DISTRIBUTED BRANCH AND BOUND ALGORITHMS
FOR GLOBAL OPTIMIZATION

IOANNIS P. ANDROULAKIS* AND CHRISTODOULOS A. FLOUDAST

Abstract. This paper presents computational results of the parallelized version of
the aBB global optimization algorithm. Important algorithmic and implementational
issues are discussed and their impact on the design of parallel branch and bound methods
is analyzed. These issues include selection of the appropriate architecture, communica-
tion patterns, frequency of communication, and termination detection. The approach
is demonstrated with a variety of computational studies aiming at revealing the various
types of behavior of the distributed branch and bound global optimization algorithm can
exhibit. These include ideal behavior, speedup, detrimental, and deceleration anomalies.

Key words. Global optimization, parallel computing, branch and bound.

1. Introduction. A wide range of optimal selection problems, in di-
verse scientific areas, can be formulated as non linear constrained opti-
mization problems. One of the most common characteristics of these prob-
lems is the presence of non—converities in their modeling representations.
Non—convexities complicate solution methodologies since most existing op-
timization algorithms rely on identifying stationary points in the feasible
space which satisfy the Karush-Kuhn-Tucker optimality conditions. These,
except for problems of special structure, fail to discriminate between global
and local solutions. Locating therefore the global minimum solution of a
general non—convex optimization models is of primary importance. A com-
mon characteristic of all global optimization approaches is their increased
computational requirement as the size of the problem increases. Towards
this goal recently important advances have been reported and reviewed ex-
tensively, [13, 17, 15, 19]. In this work, we will focus on the aBB method
which is based on a branch and bound framework coupled with a novel
convex lower bounding function that is generated at each node, [5, 4, 3, 1].

Because the global optimization approach, aBB, is based on a branch
and bound framework recent advances in the theory and practice of paral-
lel algorithms for mathematical programming problems become more rel-
evant, [23]. Furthermore, the concept of parallelizing branch and bound
algorithms has created an enormous amount of scientific interest and has
attracted various applications, [18]. The appearence of parallel computers
in the world of scientific computing has already had a significant impact in
the development of parallel global optimization algorithms, [24].

The scope of this paper is to present our recent findings in parallelizing
the aBB algorithm and to present our computational experience in terms

*Corporate Research Science Laboratories, Exxon Research and Engineering Com-
pany, Annandale, NJ 08801,

fChemical Engineering Department, Princeton University, Princeton, NJ 08544.
Author to who all correspondance should be addressed.

1

2 IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

of developing efficient distributed implementations of branch and bound
algorithms. We will begin by presenting the key ideas and concepts behind
the aBB so as to exemplify the need for increased computational efficiency
via parallelizing the underlying branch and bound strategy. Subsequently,
the key components of a distributed branch and bound algorithm will be
discussed and our distributed implementation will be analyzed. One of the
main contributions of this work is to identify the various computational be-
haviors of a distributed implementation of a branch and bound algorithm.

2. The branch and bound framework of aBB. The aBB has
been developed so as to address the general twice differentiable non—convex
optimization problem of the form:

min f(z)

s.t.g(z) <0
h(z) =0
reEXCR"

where f,g,h € C?, are twicedifferentiable functions and z is a vector of
size n.

The aBB operates within a branch and bound framework, whereby in
each iteration the current domain is partitioned and a convex lower bound-
ing problem is solved so as to generate wvalid lower bounds to the global
minimum for each domain. Recent advances in the theory and implemen-
tation of the sequential BB have made it one of the most attractive global
optimization algorithms, [4, 3, 1]. The essence of the aBB algorithm is to
derive for each non—convex term in the original formulation a convex un-
derestimation of the form:

(2.1) L(z) = f(2) + iai(xf —zi)(af —24)

The determination of the a values is the most important step for the suc-
cessful implementation of such a convex underestimating algorithm, [4].
The nature of the underestimation provided by the aBB sets it apart form
other global optimization methods. The need for incorporating underesti-
mators for terms of special structure, such bilinear or univariate concave,
was also identified early on and is incorporated, [5]. The aBB algorithm
proceeds in a branch and bound framework shown in Figure 1. Recent de-
velopements, [2], have expanded the scope of aBB so as to address problems
involving continuous as well as discrete variables.

