1) ( , ) ( , )         , 1Bs i n Bp i n Bp i n Bf i n i n− + − = + ∀ >      (D.16) 

( , , ) ( , )         , , ( )I
siB i s n Bs i n i n s SI iρ= ∀ ∀ ∈        (D.17) 

( , , ) ( , )         , , ( )I max
i siB i s n B Ws i n i n s SI iρ≤ ∀ ∀ ∈       (D.18) 
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( , , ) ( , )         , , ( )O
siB i s n Bf i n i n s SO iρ= ∀ ∀ ∈       (D.19) 

( , , ) ( , )         , , ( )O max
i siB i s n B Wf i n i n s SO iρ≤ ∀ ∀ ∈

>

∀

∀

∀
∀

∀

∀

      (D.20) 

( ) ( )
( , ) ( , 1) ( , , ) ( , , )   , 1O I

i O s i I s
ST s n ST s n B i s n B i s n s n

∈ ∈

= − + − ∀∑ ∑       (D.21) 

( 1) ( )          T n T n n N+ ≥ ∀ <          (D.22) 
( , )            

iji suit n

D i n H j
∈

≤∑ ∑          (D.23) 

'

( , ') ( )           ,
iji suit n n

D i n H T n j n
∈ ≥

≤ − ∀∑ ∑        (D.24) 

( )
'

( , ') ( , ') ( )           ,
ij

i i
i suit n n

Wf i n Bf i n T n j nα β
∈ ≤

+ ≤∑ ∑       (D.25) 

( , )                ,Ts i n H i n≤          (D.26) 
( , )                ,Tf i n H i n≤          (D.27) 

nFISsSTnsST s ∀∈∀≤ ,      ),( max         (D.28) 
( ) ( , ) ( , ) ( , , ) 0    1           OT n Wf i n Bf i n B i s n n= = = = ∀ =      (D.29) 

( , ) ( , ) ( , ) ( , ) ( , , ) 0                IWs i n Bs i n D i n Bp i n B i s n n N= = = = = ∀ =    (D.30) 
( )T N H=            (D.31) 

For the objective of minimization of makespan:  

Min   MS           (D.32) 
( , )      sST s N Demand s≥             (D.33) 

( )             T N MS=           (D.34) 
( , )            

iji suit n

D i n MS j
∈

≤∑ ∑         (D.35) 

'

( , ') ( )           ,
iji suit n n

D i n MS T n j n
∈ ≥

≤ − ∀∑ ∑        (D.36) 

The model for makespan minimization uses constraints D.2-D.22, D.25-D.30, and D.32-D.36.  

For zero-wait tasks, the following constraints are added: 

( , 1) ( ) (1 ( , ))          , 1ZWTf i n T n H Wf i n i I n− ≥ − − ∀ ∈ >      (D.37) 

When utility requirements are considered, the following constraints are added: 

( , , ) ( , ) ( , )         , ,I
ir irR i r n Ws i n Bs i n i r nγ δ= + ∀                                                                      (D.38) 

( , , ) ( , ) ( , )         , ,O
ir irR i r n Wf i n Bf i n i r nγ δ= + ∀                                                                     (D.39) 

( , ) ( , 1) ( , , 1) ( , , )         ,O I

i i

R r n R r n R i r n R i r n r n= − − − + ∀∑ ∑                                            (D.40) 

max( , )          ,rR r n R r n≤ ∀                                                                                                        (D.41) 
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Appendix E:  Slot-Based Model of Sundaramoorthy and Karimi10 (S&K) 
 
The following is the model used in this paper for the slot-based formulation of Sundaramoorthy 

and Karimi.10  Here, the set of tasks (I) also includes an idle task ‘i0’that is suitable on all units. 

