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1 Introduction 1

1 Introduction

MINOPT is a comprehensive, powerful, and flexible package for the solution of various
types of optimization problems. It features both an advanced modeling language for the clear
and concise representation of complex mathematical models as well as a robust algorithmic
framework for the efficient solution of wide variety of mathematical programming problems.

MINOPT is capable of handling a wide variety of models described by the types of variables
and mathematical relationships employed in the model. MINOPT handles the following variable

types:
e continuous time invariant
e continuous dynamic
e integer
and recognizes the following constraint types:
e linear
e nonlinear
e dynamic
e dynamic path
e dynamic point
MINOPT is capable of handling a wide variety of the following model types:
e Linear Programs (LP)
e Nomnlinear Programs (NLP)
e Mixed Integer Linear Programs (MILP)
e Mixed Integer Nonlinear Programs (MINLP)
e Nonlinear Programs with Differential and Algebraic Constraints (NLP/DAE)

e Mixed Integer Nonlinear Programs with Differential and Algebraic Constraints
(MINLP/DAE)

e Optimal Control Problems (OCP)
e Mixed Integer Optimal Control Problems (MIOCP)

The MINOPT modeling language allows for the natural representation of mathematical
models using an advance modeling architecture. Large, complex models can be expressed in
a concise, compact, and understandable form. Since the models are easy to understand, the
can be easily debugged, modified, and maintained. The MINOPT modeling language has some
important key features:
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Clear and concise representation of complex mathematical models

Representation of both Algebraic and Dynamic models

Support for a broad variety of natural mathematical expressions

Capability to add, change, or delete the sets, variables, data, and constraints easily

Capability to accept model information and data provided in separate input files

Connection to Chemkin for kinetic modeling

Checks of model syntax and consistency

The algorithmic framework withint MINOPT is the channel through which the various
models are solved. The model definitions from the modeling language are used to set up the
problems and subproblems required to solve the model. MINOPT uses available solvers for
the solution of these problems. The MINOPT algorithmic framework also has a number of
advantages:

o Efficient solution for Mized-Integer Nonlinear Programming problems

e Efficient solution for problems with dynamic models

o Efficient Integration and Sensitivity Analysis

e Ability to switch easily among various solvers

e Ability to fine tune the solution algorithms with an extensive list of options

MINOPT has connections to a number of solvers and is able to exploit the features, options,
and efficiency of the solvers. MINOPT currently has connections to the following solvers:

Solver Model Types
CPLEX LP, MILP
LPSOLVE LP, MILP
MINOS LP, NLP
NPSOL LP, NLP
SNOPT LP, NLP
DASOLV  Dynamic
DAESSA  Dynamic

MINOPT also provides algorithms for the solution of MINLPs
e Generalized Benders Decomposition (GBD)
e Outer Approximation and variants (OA, OA/ER, OA/ER/AP)

e Generalized Cross Decomposition (GCD)
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2 Installation

The MINOPT software, MINOPT model library, and additional information can be found
at the MINOPT website at http://titan.princeton.edu/MINOPT.

2.1 Platforms

MINOPT is currently ported to the following platforms:

Architecture Operating System

Sun SunOS 5.5.1

HP HP-UX 10.20

IBM ATX 3.2

SGI IRIX 5.3

Intel Windows 95/NT (Available soon)

2.2 System Requirements
In order to install MINOPT on a UNIX system, the following are required:
e C compiler
e The make utility

e The libraries for the solvers you wish to use with MINOPT

2.3 Compiling MINOPT
To compile MINOPT on a UNIX system, follow the following steps:

1. Obtain the MINOPT tar file for the appropriate architecture from the MINOPT website.
The architectures and the corresponding tar files are the following:

Computer 0S tar file

HP 9000 series HP-UX 10.20 minopt_hppa.tar.gz
SGI IRIX 5.3 minopt_iris4d.tar.gz
SGI IRIX 6.4 minopt_iris4d.64.tar.gz
IBM rs6000 ATX 3.2 minopt _rs6000.tar.gz
SUN SunOS 5.5.1  minopt_sund.tar.gz

2. Uncompress the tar file using gunzip:
%gunzip minopt hppa.tar.gz

3. Extract the tar file using the tar command:
%tar xvf minopt_hppa.tar
The will create the directory minopt hppa and extract the MINOPT into this directory.
The new directory will contain the following:

e COPYRIGHT



4 MINOPT Reference Manual

o Makefile.dist

e README.install (this file)
e README.license

e README.stanford

e configure

e include/

e lib/

e src/

4. Run the configuration script to create the Makefile for MINOPT:
% ./configure
This will ask you a series of questions regarding the computer as well as which external
solvers you have present and wish to include with your MINOPT executable. When the
configuration is complete, a Makefile for compiling MINOPT will be created. (For more
information about the solvers currently linked to MINOPT and how to obtain them,
consult the MINOPT website.)

5. After the configuration is complete and the Makefile has been created. Use the make
command to compile the program:
% make This will create the single MINOPT executable.

2.4 Installing MINOPT

The MINOPT program is a single executable file and all that is needed to run MINOPT is
this file. To install the program, copy the executable to an appropriate place on the computer.
(Somewhere like /usr/local/bin is usually a good choice.) The sample input files in the
MINOPT model library are not required, but are recommended. They can be obtained from
the MINOPT website.

Now MINOPT is ready to be run. To test that it is compiled and installed correctly, run
the program: You should get the header message and copyright information.

MINOPT

Version 3.1, Sep 10 1998

C. A. Schweiger and C. A. Floudas
Department of Chemical Engineering
Princeton University

Princeton, NJ 08544-5263

Copyright (c) 1998 Princeton University
A1l Rights Reserved

Send bugs, comments, and suggestions to minopt@titan.princeton.edu
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Usage: minopt [ optioms... ] data file

Type minopt -h for a list of optioms.

2.5 Licensing

You can run MINOPT, but you will not get very far without a valid license. Purchasing
and licensing of MINOPT is handled through Princeton University. For information about
purchasing and licensing, contact

Jean A. Mahoney <jean@princeton.edu>
Director, Copyright and Trademark Licensing
Office of Technology and Trademark Licensing
Princeton University

P.0.36; 5 New South Building

Princeton, NJ 08544

Phone 609-258-3097 Fax 609-258-1159

Once MINOPT has been purchased, you will need to obtain a license key. To get the license
key, send email to minopt@titan.princeton.edu. In the email, provide the following information:

e Your Name

Your Company/Institution/University

Solvers to be licensed (GBD, OA, DAESSA)

Number of licenses

Duration of the license

e Hostname of the computer used to run MINOPT (output of uname -n)

After you have provided this information, you will receive a license key for MINOPT for the
computer you have identified. The MINOPT license key is a 64 character string which needs
to be placed in a file named .minoptlicense. This file can be located one of three places:

e the user’s home directory (the directory which is in the SHOME environment variable).
e The directory specified by the SMINOPTDIR environment variable
e The directory /usr/local/etc

Note that multiple licenses can exist in a single license file. This allows for one license file to
be used for several machines. Also note that any line in the license file that is not 64 characters
in length is considered a comment and is ignored.

With a valid license key in an appropriate file, MINOPT is now ready to be used.
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Table 1: Files used by MINOPT

filename contents

<input>.dat Problem information
<input>.log Solution progress and information
<input>.dump Explicit problem output
<input>.pricpx primal LP output from CPLEX

<input>.gbdmascpx GBD master output from CPLEX
<input>.oamascpx OA/ER master output from CPLEX
<input>.apmascpx OA/ER/AP master output from CPLEX
<input>.prilps primal LP output from LPSOLVE
<input>.gbdmaslps GBD master output from LPSOLVE
<input>.oamaslps OA/ER master output from LPSOLVE
<input>.apmaslps OA/ER/AP master output from LPSOLVE
<input>.statesi!  dynamic states for the solution of a dynamic problem

'Note that the state file contains the time as the first column and the values for the first 50 2z
variables in the following columns. If there are more that 50 z variables, additional states files
are used with increasing numbers (<input>.states2, <input>.states3, etc.).

3 Usage
MINOPT is a standalone executable and is invoked from the command line:
prompt> minopt [options ...] <input>.dat [options ...]

The file <input>.dat is the text input file which contains the model written in the MINOPT
modeling language. (The syntax of the modeling language is described in the following section.)
All of the necessary problem information can be contained within this file although additional
files may be included. MINOPT searches for the input file in the directory from which it was
run and writes all of its output to various files in the current directory. All of the output files
begin with the basename of the input file <input> with various other extensions. The main
output file is the log file named <input>.log that contains the solutions of the subproblems,
and the optimal solution. Other output files may be generated based on the options selected
and type of problem being solved. These files are listed in Table 1.

Many of the available options for MINOPT can be specified through the command line.
Options specified on the command line take precedence over those specified in the input file.
MINOPT recognizes the following command line options:

-j Solve first primal problem then exit.

-w Have the LP/MILP solver write its problems in lp format to the files <input>.pricpx,
<input>.gbdmascpx, <input>.oamascpx, <input>.apmascpx, <input>.prilps,
<input>.gbdmaslps, <input>.oamaslps, and <input>.apmaslps for the respective sub-
problems.
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-a Perform an auto-initialization procedure where the continuous relaxation problem is solved
to determine a starting point for the y variables. The integrality constraints on the y
variables are relaxed and the resulting NLP is solved. The y variables are then rounded
to the nearest integer and this is used as the starting point for the MINLP algorithm.
Thes is the same as specifying the AUTOINIT option.

-r Solve the continuous relaxation problem then exit. The integrality constraints on the y
variables are relaxed and the entire problem is solved as an NLP. This is the same as
specifying the DORELAX option.

-d Write the problem to <input>.dump. This is useful for debugging and seeing how MINOPT
actually views the problem.

-i maxiter Set maximum number of iterations for the MINLP algorithms to maxiter
-p level Set print level (amount of output printed to files):

e level=0 no printed output.

e level>( print progress for each iteration to file.

e level>1 print solutions of primal problems to file.
e level>2 print solutions of master problems to file.
e level>3 print bounds to file.

e level>4 print subproblem solver output to file (usually fortran file number 9: ftn09,
fort.9, etc).

-s level Set summary level (amount of output printed to the screen):

e level=( no summary output.

e level>( print iteration number to screen.
e level>1 print solution progress to screen.
e level>2 print solution bounds to screen.

e level>3 print solver output to screen.
-L LPsolver Set the LP solver: CPLEX (default), LPSOLVE, MINOS, SNOPT, or NPSOL.
-I MIPsolver Set MIP solver: CPLEX (default) or LPSOLVE
-N NLPsolver Set NLP solver: MINOS (default), NPSOL, SNOPT.
-M MINLPsolver Set MINLP solver: GBD (default), OAER, OAERAP, GCD.
-D DAEsolver Set the DAE solver (integrator): DASOLV (default), DAESSA.
-0 optionstring Set any of the yes/no type options listed in the Options section.
-V Print the version number of MINOPT and exit.
-8 Print the solvers compiled with this version of MINOPT and exit.

-h Print out a help message displaying the command-line options.
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4 MINOPT: The Modeling Language

The input to MINOPT is provided in the form of an input file. This input file is a standard
ASCII text file that can be created and modified using any text editor. (In a UNIX environment,
vi or emacs are commonly used editors.) All of the necessary information for the problem and
its solution is contained in this input file. The model contained in the input file is written
using the MINOPT modeling language that has specific syntax that must be followed in order
to provide valid input. When MINOPT is executed to solve a model, the input file is read and
its syntax of the model is checked. If the syntax is not valid, the errors that exist in the input
file are reported. Once the input file has been successfully read, the model is solved using the
appropriate algorithm based on the problem type and given options.

The MINOPT modeling language has been designed to follow the natural forms for writing
mathematical notations. Many of the types of constructions that can be written mathematically
have an equivalent representation in the MINOPT modeling language. The modeling language
is clear in that the representations of the mathematical notations are close to the corresponding
representation and there is no ambiguity in the use of the language. The modeling language
has also been designed to be concise by employing indices and indexed sets. This allows for
large models to be represented with a compact notation. The modeling language is flexible in
that the model can be easily adapted to new situations in lights of changing requirements. A
model used for one type of problem can be easily manipulated to represent a different situation.
Parts of one model can be easily incorporated into other models as may be required. Overall,
the modeling language is comprehensive and its power is reflected in the broad class of model
types that it can address.

This chapter describes the structure of the MINOPT input file and provides a detailed
description of the modeling language. The overall structure of the input file and the basic
building elements of the modeling language are presented and simple illustrations are provided
to demonstrate the usage of the modeling language.

4.1 Lexical Elements of the MINOPT Modeling Language

All of the model information is written using ASCII text. The general input has a free
form in that white space (spaces, tabs, and newline characters) may appear anywhere within
the file without affecting the meaning of the input. Specific combinations of characters (letters,
numbers, and symbols) represent the lexical elements of the modeling language:

e numbers

e special symbols

e mathematical symbols

e keywords

e identifiers
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4.1.1 Numbers

Numbers are formed in a standard manner: an optional sign followed by a sequence of digits
that may contain a decimal point (for example 13 or -5.17 or +0.71). The number may also
have an optional exponent which begins with either an e or an E followed by an optional sign
followed by digits (for example 3e23 or 6.022E23 or 1.3807e-23). All of the numbers are double
precision floating point numbers.

4.1.2 Special Symbols

The special symbols are
{Yyr#8. ,: ;8<>[1C)

These are used to construct the various statements for the MINOPT modeling language.

4.1.3 Mathematical Symbols
The mathematical symbols are
+-%x /"1 =<>% | E:[17 ()

These are used to create the mathematical expressions for the MINOPT modeling language.
Note that some symbols occur in both the set of special symbols and the set of mathematical
symbols. This is because the same symbol can be used in different constructions and have
different meanings.

4.1.4 Keywords

Keywords are strings of letters which represent terms that MINOPT recognizes as having a
particular meaning. The meanings are fixed and the keywords cannot be redefined. Keywords
also can not be used as identifiers.

A list of the keywords used by MINOPT and their meaning are provided in Table 2. All of
the keywords all capital letters and the first four letters of the keyword are significant. Thus,
for the keyword DECLARATION, the full name, DECLARE, or DECL are all equivalent.

4.1.5 Identifiers

Identifiers are symbols that the user defines to represent index, parameter, variable, and
constraint names. Identifiers are alphanumeric patterns which must begin with a letter and
may contain underscores and may end with a single quote. Example of valid identifiers are x,
Ca, Flow_rate, and T1. The trailing single quote is useful for denoting prime as in ¢’ which

could be represented with i’ in MINOPT. It is also used to denote the time derivative of a
k) Z_i’
Indices or subscripts on an identifier are specified by a comma separated list of integers

dynamic variable such that if z is a dynamic variable defined as z, the time derivative is z?
which are enclosed in parentheses and follow the identifier name. There is no limit to the
number of dimensions an identifier can have. For example, the mathematical notation wq could
be written in MINOPT as w(1). The element in the parentheses can also be another identifier
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Table 2: Keywords and their meaning

Keyword meaning

INCLUDE specify a file to be included

DECLARATION indicates the start of the declarations section

MODEL indicates the start of the model section

OPTIONS indicates the start of the options section

SET define an identifier as a set

INDEX define an identifier as an index

PARAMETER define an identifier as a parameter

XVARIABLES  define the z-variables to be used in the model

YVARTIABLES  define the y-variables to be used in the model

ZVARIABLES  define the z-variables to be used in the model

BINARY specify variables as binary (0 or 1)

INTEGER specify variables as taking integer values

POSITIVE specify variables as being positive

XLBDS specify the lower bounds on the z-variables

XUBDS specify the upper bounds on the z-variables

YLBDS specify the lower bounds on the y-variables

YUBDS specify the upper bounds on the y-variables

ZLBDS specify the lower bounds on the z-variables

ZUBDS specify the upper bounds on the z-variables

LBDS specify the lower bounds on a variable

UBDS specify the upper bounds on a variable

XSTP specify the starting points on the z-variables

YSTP specify the starting points on the y-variables

ZINC specify the initial conditions the y-variables

STP specify the starting points for a variable

ICs specify the z-variables whose initial conditions
depend on z-variables (coupled with ISP)

ICP specify the z-variables used to set the initial
conditions of the z-variables (coupled with ICS)

ISPEC specify the z-variables which are fixed to determine
the initial conditions of the DAE system

SHOW show the values of a parameter

SAVE save the vaules of a parameter to a file

DISPLAY display the values of an expression

TIME specify the time used for the integration of the dynamic
system

CKFILE specify the name of the file to use for Chemikin data

PRINT print the values of a variable

MINIMIZE specify the minimimization of the objective function
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(an identifier representing either a set or an index). Thus, the mathematical form T f; can
be expressed as Tf(i). For multidimensional arrays such as for the mathematical form v 53,
the MINOPT notation is v(1,2,3) or for v;jz, the MINOPT form is v(i,j,k). Names for
identifiers can not be duplicated and can not have the same first three letters as any of the
keywords.

4.2 Overall Structure of MINOPT Input File

The MINOPT input file consists of three sections:

e Declaration Section: This section includes the definitions for the sets, indices, parameters,
variables, variable bounds, variable starting points, and initialization information for the
dynamic problems.

e Model Section: This section includes the objective function along with all of the con-
straints for the mathematical problem.

e Options Section: This section, which may or may not exist, lists all of the options for the
given mathematical problem.