A branch and bound algorithm is also referred to in the computer science
literature as a divide and conquer approach and this describes quite accu-
rately the idea behind branch and bound. The main characteristic of this

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION 3

516 A/

F1G. 1. Branch and Bound framework.

class of algorithms is that as the size of the domain is reduced the quality
of the representation improves. Clearly, from equation (2.1) we can ob-
serve that the smaller the domain, that is, 2 — z¥ becomes smaller, the
tighter the quadratic underestimation becomes. This is one of the prop-
erties of the quadratic underestimation L(z) that is being proposed and
is described in greater detail in [22]. Clearly, one is tempted to propose
that: if a finer approximation be used from the early stages then a bet-
ter domain characterization should be produced. This is indeed the case,
and this is an idea which has already been incorporated within the aBB
framework, [6]. Because finer initial domains result in better approxima-
tions, exploring simultaneously multiple domains should result in a more
efficient search. This is the rationale behind advocating the development
of a parallel search, in other words a distributed implementation of the
branch and bound-based aBB algorithm. In this case, the characteriza-
tion of each domain would correspond to the solution of the convexified
non—convex problem within the domain of interest.

The key characteristics of any branch and bound algorithm are the
various branching and bounding phases. We will assume for the purpose
of this paper that these have been decided. At each node of the aBB the
mathematical structure of the underestimating problem solved remains the
same. The only difference between problems is the domain within which
they are being solved. These define the underestimation of each domain.
Decisions related to branching variables and lower bound estimation will
not be discussed here. For our purposes, branching is performed along
the variable that participates in the non—convex term with the largest un-

4 IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

derestimation. A thorough analysis of branching schemes within the aBB
algorithm is presented in [1]. The objective in the following sections is to
discuss the critical issues that pertain exclusively to the distributed imple-
mentation of the branch and bound algorithm.

3. Critical Issues. This section discussses the various critical as-
pects which become important when one wishes to implement a branch
and bound framework in a distributed computing environment. Our scope
is not to discuss those issues which are important in a sequential implemen-
tation of a branch and bound algorithm, but rather to focus on implemen-
tational issues which become critical when branch and bound is embedded
in a parallel computing environment. As will become apparent, it is very
difficult to identify the optimal distributed implementation of a branch and
bound algorithm.

The key issues are discussed in the following:

e State Space Representation: This is a fundamental decision
one has to make prior to designing the distributed implementa-
tion. One has essentially to decide between a static or a dynamic
representation of the states of the problem, [20]. In the former,
an initial partitioning is postulated, the corresponding nodes of
the branch and bound tree are, somehow, partitioned among the
various processors and each processor works exclusively with its as-
signed pool. In Figure 2 we depict a hypothetical situation in which
the initial search domain is partitioned into 4 major sub—domains
(these can either be a single domain or collection of simpler ones)
and each processing node executes the successive steps of a branch
and bound algorithm on its assigned domain(s). Each node de-
tects locally its termination based on some criterion. The number
of nodes visited and corresponding CPU time per processing node
is a function of the initial domain(s) assigned. As a results, pro-
cessing node 1 will require a total of ¢; time units before it declares
convergence and terminates. Node 2 will require ¢» units and so
on. The overall algorithm is rate-limited by the rate of the slowest
processing node, which in that case happes to be 4. Therefore,
regardless of how fast the other nodes terminated, each of them
remains for a period of ¢4 — t; time units in an idle state.