For the objective of maximization of profit: 

Max Profit  ( , )s
s

price ST s K= ∑                            (E.1) 

( )            
k

SL k H≤∑           (E.2) 

( , ) ( , , )           ,0
iji suit

Z j k Y i j k j k K
∈

= ∀∑ ≤ <

<

       (E.3) 

min max( , , ) ( , , ) ( , , )    0 0ij ij ijY i j k B B i j k Y i j k B i , j suit , k K≤ ≤ ∀ > ∈ ≤    (E.4) 
( , , ) ( , , 1) ( , , 1) ( , , )   0ijy i j k y i j k Y i j k YE i j k i, j suit , k K= − + − − ∀ ∈ < <    (E.5) 

( , ) ( , , )           ,0
iji suit

Z j k YE i j k j k K
∈

= ∀∑ < <

>

<

≤

< <

∀

∀ >

=

=

       (E.6) 

( )( , 1) ( , ) ( , , ) ( , , ) ( 1)        ,
ij

ij ij
i suit

t j k t j k Y i j k B i j k SL k j k Kα β
∈

+ ≥ + + − + ∀ <∑   (E.7) 

( , , ) ( , , 1) ( , , 1) ( , , )     0 0ijb i j k b i j k B i j k BE i j k i , j suit ,k= − + − − ∀ > ∈    (E.8) 
min max( , , ) ( , , ) ( , , )    0 0ij ij ijy i j k B b i j k y i j k B i , j suit , k K≤ ≤ ∀ > ∈ <     (E.9) 

min max( , , ) ( , , ) ( , , )    0 0ij ij ijYE i j k B BE i j k YE i j k B i , j suit , k K≤ ≤ ∀ > ∈ <    (E.10) 

( , ) ( , , ) ( , , )      ,0
ij

ij ij
i suit

t j k y i j k b i j k j k Kα β
∈

≤ + ∀∑      (E.11) 

, 0, 0 , 0, 0

( , ) ( , 1) ( , , ) ( , , )     ,
ij si ij si

si si
j i suit i j i suit i

ST s k ST s k BE i j k B i j k s k
ρ ρ

ρ ρ
∈ ≠ > ∈ ≠ <

= − + + ∀∑ ∑ ∑ ∑   (E.12) 

max( , )       ,sST s k ST s FIS k≤ ∀ ∈         (E.13) 

max( ) max max( )       0
ij

ij ij ijj i suit
SL k B kα β

∈

⎡ ⎤≤ +⎢ ⎥⎣ ⎦
      (E.14) 

max( , ) max( )     ,
ij

ij ij iji suit
t j k B j kα β

∈
≤ + ∀         (E.15) 

( , , ) ( , , ) ( , , ) ( , , ) 0     , 0 or ijY i j k y i j k b i j k B i j k i j suit k K= = = = ∀ ∈ =    (E.16) 
( , , ) ( , , ) ( , , ) ( , , ) 0     , 0 or 0ijYE i j k y i j k b i j k BE i j k i j suit k= = = = ∀ ∈ =   (E.17) 

( , ) ( , ) 0       ,Z j k t j k j k K= = ∀ =         (E.18) 
( , ) 0; ( ) 0      0t j k SL k k= = ∀ =

≤

∀

        (E.19) 
0 ( , , ), ( , , ), ( , ) 1y i j k YE i j k Z j k≤         (E.20) 

For the objective of minimization of makespan:  

Min   MS=          (E.21) 
1

( )    
K

k

SL k
=
∑

( , )      sST s K Demand s≥             (E.22) 
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The model for makespan minimization consists of constraints E.3-E.22.  The constraints E.9 and 

E.10 are misprinted in the original paper (constraints 11 and 12 of Sundaramoorthy and Karimi10), 

in which they were written as follows: 
min max( , , ) ( , , )   0 0ij ij ijB b i j k B y i j k i , j suit , k≤ ≤ − ∀ > ∈ < K<

≤

    (E.23) 
min max( , , ) ( , , ) ( , , )   0 0ij ij ijYE i j k B BE i j k B YE i j k i , j suit , k K≤ ≤ − ∀ > ∈ <    (E.24) 
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