Each section has the form:
SECTION_NAME {{
statement;
statement; statement;
1
where SECTION_NAME is the keyword associated with the section (DECLARATIONS, MODEL, or
UPTIUNS).

Within each of these sections, keywords, identifiers, numbers and symbols are used to create
the statements that define the model. Each statement must be terminated by a semicolon.

4.2.1 Comments

Comments can be used at any point throughout the input file. There are three different
styles of comments that can be used.

Single-Line Comments These comments begin with “#” and extend to the end of the cur-
rent line. Anything that appears after the “#” on the current line is not read by the
parser.

Echoed Comments These comments begin with a “$” and extend to the end of the current
line. Anything that appears after the “$” is a comment which is echoed to the screen as
the input is parsed. This can be used to print the name of the model or other details of
the model as the input file is read.

Blocked Comments These comments are C-style comments which are formed using the no-
tation “/* ... */”. Anything between the “/* and */ is considered a comment. This type
of comment can extend over multiple lines and is useful for commenting large portions of
the input file.
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4.2.2 Including files

At any point within the input file, another file may be included using the keyword INCLUDE
or include followed by the filename to be included. This feature can be used to break apart
the pieces of the input into separate files. In this way, all related data can be contained within
a separate file. This also allows for the same information to be used with several input files.

The syntax for including a file is

INCLUDE filename ;
where filename is the name of the file to be included. The file will be included exactly at the
point of the INCLUDE statement.
4.3 Basic Building Blocks of the Modeling Language

As described above, the lexical elements of the MINOPT modeling language consist of
numbers, symbols, keywords, and indentifiers. By assembling these elements in an appropriate
fashion, valid statements which describe the MINOPT model are formed.

The model is developed by using the following building blocks of the modeling language:

e indices

sets

parameters

variables

® expressions

4.3.1 Index, Set, Parameter, Variable: Elementary Definitions

The identifiers in MINOPT are symbolic representations of the various types of numerical
values used in MINOPT. These symbols are used to generate a clear concise representaion of
the mathematical model. There are four types of symbols used by MINOPT:

e index: a symbol representing any element of a set.
e set: a symbol representing an ordered list of elements which can be numbers or strings

e parameter: a symbol representing a numerical value which does not change in the model
definition

s variable: a symbol representing a numerical value which is not fixed and is to be deter-
mined through the solution of the model

Each type of identifier is defined in a different way and will have a different meaning when used
within the model. All of the identifiers are defined in the declarations section of the input file
and can be used at any point after their definition, provided the correct syntax is used.
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4.3.2 Expressions

Expressions are combinations of the identifiers along with standard mathematical notation
used to represent mathematical formulations. Two different types of expressions are used in
the MINOPT input file: arithmetic and logical. Although no distintion between the two needs
to be made in the input, the two types of expressions are discussed separately.

Arithmetic Expressions The mathematical operators used by MINOPT are the standard
operations of addition (+), subtraction (-), multiplication (*), division (/), and exponetiation
(")- All of the mathematical operators and their precedence levels are listed in Table 3. Succes-
sive operations of the same precedence group to the left except for exponetiation which groups
to the right. The order of operations can be changed by using parentheses.

MINOPT recognizes a number of mathematical functions which can be incorporated into the
expressions. These functions consist of the name of the function followed by a bracket-enclosed
argument. The argument for the expression is itself an expression. The unary mathematical
functions which MINOPT recognizes are listed in Table 4. Note that the arguments of these
mathematical functions are enclosed within brackets ([ 1) and not within parentheses.

Arithmetic expressions range from the simple expressions such as

x1 + x2*x3
to complex expressions such as

(x1+x2*1og[x3+1]) / ((x2+x4) *(y2-y4) )

Logical and Conditional Expressions The values of aritmetic expressions can be tested
by using comparison operators:

== equal to

= not equal to

< less than

<= less than or equal to

=> greater than or equal to
>  greater than

The result of these tests is either 1 if the test is true or 0 if the test if false. Thus the
expression T<10 is 1 if the value of T is less than 10 and 0 if it is greater than or equal to 10.
The conditional expressions can be combined with logical operators:

& AND
Il OR

Thus the expression
T>=0 && T<=10

is 1 only if T is greater than or equal to 0 and less than or equal to 10.

The fact that the logical expressions result in a numerical value (1 or 0) allows them to be
included with arithmetic expressions. In this usage, they can act as switches to turn another
expression either on or off. For example
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Table 3: Binary Mathematical Operators and Precedence Levels

Precedence Operator Name

Il or

& and

< less than

<= less than or equal to
== equal to

1= not equal to

>= greater than or equal to
> greater than

? binary minimization
+ addition
subtraction

multiplication
division

+ N %

unary plus

unary minus

~N O O O O W v W NN DN NN~ =

H

*k exponentiation

(T>1) *x1

will give the value of x1 when T is greater than 1 and 0 otherwise. This is useful when setting
the values of parameters that are based on logical conditions.

Sets and Indices One of the fundamental components of MINOPT is the set. The use of
sets allows for compact notation as parameters, variables, constraints, and even sets in a model
are often defined over sets. Mathematical expressions can be simplified by using operations
such as summation, product, and enumeration over sets. Using sets and indices permits large
mathematical problems to be written in a concise form. Any model component (parameters,
sets, variables, and constraints) can be indexed over a set. Thus sets themselves may be indexed
over a set.

A set is an ordered list of elements which are numbers (integers) or sets themselves. It may
contain zero (empty set) or more elements. The elements of a set must be either integers or
sets. Therefore, the lowest level elements must always be integers.

A simple set of numbers is a comma, separated list of numbers delimited by the vertical bar,
|. Thus 11,2,3,4,5| denotes the set of numbers 1,2,3,4 and 5. To denote a range of numbers
easily, a colon, :, can be used such as [1:10] to denote the numbers 1 through 10 inclusive.
In addition, a second colon can be used to indicate the step size for a list. Thus |10:100:10]|
denotes the numbers 10, 20, 30, ..., 100. Finally, an empty set is indicated by using a period
asin |.].

An identifier is defined as a set by using the keyword SET. The following statement defines
I as the set of numbers 1 through 10:
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Table 4: Mathematical Functions

Name Function
sin[x] sine (sin(z))
cos[x] cosine (cos(z))

tan[x] tangent (tan(z))

asin[x] inverse sine (sin~!(z))
acos[x] inverse cosine (cos~!(z))
atan[x] inverse tangent (tan~'(z))
sinh[x]  hyperbolic sine

cosh[x]  hyperbolic cosine

tanh[x]  hyperbolic tangent

exp[x] exponential (e*)

log[x] natural logarithm (log,(z))
loglO[x] common logarithm (log; 0(z))
sqrt[x]  square root (y/z)

SET I = |1,2,3,4,5,6,7,8,9,10]|
An equivalent representation is achieved using the colon:
SET I = |1:10]
To define J as the set of even numbers from 2 to 10, the statement
SET J = 12,4,6,8,10|
can be used. The same definition can be obtained using the two colons as in
SET J = |2:10:2]

To define several sets, each must be defined separately. If sets J, K, and L are to be defined as
having elements 1 through 6, 1 through 4 and 1 through 10 respectively, the following definitions
must be made:

SET J

|1:6]

SET K

[1:4]

SET L = |1:10]

Indexing expressions In mathematical notation, sets are used in statements such as
e “forall ¢ in the set P”
e “fort=1,...,77

e “VYj € J such that ¢; > 0"
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In these statements, ¢, ¢, and j are indices which are elements of the corresponding set taken
one at a time. MINOPT requires that all indices be defined prior to their usage. This is done
using the keyword INDEX as follows:

INDEX {i,j,t}
To formulate indexing expressions and indicate set membership, the operator E is used. This

is equivalent to the mathematical operator €. For example, the mathematical expression : € P
is represented by i E I in MINOPT. Some other examples:

math MINOPT
jeJ jEJ
slots € SP slots E SP

keK lelL, kEK, 1EL(%)

Although single letters have been used for the index and set names, this is not required. Any
valid identifier can be used for the set and index name. The following set and index definitions
are valid:

SET Years = |1990,1991,1993,1995,1996,1998|
INDEX {counter}

These can be used together as in counter E Years. These types of expressions are used in
expressions that occur over a set such as summation and enumeration which will be described
below.

The index or indices on an indentifier are specified by a comma separated list which is
enclosed in parentheses and follows the identifier name. Typically, indices are used to represent
the subscripts of a parameter or variable. For example, the variable 212 would be represented
by x(1,2) in MINOPT. The elements of the list enclosed in parentheses can be indices provided
that the index is active. An index is activated when the index E set expression occurs prior
to the use of the index. The elements may also be expressions provided that the expression
evalauates to a index for which the identifier is defined. This will become more evident when
the summation and enumeration are described below.

Indices on an identifier are specified by a comma separated list of integers enclosed in
parentheses. There is no limit to the number of dimensions an identifier can have. For example
w(0), w(1), etc. can be used to refer to the elements of variable w. For multidimensional arrays,
the notation is v(0,1,2), v(2,3,1).

Enumeration, Summation, and Products The mathematical constructions which employ
the sets and indices are

e summation
e products

e enumeration

Each of these operations occur over a set and require an index to indicate the current element
of the set. They are used along with set and index definitions which must occur earlier in the
input file.
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Summation The summation is enclosed within << and >> and has the following construction:
<< index E set | expression >>

This is used to sum the value of the expression for each value of index which is a member of
the set set. For example, the mathematical expression

> piw;

il
is represented in MINOPT by
<< 1 ETI | p(D)*w(i) >>

There is no limit to the number of summations that can be nested within previous summations.
A double summation such as

j{:j{:pﬂmg

icl jeJ
is represented in MINOPT by
<<iEI | < jEJ| pA)*x(i,j) > >

The indices used in the summations are dummy variables that take values over the specified
set. Although in the above examples the index is the lowercase letter of the corresponding set,
there is required correspondence between the index and set. Any index defined by INDEX can
be used as the index for a summation provided that it is not already being used by another
indexing expression. Although there is no restriction on the index and set correspondence, a
good practice is to use the same index with the same set throughout the model. Using an index
and set which match, such as i for the index and I for the set, also helps make the model more
clear.

The index used in the summation is activated by the index E set construct and it remains
active over the scope of the summation. This scope ends with the enclosing >> which ends the
summation and deactivates the index. Not only can the index be used as a “subscript”, but it
can be used for its numerical value in an expression. For example

<<i E I| i*a(i)>>

will sum the values index i times the value of a(i) for all the values of i in the set I.
Summations can be used in more complex constructions such as

2.5
QD02 D chamn* Tigae) + Q_ fiz) + Qv 3 D wiin) ™)
i€l jeJ keK peP jeJ jed i€l keK peP

which is written as
<<i E TII<<j E JI<<k E K|<<p E Plc(i,j,k,p)*x(i,j,k,p)>>>>>>>>

+ <<j E JI£(j§)*z(3)>>
+ <<j E J|v(j)*<<i E Il<<k E K|<<p E P| x(i,j,k,p)>>>>>>"2.5>>

Note that by enclosing the summation within << and >>, there is no confusion as to when the
summation ends.
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Product The product over a set is represented in MINOPT very similarly to the way sum-
mation is handled. Instead of the << and >> used for the summation, [[ and 1] are used to
denote the product. The apprpriate construction for the product in MINOPT is

[[ index E set | expression 1]

This is used to multiply the values of the expression for each value of index which is a member
of the set set. For example, the mathematical expression

[Jwi"
el
is represented in MINOPT by
[[iETI| w(i)a(i) 1]

Just as with the summation, the index becomes activated by the index E set construct and is
deactivated at when the product is terminated by the 11. Multiple product expressions can
be nested within each other.

Enumeration Enumeration is used to create a list of related expressions. Instead of adding
or multiplying the arguments to create expressions as in the summation and product represen-
tations, the enumeration creates a list of several expressions. The enumeration is represented
in a manner similar to the summation and product notations except that a the single < and >
are used to enclose the enumeration. Thus, the enumeration has the form

< index E set | expression >

This will generate an expression for each value of index which is a member of the set set.
The enumeration operator is useful for specifying blocks of related expressions in a single
statement. For example, the mathematical expression

zi+wi;xy; Viel VjeJ
would be represented in the MINOPT language as
<iETI| <jEJ| x(1) + w(i,j)*y(G) > >

An important note here is that the delimiters for the enumeration must be at the outer limits
of the expression. The enumerations can be nested, but they must be the first part of the
expression. For example, the following is NOT valid input:

<i E I| x(i) + <j E J| w(i,j)*y(G) > >
The correct expression is
<i E Il <j E J| x(1) + w(i,jd)*y(G) > >
The following is also not correct:
2%<i E I| <j E J| w(i,j)*y(3) > >
The correct expression is
<i E I| <j E J| 2*%w(i,j)*y(j) > >

By enclosing the enumeration within < and >, there is no confusion as to the scope of the
indices and where the indices are active and inactive.
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Table 5: Mathematical Functions over Sets

Name Function
min[i E I|x(i)] minimum value of z;
max[i E I|x(i)] maximum value of ;

interv[i E I|x(i)] interval function!

Functions over sets MINOPT has several functions which have multiple operands and op-
erate over a set. These functions, listed in Table 5, are the min function, the max function, and
the interval function. Each of these has the form

funname [ index E set | expression ]

The min function returns the minimum value of the expression evaluated for all values of index
in the set set. Thus, the MINOPT representation of the mathematical expression

3 .* .
IanIan Zj
1s
min[i E I| p(i)*x(i)]

Similarly, the max function returns the maximum value of an expression evaluated for each
member of the set.

Cardinality Function MINOPT has a cardinlity function denoted as card[S] which will
return the cardinality of the set S. (The cardinality of the set is defined as the number of
elements in the set.) The argument of this function must be a set and any other argument will
cause an error.

Logical conditions for set qualification There are times when certain conditions should be
imposed on the elements of a set which are to be used for a summation, product or enumeration.
For example, the situation may require all elements in set S such that the element is less than
10. In mathematical notation, this might look something like Vs € S such that s < 10. In
MINOPT, to indicate that a logical condition is to follow, a single ampersand, & is used. A
logical expression follows the &, and if this expression is true, then that value of the index is
used in what ever follows. (If it is used in a summation, the argument for the summation is
computed for that value of the index.) Otherwise, that value of the index is skipped and the
index is set to the next element of the set. The set is represented in MINOPT as

s ES & s<10

Consider the expression
>, g
§€8,5<10

This is represented in MINOPT as
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<<s E S & s<10| x(s)

This expression will sum all the values of x(g) for the elements in the set S whose element
value is less than 10. The & can be read as “such that” and this is a convenient way to think
of the use of this operator. Recall that the index E set construct activates the index and thus
it can occur in the conditional expression. Any logical expression can be used after the &. For
example,

jEJ& c(j)>0 && c(j)<10
describes the set of all J for which c¢(j) is between 0 and 10. As another example
JEJ & (cs(j)+ct(j))/2>= 0 || j<10

describes the set of elements of J such that the average of cs(j) and ct(j) is greater than or
equal to zero or j is less than 10.

Sets of Sets Recall that the elements of a set can be numbers or additionally they can be
sets themselves. In other words, a set can be an array of sets. In mathematical models, this
type of notation is required, for example, in the following summation:

DIPIEY

iel jed;
This means is that the summation is over all j in the set J; where ¢ is an element of set I.
Another example may be in an enumeration such as

T,;;—H Viel VjeJ;

This describes an expression for all j in the set J; where ¢ is an element of set I.

With these ideas in mind, there is a need to define a set of sets. This is handled in MINOPT
by using the SET keyword just as before, but now the set being defined will have a dimension.
This dimension is a comma separated list of sets whose definition must occur earlier in the
input file. This can be best illustrated through an example. Consider a set I that has elements
1 through 4 and the 4 sets J(i) where i is an element of the set I. The four sets J(i) are to
have elements, 1 through 3, 2 through 5, the empty set, and elements 4 through 6 respectively.
To define these in MINOPT, the following construction is used:

SET I = |1:4]
SET J(I) = {I1:3], l12:51, I.1, 14,61}

Note that in the definition of J, the identifier in the parentheses (in this case the I) must be
an already defined set as is the case here where I is defined as a set of numbers 1 through 4.
Note also that since the set J has four elements, each one must be defined. This is done by
providing a list of these elements, which in this case are sets, enclosed in braces ({ }). This
listing is something that will arise in other definitions that will be discussed later.

Note that a set I is used to indicate the size of the array for J. This is one place in MINOPT
where a definition has an implied meaning. The implication here is that the J is to be defined
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for each element of I. A number can be used in the parentheses for the definition of J as in J(3).
However, this has no bearing on the size of the array and will only define J(3) and not other
elements for J such as J(1) and J(2). Note that this is different from programming languages
such as C and FORTRAN where when a variable is defined, the size of the arrays are given
and the numbering for the array has an assumed starting point (0 for C and 1 for FORTRAN).
With the notation used in MINOPT, there is no confusion as to the size of the array and which
index elements are used. These come directly from the set used in the definition.
The mathematical expressions

> %

iel jed;
and
T;; — HVi € 1,Y5 € J;
with the set definition described above can now be written in MINOPT as
<< i E I| <<j E J@1) | x(j) >> >>
and
<i E Il <j E J(DI| TE,j) -H> >

Since the index i is activated by 1 E I, it can be used as the index for the set J.

