$************************************************************* $ Problem of Determining the optimal positioning of a new $ product in a multiattribute space $ $ M.A. Duran and I.E. Grossmann, "An outer-approximation $ algorithm for a class of mixed-integer nonlinear programs" $ Math. Prog. 1986, 36, 307--339. $ $ Optimal solution: -8.0641 $************************************************************* OPTION {{ MINLP = "OAER"; MINOS = "Iterations Limit 10000"; MINOS = "Major Iterations Limit 250"; }} DECLARATION {{ INDEX {i,j,t}; SET I = |1:25|; SET J = |1:10|; SET T = |1:5|; XVAR {x(T)}; YVAR {y(I)}; BINA {y(I)}; XLBD { 2,0,3,0, 4}; XUBD {4.5,8,9,5,10}; # z: Ideal points PARAM z(I,T) = {2.26, 5.15, 4.03, 1.74, 4.74, 5.51, 9.01, 3.84, 1.47, 9.92, 4.06, 1.80, 0.71, 9.09, 8.13, 6.30, 0.11, 4.08, 7.29, 4.24, 2.81, 1.65, 8.08, 3.99, 3.51, 4.29, 9.49, 2.24, 9.78, 1.52, 9.76, 3.64, 6.62, 3.66, 9.08, 1.37, 6.99, 7.19, 3.03, 3.39, 8.89, 8.29, 6.05, 7.48, 4.09, 7.42, 4.60, 0.30, 0.97, 8.77, 1.54, 7.06, 0.01, 1.23, 3.11, 7.74, 4.40, 7.93, 5.95, 4.88, 9.94, 5.21, 8.58, 0.13, 4.57, 9.54, 1.57, 9.66, 5.24, 7.90, 7.46, 8.81, 1.67, 6.47, 1.81, 0.56, 8.10, 0.19, 6.11, 6.40, 3.86, 6.68, 6.42, 7.29, 4.66, 2.98, 2.98, 3.03, 0.02, 0.67, 3.61, 7.62, 1.79, 7.80, 9.81, 5.68, 4.24, 4.17, 6.75, 1.08, 5.48, 3.74, 3.34, 6.22, 7.94, 8.13, 8.72, 3.93, 8.80, 8.56, 1.37, 0.54, 1.55, 5.56, 5.85, 8.79, 5.04, 4.83, 6.94, 0.38, 2.66, 4.19, 6.49, 8.04, 1.66}; # w: attribute weight PARAM w(I,T) = {9.57, 2.74, 9.75, 3.96, 8.67, 8.38, 3.93, 5.18, 5.20, 7.82, 9.81, 0.04, 4.21, 7.38, 4.11, 7.41, 6.08, 5.46, 4.86, 1.48, 9.96, 9.13, 2.95, 8.25, 3.58, 9.39, 4.27, 5.09, 1.81, 7.58, 1.88, 7.20, 6.65, 1.74, 2.86, 4.01, 2.67, 4.86, 2.55, 6.91, 4.18, 1.92, 2.60, 7.15, 2.86, 7.81, 2.14, 9.63, 7.61, 9.17, 8.96, 3.47, 5.49, 4.73, 9.43, 9.94, 1.63, 1.23, 4.33, 7.08, 0.31, 5.00, 0.16, 2.52, 3.08, 6.02, 0.92, 7.47, 9.74, 1.76, 5.06, 4.52, 1.89, 1.22, 9.05, 5.92, 2.56, 7.74, 6.96, 5.18, 6.45, 1.52, 0.06, 5.34, 8.47, 1.04, 1.36, 5.99, 8.10, 5.22, 1.40, 1.35, 0.59, 8.58, 1.21, 6.68, 9.48, 1.60, 6.74, 8.92, 1.95, 0.46, 2.90, 1.79, 0.99, 5.18, 5.10, 8.81, 3.27, 9.63, 1.47, 5.71, 6.95, 1.42, 3.49, 5.40, 3.12, 5.37, 6.10, 3.71, 6.32, 0.81, 6.12, 6.73, 7.93}; # del: co-ordinate of existing products PARAM del(J,T) = {0.62, 5.06, 7.82, 0.22, 4.42, 5.21, 2.66, 9.54, 5.03, 8.01, 5.27, 7.72, 7.97, 3.31, 6.56, 1.02, 8.89, 8.77, 3.10, 6.66, 1.26, 6.80, 2.30, 1.75, 6.65, 3.74, 9.06, 9.80, 3.01, 9.52, 4.64, 7.99, 6.69, 5.88, 8.23, 8.35, 3.79, 1.19, 1.96, 5.88, 6.44, 0.17, 9.93, 6.80, 9.75, 6.49, 1.92, 0.05, 4.89, 6.43}; PARAM c(I) = {-1.0, -0.2, -1.0, -0.2, -0.9, -0.9, -0.1, -0.8, -1.0, -0.4, -1.0, -0.3, -0.1, -0.3, -0.5, -0.9, -0.8, -0.1, -0.9, -1.0, -1.0, -1.0, -0.2, -0.7, -0.7}; PARAM r(I) = >]>; SHOW {r(I)}; }} MODEL {{ MIN: <> + 0.6*x(1)^2 - 0.9*x(2) - 0.5*x(3) + 0.1*x(4)^2 + x(5); nsum1(i E I): <> - r(i) + 1000*y(i) =l= 1000; lcon1: x(1) - x(2) + x(3) + x(4) + x(5) =L= 10; lcon2: 0.6*x(1) - 0.9*x(2) - 0.5*x(3) + 0.1*x(4) + x(5) =L= -0.64; lcon3: x(1) - x(2) + x(3) - x(4) + x(5) =G= 0.69; lcon4: 0.157*x(1) + 0.05*x(2) =L= 1.5; lcon5: 0.25*x(2) + 1.05*x(4) - 0.3*x(5) =G= 4.5; ldsmy: <> =l= 7; }}