As can be seen from Figure 2, this type of partitioning runs the
risk of forcing the processing elements to the so—called state of
starvation in which processing nodes remain idle. This is the result
of the uneven distribution of work—load which is the result of the
nature of the problems initially assigned to each processing node.
The termination of each processing node simply depends on the
initial problem assigned. In general, similar schemes are highly
inefficient and therefore rarely used. The communication is non—
existent (the results are collected at the end and the best solution

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION 5

t4-t1 = idletime for node 1

t4-t3 = idle time for node 3

t4-t2 = idle time for node 2

t4 = termination time for node 4

Fic. 2. Static Distribution of Sub—problems.

is reported). Under certain conditions this is the most suitable
problem decomposition and only then it is advisable, [8]. In most
cases a dynamic representation of the state space is adopted. In
other words, instances of the problem are created dynamically and
are being assigned to processing nodes so as to minimize the idle
time of each processing element, provided that care has been taken
to guarantee an equally distributed work—load. In such a case, one
has to make a choice on how to store the created problem that
is to be solved. One can assume a centralized scheme in which a
processing element (single processor or collection of processors) is
responsible for maintaining the queue of problems to be solved. A
very appealing implementation of such a scheme is described in
[25]. The so—called processor shop concept is introduced whereby
processors are viewed as independent actors free to choose their
activities which include not only which problems to solve but also
the type of branching rules that are to be used, and the type of
the underestimation as few instances. A simple picture of how the
centralized pool operates is presented in Figure 3.

One can draw a comparison to a blackboard approach whereby
problems awaiting to be solved reside in a memory location ac-
cessible to all processing nodes. In [25], a careful design of the
algorithm guarantees the integrity of the queue of problems by re-
stricting access to one processor at a time. Such an approach is
advisable only for problems in which the communication overhead
associated with processors waiting to access the queue of problems
is insignificant compared to the computation time.

In a decentralized representation scheme, the pool of problems wait-
ing to be solved is stored locally in each processing node as new
instances are being created. In such a case, an initial partitioning

6

IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

splite
————— | solve <
* fathom

Worker Processor

4 splite
solve <

fathom

Worker Processor

F1G. 3. Centralized Representation of Problem Instances.

is performed and subsequently each node has access to a sub-—
space of the state space. The fundamental difference between the
distributed and the static representation is that in the latter a
constant flow of information exchange, in the form of upper/lower
bounds and problem instances, guarantees that the extreme condi-
tions of starvation will be avoided. Figure 4 depicts such a scheme.
Various important implementational details have to be taken into
account and these will be discussed in the sequel since this is the
scheme that was adopted in our approach.

fffffffffffffff | solve—local pool |=-;

8
s
'
)
8
o
8

fffffffffffffff =| solve—local pool |=-

F1G. 4. Decentralized Representation of Problem Instances.

e Nature of the Active Pool: Up to this point, we have discussed

the concept of storing problem instances. A critical design decision
concerns the state of the stored problems. These can be stored as
either solved or unsolved, [12]. Both have their advantages and
some researchers have actually incorporated both queues in their
developments, [25]. A solved problem is one which has been solved
for its lower bound and that value, if it survives fathoming, is as-
signed to be the corresponding lower bound. An unsolved problem
is one that inherits the parent node’s lower bound. It is actually

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION 7

hard to predict which one is the most efficient. The unsolved queue
for instance can be very efficient if at some point the parent node
is to be fathomed. So will the children nodes without having to
actually be solved for their corresponding lower bounds. On the
other hand, savings in memory can be achieved with a solved queue
since immediately one detects the quality of the lower bound of a
node and this node is stored if and only if it survives fathoming.
e Degree of Synchronism: Once the character of the stored prob-
lems has been decided and the way they will be stored is set, one
has to decide on how they will be accessed, that is the degree of
global control that will be enforced. Various combinations of the
character of the pool and the degree of synchronism give rise to dif-
ferent models, [18]. Global synchronism guarantees ordered access
to any memory location but might result in serious communication
overhead. From an implementation point of view, lack of global
control results in easier implementations and faster information
exchange but can result in wasteful computation and in some in-
stances, depending on the type of problem solved, it can result
in an unpredictable and spurious behavior, [7]. Spurious behav-
ior in terms of the final result is excluded within the branch and
bound framework. The worst case scenario is that more nodes than
needed will be explored. Nevertheless, computational anomalies,
[21], can be developed and it is our aim to identify and present
those with our computational results.
It is widely accepted that the computational requirement for any
task is proportional to the number of problem states in the search
tree. Unlike other mathematical operations, such as matrix inver-
sion, a concurrent search within a branch and bound framework
does not reduce the computational requirements in linear or even
predictable way. Unlike discrete domains, continuous ones are not
characterized by a finite state representation. One can derive such
a representation but a certain tolerance has to be defined. The
result of that is that distributing the work load can have unpre-
dictable results. As can be seen if Figure 5 one can encounter
either detrimental anomalies or speedup anomalies. In the former
case, the partitioning, distribution and subsequent diffusion of the
state space instances generates additional domains which are be-
ing explored. In Figure 5, N, is defined as the number of branch
and bound nodes that will be required by the sequential execu-
tion of the algorithm, whereas N,,, is the number of branch and
bound nodes required by the parallel implementation. The simul-
taneous characterization of these nodes results in actually solving
more branch and bound nodes that would have been solved sequen-
tially thus resulting in a detrimental anomaly. On the other hand,
one can envision a situation in which a node that was not to be se-