4.3.3 Parameters

Assembling a mathematical model almost invariably requires numerical values. In order to
maintain a concise model representation, a symbolic description of these values can be used.
Large amounts of data can be provided while still maintaining a readable model.

The named symbols with fixed numerical values are called parameters in MINOPT. The
main channel for specifying data for the model is through parameter definitions. These pa-
rameters can range from simple scalar values to vectors and matrices which are indexed over
sets. Parameters can be used throughout the model in expressions used to define the objective
and constraints, in expressions used to define other parameters, or in expressions used to define
logical conditions for sets.

The key purpose of parameters is to represent constant numerical values in symbolic form
to make the model as concise as possible.

4.3.4 Variables

A general mathematical model consists of variables and constraints, and the solution of the
mathematical model determines the values of the variables. Then named symbols in MINOPT
whose values are to be determined by the solution algorithm are called variables.

The variables used in the model are very similar to parameters in that they are symbols
the stand for numbers. An identifier that is used for a variable looks similar to one used for a
parameter. Both can be used in expressions, and, when the expressions were described earlier,
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no distinction was made as to whether the symbols being used were parameters or variables.
However, Variables do not have an assigned value and their values are determined through the
solution of the mathematical model.

Within MINOPT there are three types of variables that can be used. These variable types
correspond to the variable partitioning to be used by algorithing which solve the mathematical
problem. The description of the model can be kept independent of the algorithm used to solve it
except for this variable partitioning. The modeler is required to define the variable partitioning
as MINOPT will not determine this automatically.

Variable Types MINOPT recognizes three types of variables which are referred to as z-
variables, y-variables, and z-variables. Every mathematical model will have z-variables and
this is the variable type that will be used for most of the variables. The y-variables are used
to partition variables for the MINLP algorithms (Generalized Benders Decomposition, and
Outer Approximation and its variants) and usually, although not necessarily, represent the
binary variables for these algorithms. The third type of variable is the z-variable which is used
to denote the dynamic variables in the model. Again, this variable partitioning will become
evident when the algorithms for solving dynamic problems are described.

4.4 The Declarations Section

The is no restriction to the order in which the information in the declarations section is
provided except that identifiers must be defined prior to their usage. No general structure will
be generally be good for all models, but some structure will help make the model clearer. Most
of the input files provided follow a general structure where the sets and indices are defined, then
the parameters are defined, then the variables are declared, and this is followed by the bounds
and starting points for the variables.

The declarations section begins with DECLARATIONS {{ and ends with }}. The body of
the declarations setcion consists of statements which can extend over multiple lines and are
terminated with a semicolon ;. These statements are used to declare and define the various
elements that will be used in the model: sets, indices, parameters, and variables. Also, contained
within this section are definitions for the bounds and starting points for the variables and also
information for the initialization of the dynamic system.

4.4.1 Sets

Since sets are used in parameter definitions and variable definitions, they could appear first
in the input file. The sets are defined using the keyword SET. The syntax for defining a set is
the following:

SET identifier = | number , number , ... , number |

The identifier will become a set whose elements are the numbers enclosed within the | |.
To specify a range of numbers for a set, the colon can be used with the following syntax:

SET identifier = | start : end |
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This will specify the identifier as being a set with the elements being start, start+1, start+2,
..., end. Two colons can be used to define the starting element, ending element and the step
size for the elements of a set. The syntax is as follows:

SET identifier = | start : end : step |

This will define the identifier as a set whose elements are start, start+step, start+2step, ...,
end.

4.4.2 Indices

Through the input file, dummy identifiers will be required to indicate a particular element of
a set. These identifiers are refered to as indices and are defined in MINOPT using the keyword
INDEX. The syntax for defining the parameters is

INDEX { identifier , identifier, ... , identifier }

This defines each identifier in the list as an index. The indices are used in conjunction with
sets in the index E set constructions that are used in enumerations, summations, and products.

4.4.3 Parameters

Parameters are defined in MINOPT using the keyword PARAMETER using the following con-
struction:

PARAMETER identifier = rhs

where rhs is either a list or an expression. The two principal ways of defining parameters are
through lists and through expressions. Lists are created by enclosing numbers, or possibly other
parameters, within braces ({ }). An expression is created using the rules described earlier.

Parameter definition by list When assigning the values of a parameter using a list of
numbers, the following construction is used:

PARAMETER identifier = { number, number, ... , number}

The simplest parameter definition is for a scalar value. A simple parameter definition for
defining R as having the value 8.314 is the following:

PARAMETER R = 8.314

Technically, MINOPT actually considers 8.314 as an expression in this case. An equivalent
representation is

PARAMETER R = {8.314}

where the {8.314} is considered a list by MINOPT. For scalar parameters, this is trivial and
either representation is appropriate. However, for more complex definitions, this is an important
consideration.

More often, parameters are to be vectors of numerical values. In order to define the pa-
rameter q(i) as having the values of 25.0, 15.0, 18.0, 16.0, and 12.0 for values of i equal to 1
through 5, the following definitions are made:
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SET I = |1:5]
PARAMETER q(I) = {25.0, 15.0, 18.0, 16.0, 12.0}

This will define q(1), q(2), q(3), q(4), and q(5) as having values of 25.0, 15.0, 18.0, 16.0,
and 12.0 respectively. Note that in the definition of the parameter q, The argument on the
parentheses is a set whose size is equal to the number of elements in the list on the right hand
side, which is 5 in this case. By specifying the set over which the parameter is to be defined,
there is no confusion as to the indices for the parameter. Consider defining a variable in the
following manner:

SET W = |1978, 1982, 1986, 1990, 1994, 1998]|
g(W) = {4,4,5,1,0}

This defines g(1978), g(1982), g(1986), g(1990), g(1994), and g(1998) as having values of
4,4.5,1, and 0 respectively.

Parameters can be defined with an unlimited number of dimensions. So far the scalar and
single dimension cases have been examined. Now consider a two dimesional case where a table
of data is to be provided. Consider the following parameter definition in MINOPT:

SET I

|1:5]

SET J

|1:6]

PARA t(I,J) = { 6.4, 4.7, 8.3, 3.9, 2.1, 1.2,
6.8, 6.4, 6.5, 4.4, 2.3, 3.2,
1.0, 6.3, 5.4, 11.9, 5.7, 6.2,
3.2, 3.0, 3.5, 3.3, 2.8, 3.4,
2.1, 2.5, 4.2, 3.6, 3.7, 2.2}

The key point to note here is that the listing in the table is row-major. That means that
the parameter values are assigned in the order t(1,1), t(1,2), t(1,3), ..., t(1,5), t(2,1),
..., t(5,5), t(5,6). Since this is a two dimensional array, the first dimension corresponds to
the rows in the table and the second dimension corresponds to the columns. As can be seen in
the above example, the number of rows, 5, corresponds to the size of the set I while the number
of columns, 6, corresponds to the size of the set J.

Higher dimensional arrays can be defined in a similar fashion, keeping in mind that the
listing in the right hand side is row major. The following is an example of a four dimensional

array:
SET I = |1:2]
SET J = |1:3]
SET K = |1:4]
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PARAM c(1,J,I,K) = {10,15,20,10,
5, 5,30,10,

25,20,15,20,
10,20,40, 5,

50,25,10,15,
60,75,25,10,

15, 5,15,35,
10,25,40,55,

0,15,30,45,
60,45,30,15,

25,35,45,565,
30,10,10,30}

This example also illustrates that a set can be repeated in the definition of the parameter.
The definition of the parameter ¢ used the set I twice in ¢(I,J,I,K). Note that the spacing
and formatting of the data has been done in such a way so as to make it readable and easy
to understand the ordering of the elements. Although such formatting is not necessary, it is
recommended as it makes the input easier to understand.

All of the values of a parameter must be defined. Thus there can be no vacant spots in the
data list used to assign the values. There is no automatic assignment of the values. This also
means that the number of elements in the list on the right hand side must match the size of the
parameter being defined. In the four dimensional case above, the size of the parameter being
defined, ¢(I,J,I,L),is 2 X 3 X 2 x 4 =48, and there are 48 numbers in the data list.

MINOPT does have a feature of repeating the values in the list on the right hand side if it
has come to the end of the list and all of the values of the parameters being defined have not
been assigned. This can reduce redundancy in the parameter definition by eliminating repeated
numbers in the input file. As a simple example, consider an array of parameters whose values
are all the same. These can be assigned using the notation:

SET T = |1:1000]
PARAMETER a(T) = {110}

This will set all the values of the parameter a to 110 without having to write the number 110
for each of the 1000 elements. Another example of the automatic repeating of the values in the
list is the following:

SET I

|1:5]

SET J

|1:6]
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PARAMETER down(I,J) = {10,9,8,7,6,5}

In this case, the values of down(1,1) through down(1,6) are set to 10,9,8,7,6,and 5 respectively,
down(2,1) through down(2,6) are set to 10,9,8,7,6,and 5 respectively, and so on.

Parameter definition by expression A model can be kept simple by computing complex
parameter expressions in terms of data parameters. In this case, the right hand side of the
parameter definition statement consists of an expression. When using an expression to assign
the values of a parameter, the following construction is used:

PARAMETER identifier = expression

For a scalar definition, a single expression is used to define the parameter. For example,
consider the mathmatical definition of the parameter R = N,k where N, and k are parameters
with defined values. (N, = 6.0221 x 10% and k = 1.3807 x 10~23) These definitions are made
in MINOPT as:

PARAMETER Na = {6.0221e23}
PARAMETER k = {1.3807e¢-23}
PARAMETER R = Na*k

This will assign the value of 8.3147135 to R.
Parameter arrays can also be assigned using expressions by making use of the enumeration
described earlier. Consider the following list of mathematical expressions:

lin;= 0 j=1...6

uln; = log(4) j=1...6

llvj= log(300) j=1...6

ulv; = log(3000) j=1...6
Insij= log(s;;) 4=1...5 j=1...6
Int; ; = log(ti;) 1=1...5 j5=1...6

These parameter definitions are represented in MINOPT by using the following enumerations:
SET I = |1:5]

SET J = |1:6]|

PARA t(I,J) = { 6.4, 4.7, 8.3, 3.9, 2.1, 1.2,
6.8, 6.4, 6.5, 4.4, 2.3, 3.2,
1.0, 6.3, 5.4, 11.9, 5.7, 6.2,
3.2, 3.0, 3.5, 3.3, 2.8, 3.4,
2.1, 2.5, 4.2, 3.6, 3.7, 2.2}
PARA s(I,J) ={ 7.9, 2.0, 5.2, 4.9, 6.1, 4.2,
0.7, 0.8, 0.9, 3.4, 2.1, 2.5,
0.7, 2.6, 1.6, 3.6, 3.2, 2.9,
4.7, 2.3, 1.6, 2.7, 1.2, 2.5,
1.2, 3.6, 2.4, 4.5, 1.6, 2.1}
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PARAM 11n(J) = <j E J|0>
PARAM uln(J) = <j E Jllogl[4]>
PARAM 11v(J) = <j E Jllog[300]>
PARAM ulv(J) = <j E J|1log[3000]>

PARAM 1ns(TI,J)

<i E Il<j E Jllogls(i,j)1>>
PARAM 1nt(I,J) = <i E II<j E Jlloglt(i,j)1>>

The enumeration on the right hand side generates an expression for each value of the index in
the corresponding set. Thus, in the first four parameter definitions, the enumeration generates
6 values (the size of the set J). The second two definitions generate 30 values (the size of set
I times the size of set J). In these cases, the order of the enumeration is significant. Since the
set I is in the outer enumeration and J is in the inner, the values are generated for values of
(i,j) equal to (1,1), (1,2), ..., (5,5), (5,6). Note that this corresponds to the order in
which the parameters on the left hand side are defined (row-major). In most situations, this
will be the case and the order of the enumerations will match the order of the sets used in the
left hand side of the parameter definition. This is exactly the case in the above example where
on the left hand side, the sets are I then J and on the right hand side, the enumerations are
over the sets I then J.

The expressions used for the parameter definition can also explicity involve the index such
as required in the expression:

Inkp=In(k) k=1...4
In MINOPT, this would be represented by

SET K = |1:4]
PARAMETER 1nk(K) = <k E K|log[k]>

The more complex expressions

it; = ln(manzo...E)(_ZL)) i -9
ult; = In(max;=g..5(ti;)) i=1...5
Ib; = In(g; mm;o..s(ﬁjﬁ)) t=1...5
ulb; = In(min(q(%), miIﬁ;o..b(%))) t=1...5

are represented in MINOPT as

PARAM 11t(I) = <i E I|log[max[j E JIt(i,j)]1/4.0]1>
PARAM ult(I) = <i E I|loglmax[j E JIt(i,j)11>

PARAM 11b(I) = <i E I|logl[(q(i)*max[j E JIt(i,j)]1)/(6000%4.0)]>
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PARAM ulb(I) = <i E Illoglq(i) ? min[j E J|3000/s(i,j)11>

There is no limit to the complexity of the expressions which can be used to define parameters.
The definitions must follow some simple rules. First, each expression in the parameter definition
must evaluate to a numerical value or list of numerical values. This may seem odd as every
expression is expected to evaluate to some number, but there are cases where a valid expression
may not yield a number. One case is when the expression contains a variable which will be
described in the next section. Since the variable does not have any value assigned to it, the
expression will not evaluate to a numerical value.

The second rule is that the number of numerical values that the right hand side expression
generates must be the same as the number of values that are being defined on the left had
side. For this reason, using conditional expressions on the set for an enumeration generally will
be useful since this will restrict the number of generated values. For example, the following
definition:

SET I = |1:5]
PARAMETER a(I) = <i E I & i<4| 2%i>

will only generate three values from the right hand side expression (when i = 1, 2, and 3) where
the left hand side is expecting 5 values. Since all values of the parameters must be assigned as
there is not automatic assignment of values, this will generate a error. This is because a(4)
and a(5) must have the values assigned. One of two possible cases is probably desired here.
First, if the values of a(4) and a(5) are to be zero, then the appropriate construction is

SET I = |1:5]
PARAMETER a(I) = <i E I| (i<4)2*i>

Recall that the expression (i<4) will evaluate to 1 if i is less than 4 and 0 otherwise. Using
this, the values of a(1), a(2), a(3), a(4), and a(5) will be 2, 4, 6, 0, and 0 respectively. If
the intention were to define parameters for a(1), a(2), and a(3) and assign their values, the
following construction could be used:

SET I |1:5]

SET J

[1:3]

PARAMETER a(J)

<i E I (i<4)| 2*i>

Now the right hand side will generate the three values which is what the left hand side of the
definition expects.

MINOPT also allows parameters to be redefined. When the parameter is first defined,
the dimensions and sizes of the dimensions are establised and the inital values are set. Any
subsequent parameter definitions for a parameter which has already been defined will reassign
the value of the parameter. This is useful for cases where large tables of data contain many
entries with the same values and relatively fewer entries which are different. Take for example a
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vector parameter h; where ¢ = 1...1000. For 995 of these parameters, the value is 0 while 5 of
them have nonzero values: h23 = 6.74, h514 = 6.83, h609 = 2.99, h878 = 2.75, and hggg = 9.73.
These parameter values can be assigned in MINOPT by using the following:

SET T = |1:1000]
INDEX {t}
PARAMETER h(T) = <t E T|0>

PARAMETER h(23) = 6.74

PARAMETER h(514) = 6.83
PARAMETER h(609) = 2.99
PARAMETER h(878) = 2.75
PARAMETER h(999) = 9.73

The parameter definitions which follow the intial parameter definition only assign the value of
the parameter for the index specified. The other elements in the array are unaffected.

4.4.4 Variables

The variables for the model are defined using the keywords XVARIABLES, YVARIABLES, and
ZVARIABLES to define the z-variables, y-variables, and z-variables respectively. The syntax used
for defining z-variables is

XVAR { identifier, identifier, ... , identifier}

The same syntax with YVAR and ZVAR replacing XVAR is used for defining the y-variables and
z-variables. The list of identifiers used to define the variables are enclosed within braces({ }).

For example if the variables f and z are to be defined as z-variables, the following statement
would be used in MINOPT:

XVAR {f,x}
If ¢ is to be defined as a y-variable, this would be done by using
YVAR {q}

Just as can be done with parameters, variables can be defined over sets. To define the
variable v; for all j in J and b; for all 4 in I, the following statements are used

SET I

|1:5]

SET J |1:6]

XVAR {v(J),b(I)}
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When the array variables are declared, the identifier in the parentheses must be a set indicating
the indices for the variable. Note that the sets used in the variable declaration (I and J in this
example) must be defined prior to the variable declarations.

