$************************************************************* $ Optimal Separation Scheme to be used to separate a $ multicomponent process stream into a set of product $ streams with given purity specification $ $ G.R. Kocis and I.E. Grossmann, "A Modelling and $ Decomposition Strategy for the MINLP Optimization of $ Process Flowsheets", Comput. Chem. Eng., 1989, 13 (7), $ 797--819. $ $ Optimal Solution: 510.081 $************************************************************* DECLARATION {{ XVAR {p1a, p1b, p2a, p2b, f1, f2, f3a, f3b, f4a, f4b, f5a, f5b, f6a, f6b, f7a, f7b, f8a, f8b, f9a, f9b, f10a, f10b, f11a, f11b}; XVAR {e4, e5, e6}; YVAR {yd, yf}; BINA {yd, yf}; XLBD {0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0,0,0,0,0,0,0,0, 0,0,0}; XSTP {10}; XUBD {50,50,50,50, 25,25,50,50,50,50,50,50,50,50, 50,50,50,50,50,50,50,50,50,50, 1,1,1}; YSTP {1,0}; }} MODEL {{ MIN: -35*p1a - 30*p2b + 10*f1 + 8*f2 + f4a + f4b + 4*f5a + 4*f5b + 2*yf + 50*yd; mixer11: f3a =e= 0.55*f1 + 0.50*f2; mixer12: f3b =e= 0.45*f1 + 0.50*f2; splitter1: f4a =e= e4*f3a; splitter2: f4b =e= e4*f3b; splitter3: f5a =e= e5*f3a; splitter4: f5b =e= e5*f3b; splitter5: f6a =e= e6*f3a; splitter6: f6b =e= e6*f3b; splitter7: f7a =e= f3a - f4a - f5a - f6a; splitter8: f7b =e= f3b - f4b - f5b - f6b; flash1: f8a =e= 0.85*f4a; flash2: f8b =e= 0.20*f4b; flash3: f9a =e= 0.15*f4a; flash4: f9b =e= 0.80*f4b; distil1: f10a =e= 0.975*f5a; distil2: f10b =e= 0.050*f5b; distil3: f11a =e= 0.025*f5a; distil4: f11b =e= 0.950*f5b; mixer21: p1a =e= f8a + f10a + f6a; mixer22: p1b =e= f8b + f10b + f6b; mixer31: p2a =e= f9a + f11a + f7a; mixer32: p2b =e= f9b + f11b + f7b; logical1: f4a + f4b =g= 2.5*yf; logical2: f4a + f4b =l= 25*yf; logical3: f5a + f5b =g= 2.5*yd; logical4: f5a + f5b =l= 25*yd; spec1: p1a =g= 4*p1b; spec2: p2b =g= 3*p2a; spec3: p1a + p1b =l= 15; spec4: p2a + p2b =l= 18; # logical5: e4 + e5 + e6 =l= 1; # logical6: 33*e4 - 2.5*yf =g= 0; # logical7: 33*e5 - 2.5*yd =g= 0; # logical8: yf + yd =g= 1; }}