8

IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

lected, because of the quality of the lower bound, for expansion in a
sequential framework, is indeed selected in the distributed frame-
work and is actually producing a very tight upper/lower bound
that helps is reducing the size of the tree. In such a case the num-
ber of expanded nodes of the parallel algorithm is smaller than the
corresponding number of the sequential algorithm thus leading to
speedup anomalies.

Detrimental Anomalies Speedup Anomalies

solution

solution

N_seq < N_par N_seq > N_par
O Expanded nodes

F1G. 5. Computational Anomalies.

e Communication Patterns: In any type of computation that is

based on message passing communication patterns, origin, desti-
nation and frequency of communication exchange are very crucial.
These patterns aim at diffusing computational work within the
computer network. The importance of such a design aspect is to
avoid the localization of the search of the branch and bound tree
in terms of a single processor doing most of the useful work, as
well as proceeding in a depth first fashion as opposed to a breadth
first, [26]. The structure that is embedded within the topology of
the computer network is also crucial in allowing faster diffusion
through local information exchange, [27]. This last point is very
important since our target is to develop a distributed framework
that is exclusively based on local information exchange.

Termination Detection: Detecting termination of a distributed
algorithm that possesses no global control is a highly non—trivial
task, [9]. In any centralized algorithm, either sequential or dis-
tributed with global control, a local termination criterion can be
derived and based on that one can detect convergence. In an asyn-
chronous environment two criteria have to be satisfied: a local one
based on which each processing node has detected local conver-
gence, and a global one based on which no communication mes-
sages are pending in the network in terms of unsolved problems in

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION 9

transit from one processing element to another or in terms of up-
per/lower bound values. Intricate specialized algorithms had to be
devised that would detect whether messages are pending following
local termination detection, [10, 11].

All the aforementioned issues are very crucial design decisions and in
Section 4 they will be discussed in more detail so as to justify the specific
selections that were made and their impact on the computational perfor-
mance. The discussion will be accompanied by computational results so as
to support the selections and also to emphasize the effect of them.

4. Designing a Distributed Implementation.

4.1. Architecture. The first issue we address is the architecture to
be used. By architecture we do not refer to the architecture of the parallel
machine, but rather the virtual one which will define the communication
protocol of our algorithm. There are two key characteristics we would
like to achieve: (i) asynchronous computation/communication with a dis-
tributed queue of solved problems, and (ii) non—symmetric diffusion of high
priority work. Schematically, Figure 6 shows the key characteristics of the
proposed architecture. We embeded a ring architecture onto the mesh of
the Intel-i860 Paragon of the U.C. San Diego Super-computing Center.
Each node maintains its own local list of solved problems and it periodically
communicates to other nodes information such as upper /lower bounds and
problem instances.

processing node 2
—t---------

processing node 1

processing node 3
Fi1Gc. 6. Model ring architecture.

One key issue to be addressed is the communication pattern that is
used for message passing. In other words, the origin and destination of each
message. Nearest neighbor communication defines a simple ring. Messages
move from node () to node (i + 1). Such local communication patterns
can result in a very localized way of computation. This can easily result in
either a depth first search tree or uneven work load distributions. In order
to break such symmetries an asterisk can be defined instead of a simple
ring.