There is no limit to the number of dimensions a variable can have. The declaration

XVAR {a(I,J,K,L)}

declares a as an z-variable with four dimensions whose indices correspond to the elements of
the sets I, J, K, and L which must be defined prior to the variable declaration.
Some more examples for declaring variables in the MINOPT input file are

XVAR {x(I,J), y(I,J), L(I), V(I), T(I), feed(I), r, P1, P2, h1(I), hv(I)}
YVAR {q(I)}
ZVAR {x(I),u}

When z-variables are defined, their time derivatives are also defined automatically. The time
derivatives of z-variables have the same name as the corresponding z-variable with a prime °
appended. Thus, declaring z-variables with

ZVAR {x(I),u}

will also declare the variables x’ (I) and u’. Note that the prime is appended before the indices.
These variables are used to represent the time derivatives of the dynamic variables such that
diL‘l
dt
which is represented by x? (1).

When variables with multiple dimensions are defined, they are defined with the indices
ordered row-major. This means that the variable definition for v represents the variables
v(i,1), v(1,2), v(1,3), ..., v(5,5), and v(5,6). (This will become important when the
bounds are assigned for the variables.) Multiple declarations can occur for any type of variable.
This means that multiple XVAR, YVAR, or ZVAR statements can occur in the input file.

4.4.5 Bounds

As discussed earlier, the values for the variables are not assigned by the modeler and are
determined from the solution of the model. Lower and upper bounds on the values that the
variables can have can be assigned by the modeler. When the variables are declared, their lower
and upper bounds are set automatically to —oo and +oc where —oo is the smallest number the
computer can handle and +o0 is the largest number the computer can handle. For most cases,
these bounds will be unsatisfactory and new bounds will need to be assigned.

The upper or lower bounds on the variables can be specified in two possible ways. The
first way is to assign all of the lower bounds or all of the upper bounds for one of the variable
types. The keywords which are used for this are XLBDS, YLBDS, and ZLBDS for assigning the
lower bounds for all of the z-variables, y-variables, and z-variables respectively. For assigning
the upper bounds, the keywords XUBDS, YUBDS, and ZUBDS are used. The syntax used is the
keyword followed by a brace enclosed list of numbers which correspond to the bounds on all of
the variables of the particular type. The syntax for each is as follows:
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XLBDS { number, number, ... , number}
XUBDS { number, number, ... , number}
YLBDS { number, number, ... , number}
YUBDS { number, number, ... , number}
ZLBDS { number, number, ..., number}
ZUBDS { number, number, ..., number}

For example, if the following z-variables are declared
XVAR {x1, x2, x3, x4, x5}
then, the lower and upper bounds can be assigned with

XLBDS {-10.0, -5.5, -6.7, 0, 3.2}
XUBDS {5.1, 3.7, 9.3, 11.7, 5.4}

The list of numbers used to specify the bounds must be the same size as the total number
of the variables of the corresponding type. In this example, there are 5 z-variables declared,
therefore, there must be 5 numbers in the list for XLBDS and XUBDS.

Recall that indexed variables are defined with the indices ordered row-major. This must
be remembered when setting the bounds on the variables. Consider the following variable
declaration:

XVAR {x(I,D), r, y(I,0)}

The order of the z-variables is x(1,1), x(1,2), ... x(5,5), x(5,6), r, y(1,1), y(1,2), ...
y(5,5), and y(5,6). Thus the list for XLBDS and XUBDS must contain 61 numbers and be in
the correct order.

Assigning the bounds on all of the variables of a particular type can be confusing for a
number of reasons. First, keeping track of the order of the variables can be difficult. Second, the
variable ordering may be changed by the modeler which will lead to incorrect bound assignment
unless the bounds list is changed accordingly. Third, providing one large list for the bounds can
become cumbersome. Because of this, a second way of providing the bounds for the variables
is provided. This method assigns the upper and lower bounds on a particular variable thus
avoiding any confusion as to which variables are being assigned which bounds. The keywords
used to assign the bounds are LBDS and UBDS. The syntax is identical to that used for the
parameter definitions:

LBDS identifier = rhs

UBDS identifier = rhs



32 MINOPT Reference Manual

Just as with the parameter definitions, the rhs can either be a list or an expression. The same
rules for defining the parameters apply for assigning the bounds on the variable. The difference
is that the variable must already be defined.

To assign the values of the bounds using a list, the following construction is used:

LBDS variable = { number, number, ... , number }
where the variable is already defined. Consider the following variable declarations:

SET I = |1:5]
SET J = |1:6]

XVAR {x(I,), r, y(I,0)}
YVAR {q(I)}

The bounds for x(I,J) can be assigned by using

LBDS x(I,J) = { 6.4, 2.0, 5.2, 3.9, 2.1, 1.2,
0.7, 0.8, 0.9, 3.4, 2.1, 2.5,
0.7, 2.6, 1.6, 3.6, 3.2, 2.9,
3.2, 2.3, 1.6, 2.7, 1.2, 2.5,
1.2, 2.5, 2.4, 3.6, 1.6, 2.1}
UBDS x(I,J) = { 7.9, 4.7, 8.3, 4.9, 6.1, 4.2,
6.8, 6.4, 6.5, 4.4, 2.3, 3.2,
1.0, 5.3, 5.4, 9.9, 5.7, 6.2,
4.7, 3.0, 3.5, 3.3, 2.8, 3.4,
2.1, 3.6, 4.2, 4.5, 3.7, 2.2}

Just as in the parameter definitions, the dimensions of the variable on the left hand side are
sets which are already defined. These indicate the value of the indices used for assigning the
bounds. Since the variable is already defined, the sets used for the left hand side variable in the
bounds specification can be a subsets of the sets which were used to define the variable. This
can be useful for specifying bounds on a restricted number of the varaibles. Consider the same
variable declarations as before:

SET I = |1:5]
SET J = |1:6]|
XVAR {x(I,D), r, y(I,0)}

If the bounds only need to be specified for x(i,j) where i is 1 through 5, but j is only 3, this
is done using

LBDS x(I,3)

{6.2, 0.9, 1.6, 1.6, 2.4}

UBDS x(I,3) {8.3, 6.5, 5.4, 3.5, 4.2}
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This will set only the bounds in the list and the other bounds will remain unaffected.
The variable bounds can also be assigned using mathematical expressions using the con-
structions:

LBDS variable = expression

UBDS variable = expression

where the variable has already been defined. This will assign the values of the expression to
the bounds of the variable. The same type of rules as used for the parameter definitions are
followed for the bounds specification.

One way to declare a scalar z-variable ¢ and assign lower and upper bounds of —10c¢ and
10c¢ where c is a parameter is to write

XVAR {t}
LBDS t = -10%c
UBDS t = 10%c

The bounds on a variable array can be assigned using an expression and making use of the
enumeration construction. Consider the following variable declarations:

SET I = |1:5]
SET J = |1:6]
XVAR {b(I),v(I,D}
The bounds for b(I) can be assigned by
LBDS b(I) = <i E I| (q(i)*max[j E J| t(i,j) 1)/(6000%4.0) >
UBDS b(I) = <i E I| q(i) ? min[j E J| 3000/s(i,j) 1 >

where t(i,j) and s(i,j) are defined parameters with appropriate sizes. The bounds for
v(I,J) can be specified by

LBDS v(I,J) =<i E I| <j E J| -(¢(i,j)+s(i,j))/2> >

UBDS v(I,J) = <i E I| <j E J| (£(i,j)+s(i,j))/2> >

The use of LBDS and UBDS for specifying the bounds often provides a clearer representation
when compared to the use of XLBDS, XUBDS, etc. Their use will generally help avoid confusion
in the model definition.

In many mathematical models, the lower bounds on many of the variables are 0. MINOPT
provides the keyword POSITIVE for specifying a lower bound of 0 for a list of variables. The
syntax for the usage is

POSITIVE { variable, variable, ... variable }
Thus, if variables are defined with
XVAR {b(I),v(I,D}
they can be specified as positive with

POSITIVE { b(I),v(I,N}
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Binary and integer variables MINOPT also recognizes both binary variables and integer
variables. Binary variables are defined as those whose values are either 0 or 1 where as integer
variables can take an integer value. To specify variables as binary or integer the keywords
BINARY and INTEGER are used. They have the syntax

BINARY { variable, variable, ..., variable }
INTEGER { variable, variable, ..., variable }

where the variables in the list are already defined. For example, consider the variable declaration
YVAR {q(I)}
The variable q(I) is specified as being binary by writing
BINARY {q(I)}
Alternatively, q(I) is specified as being integer by writing
INTEGER {q(I)}

When a variable is specified as binary, its lower and upper bounds are set to 0 and 1 respectively.
When a variable is specified as integer, its lower and upper bounds are specified as 0 and 100
respectively.

The user should also be careful when using bounds on the z-variables. The bounds on the
z-variables are not bounds used in the optimization. These are bounds passed to the integrator
and affect the solution of the dynamic system. For most cases, these bounds should not need to
be set. For cases where the dynamic system may have multiple solutions, it may be necessary
to set the bounds to ensure that the integrator solves the correct problem. When these bounds
are violated, the integrator will detect a discontinuity and most likely will fail.

4.4.6 Starting Points

For some of the solution algorithms, specifying the starting points may help improve the
efficiency. When a variable is defined, its default values for the starting points are set to 0. To
set the values of the starting points for the variables, MINOPT has the keywords XSTP, and
YSTP, for setting the starting points for the z-variables and y-variables and ZINC for setting
the initial conditions of the z-variables. The use of these keywords is analogous to the use of
keywords for setting the bounds,XLBD, XUBD, etc. and have the following syntax:

XSTP { number, number, ..., number }
YSTP { number, number, ..., number }
ZINC { number, number, ..., number }

These will assign the starting values or initial conditions for the corresponding variables in the
order that they were declared.

In the same way that the bounds can be assigned for a specific variable, the starting point
can be assigned for a specific variable using the keyword STP. This has the same construction
as the parameter and bounds definitions:
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STP identifier = rhs

where the right hand side can again be either a list or an expression.
To assign the starting values using a list, the following construction is used:

LBDS variable = { number, number, ... , number }
where the variable is already defined. If the following declarations are made:

SET I = |1:5]
SET J = |1:6]|
XVAR {x(I,D), r, y(I,0)}

the starting values for x(I,J) can be assigned by writing

-

STP x(1,J) = { 7.0, 3.0, 6.2, 3.9, 5.1, 3
2.3, 1.1, 4.7, 3.6, 2.1, 2

0.9, 2.9, 3.6, 8.2, 4.3, 3.

2

2

-

N © NN

-
—_— .

3.7, 2.9, 2.7, 2.9, 1.2,
1.3, 3.5, 4.2, 3.9, 3.7,

To assign the starting values using an expression, the construction
STP variable = expression

where the variable has already been defined. If the scalar variable ¢ is to be declared and
assigned a starting point of 5¢ where ¢ is a parameter, the following notation can be used:

XVAR {t}
STP t = b*c

For variable arrays, enumerations can be used with expressions to assign starting points for
all the variables in the array. For the variable declaration

SET I

|1:5]

SET J

[1:6]
XVAR {b(I),v(I,D}

The starting points for v(I,J) can be specified by
STP v(I,J) = <i E Il <j E JI t(i,j) ? s(i,j) > >

where t(i,j) and s(i,j) are defined parameters with appropriate sizes.

All of the statements listed above are concerned with placing restrictions on the values of
the variables or with selecting a starting value of the variables. They do not assign values to
the variables as this will be handled by the solution algorithm.
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4.4.7 Initialization for Dynamic Systems

MINOPT is capable of handling dynamic problems where the dynamic portion of the prob-
lem is described by a system of differential and algebraic equations (DAEs). In order to solve
this system of DAEs, the initial conditions must be specified. MINOPT has a number of key-
words which are used to specify the initial conditions for the DAEs. The use of ZINC and STP
have already been examined as ways to define the initial conditions for the z-variables. How-
ever, since the dynamic system is described by DAEs, a set of z-variables must be selected to
determine the initial conditions for the DAE system. These are the variables whose values will
be fixed in order to solve for the remaining values of the z-variables.

The dynamic model is represented using DAEs:

f1(21(t), z1(t), z2(t), z,y,t) =0
Fa(21(t), 22(t), z,y,t) = 0
z1(to) = 21

za(to) = 29

where f, represents the n differential equations, f, represents the m dynamic algebraic equa-
tions, 21(t) is a vector of n dynamic variables whose time derivatives, 21(t), appear explicitly,
and z9(t) is a vector of m dynamic variables whose time derivatives do not appear explicitly.
The variables & and y are parameters for the DAE system and variables for the optimization
where @ is a vector of p time invariant continuous variables and y is a vector of ¢ variables.
Time ¢ is the independent variable for the DAE system and % is the fixed initial time. The
initial condition for the above system is determined by specifying n of the 2n 4+ m variables
z1(to), 21(t0), 22(tg). For DAE systems with index 0 or 1, the remaining n + m values can be
determined.

Thus, although there are (n + m) z-variables, only n initial conditions must be specified.
These n variables can be selected from the 2n + m variables z1(to), 21(to), 22(%o)-

To specify which variables are to be fixed to determine the initial condition, the keyword
ISPEC is used in MINOPT. This is used to provide a list of z-variables whose values are fixed to
those assigned by ZINC or STP in order to determine the initial condition. To illustrate consider
a DAE system with 2 differential equations and one algebraic equation. This system has 3
dynamic variables (z-variables), 2 whose derivatives appear explicitly in the model. To specify
the initial condition, 2 values of the variables must be set. The three variables are 1, 2, and
u and are declared by

ZVAR {x1,x2,u}

Recall that this also automatically defines the time derivatives of the z-variables by appending
a prime ’ to the names of the variables. Thus, x1°, x2?, and u’ are declared as variables. If
x1 and x2 are the two variables whose derivatives appear explicitly in the model (u’ is never
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used), then two of the five variables x1, x2, u, x1’ and x2’ must be selected to determine the
initial condition. The variables that are selected are provided as a list for the ISPEC keyword.

For example, if x1 and x2 are to be used to specify the initial condition, the statement would
be

ISPE {x1,x2}
and to specify the initial conditions, the statement would be
ZINC {1,0,0}

Even though only two initial conditions are necessary, ZINC must provide three values since
there are three z-variables. These two statements together indicate that the variables x1 and
x2 are to be used to determine the initial condition for the DAFE system and that their values
are to be fixed at 1 and 0O respectively. Solving for the initial condition will determine the
remaining values for u, x1’ and x2’. The value of 0 provided for u as the third element in the
ZINC statement is not fixed. However, it is used as a starting point for the solution of the initial
condition.

If the values of the derivatives x1’ and x2’ are to be used to specify the initial condition,
then the following statements are used:

ISPE {x1’,x2°}
ZINC {1,0,0,0,0,0}

This states that the values x1° and x2’ are fixed to determine the initial condition of the DAE
system. In this case, the list for ZINC has six values. The first 3 correspond the the algebraic
values of the z-variables x1, x2, and u. The second three correspond to the time derivatives of
the z-variables x1?, x2?, and u’. (Note that a value for u’ is provided even though it will not
appear in the model.) Thus, the initial condition will be determined by fixing the values of x1°
and x2’ to 0 and solving for the remaining values, x1, x2, and u. (Note that in the model, u’
could be used to specify the initial condition. Since this is a purely algebraic variable, an error
will occur when trying to determine the initial condition.)

In the modeling of dynamic problems, there often occur situations when z-variables used to
specify the initial condition depend on the values of the z-variables. In these cases, the initial
conditions have the form

z2(tg) =z

where z(tg) is the z-variable whose initial condition is to be set to the value of the z-variable z.
Since « is a variable, its value will change throughout the solution algorithm and thus the value
for z(tg) can not be specified. In order to address this situation, MINOPT used two keywords,
ICS and ICP to specify the states (z-variables) whose initial conditions depend on z-variables
and the corresponding parameters (z-variables). Consider the same dynamic system as before.
Now consider that the problem also has the following z-variables

XVAR {p1,p2}
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If the initial conditions of the DAE system are

zl =pl

z2 =p2
this would be written as

ISPEC {x1,x2}
ICS {x1,x2}

ICP {p1,p2}

This indicates that x1 and x2 are used to determine the initial condition of the DAE system
and that their values are to be fixed to the values of the z-variables p1 and p2 to determine the
values of the remaining variables (u, x1’ and x2?).

There is a one to one correspondence between the list for ICS and ICP in that the z-variables
listed in ICS correspond directly to the z-variables listed in ICP. Each list must have the same
number of elements.

4.5 The Model Section

The model section is where the objective function and constraints for the model are provided.
The section begins with MODEL {{ and ends with }} and contains statements which define the
mathematical model.

All of the parameters and variables that were defined in the declarations section are now
used to assemble the model for the mathematical program. All of the problem constraints are
written along with the objective function using the MINOPT modeling language.

The objective function is defined using the keyword MIN (or MAX) and has the following
construction: MIN: expression; Where the expression is representation of the objective funtion
for the model. The MIN keyword indicates that the objective is to be minimized, (while the MAX
keyword indicates that the objective is to be maximized.)

The constraints for the problem have the form:

identifier: expression relation expression;

The identifier is the name of the constraint which is used to identify the constraint for the
marginals and for problem output. The expressions are the mathematical representations of
the left hand side and right hand side of the constraint. These expressions are formulated using
all of the rules for the constraints which have been described earlier. The one exception is that
an enumeration enclosed by the single < and > can not be used in the constraint expressions.
A different construction is used to enumerate a list of constraints. An enumerated constraint is
formed by using a comma separated list of index in set constructs. This syntax is described by

identifier(index E set, index E set, ..., index E set): expression relation expression;
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The index E set constructs activate the index for use in the following index E set constructs as
well as in the left hand side and right hand side expressions.

