$************************************************************* $ Optimal Design of Multiproduct Batch Plants $ Ignacio E. Grossmann $ $ CACHE Process Design Case Studies $ M. Morari and I.E. Grossmann $ $ Optimal Solution: 167,428 $************************************************************* DECLARATION {{ INDEX {i,j,k}; SET I = |1:2|; #products SET J = |1:3|; #stages SET K = |1:3|; #potential number of parallel units PARA q(I) = {200000, 150000}; #demand of product i [kg] PARA alpha(J) = {250, 500, 340}; #cost coefficient PARA beta(J) = {0.6, 0.6, 0.6}; #cost exponent PARA s(I,J) = {2,3,4, #size factor of product i in stage j [L/kg] 4,6,3}; PARA t(I,J) = {8,20,4, #processinig time of product i in stage j [h] 10,12,3}; XVAR {v(J), #volume of stage j [L] b(I), #batch size of product i [kg] tl(I), #cycle time of product i [h] n(J) #number of unit in parallel stage j }; LBDS v(J) = ; UBDS v(J) = ; LBDS b(I) = ; UBDS b(I) = ; LBDS tl(I) = ; UBDS tl(I) = ; LBDS n(J) = ; UBDS n(J) = ; YVAR {y(K,J)}; #existence of stage BINA {y(K,J)}; }} MODEL {{ MIN: <>; #Volume requirement in stage j l1(i E I, j E J): v(j) =g= log[s(i,j)] + b(i); #Cycle time for each product i l2(i E I, j E J): n(j) + tl(i) =g= log[t(i,j)]; #Constraint for production time n1: <> =l= 6000; #Relating number of units to 0-1 variables l3(j E J): n(j) =e= <>; #Only one choice for parallel units is feasible l4(j E J): <> =e= 1; }}