10 IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

Based on the discussion of Section 3, we designed a distributed archi-
tecture that exhibits distributed representation of the state space in the
form a local queues of solved problems while the computation and commu-
nication exchange are asynchronous.

4.2. Patterns and Frequency of Communication. Communi-
cation Patterns: The concept of a neighbor need to de redefined. Each
node () communicates messages to node (i + 2log>(P)) for a network of P
processors. The result for a system of P = 8 nodes is depicted in Figure
7. The objective is to break any patterns of symmetry and avoid strictly
nearest neighbor communication. Furthermore, we define a time—varying
asterisk in which the destination of a message is shifted each time a new
message originates from node (i), as shown in Figure 8.

F1a. 8. Origin/Destination of time varying Asterisk at time t + 1.

Based on the example of Figures 7 and 8, the initial structure of the

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION 11

asterisk, shown in Figure 7,is0 =3 6 1 >4 7 —2 =5 = 0.
In other words, node 0 transmits a message to node 3, node 3 transmits
to node 6 and so on. The next instance the structure, shown in Figure
8, becomes: 0 > 5 -2 —>7—>4—>1—6—>3 — 0. It should be
pointed out that in our implementation the computation/communication
steps for each processor are performed asynchronously and therefore the
destinations change independently.

In order to illustrate the performance of a ring architecture with near-
est neighbor communication only (¢ — i+ 1) and the time—varying asterisk,
Figure 9 depicts a typical work—load distribution for each of the architec-
tures on a 32-node environment.

80

0 Simple Ring
60
50

40

nodes/element

30

201

f—:

10 f\\iTime-Varying Asterisk

0 5 10 15 20 25 30
processing element i.d.

Fic. 9. Comparison of simple ring and time—varying asterisk.

We observe that the time-varying asterisk achieves a better work—load
distribution among the processors as seen from Figure 9. The simple ring
assigns an average of 33 problems per node with a standard deviation of
16, whereas the time—varying asterisk assigns 23 with a standard deviation
of 6. This is a first indication of how an architectural decision can actually
affect the overall performance of the execution of the algorithm.

Communication Frequency: Apart from the origin and destination
of the exchanged messages it is also important to study the effects of the
frequency of information exchange. At this point we will elaborate on the
type of information that is being exchanged. We will postulate that each
node communicates to its neighbors (based on our definition) with the
highest priority work, which is the node in a local solved queue that has
the best lower bound. This heuristic aims at minimizing the probability

12 IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

of a single node performing most of the useful work by operating in a
best first mode locally. Rare information exchanges are known to cause
performance deterioration, [26], since if information exchange does not take
place frequently, then the useful parts of the branch and bound tree are
located in a single processor, and all useful work is limited. As can be
seen from our computational results, shown in Figure 10, the work load
distribution becomes more uneven as the interval, measured in terms of
iterations, increases. The maximum peaks of the curves imply that certain
nodes perform more work than others thus certain nodes perform local best
first searches while others exhaust their list and might even remain idle for
long periods of time.

35
30|]
@
25 /,’*\\ “’:‘ ,
‘g /,’/ “\\ ’,‘“‘
20} FA]
g ! \ ;
o / . ;
o) / \ ;
S : .
o} /M . .]
51, 1)
00 1 6 7

2 Procng elaﬂ%nt I.d.

F1c. 10. Effect of communication frequency on work—load distribution.

4.3. Queue Initialization. In principle there are two ways one can
initialize a branch and bound approach. One can either begin from the
root node and successively branch and create new instances by solving
the resulting problems. This is clearly a very inefficient way of operation
since for the induction period, until the number of solved nodes equals the
number of processing elements, there exist idle processing nodes. This is the
reason why a number of partitions is created at the start of the algorithm
and these problems are distributed among the processors. We choose to
distribute the problem instances randomly so as to avoid the additional
bias of single nodes having in its initial pool of unsolved problems the
area surrounding the solution. Furthermore, a decision has to be made
regarding the number of branch and bound nodes that will be created
at the beginning. It will be shown that even this minor issue can have

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION 13

an impact on the performance. As seen in Figure 11, for every problem
instance one can identify similar distributions.