The relation each expression can be one of <, >, or =. These are represent in the MINOPT
modeling language as =1= for less than or equal to (<), =e=, for equality (=) and =g= for greater
than or equal to (>).

The model section deals with the symbolic representation of the mathematical model using
the MINOPT modeling language. The bulk of the work in creating this section deals with
converting the mathematical representation of the problem into the MINOPT language.

The mathematical form of the objective function

mina + pb? + exp(c)
is represented in the MINOPT language by the statement
MIN: a + p*b~2 + explc];

Consider the following objective function in mathematical form:

min'Y" g

el
The corresponding MINOPT statement is
MIN: <<i E I| q(i)*p(i) >>;

Consider the constraint

> pi <100

i€l
This is written in MINOPT as
constraint: <<i E I| p{(i) =1= 100

The name constraint is just an identifier used to name the constraint required in any future
references.

To illustrate the use of the enumeration for a constraint, consider the following mathematical
form of a constraint;:

gipi>1 Viel
This is written in MINOPT as
product(i E I): q(i)*p(i) =g= 1;

More complex statements involving both the enumeration and summation can be formed
such as

linear(i E I): <<k E K| feed(i,k) >> =e= 1;

Expressions can appear on both sides of the expression such as in
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fuel(f E F): z(f) =g= <<g E G| <<k E K| a(g,f,k)*x(g,f) "k >> >>;
Multiple enumerations can occur such as in
111 EI, j E J): v(j) =g= logls(i,j)] + b(i);

Since the index E set expression activates the index, the index can be used anywhere in the
constraint defnintion after it is activated. The scope of the index extends to the end of the
constraint. A constraint that makes use of this is

ccapl(j E J, 1 E IJ(j), n E N): b(i,j,n) =1= capmax(j)*wv(i,n);

where the index j is used to select the set IJ(j).
Qualifications can be used in the constraint enumerations by following the index E set
expression with an ampersand & as in

ccapcl(j E J, i E I & capmax(i,j) !'= 0.0 &% i<=3, n E N): b(i,j,n) =e=
capmax(i,j)*(tf(i,j,n) - ts(i,j,n));

The following is an example of a complete constraint section:

MODEL {{
MIN: 250%<<j E J| exp[n(j)+0.6xv(j)I>>;
ldvj(i EI, j E J): v(j) - b(i) =g= 1lns(i,j);
1dct(i EI, j E J): n(j) + a(i) =g= 1nt(i,j);
nhc: <<i E I| gq(i)*expla(i)-b(i)]>> =1= 6000;
ldnp(j E J): <<k E K| 1nk(k)*y(k,j)>> - n(j) =e= 0;
ldsy(j E J): <<k E K| y(k,j)>> =e= 1;

}}

Dynamic models The TIME keyword is important for the specification of the point con-
straints. Point constraints have a specific input which is reflected in the name of the constraint:

name [instance] : expression relation rhs;

The instance corresponds to the number of the element in the TIME list. For example, if the
TIME is specified as

TIME {0, 1.5, 3, 5, 10};
five instances are specified and numbered 0 through 4. Thus, a constraint of the form
conl[3]: z(31) =1= 0.95;

declares that the dynamic variable z(31) should be less than 0.95 at time instance 3 (the end
of the 3rd time interval). This corresponds to the time 5. Note that the 3 corresponds to a
time instance and not an actual time.

The dynamic constraints are defined in the same way as the other constraints. The difference
in these constraints is that the derivative of a dynamic variable is needed. The derivative of a
dynamic variable is denoted by using a prime or single quote (“? ”). For example the equation

d21
— — L1222 — X221
dt

would be represented by
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2z’ (1) - x(1)*z(2) + x(2)*z(1) =e= 0;

Note that the prime comes before the subscript. Also be aware that all of the dynamic con-
straints must be equality constraints. If a dynamic constraint is not an equality, MINOPT will
produce a warning to this effect and proceed with the constraint as equality. Using the relation
=E= has no effect and is the same as =e=.

MINOPT also recognizes ¢t as the variable for time. This allows for time varying systems
where time appears explicitly in the problem formulation. Thus, when using dynamic systems,
the user should not use the identifier ¢ for any other purpose.

The integration tolerance is specified indirectly through the FTOL option. The value of the
integration tolerance is set to 100 times the value of FTOL so that numerical problems will not
arise.

Row Types and Problem Types MINOPT reads in the problemn and determines the type
of each constraint and ultimately the problem type. It will determine which constraints are
linear, which are nonlinear, and which are dynamic. As specified by the user, MINOPT also
clagsifies the dual constraints and the constraints which are not to be relaxed in the infeasible
primal. (The default is that all constraints are relaxed.)

After MINOPT has read the entire file, it knows all of the necessary information regarding
the variables and constraints and will then determine the problem type. It will determine the
form of the primal and master problems, and also determine the separability of the problem.
With this information, MINOPT will determine the appropriate algorithm to use and verify
that a selected algorithm can be used to solve the problem.

4.6 The Options Section

One of the features of MINOPT is its extensive list of options which allow the user to fine
tune the algorithms and set the parameters for the external solvers. The options section itself
is optional and does not need to exist in the input file. It can also appear at any point within
the input file as long as it is not within the declarations section or the model section.

The option section begins with OPTIONS {{ and ends with }}. There are two types of
options: “yes/no” options and parameter options. The “yes/no” options are binary options
that are off by default and turned on by specifying the option. The statements for these type
of options have the form:

option;

Where optionis the name of the “yes/no” option that is to be used. Parameter options are
options which set the value of a specific parameter. The value of the parameter can be either a
number or a string enclosed within quotations (" "). The parameter options are set by using
the syntax:

option = "string";

or

option = number;
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The value of the string or number depends of the option being set.

The options and their default values are listed below. The default values for many of the
double precision options depends on the value of the precision of the machine being used, e.
(The value of € can generally be found in the file /usr/include/float .h and for many machines
is approximately 2.22 x 10716.)

The “yes/no” options:

(These can be specified from the command line using the -o option followed by the option
name.)

e WRITEINPUT Copy the input file to the log file.

e DUMP Write the parser version of the model to the file <input>.dump. (This can be
spceified from the command line using the -d option.)

e DUALOPT Solve the LP problem using the dual simplex method if it is available with the
solver (CPLEX).

e NETOPT Solve the LP problem using the network optimizer if it is available (CPLEX).

e WRITELP Write the LP problems and subproblems to an output file. (This can be specified
from the command line using the -w option.)

e WRITEMPS Write the LP problems and subproblems to an output file in MPS format.

e JUSTPRIMAL Solve the first primal problem and then exit. (This can be spcified from the
comman line using the -j option.)

e DORELAX Solve the relaxed problem and exit. The integrality constraints on the y-variables
are relaxed and the problem is solved as an NLP. (This can be specified from the command
line using the -r option.)

e AUTOQINIT Solve the relaxed problem and use the solution to determine the starting val-
ues for the y-variables. If the solution of the relaxed problem yields integer values for
the integer variables, the solution is terminated. Otherwise, the integer y-variables are
rounded to the nearest integer and used as the starting point for the y-variables. (This
can be specified from the command line using the -a option.)

e RANDOMX Find a random values for the starting values of the z-variables based on the
bounds for the variables. (Make sure all of the z-variables are bounded when using this
option. Large values of these variables may result causing numerical problems with the
NLP solver.)

e RANDOMY Find a random values for the starting values of the y-variables based on the
bounds for the variables.

e INTCUT Incorporate an integer cut into the GBD master problem. An integer cut is
included in the outer approximation by default. The integer cut incorporated into the



4 MINOPT: The Modeling Language 43

master problem has the form

> oyi— X y <|BF-1
jEBF JENF

BF = {jlyf =1}
NF = {jly¥ = 0}
keF

Only the integer combinations of the y-variables which yield feasible primal solutions need
to be included because the infeasible GBD cuts have already eliminated the previous
combinations of the y-variables which were found to yield no feasible solution for the
primal problem. The integer cut can only be performed on binary variables and not on
integer variables in general. If the problem contains integer variables, the INTCUT option
will be ignored.

e IPRIMAL2 Use an alternative form to solve the infeasible primal problem. This form uses
a single scalar o rather than the vectors ot and a~. The alternative formulation is the

following:
min «
TET,o
s.t. gz, y") <a
h(z,y*) =z
a>z

This formulation does not always yield a feasible solution since the equality constraints
are not relaxed. This reformulation can, however, give better lower bounds on GBD
master problems in some cases.

e XYMASTER Solve the GBD master problem in terms of both the z and y-variables rather
than in the y-variables alone. Constraints which are linear and separable in both the z
and y-variables are included in the master problem. This may help obtain a tighter lower
bound from the master problem.

e RFIX Specify that after each infeasible primal problem is solved, the continuous relaxation
problem (with only binary variables being fixed) are used to find a feasible solution in
the joint x and y-variable space. This is particularly useful when the y-variables consist
of both discrete and continuous variables, and is nonconvex in the joint z and y-variable
space. This is a heuristic search.

e RFIXBOTH Perform the same options as in RFIX for both feasible and infeasible primal
problems. For feasible primal problem, this may significantly improve the quality of the
solutions.

e UPDATEX Update the starting values of the z-variables for the primal problems to the
solution of the last primal problem.

e SIMULATE Simulate the dynamic part of the problem and then exit. This is usful for
generating output for certain values of the x and y-variables.
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RFP When solving an MINLP problem, replace the first primal iteration by the relaxed
problem and use its solution in the master problem.

The integer options:

MAXIT Set the maximum number of primal/master iterations for the MINLP routines.
(This can be specified from the command line using the -i option followed by an integer.)
(default value = 100.)

RETRY Specify the number of times to retry solving the NLPs if an error occurs.

PLEVEL Set the print level for the amount of information printed to the log file. (This can
be specified from the command line using the -p option followed by an integer.)

SLEVEL Set the summary level for the amount of information printed to the screen. (This
can be specified from the command line using the -s option followed by an integer.)

IPRINT Set the print level for the solver of the dynamic part of the problem. Should be
a value between 0 (no output) and 9 (most output). (default value = 0)

NSTEPS Set the number of steps to be used in the output for the dynamic system. (default
value = 500)

The double options:

AMIPGAP Set the absolute MILP gap tolerance.

RMIPGAP Set the relative MILP gap tolerance.

INTTOL Set the integrality tolerance for MILP problems.

FTOL Set the feasibility tolerance for the subproblem solvers. (default value = 1/¢)

OTOL Set the optimality tolerance for the subproblem solvers. (default value = /ee’8)
ITOL Set the integration tolerance for the dynamic solvers. (default value = 0.01x FTOL.)

SSTOL Set the tolerance level for the initialization of the DAE system. (default value

= Ve)

EVTOL Set the event tolerance for detecting discontinuities in the dynamic problems. (de-
fault value = /¢)

MAXSTEP Set the max step size for the integrator. (default: automatic.)
INITSTEP Set the initial step size for the integrator. (defualt: automatic.)

EPSR Set the relative tolerance for the convergence of the MINLP algorithms. (default

value = /¢)

EPSA Set the absolute tolerance for the convergence of the MINLP algorithms. (default
value = /ec’®)
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BALLT When RFIX is specified, this option specifies that only when the solution of the
infeagible primal problem is less than this BALLT tolerance that the continuous relaxation
problem heuristic search mentioned above is invoked. (default value = 120)

BALLR When RFIX is specified, this specifies that the problem is solved within the vicinity
of the previous solutions from the infeasible primal problem. If XU and X are the
original upper and lower bound of an z-variable, which takes a value of £* in the solution
of the infeasible primal problems, the new bounds are calculated by

(XYY = min(XY,z* + BALLR(XY — x1))
(X% = maz(X*, z* — BALLR(XY — X))

(default value = 1.0)

BALLS Since large value of BALLR could lead to an infinite loop, when the continuous
relaxation search repeatedly finds the same solution. The value of BALLR is decreased by
a factor of BALLS at every iteration. (default value = 1.0)

The string options:

LOGFILE Specify a name for the log file. The default name for the log file is the name of
the input file with a “.log” extension instead of a “.dat” extension.

DFORM Specify the precision of the solutions to be printed. The corresponding string gives
print format recognized by C language. The default is “%-12.51g”. Here ‘%’ sign and
‘lg’ are required because the number to be printed is in double precision. ‘-’ denotes left
justified output, ‘12’ denotes the width of the number, and ’.5’ denotes number of decimal
points. For more information on the print format, consult any C language manual such
as Kernighan and Ritchie (1988).

LP Set the solver for LP problems and subproblems. Valid arguments for this option are
CPLEX, MINOS, and NPSOL for the corresponding solvers are CPLEX4.0, MINOS5.4, and
LSSOL. (This can be specified from the command line using the -L option followed by
the name of the solver.)

MIP Set the solver for MILP problems and subproblems. The only valid argument for
this option id CPLEX since CPLEX4.0 is currently the only available solver for this type
of problem. (This can be specified from the command line using the -I option followed
by the name of the solver.)

NLP Set the solver for NLP problems and subproblems. The valid arguments for this option
are MINOS, NPSOL, and SNOPT for the corresponding solvers MINOS5.4, NPSOL4.2, and
SNOPT5.0. (This can be specified from the command line using the -N option followed
by the name of the solver.)

MINLP Set the MINLP solver. Valid arguments for this option are GBD, OAER, OAERAP,
and GCD. These correspond to the MINLP algorithms. (This can be specified from the
command line using the -M option followed by the name of the solver.)
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e DYN Set the integrator for the problem. The available solvers for the dynamic problems
are DASOLV and DASSL. (This can be specified from the command line using the -D option
followed by the name of the solver.)

External Solver Options The options for the external solvers can be set by using the
name of the solver as the option. These options are parameter options where the parameter
is a string corresponding to the appropriate option for the solver. For the appropriate solver
options, consult the manual for that particular solver.

For MINOS, SNOPT, and NPSOL, the options consist of the name of the option followed
by the parameter value. For example, to set the “Iterations Limit” option in MINOS to a value
of 100000, the following option statement is used in MINOPT:

MINOS = "Iterations Limit 100000";
Similarly this option is set in SNOPT by using
SNOPT = "Iterations Limit 100000";

Note that MINOPT does not attempt to determine the validity of these options and sends them
directly to the solver. The solver will then determine whether or not the option is valid.

For CPLEX, the options are specified by using the name of the option followed by the
parameter value. The name of the option can be found in the CPLEX manual and the name
used for MINOPT is the name of the option without the preceding “CPX_PARAM_". For
example, to set the node selection strategy for CPLEX (CPX_PARAM_NODESEL) to be the
best-estimate search, the following option statement is used

CPLEX = "NODESEL 2";
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5 Output

As mentioned in the Usage section, MINOPT produces an output file with the .1log exten-
sion. This contains the solution of each of the subproblems and the progress of the algorithm in
terms of the bounds. MINOPT also includes options for generating additional file output and
output to the screen. This is useful when the user wants to see the progress of the algorithm
as it is occurring and for debugging.

The two key options for specifying the amount of output are the -p and -s options. The -p
option can be used to set the print levels for the solvers. Specifyin a value of 4 or greater will
cause the NLP solvers to write their output to the FORTRAN file number 9 (fort.9, ftn9,
etc). The amount of output to these files is controller by the NLP solver. The command line
option -g is similar to -p with the exception that the output is sent to the screen instead of to
a file. This can be used to see the progress of the solution of a particular subproblem.

Another useful option that provides output useful for debugging is the -d option. This
will cause MINOPT to print the problem to the file <input>.dump. This output contains the
problem information as MINOPT views it.

For dynamic problems, additional files, <input>.statesl, <input>.states2, etc. are gen-
erated. These files contain the time output of the dynamic variables. Each file has the time
as the first column and the values of the states for each time in the following columns. The
states file <input>.statesl contatins the values for the first 50 z-variables<input>.states2
the values for the second 50, etc. The columns are in the same order as the z-variables are
given in the input file. This makes it easy to import the time responses of the dynamic system
into spreadsheets or to plot them using using software packages such as GNUPLOT or xmgr.
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6 Simple Illustrations

An excellent way to really get a feeling for the MINOPT modeling language is to examine
existing input files. In this section, some simple examples will be used to illustrate some of
the key points about the modeling language. One simple illustrations will be given for each of
the problem types: LP, MILP, NLP, MINLP, NLP/DAE, Optimal Control, and MINLP /DAE.
All of these examples are taken from the CACHE Process Design case Studies (Morari and
Grossmann, 1991). The filename in parentheses after the problem name is the name if the file
in the CACHE directory of the MINOPT model library.