60

55} -

50 + 4

&

35+ -

30+ -

25t -

total number of branch and bound nodes

20} 1

25 30 35

1520
szeo? initial queue
Fi1c. 11. Effect of initial queue size.

We consistently observed that small size initial queues result in better
performance. The reasoning behind such a selection is that an effort has
to be made to minimize the amount of wasteful work. It is not necessarily
true that if one begins the search with a very fine partitioning the best
computational results will also be recovered.

4.4. Termination. Determining the termination of an asynchronous
algorithm is a non-trivial task. There are two requirements that have to
be satisfied. Each node has to detect local termination (either local upper
bound - local lower bound < €, or local lower bound > local upper bound,
or the local queue is empty (note that the first two conditions can be true
since a node’s local lower upper bound need not be generated locally by
the node in question), and the system has to detect global termination (no
messages are pending within the system). If the following two conditions
are true:

1. bounded communication delays, B < 0o, and

2. no processors die
then Digkstra’s algorithm, [10], guarantees that correct termination of the
distributed computation can be detected. The algorithm assumes that
the processing elements can communicate a special token to their adjacent
neighbor. The steps of the algorithm are as follows:

Step 0: Processors start working and P, has the token

14 IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

Step 1: When Py becomes idle, Py sends white token to P;
Step 2: If P; sends work to Pj, i > j, then P; becomes black
Step 3: If P; has the token, and P; is idle, (i.e., local termi-
nation),
then P; passes token to P14
If P; is black then the token sent to P;y1 is black
If P; is white the token is passed unchanged
Step 4: If P; passes the token P; becomes white
e when P, receives white token the algorithm terminates
As shown in Figure 12, two types of messages are communicated through-
out the network of processing elements. Messages related to the problem,
such as upper and lower bounds, which follow the time-varying asterisk
pattern, and also messages carrying the token which are passed to the
nearest neighbor. Each node, is also testing the steps of the algorithm that
was just outlined and once global convergence is being detected a global
termination message is being issued.

F1c. 12. Dijkstra’s termination algorithm.

It should be noted that in our implementation there exist two indepen-
dent paths of communicated messages. One route is reserved for the token
to detect termination, and the other route is defined by the communication
patterns of the time-varying asterisk.

4.5. Distributed Implementation. Having discussed the impor-
tant points of a distributed implementation, we will now summarize the
key features of the distributed branch and bound algorithm that is pro-
posed:

e The algorithm was developed on the Intel-i860 parallel machine
of the University of California, San Diego. It is a mesh architecture

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION 15

of 400 nodes.

e The state space representation was on a distributed queue of solved
problems. Each node maintains a local queue.

e The queues are initialized simultaneously but care is taken so as
to assign to processors initial non—contiguous domains.

e Processors diffuse high priority work (data structures containing
the description of the domain generating the best lower bound)
at each iteration based on patterns defined by the time—varying
asterisk.

e Processors purge their local list as soon as the upper bound is
updated.

e Termination is detected by the Dijkstra’s algorithm.

e The computation/communication steps are totally asynchronous.

In Section 5, computational results are presented that exemplify the
interesting phenomena occurring in an asynchronous implementation of a
branch and bound algorithm.

5. Computational Results.

1. Ideal Behavior: The problem we address here deals with the

optimization of reactor-separator-recycle network. We postulate a
superstructure ', as shown in Figure 13, and the objective is to
identify the optimal configuration which corresponds to the global
minimum of the cost function. This problem is a variation of prob-
lem 10.2 in [16] and the general formulation is described in greater
detail in [14]. It describes a process of obtaining mono and dichloro
benzene from benzene by allowing for the recycle of unreacted ben-
zene. The mathematical formulation consists of 40 variables and
58 constraints and is presented in the Appendix.
Figure 14 shows the number of branch and bound nodes and the
total CPU required. As it can be seen, the total number of nodes
remains practically constant, thus resulting in a substantial de-
crease of the total CPU time. This is precisely the ideal behavior.
In this case, distributing the work-load results in a reduction of
the CPU, because the total work-load remained the same. The
problem was solved using 1, 4, 8, 16, and 32 processors. The op-
timal configuration would probably correspond to 16 processors
since passed that point the additional overhead diminishes the im-
provement in terms of overall CPU time. The achieved speedup,
Sp, and efficiency is shown in Table 4. The optimal structure is
depicted in Figure 15.