6.1 Linear Program (plan.dat)

This example is a model for production planning in multipurpose batch plants. The general
idea is to determine the optimal production routes and their duration for each product. The sets
in the problem are the products P, the routes R, and the campaigns C. The scalar paramters
are the number of products to be produced nec, the total available plant operation time A, the
total number of possible campaigns nc. The other parameters are the number of routes for each
product nrp, Vp € P, The profits for each product profit, Vp € P, the batch sizes of routes
byr Vp € P,r € R, the imes requires to produce one batch for routes ct,, Vp € P,r € R, and
the incidence matrix for the product routes in the campaigns rcy,. Vp € P,r € R,c € C. The
variables are Total production times assigned to routes t,, Vp € P,r € R, the total amounts of
products produced g, Vp € P, and the lengths of campaigns cl. Vc € C.

The model for the problem is

max > profit,gy
peP
nrp;

> cortpr/ctyr  Vp € P(p < np)
=1

r—

subject to ¢(p)

nc
dode<h

c=1

nc
> reprelle >ty Yp<mnp Vr <mnrpp
c=1

The MINOPT input file is shown below. Note that in order to do the constructions such as
Vp € P(p < np) the qualification symbol & is used: p E P & (p<=np).

$*************************************************************
$ Production Planning in Multipurpose Batch Plants

$ Iftekhar A. Karimi

$

$ CACHE Process Design Case Studies

$ M. Morari and I.E. Grossmann

$

$ Optimal Solution: -454.249
$*************************************************************

DECLARATION {{
INDEX {p,r,rr,c};
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SET P
SET R
SET C

[1:3]; # Products
[1:3]; # Routes
= |1:20]; # Campaigns

PARA np = {3}; # Number of products to be produced
PARA h = {700}; # Total available plant operation time [h]

PARA nc

{9}; # Total number of possible campaigns

#Number of routes for products
PARA nrp(P) = {2, 2, 3};

#Profits of products [$/kgl

PARA

profit(P) = {1.0, 0.8, 0.5};

#Batch sizes of routes [Mg]

PARA

b(P,R) = {2.5 , 2.0, O,
1.67, 1.33, 0,
0.5, 1.0, 1.53};

#Times requires to produce one batch for routes [h]

PARA

ct(P,R) = {6.2, 5.4, 1e-10,
4.8, 4.0, 1le-10,
3.2, 4.9, 6.43};

#Incidence matrix for product routes in campaigns

3}

PARA
PARA
PARA
PARA
PARA
PARA
PARA
PARA
PARA
PARA

XVAR

POSI

LBDS
UBDS

rc(P,R,C) =<p EP| <r ER| <c EC| 0 > > >;

rc(1,1,1) = 1; PARA rc(1,2,1) = 1; PARA rc(3,1,1) = 1;
rc(1,1,2) = 1; PARA rc(2,2,2) = 1; PARA rc(3,1,2) = 1;
rc(1,1,3) = 1; PARA rc(3,1,3) = 1; PARA rc(3,2,3) = 1;
rc(1,2,4) = 1; PARA rc(2,1,4) = 1; PARA rc(3,1,4) = 1;
rc(1,2,5) = 1; PARA rc(3,1,5) = 1; PARA rc(3,3,5) = 1;
rc(2,1,6) = 1; PARA rc(2,2,6) = 1; PARA rc(3,1,6) = 1;
rc(2,1,7) = 1; PARA rc(3,1,7) = 1; PARA rc(3,2,7) = 1;
rc(2,2,8) = 1; PARA rc(3,1,8) = 1; PARA rc(3,3,8) =1;
rc(3,1,9) = 1; PARA rc(3,2,9) = 1; PARA rc(3,3,9) = 1;
{t(P,R), # Total production times assigned to routes [h]

q(P), # Total amounts of products produced [Mg]
c1(C) # Lengths of Campaigns [h]

};

{t(P,R), q(P), c1(C)};

q(1) = 100; LBDS q(2) = 250; LBDS q(3) = 150;
q(1) = 150; UBDS q(2) = 300; UBDS q(3) = 200;
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MODEL {{
MIN: <<p E P & (p<=np)| -1xprofit(p)*q(p) >>;

production(p E P & (p<=np)):
q(p) =e= <<r E R & (r<=nrp(r))| blp,r)*t(p,r)/ct(p,r) >>;
sumcl: <<c E C & (c<=nc)| cl{c) >> =1= h;
hconst(p E P & (p<=np), r ER & (r<=nrp(p))):
<<c E C & (c<=nc)| rc(p,r,c)*cl(c) >> =g= t(p,r);
1>

When MINOPT solves the problem, it displays the following statistics:

CPLEX Solving Primal Problem.
CPLEX status = 1
CPLEX LP optimal solution found.

Optimal solution found.

Objective function: -454.249
Computation time: 0.05
Total CPU time: 0.1

MINOPT also generates an output file with the optimal values of the variables. The output
file named plan.log is the following:

MINOPT

Version 3.1, Aug 14 1998

C. A. Schweiger and C. A. Floudas
Department of Chemical Engineering
Princeton University

Princeton, NJ 08544-5263

Copyright (c) 1998 Princeton University
A1l Rights Reserved

Send bugs, comments, and suggestions to minopt@titan.princeton.edu

System Information
cronus 9000/780 HP-UX B.10.20 A

OPTIMAL SOLUTION FOUND.
PROBLEM: LP
SOLVER: CPLEX
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STATUS: Optimal
SOLVERSTATUS: 1

Generation time: 0.01
Solution time: 0.01
Total time: 0.02

Number of iterations: 15

Objective function value

Objective: -454.2489

Optimal X Variables

t(1,1): 372.0000 t(1,2): 0.000000
t(1,3): 0.000000 t(2,1): 154.6667
t(2,2): 700.0000 t(2,3): 0.000000
t(3,1): 700.0000 t(3,2): 0.000000
t(3,3): 173.3333 q(1): 150.0000
q(2): 286.5611 q(3): 150.0000
cl(1): 0.000000 c1(2): 372.0000
cl(3): 0.000000 c1(4): 0.000000
cl(5): 0.000000 cl(6): 154.6667
cl(7): 0.000000 cl1(8): 173.3333
cl(9): 0.000000 c1(10): 0.000000
cl(11): 0.000000 c1(12): 0.000000
c1(13): 0.000000 c1(14): 0.000000
c1(15): 0.000000 c1(16): 0.000000
c1(17): 0.000000 c1(18): 0.000000
c1(19): 0.000000 c1(20): 0.000000

6.2 Mixed-Integer Linear Program (complex.dat)

The following example is simple in that no sets or parameters are used. The problem is
the design of a chemical complex which can be manufactured using different processes. The
continuous variables are

variable description

PA purchases of A [tons/hr]

PB purchases of B [tons/hr]

SC sales of C [tons/hr]

BI production rate of B in process I [tons/hr]
BII consumption rate of B in process II [tons/hr]

BIIT consumption rate of B in process III [tons/hr]
CII production rate of B in process II [tons/hr]
CIIT production rate of B in process III [tons/hr]
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The binary variables are

variable description

YI whether or not process I is selected
YII whether or not process I is selected
YIII whether or not process I is selected

The mass balance equations for chemicals B and C are

Br + P = Brr + Brrr;

Crr+Crr=Sc
The material balances around each process are

Br =0.9P4

Crr = 0.82By;

The logical constraints are

Py <16Y7

By < (10/0.82)Y7;

Brr < (10/0.95)Y[U

Yir+Yr <1

The objective is to maximize the profit defined as sales revenu minus the investment and
operating costs and the cost of the raw materials:

max 1800S¢ — (IOOOY[ + 250P4 + 1500 * Y77 + 400Br + 2000Y771 + 5503[[[)
—b00P4 — 950Pg

The MINOPT input file is the following:

$*************************************************************
$ Design of a Chemical Complex

$ Nikolaos V. Sahinidis and Ignacio E. Grossmann

$

$ CACHE Process Design Case Studies

$ M. Morari and I.E. Grossmann

$
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$ Optimal Solution: -459.35
$*************************************************************

$

DECLARATION {{

XVAR {PA, #purchases of A [tons/hr]
PB, #purchases of B [tons/hr]
SC, #sales of C [tons/hr]
BI, #production rate of B in process I [tons/hr]
BII, #consumption rate of B in process II [tons/hr]
BIII, #consumption rate of B in process III [tons/hr]
CII, #production rate of B in process II [tons/hr]
CIII #production rate of B in process III [tons/hr]
};

XVAR {YT, #whether or not process I is selected
YITI, #whether or not process I is selected
YITII #whether or not process I is selected
};

BINA {YI, YII, YIII};
POSI {PA, PB, SC, BI, BII, BIII, CII, CIII};
UBDS SC = {10};

3}

MODEL {{

MIN: 1000*%YI  + 250%PA
+ 1500*%YII + 400*BII
+ 2000*YIII + 550*BIII
+ 500*PA + 950*PB

1800%*3C;

#mass balance for chemicals B and C

Bmassbal: BI + PB - BII - BIII =e= 0;
Cmassbal: CII + CIII - SC =e= O;

#balances around processes I, II, and IIT

Ibal: BI =e= 0.9%PA;
IIbal: CII =e= 0.82%BII;
IITbal: CIII =e= 0.95%BIII;

#logical constraints
logl: PA =1= 16%YI;
log2: BII =1= (10/0.82)*YII;
log3: BIII =1= (10/0.95)*YIII;

log4: YII + YIITI =1= 1;
1}

The output file, complex.log, is the following:
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MINOPT

Version 3.1, Aug 14 1998

C. A. Schweiger and C. A. Floudas
Department of Chemical Engineering

Princeton University
Princeton, NJ 08544-5263

Copyright (c) 1998 Princeton University

A1l Rights Reserved

Send bugs, comments, and suggestions to minopt@titan.princeton.edu

System Information

cronus 9000/780 HP-UX B.10.20 A

OPTIMAL SOLUTION FOUND.
PROBLEM: MILP
SOLVER: CPLEX
STATUS: Optimal
SOLVERSTATUS: 101

Generation time:
Solution time:

Total time:

Number of iterations:
Number of nodes:

N O OO
o O O
N = =

Objective function value

Objective:

-459.3496

Optimal X Variables

PA:
SC:
BII:
CII:
YI:
YIII:

13.55014
10.00000
12.19512
10.00000
1.000000
0.000000

PB:
BI:
BIII:
CIII:
YITI:

0.000000
12.19512
0.000000
0.000000
1.000000
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6.3 Nonlinear Program (fueloil.dat)

This example considers the power generation via fuel oil. The problem has 3 sets: the set of
power generators, GG, the set of fuels, F', and the set for the constants in the fuel consumption
equations. The parameters are the coefficients for the fuel consumption equations, a4 rj and
amount of power output required, pey. The variables are

variable description

pg VgeEG Total power output of the generators [MW]

zg,y Vg€ Gf €F Power output of the generators from specific fuels
2z VfeF Total amount of fuel purchased

The equation for the power requirement is

Z Dg > Dreq

geG

The equations for the power generated are

Pg = ng,f Vg e G
feF

The fuel usage equations are

zZf > Z Z ag,f,kx’g“,f VfeF

geGkeK

The objective is to minimize the amount of fuel 1 purchased:
min 21

The MINOPT input file is

$*************************************************************
$ Power Generation via Fuel 0il
$ I. A. Karimi
$
$ CACHE Process Design Case Studies
$ M. Morari and I.E. Grossmann
$
$ Optimal Solution: 4.68089
$*************************************************************
$
DECLARATION {{
INDEX {g,f,k};

SET G = |1:2]; #Power Generators
SET F = |1:2]|; #Fuels
SET K = |0:2|; #Constants in Fuel Consumption Equations

#Coefficients in the fuel consumption equations
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PARA a(G,F,K) = {1.4609, 0.15186, 0.001450,
1.5742, 0.16310, 0.001358,
0.8008, 0.20310, 0.000916,
0.7266, 0.22560, 0.000778%};

#Total power output required [MW]
PARA preq = 50.0;

XVAR {p(G), #Total power output of the generators [MW]
x(G,F), #Power output of the generators from specific fuels
z(F) #Total amount of fuel purchased

};

POSI {p(G®), x(G,F), z(F)};

LBDS p(G) = {18.0, 14.0};
STP p(G) = {20.0, 20.0};
UBDS p(G) = {30.0, 25.0};
UBDS z(2) = {10.0};

3}

MODEL {{
MIN: z(1);

#Power Requirement
powerl: <<g E G| p(g) >> =g= preq;

#Power generated
power2(g E G): p(g) =e= <<f E F| x(g,f) >>;

#Fuel usage
fuel(f E F): z(f) =g= <<g E G| <<k E K| a(g,f,k)*x(g,f)"k >> >>;
3}

The MINOPT output file, fueloil.log, is the following:

MINOPT

Version 3.0, Jul 16 1998

C. A. Schweiger and C. A. Floudas
Department of Chemical Engineering
Princeton University

Princeton, NJ 08544-5263

Send bugs, comments, and suggestions to carl@titan.princeton.edu
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System Information
titan 9000/730 HP-UX B.10.20 A

OPTIMAL SOLUTION FOUND.
PROBLEM: NLP
SOLVER: MINOS
STATUS: Optimal
SOLVERSTATUS: O

Generation time: O
Solution time: 0.04
Total time: 0.05

Number of iterations: 33

Objective function value

Objective: 4.680890

Optimal X Variables
p(1): 30.00000
x(1,1): 10.11428
x(2,1): 3.561229
z(1): 4.680890

p(2): 20.00000
x(1,2): 19.88572
x(2,2): 16.43877

z(2): 10.00000

6.4 Mixed-Integer Nonlinear Program (batdes.dat)

This example considers the design of multiproduct batch plants. The goal is to determine

the sizes of the units required at each processing stage and the number of units that should be

operating in parallel to minimize the investment cost.

The sets in the problem are the

sets of products, stages, and potential number of parallel

units, I, J, and K respectively. The parameters in the problem are

parameter description

g Yiel demand of product i [kg]
o Vied cost coefficient

Bi Vield cost exponent

Si,j Viel,jeld
ti; Viel,jeld

size factor of product i in stage j [L/kg|
processinig time of product i in stage j [h]

The continuous variables in the problem are
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variable description

vj Vjlind volume of stage j [L]

b; Viel batch size of product i [kg]

tli VielI cycle time of product i [h]

n; Vj € J number of unit in parallel stage j

The binary variables in the problem are the existence of a stage represented by y;; Vk €
K,jeld
The volume requirement in stage 7 € J is

vj > log(s; ;) +b; Viel,jeJ
The cycle time for each product ¢ € [ is

n; +tl; >log(t,;) Yiel,jeld
The constraint for the production time is

> giexp(tl; — b;) < 6000
el

The equation relating number of units to the binary variables is

nj = Z log(k)yk,j Vied
kEK

The requirement that only one choice for parallel units is feasible is

Zyk7j: 1 Vjed
kEK

The objective is to minimize the investment cost:

minZ ajexp(n; + Bv;)
FEJ

$*************************************************************
$ Optimal Design of Multiproduct Batch Plants
$ Ignacio E. Grossmann
$
$ CACHE Process Design Case Studies
$ M. Morari and I.E. Grossmann
$
$ Optimal Solution: 167,428
$*************************************************************
$
DECLARATION {{
INDEX {i,j,k};

SET I
SET J

I1:2]; #products
|1:3]; #stages
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SET K = |1:3]; #potential number of parallel units

PARA q(I)
PARA alpha(J)
PARA beta(J)

{200000, 150000}; #demand of product i [kg]
{250, 500, 340}; #cost coefficient
{0.6, 0.6, 0.6}; #cost exponent

PARA s(1,J) = {2,3,4, #size factor of product
4,6,3}; #i in stage j [L/kg]

PARA t(1,J) = {8,20,4, #processing time of product
10,12,3}; #i in stage j [h]

XVAR {v(J), #volume of stage j [L]
b(I), #batch size of product i [kg]
t1(I), #cycle time of product i [h]

n(J)  #number of unit in parallel stage j

};
LBDS v(J) = <j E Jllog[250] >;
UBDS v(J) = <j E J|log[2500] >;
LBDS b(I) = <i E Illogl(q(i)*max[j E JIt(i,j)])/(3*6000)]>;
UBDS b(I) = <i E Illoglq(i) ? min[j E J[2500/s(i,j)11>;
LBDS t1(I) = <i E I|log[max[j E Jlt(i,j)]1/3.01>;
UBDS t1(I) = <i E I|loglmax[j E JIt(i,j)]11>;
LBDS n(J) = <j E J|0>;
UBDS n(J) = <j E J|log[3]>;

YVAR {y(K,J)}; #existence of stage
BINA {y(K,J)};
3

MODEL {{
MIN: <<j E J| alpha(j)*exp[n(j) + beta(j)*v(j)] >>;

#Volume requirement in stage j
11GL EI, j E J: v(j) =g= logls(i,j)] + b(i);

#Cycle time for each product i
12(i EI, j E J: n(j) + t1(i) =g= loglt(i,j)I;

#Constraint for production time
nl: <<i E I| g(i)*exp[tl(i) - b(i)] >> =1= 6000;

#Relating number of units to 0-1 variables
13(j E J): n(j) =e= <<k E K| loglkl*y(k,j) >>;

#0nly one choice for parallel units is feasible



60 MINOPT Reference Manual

14(j E J): <<k E K| y(k,j) >> =e= 1;
1}

When MINOPT runs this problem, the objective values of the primal and master problems
and the bounds for each iteration are displayed to the screen. The output file for this problem,
batdes.log, displays the solution information for for the primal and master for each iteration.
The solution requires six iteration of GBD and the output file is the following:

MINOPT

Version 3.1, Aug 14 1998

C. A. Schweiger and C. A. Floudas
Department of Chemical Engineering
Princeton University

Princeton, NJ 08544-5263

Copyright (c) 1998 Princeton University
A1l Rights Reserved

Send bugs, comments, and suggestions to minopt@titan.princeton.edu

System Information
cronus 9000/780 HP-UX B.10.20 A

ITERATION #1: PRIMAL PROBLEM

PROBLEM: Infeasible Primal
SOLVER: MINQOS
STATUS: Optimal

SOLVERSTATUS: O
Generation time: O

Solution time: 0.02

Total time: 0.02
Number of iterations: 93

Objective function value

Objective: 0.9400073

Fixed Values of Y Variables
y(1,1): 1.000000 y(1,2): 1.000000
y(1,3): 1.000000 y(2,1): 0.000000
y(2,2): 0.000000 y(2,3): 0.000000
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y(3,1): 0.000000 y(3,2): 0.000000
y(3,3): 0.000000

Optimal Values of X Variables

v(1): 7.418581 v(2): 7.824046
v(3): 7.824046 b(1): 6.437752
b(2): 6.032287 t1(1): 2.238047
t1(2): 2.120264 n(1): 0.000000
n(2): 0.3646431 n(3): 0.000000
Variable Marginals
v(1): 0.000000 v(2): 1.000000
v(3): 1.000000 b(1): 0.000000
b(2): 0.000000 t1(1): 0.000000
t1(2): 3.096601e-11 n(1): 0.000000
n(2): 0.000000 n(3): 0.000000
Constraint Marginals

11(0): 0.000000 11(1): 0.000000
11(2): -1.000000 11(3): 0.000000
11(4): -1.000000 11(5): 0.000000
12(0): 0.000000 12(1): -1.000000
12(2): 0.000000 12(3): -1.000000
12(4): 0.000000 12(5): 0.000000
13(0): 1.000000 13(1): 1.000000
13(2): 0.000000 n1(0): 0.0003333333

ITERATION #1: MASTER PROBLEM

PROBLEM: GBD Master
SOLVER: CPLEX
STATUS: Optimal
SOLVERSTATUS: 101
Generation time: O
Solution time: 0.01
Total time: 0.01
Number of iterations: 2

Objective function value

Objective: -1.000000e+10

Optimal values of Y variables
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y(1,1): 0.
y(1,3): 1.
y(2,2): 0.
y(3,1): 1.
y(3,3): 0.

000000
000000
000000
000000
000000

y(1,2):
y(2,1):
y(2,3):
y(3,2):

1.000000
0.000000
0.000000
0.000000

GBD Iteration #1
GBD Current Objval (
GBD Current Bounds (

-1e+10:0.940007)
-1e+10:1.79769e+308)

GBD Relative Error ++

GBD Absolute Error

1.79769e+308

ITERATION #2: PRIMAL

PROBLEM:

SOLVER:

STATUS:

SOLVERSTATUS:
Generation time:
Solution time:

Total time:

Number of iterations:

Objective function v

Objective: O.

Fixed Values of Y Va

v(1): 7
v(3): 7
b(2): 6.
t1(2): 1
n(2): 0

Variable Marginals

PROBLEM

Infeasible Primal
MINOS

Optimal

0

0

0.04

0.04

138

alue

5803517

riables

.000000
.000000
.000000
.000000
.000000

Variables

.418581
.824046

032287

.904555
.5803517

y(1,2):
y(2,1):
y(2,3):
y(3,2):

v(2):
b(1):
t1(1):
n(1):
n(3):

.000000
.000000
.000000
.000000

O O O

.824046
.437752
.415381
.098612
.000000

O N O N
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v(1): 0.000000 v(2): 0.4029851
v(3): 0.5970149 b(1): 1.657308e-11
b(2): 1.118761e-11 t1(1): -1.657308e-11
t1(2): -1.118761e-11 n(1): 0.000000
n(2): 0.000000 n(3): 0.000000
Constraint Marginals
11(0): 0.000000 11(1): 0.000000
11(2): -0.5970149 11(3): 0.000000
11(4): -0.4029851 11(5): 0.000000
12(0): 0.000000 12(1): -0.5970149
12(2): 0.000000 12(3): 0.000000
12(4): -0.4029851 12(5): 0.000000
13(0): 0.000000 13(1): 1.000000
13(2): 0.000000 n1(0): 0.0001666667
ITERATION #2: MASTER PROBLEM
PROBLEM: GBD Master
SOLVER: CPLEX
STATUS: Optimal
SOLVERSTATUS: 101
Generation time: O
Solution time: O
Total time: O
Number of iteratioms: 2
Objective function value
Objective: -1.000000e+10
Optimal values of Y variables
y(1,1): 1.000000 y(1,2): 0.000000
y(1,3): 1.000000 y(2,1): 0.000000
y(2,2): 0.000000 y(2,3): 0.000000
y(3,1): 0.000000 y(3,2): 1.000000
y(3,3): 0.000000

GBD Iteration #2

GBD Current Objval
GBD Current Bounds
GBD Relative Error
GBD Absolute Error

(-1e+10:0.580352)
(-1e+10:1.79769e+308)
++
1.79769e+308
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ITERATION #3: PRIMAL PROBLEM

PROBLEM: Infeasible Primal
SOLVER: MINQOS
STATUS: Optimal

SOLVERSTATUS: O
Generation time: O

Solution time: 0.03

Total time: 0.03

Number of iterations: 112

Objective function value

Objective: 0.02631731

Fixed Values of Y Variables

y(1,1): 1.000000 y(1,2): 0.000000
y(1,3): 1.000000 y(2,1): 0.000000
y(2,2): 0.000000 y(2,3): 0.000000
y(3,1): 0.000000 y(3,2): 1.000000
y(3,3): 0.000000
Optimal Values of X Variables
v(1): 7.418581 v(2): 7.824046
v(3): 7.824046 b(1): 6.437752
b(2): 6.032287 t1(1): 2.053124
t1(2): 2.276268 n(1): 0.02631731
n(2): 1.098612 n(3): 0.000000
Variable Marginals
v(1): 0.000000 v(2): 0.5844156
v(3): 0.4155844 b(1): 1.230566e-11
b(2): 1.730471e-11 t1(1): -1.230560e-11
t1(2): -1.730471e-11 n(1): 0.000000
n(2): 0.000000 n(3): 0.000000
Constraint Marginals
11(0): 0.000000 11(1): 0.000000
11(2): -0.4155844 11(3): 0.000000
11(4): -0.5844156 11(5): 0.000000
12(0): -0.4155844 12(1): 0.000000

12(2): 0.000000 12(3): -0.5844156
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12(4): 0.000000 12(5): 0.000000
13(0): 1.000000 13(1): 0.000000
13(2): 0.000000 n1(0): 0.0001666667

ITERATION #3: MASTER PROBLEM

PROBLEM: GBD Master
SOLVER: CPLEX
STATUS: Optimal
SOLVERSTATUS: 101
Generation time: O
Solution time: 0.01
Total time: 0.01
Number of iterations: 4

Objective function value

Objective: -1.000000e+10

Optimal values of Y variables

y(1,1): 0.000000 y(1,2): 0.000000
y(1,3): 1.000000 y(2,1): 0.000000
y(2,2): 0.000000 y(2,3): 0.000000
y(3,1): 1.000000 7(3,2): 1.000000
y(3,3): 0.000000

GBD Iteration #3

GBD Current Objval (-1e+10:0.0263173)
GBD Current Bounds (-1le+10:1.79769e+308)
GBD Relative Error ++

GBD Absolute Error 1.79769e+308

ITERATION #4: PRIMAL PROBLEM

PROBLEM: Primal
SOLVER: MINQOS
STATUS: Optimal
SOLVERSTATUS:
Generation time:
Solution time:
Total time:
Number of iteratioms:

N O O O O
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Objective function value

Objective: 181201.7

Fixed Values of Y Variables

y(1,1): 0.000000 y(1,2): 0.000000
y(1,3): 1.000000 y(2,1): 0.000000
y(2,2): 0.000000 y(2,3): 0.000000
y(3,1): 1.000000 y(3,2): 1.000000
y(3,3): 0.000000
Optimal Values of X Variables
v(1): 6.738679 v(2): 7.144144
v(3): 7.431826 b(1): 6.045532
b(2): 5.352385 t1(1): 1.897120
t1(2): 1.386294 n(1): 1.098612
n(2): 1.098612 n(3): 0.000000
Variable Marginals
v(1): 0.000000 v(2): 7.275958e-12
v(3): 0.000000 b(1): 1.055487e-07
b(2): 9.499854e-08 t1(1): -1.055669e-07
t1(2): -9.500218e-08 n(1): 0.000000
n(2): 0.000000 n(3): 0.000000
Constraint Marginals
11(0): 0.000000 11(1): -39594.07
11(2): -17627.50 11(3): -25654.00
11(4): -25845.42 11(5): 0.000000
12(0): 0.000000 12(1): -57221.58
12(2): 0.000000 12(3): 0.000000
12(4): -51499.42 12(5): 0.000000
13(0): -42756.67 13(1): -344.8195
13(2): -29379.17 n1(0): 18.12017

ITERATION #4: MASTER PROBLEM

PROBLEM: GBD Master
SOLVER: CPLEX
STATUS: Optimal
SOLVERSTATUS: 101
Generation time: O
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Solution ti
Total ti
Number of iteratio

me: 0.01
me: 0.01
ns: 11

Number of Nodes: 7

Objective function value

Objective:

Optimal values of
y(1,1):
y(1,3):
y(2,2):
y(3,1):
y(3,3):

163725.5

Y variables
0.000000
1.000000
1.000000
0.000000
0.000000

y(1,2):
y(2,1):
y(2,3):
y(3,2):

0.000000
1.000000
0.000000
0.000000

GBD Iteration #4

GBD Current Objval
GBD Current Bounds
GBD Relative Error
GBD Absolute Error

(163726:181202)

(163726:181202)
0.101332
17476.2

ITERATION #5: PRIM

PROBL
SOLV.

STAT
SOLVERSTAT

Generation time:
Solution time:
Total time:

Number of iteratio

Objective function

Objective:

Fixed Values of Y

AL. PROBLEM

EM: Primal
ER: MINOS
US: Optimal
US: O

w o O O
o O
farGpre

ns:

value

167427.7

Variables

: 0.000000
: 1.000000
: 1.000000
: 0.000000
: 0.000000

y(1,2):
y(2,1):
y(2,3):
y(3,2):

0.000000
1.000000
0.000000
0.000000
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Optimal Values of

X Variables

v(1): 7.159070 v(2): 7.564535
v(3): 7.824046 b(1): 6.437752
b(2): 5.772775 t1(1): 2.302585
t1(2): 1.791759 n(1): 0.6931472
n(2): 0.6931472 n(3): 0.000000
Variable Marginals
v(1): 0.000000 v(2): 0.000000
v(3): 0.000000 b(1): 67011.99
b(2): 6.548362e-11 t1(1): 0.000000
t1(2): -7.275958e-11 n(1): 0.000000
n(2): 0.000000 n(3): 0.000000
Constraint Marginals
11(0): 0.000000 11(1): 0.000000
11(2): -22304.59 11(3): -22009.39
11(4): -56142.62 11(5): 0.000000
12(0): 0.000000 12(1): -89316.58
12(2): 0.000000 12(3): 0.000000
12(4): -78152.01 12(5): 0.000000
13(0): -36682.31 13(1): 73897.55
13(2): -37174.31 n1(0): 27.91143
ITERATION #5: MASTER PROBLEM
PROBLEM: GBD Master
SOLVER: CPLEX
STATUS: Optimal
SOLVERSTATUS: 101
Generation time: O
Solution time: O
Total time: O
Number of iteratioms: 12
Number of Nodes: 6
Objective function value
Objective: 163865.3
Optimal values of Y variables
y(1,1): 0.000000 y(1,2): 0.000000
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y(1,3): 1.
y(2,2): 0.
y(3,1): 0.
y(3,3): 0.

000000 y(2,1): 1.000000
000000 y(2,3): 0.000000
000000 y(3,2): 1.000000
000000

GBD Iteration #5

GBD Current Objval (
GBD Current Bounds (
GBD Relative Error
GBD Absolute Error

163865:167428)
163865:167428)
0.0215056
3562.33

ITERATION #6: PRIMAL

PROBLEM:

SOLVER:

STATUS:

SOLVERSTATUS:
Generation time:
Solution time:

Total time:

Number of iterations:

Objective function v

Objective: 17

PROBLEM

Primal
MINOS
Optimal
0

0

0

0.01

1

alue

8545.2

Fixed Values of Y Variables

y(1,1): 0.000000 y(1,2): 0.000000
y(1,3): 1.000000 y(2,1): 1.000000
y(2,2): 0.000000 y(2,3): 0.000000
y(3,1): 0.000000 y(3,2): 1.000000
y(3,3): 0.000000
Optimal Values of X Variables
v(1): 6.850597 v(2): 7.256062
v(3): 7.543744 b(1): 6.157450
b(2): 5.464303 t1(1): 1.897120
t1(2): 1.609438 n(1): 0.6931472
n(2): 1.098612 n(3): 0.000000
Variable Marginals
v(1): 0.000000 v(2): 0.000000
v(3): 0.000000 b(1): 9.047679e-06
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b(2): 1.017866e-05 t1(1): -9.047690e-06
t1(2): -1.017866e-05 n(1): 0.000000
n(2): 0.000000 n(3): 0.000000
Constraint Marginals
11(0): 0.000000 11(1): -31560.91
11(2): -18851.85 11(3): -18290.56
11(4): -38423.79 11(5): 0.000000
12(0): 0.000000 12(1): -50412.76
12(2): 0.000000 12(3): -56714.36
12(4): 0.000000 12(5): 0.000000
13(0): 26230.08 13(1): -66228.41
13(2): -31419.75 n1(0): 17.85452
ITERATION #6: MASTER PROBLEM
PROBLEM: GBD Master
SOLVER: CPLEX
STATUS: Optimal
SOLVERSTATUS: 101
Generation time: O
Solution time: 0.01
Total time: 0.01
Number of iteratioms: 11
Number of Nodes: 6
Objective function value
Objective: 167427.7
Optimal values of Y variables
y(1,1): 0.000000 y(1,2): 0.000000
y(1,3): 1.000000 y(2,1): 1.000000
y(2,2): 1.000000 y(2,3): 0.000000
y(3,1): 0.000000 y(3,2): 0.000000
y(3,3): 0.000000

GBD Iteration #6

GBD Current Objval
GBD Current Bounds
GBD Relative Error
GBD Absolute Error

(167428:178545)

(167428:167428)
6.95317e-16
-1.16415e-10
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OPTIMAL SOLUTION FOUND AT ITERATION #5

PROBLEM: MINLP
SOLVER: GBD
STATUS: Optimal

SOLVERSTATUS: O

PRIMAL time: 0.15
MASTER time: 0.04
Generation time: O
Solution time: 0.16
Total time: 0.2
Number of iterations: 6

Objective function value

Objective: 167427.7

Optimal X Variables

v(1): 7.159070 v(2): 7.564535
v(3): 7.824046 b(1): 6.437752
b(2): 5.772775 t1(1): 2.302585
t1(2): 1.791759 n(1): 0.6931472
n(2): 0.6931472 n(3): 0.000000
Optimal Y Variables
y(1,1): 0.000000 y(1,2): 0.000000
y(1,3): 1.000000 y(2,1): 1.000000
y(2,2): 1.000000 y(2,3): 0.000000
y(3,1): 0.000000 y(3,2): 0.000000
y(3,3): 0.000000

To switch to OAER, the option -MOAER can be added to the command line. To solve the
relaxed problem and use this to determing the starting values for the y variables, the option
-a can be added to the command line.

6.5 Nonlinear Program with Differential and Algebraic Constraints
(car1l.dat)

To demonstrate using MINOPT to solve dynamic problems, a simple car problem is consid-
ered. The problem is to minimize the the time required to cover a fixed distance. The model
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for this problem is

gfl =T
dt 2
gfg = TU
dt

where z; is the distance, xo is the velocity, u is the acceleration which is the control variable,
and 7 is a scaling factor for the time. The control is parameterized using a simple quadratic
polynomial expression:

u:k1+k2*t+k3*t2

where k1, ko, and k3 are the control parameters. The above three equatations are the DAEs for
the problem. The limits on the integration are 0 and 1 so that the scale factor 7 represents the
total time covered by the integration. This allows for the total time required to vary and to be
optimized. The total distance to be covered is 300 at which the velocity must be 0. These are
represented by point constraints:

z1(tf) = 300

zo(ty) =0
The control is bounded between -2 and 1:
—2<u(t) <1
The objective is to minimize the total time:
min 7
The MINOPT inpout file for this problem is the following:

$*************************************************************
$ Minimum Time to Cover a Fixed Distance

$ L. T. Biegler and I. B. Tjoa

$

$ CACHE Process Design Case Studies

$ M. Morari and I.E. Grossmann

$

$ Optimal Solution: 34.641
$*************************************************************

$

OPTION {{
FTOL = "le-4";
O0TOL = "le-4";

3}
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DECLARATION {{
XVAR {k1,k2,k3,tau};
LBDS tau = {0.1};
XSTP {1,1,1,20};

ZVAR {x1,x2,u};

ISPE {x1,x2};

ZINC {0,0,0};

TIME {0,1.0};
13

MODEL {{
MIN: tau;
dael: x1’ =e= tau*x2;
dae2: x2’ =e= taux*u;
dae3: u =e= k1 + k2%t + k3*t"2;

con[0]: u =1= 1;
con[0]: u =g= -2;
con[1]: u =1= 1;
conf[1]: u =g= -2;

con[1]: x1 =e= 300;
con[1]: x2 =e= 0;
3

The oputput file for this problem, caril.log, not only displays the information for the x
variables but the values of the z variables at the time instances. Since the solution trajectories
for the dynamic problem are often required, these are provided in the file carl.statesl. The
first column of the file is the time and the remaining columns correspond to the z variables.
This facilitates using the file in spreadsheets, or plotting programs such as gnuplot or xmgr.
For example, the velocity profile can be easily plotted in gnuplot using the command plot
"carl.states" u 1:3 w 1.