2. Speedup Anomaly: This example is problem 2.7 in [16] and be-
longs to the class of concave quadratic optimization problems. Tt is

LA superstructure is defined as the set of all possible process alternative structures
of interest which are candidates for feasible of optimal flowsheets. The superstructure
features a number of different process units and their interconnections [14]

16 IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

F18 (A) F23

F21 F20 F19
F15,x3 F17,x4

Y
A A o A Si S2

F11

F22, X5
F8, x2 Foa

_|F7 Y | R2

AF4, x1

F9, x2

F2 F14, x3

F5,x1

y F6, x1

Fi1G. 13. Reactor/Recycle/Separator System Superstructure. F'’s represent total
flow rates and x’s mass fractions.

600

400}

300 -

200 | CPU (9

B& B nodes

% 5 10 15 20 25 30 35
number of processing nodes
Fi1G. 14. Computational results indicating ideal behavior.

TABLE 1
Speedup and Efficiency of ideal behavior.

(PIT[S [NTL]

1| 93 | 1.00 | 567 | 1.00
4 | 92 | 1.67 | 339 | 1.02
8 | 112 | 1.92 | 295 | 0.83
16 | 81 | 3.86 | 147 | 1.15
32 | 44 | 6.52 | 87 | 2.11

F7

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION 17

F18 (A) F23(B)

F20

F15, x3 F17,x4

F22, x5

F24(C)

/

F10, x2
F5,x1

F3,x1

|

F1G. 15. Reactor/Recycle/Separator System Optimal Structure.

described by the following formulation (more details are presented
in the Appendix):

20
min — 0.5 Z)\Z(SL‘, — Oti)2
i=1
st.x€ R={x: Az <b,x >0} CR*, beR®

The distributed version of our branch and bound actually visits
fewer nodes than a sequential execution of a branch and bound
algorithm. As seen in Figure 16 the results for 1, 2, 4, and 8 nodes
suggest that from 1 to 4 nodes the number of branch and bound
nodes visited drops. The 8-node configuration visited a few more
nodes that have no significant impact.

The CPU time is not affected in an equally dramatic fashion due
to the overhead penalties. We would like to point out that we are
more concerned with the number of branch and bound nodes vis-
ited as a true measure of the response of the system rather than
the machine and implementation dependent CPU time. There-
fore, the anomalous behavior is reflected on the number of branch
and bound nodes that drastically drop as we move away from the
sequential algorithm.

Detrimental Anomaly: This next example is a variation of prob-
lem 9.2 in [16] and is also described in a generic form in [14]. It
involves a system of reactors where the Van der Vusse reaction
takes place (see Appendix). A superstructure is postulated, Fig-
ure 17, and the configuration that maximizes the production of

18 IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

180

160}]
140} \\\“*x |
120} \‘\\]
| \\\\ |

80| B& B nodes i

20% CPU (9 1

! 2 r13umber 0f4processi nsg elemen?s

Fic. 16. Computational results indicating speedup anomaly.

TABLE 2
Speedup and Efficiency of speedup anomaly.

(PI T[S [N][L |
T [165 | 1.00 | 19 | 1.00
2 | 138 | 1.96 | 10 | 1.90
1|60 | 275] 9 | 211
8| 78 |2.12 | 8 | 2.38

the useful product is identified. This examples represents the first
type of unusual behavior. In this case the number of nodes vis-
ited by the parallel branch and bound actually increases with the
number of visiting nodes. The mathematical formulation consists
of 29 variables and 45 constraints and is presented in detail in the
Appendix.

As shown in Figure 18, the number of problems solved increases
but the additional nodes used reduce the overall CPU time. The
reason for the seemingly improved behavior in terms of the CPU
requirement, is understood by examining the work—load distribu-
tion in Figure 19.