MINOPT

Version 3.1, Aug 14 1998

C. A. Schweiger and C. A. Floudas
Department of Chemical Engineering
Princeton University

Princeton, NJ 08544-5263

Copyright (c) 1998 Princeton University
A1l Rights Reserved

Send bugs, comments, and suggestions to minopt@titan.princeton.edu

System Information
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cronus 9000/780 HP-UX B.10.20 A

OPTIMAL SOLUTION FOUND.
PROBLEM: NLP
SOLVER: SNOPT
STATUS: Optimal
SOLVERSTATUS: O

Generation time: O
Solution time: 0.15
Total time: 0.16

Number of iterations: 11

Objective function value

Objective: 34.64102

Optimal X Variables

ki: 1.000000 k2: 3.875857e¢-07
k3: -3.000000 tau: 34.64102

Optimal Values of Z Variables at time instances

x1: 0.000000 x2: 0.000000
u: 1.000000 x1’: 0.000000
x2’: 34.64102 u’: 0.000000

time instance 1, time=1

x1: 300.0000 x2: -6.729079e-07
u: -2.000000 x1’: 1.113916e-05
x2’: -69.28203 u’: -6.000000

6.6 Optimal Control Problem (car2.dat)

In this example, the same car problem above is considered. However, the control parame-
terization is changed to be piecewise continuous

u=k(i) + (k¢ + 1) — k() * (¢t —t(2))/(#( + 1) — t(2))]
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where ¢ are the time instances used for the control parameterization. The length of each control
interval is individually scaled using the scale factor ;. The model is

oy _ o
dt—z2
dzy _ o
dt '

u=ki+ (kit1 — k)t — 1)/ (tiv1 — i)

where £ is now the scaled time and k; are the control parameters. The index 7 is the index for
the control interval. The MINOPT interval function (interv) is required for the parts of the
model that change from one interval to the next. It has the form:

interv[ i E CI| expression ]

where CI is the set of control intervals. The expression inside the functions depends on the
index ¢ so that is has a different form in each interval. The MINOPT input file is the following:

$*************************************************************
$ Minimum Time to Cover a Fixed Distance

$ L. T. Biegler and I. B. Tjoa

$

$ CACHE Process Design Case Studies

$ M. Morari and I.E. Grossmann

$

$ Optimal Solution: 30.0
$*************************************************************

$
OPTION {{
EVTOL = "1e-9";
FTOL = "1e-4";
OTOL = "1e-4";
}3
DECLARATION {{
INDEX {i};
SET CP = |0:5|; #Control Points
SET CI = |0:4]|; #control Intervals

XVAR {k(CP), #control parameters
tau(CI) #scaling factor for each interval

};

LBDS tau(CI)
STP tau(CI)
UBDS tau{CI)

<i E CI| 0 >;
<i E CI| 1 >;
<i E CI| 100 >;
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LBDS k(CP) = <i E CP| -2 >;
STP k(CP) = <i E CP| 1 >;
UBDS k(CP) = <i E CP| 1 >;

ZVAR {x1,x2,u};
ISPE {x1,x2};
ZINC {0,0,0};

PARA time(CP) = {0,1,2,3,4,5};
TIME {0,1,2,3,4,5%}

3}

2 2 2 2 2 b

MODEL {{
MIN: <<i E CI| tau(i)>>;
dael: x1’ =e= interv[i E CI| tau(i)*x2];
dae2: x2’ =e= interv[i E CI| tau(i)*ul;
dae3: u =e= interv[i E CI| k(i) + (k(i+1)

- k(i))*(t-time(i))/(time(i+1)-time(i))];
con5[5]: x1
conB[5]: x2

13

The output file for this problem is

300;
0;

nn
®© O
nn

MINOPT

Version 3.1, Aug 14 1998

C. A. Schweiger and C. A. Floudas
Department of Chemical Engineering
Princeton University

Princeton, NJ 08544-5263

Copyright (c) 1998 Princeton University
A1l Rights Reserved

Send bugs, comments, and suggestions to minopt@titan.princeton.edu

System Information
cronus 9000/780 HP-UX B.10.20 A

OPTIMAL SOLUTION FOUND.
PROBLEM: NLP
SOLVER: SNOPT
STATUS: Optimal
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SOLVERSTATUS: O

Generation time: O
Solution time: 1.83
Total time: 1.85

Number of iterations: 78

Objective function value

Objective: 30.00002

Optimal X Variables
k(0): 1.000000
k(2): 1.000000
k(4): -2.000000
tau(0): 0.004758614
tau(2): 13.81330
tau(4): 9.996910

Optimal Values of Z Variables at time instances

x1: 0.000000
u: 1.000000
x2’: 0.004758614
time instance 1, time=1
x1: 1.133106e-05
u: 1.000000
x2’: 0.0009372355
time instance 2, time=2
x1: 19.11872
u: 1.000000
x2?: 0.3257020
time instance 3, time=3
x1: 199.9389
u: 1.000000
x2’: 6.586856
time instance 4, time=4
x1: 200.0623
u: -2.000000
x2’: -0.004458601
time instance 5, time=5

k(1):
k(3):
k(5):
tau(1):
tau(3):

x2:
x1?’:

u’:

x2:
x1?’:

u’:

x2:
x1?’:

x2:
x1?’:

u’:

x2:
x1?’:

1.
1.

000000
000000

-2.000000

6.
0.

(=]

[

178884
006171572

.000000
.000000
.000000

.004758614
.490376e-06
.000000

.183643
.905808

0.000000

19.99694
109.5693

0.

000000

19.99382

0.
: —-1.482132

06096550
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x1: 300.0000 x2: -1.120439e-06
u: -2.000000 x1’: 44.70986
x2’: -19.99382 u’: 0.000000

6.7 Mixed-Integer Nonlinear Program with Differential and Algebraic Con-
straints (bindisl.dat)

This example considers a simple ideal binary distillation column with no tray hydraulics.
The objective is the minimize the Integral of the Squared Error (ISE) between the bottoms and
distillate compositions and their respective set-points.

The variables for this problem are

Variable Desription

T; liquid composition on tray ¢
Y vapor composition on tray ¢
Z feed composition

l; liquid flow through tray ¢

v vapor boilup in the column
r reflux to tray ¢

The parameters for this problem are

Parameter Description value
fi feed flowrate 1

« relative volatility 2.5
z bottoms composition set-point  0.02
xy distillate composition set-point .98
m; liquid holdup on tray i 0.175

For a problem with 30 trays, N = 30, there are 64 z-variables, 60 y-variables, 98 z-variables,
and 168 constraints. The binary variables p and g denote the position of the feed and the reflux
respectively.
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The mathematical model for the problem is the following (N is the total number of trays.)

min [ [(z0 — z})? + (zn — 23)?]dt

s.t. mb%Q + vy + bxg = l121
mi%i + Lz + vy = L1z oy + yiffz +yirey Vi< N
mi %+ Ivow + vyn = vyn 1 + YRSz + yiran

d
md_gé\r +vIN = VYN_1
v+b=1

li=lipi+ylf+ylr Yi<N
Iv = y&f +yr

r+d=v

azo = yo(1 + zo(a — 1))

ar; =yi(l+z(a—1)) VieT
zo(ty) < xjtar

zn(ty) > zjtar

z = 0.54 — 0.09¢~ 0%

In this problem, the initial condition is that of steady state for the given values of the z-variables.
In order to specify this, the keyword ISPE is used and all of the values are the pointers of the
dynamic variables whose derivatives appear explicitly plus the number of z-variables. This
specifies that all of the derivative variables are 0 at the initial time which is that of steady
state. The dynamics in the system are induced by the step disturbance in the feed composition.
The expression

2z = 0.54 — 0.09¢e~10%¢

is used to approximate a step disturbance.
The MINOPT input file is

Pk ko sk ok sk ok ok ko Sk K ok o KKK ok o KK oK Ko Kok KKK oK Kok K ok o Ko KK ok K
$ Dynamic Optimization of a Binary Distillation Column

$ C. A. Schweiger and C. A. Floudas

$

$ “Step disturbance in feed composition

$

$ Optimal Solution:

Pk ko sk ok sk ok ok ko Sk K ok o KKK ok o KK oK Ko Kok KKK oK Kok K ok o Ko KK ok K

OPTION {{
INTCUT;
FTOL = "1le-6";



80

MINOPT Reference Manual

OTOL = "le-6";
3}

DECLARATION {{
INDEX {i};
SET T = |1:30]; #Trays
SET T1 = |0:31]; #Reboiler, Trays, and Condenser

PARA alpha = 2.5;

PARA N = 30; #possible number of trays
PARA m = 0.175;

PARA xdset = {0.98};

PARA xbset = {0.02};

PARA f = {1}; # Feed flowrate;

XVAR {r, #reflux flowrate to each tray
v, #vapor boilup,
mu

};

YVAR {yf(T), #existence of feed to each tray
yr(T) #existence of reflux to each tray

};

ZVAR {1(T), #liquid flowrate from each tray
x(T1), #liquid composition on each tray
y(T1), #vapor composition on each tray
d, #distillate flowrate
b, #bottoms flowrate

obj #objective integral

};

BINA {yf(T),yr(T)};
POSI {r, v};

LBDS
STP
UBDS

R R R
o on
= © O
O « .-
o o,

LBDS v
STP
UBDS

{0.1};
{10};
= {100%};

< <
non

<i ET|] 0+ (i==15)*1 >;
<i ET|] 0+ (i==30)*1 >;

STP y£(T)
STP yr(T)

ISPE {obj, x’(T1)};
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TIME {0,400};
3}

MODEL {{
MIN: mu;

#0bjective (Integral of the Squared Error)
obj: obj’ - (x(31)-xdset)"2 - (x(0)-xbset)”2 =e= 0;

#Reboiler Component Balance
dael: 10#m*x’(0) + w*y(0) + b*x(0) =e= 1(1)*x(1);

#Tray component balances
dae2(i E T & i<N ): m*x’(i) + 1(i)*x(i) + vxy(i)
=e= 1(i+1)*x(i+1) + vxy(i-1)

+ yf(i)*f*(0.54 - 0.09*exp[-10*t])
+ yr(i)*r*x(31);
dae2(i ET & i==N): m*x’(i) + 1()*x(i) + v*y(i)
=e= vxy(i-1)
+ yf(i)*f*(0.54 - 0.09*exp[-10*t])
+ yr(i)*r*x(31);

#Condenser Component balance
dae3: 10*m*x’(31) + v*x(31) =e= v*y(30);

#Reboiler Total Balance
daed: v + b =e= 1(1);

#Tray total balances
daeS(i ET & i<N ): 1(i) =e= 1(i+1) + yf(i)*f + yr(i)x*r;
dae5(i ET & i==N): 1(i) =e= yE (i) *f + yr(i)*r;

#Condenser Total balance
dae8: r + d =e= v;

#Reboiler Equilibrium
dae9: alpha*x(0) =e= y(0)*(1+x(0)*(alpha - 1));

#Tray equilibrium
dael0(i E T): alpha*x(i) =e= y(i)*(1+x(i)*(alpha - 1));

daell: y(31) =e= 0;

#Point (end-time) Constraints
pconl[1]: mu =g= obj;
pcon2[1]: x(0) =1= xbset;
pcon3[1]: x(31) =g= xdset;
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#Logical constraints

3}

11:
12:
13:
14:
15:

<<i
<<i
<<i
<<i
<<i

E T|
E T|
E T|
E T|
E T|

yE(i) >> =e= 1;

yr(i) >> =e= 1;

i*yr(i) >> =g= 2;

ixyf (i) >> =g= 1;

i*xyr(i) >> =g= <<i E T| ixyf(i)>>+2;
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7 Troubleshooting and Errors

When creating and running a MINOPT input file, errors are likely to arise. These can occur
for several different reasons: syntax errors in the input file, errors during the solving phase,
bugs in the model, or bugs in the MINOPT program.

7.1 Syntax Errors

Most of the errors that are encountered in MINOPT are usually due to an error in the syntax
of the input file. MINOPT will report these errors and indicate what the problem is. Note that
MINOPT will try to read through as much of the input file as it can before terminating. This
is so that it can report as many errors as possible. The error messages have the form:

Line 28 at or near "...": <error message>

All of the error messages are self explanatory except for the catch-all message “syntax error”
that MINOPT reports if the input does not fit any of the MINOPT constructions. The creation
of the MINOPT input file often requires a few iterations of editing and running the problem
before the model is syntactially correct.

7.2 Solving Errors

Once the model is syntactically correct, the parser sends the problem to be solved. The
types of errors that can occur here range from a solver being available or not being capable of
solving a particular type of problem to invalid option specifications to errors that are internal
to the specific solver. These can usually be corrected by specifying the appropriate solver or
option. Errors within the solver can also occur that lead to the failure of the algorithm to
converge. This is likely due to some numerical problems encountered within the solver and
usually are related to bugs within the model.

When solver errors are encountered, the manual for the solver should be consulted to de-
termine the appropriate course of action. A special note should be made about the solver error
“Current point cannot be improved”. (This is an inform value of 9 for MINOS and SNOPT and
6 for NPSOL.) MINOPT treats this situation as an infeasible problem; however, this may not
always be the case. This may arise if the optimality tolerance is too tight or from the choice of
a poor starting point. These local solvers often need good starting points, especially for highly
nonlinear problems.

7.3 Model Bugs

Although a model may be syntactically correct, the solver may converge to a meaningless
answer or may fail to converge altogether. This is likely due to some errors within the model or
model bugs. These can be simple problems such as using the wrong sign or misplacing paren-
theses or using the wrong expressions, to more complex numerical problems such as taking
the logarithm of values close to zero or trying to solve a problem that is structurally singular.
MINOPT can not detect such errors, but can be used to help determine why the errors are
occuring. If a problem is found to be infeasible, determining which constraint(s) can be diffi-
cult. The solvers such as SNOPT and MINOS often report these infeasibilities in their output
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files which can be obtained using the -p5 option from the command line. (Consult the man-
uals for these solvers on how to interpret their output.) Alternatively, the user can introduce
slack variables to the constraints to solve a feasibility problem to determine the problematic
constraints.

Dynamic Problems Particular problems may occur specifically with dynamic problems.
Bad models can easily be passed to the integrator and the integrator can fail with messages
that may be difficult to understand. These errors often occur because the variables used to
specify the initial condition have not been set correctly. The user should carefully inspect
the variables used in the ISPEC listing. Another frequent problem is the failure to initialize
the dynamic system. Note that the initialization requires the solution of a nonlinear set of
equations which itself can be a particularly challenging problem. One thing to consider is first
solving the steady-state problem to validate the model and determine good starting points for
the problem. Good stating points for both the & and z variables can help in the initialization
of the DAE system.

If problems arise with the convergence of a dynamic optimization problem, a larger feasibilty
tolerance may help. Note that the tolerance of the integrator is set to be ten times smaller than
the feasibility tolerance of the NLP solver unless otherwise specified.

Although MINOPT provides an advanced modeling language, it does not make the user a
good modeler. The solution algorithms implemented within MINOPT are only as good as the
models on which they are used. Developiong a good model takes practice, experience, and some
trial and error.

7.4 MINOPT Bugs

Although MINOPT has been tested extensively, bugs within the program are likely occur.
These can happen in either the parsing or solving phases of the program. In the parsing phase,
MINOPT may read a syntax that it thinks it understands and then get to a point in the program
where it no longer knows what to do. This is usally preceded by reports of syntax errors that
are followed by
Internal parser error on line ... of file ... at or near ...

Something has gone awry in the source code for the MINOPT parser.

This has occurred at line ... of file ...

This probably indicates a bug in the MINOPT parser.

You may want to report this. In the meantime, try to fix any

of the above parsing errors and see if that fixes the problem

The error can be reported by emailing the input file to minopt@titan.princeton.ed with a
brief description of the problem. If there are no syntex error messages prior to the internal
error message, the bug should definitely be reported.

Internal errors that occur in the solver result in a message indicating that a bug has probably
been found in the MINOPT code. The input file and a brief description of the problem should
be emailed to minopt@titan.princeton.edu.
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