We were able to maintain a well-balanced network in terms of
the total number of problems that were eventually solved by each
processing element. The fairly equal distribution of the work—load
resulted in the reduction of the CPU time.

Clearly one observes that although the speedup improvements are
substantial the efficiency of the algorithm is reduced as more and
more problems are actually required. It so happens that the path

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION

TABLE 3
Speedup and Efficiency of detrimental anomaly.

| P | T | Sp | N | I,
1 | 1630 | 1.00 | 590 | 1.00
4 | 690 | 2.36 | 480 | 1.23
8 | 720 | 2.26 | 1110 | 0.53
16 | 605 | 2.69 | 1605 | 0.37
32 | 460 | 3.54 | 2360 | 0.25

F9, x1 F9, x3 F7,x3
I = R1 -
F2 F4, x3
F1 F5, x4 YF1,x5
T A
F6, x4
F3
yYey R2 F21, x4
F21, x2 F8, x4
Fi1G. 17. Reactor Network Design Problem Superstructure.
2400
2200 - E
2000 +]
1800 |+]
1600 + B
1400 + E
1200 |]
1000 + B
800 |]
600 + B
400 5 10 15 20 2 30 35
processing element i.d.
Fi1G. 18. Computational results indicating detrimental anomaly.

19

20
300

250

200

150

100

50

IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

T T T T T T
@
[(89 a.. 4
e
SN
X
: x -
Lo P (32) 1
x W Xenf s /A\
Y
“ A/,A X SN0 ~
\ oW SN A s W wa Aa A
o N \ » aa a
1 1
0 5 30

0 5 20 25
number ‘of processing nodes

F1c. 19. Equal work-load distribution.

35

followed by the distributed branch and bound is such that the equal
work-load distribution alleviates the burden of the increased num-
ber of state spaces that had to be visited. The optimal structure
is shown in Figure 20.

F2

F1

F9, x1

F9, x3

R1

y F21,x2

F1G. 20. Reactor Network Design Problem Optimal Structure.

F21, x4

F8, x4

F1, x5
[

4. Deceleration Anomaly: This last example is similar to the first
one, where only the original superstructure has been augmented by
an additional reactor in parallel. The system is described in Figure

21.

The mathematical formulation is described by 41 variables

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION 21

and 67 constraints. A detailed presentation of the mathematical
formulation is presented in the Appendix.

F13(A)
F11(A)
F18 (B)
F17(A)
F2 F7,x3 F14,x11 (
R1 Ss1 S2
F8, x10
F5, x10
F4,x3
F6, x10 F15,x12 F16 (C)

[, |FB6 [oa) F24,x8
e ™ R

F26 (A) F27 (A) F28 (A)

F1G. 21. Reactor/Separator/Recycle System Superstructure.

This example exhibits the so—called deceleration anomaly which is
the situation in which the parallel branch and bound is actually
taking more time than the sequential version as can be seen in
Figure 22. This is the type of behavior one wishes to avoid. In
this case the actual CPU time increases while the total number of
nodes actually decreases. The only way this behavior can be ex-
plained is if severe unbalancing occurs in the way the problems are
being distributed among the processors. indeed this is true should
one observe the work-load distribution in Figure 23. Unlike the
previous case, the uneven distribution of domains per processing
node does not allow for computational improvements in terms of
algorithm speedup. The optimal structure is shown in Figure 24.

6. Conclusions. This paper dealt with the distributed aspects and
computational performance of a novel global optimization algorithm, aBB,
which is based on a branch and bound framework coupled with a convex
lower bounding functions. The critical issues related to distributed imple-
mentations of branch and bound algorithms were identified. These were:
the state space representation, the nature of the active pool, the degree of
synchronism, the communication patterns, and the termination detection.
Specific design guidelines were presented so as to achieve the maximum per-

22 IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

1000 T T T T T T

900 g

800 g

700 +

600

500 +

400 +

300 |
B&B nodes.._|
200 . 7]

1005 5 10 15, 20 25 30
processing nodei.d.

Fic. 22. Computational results indicating deceleration anomaly.

70 T T T T T T

60

nodes per el ement
w B (o)
o o o

N
o

10

5 20, 30 35
processing nodei.d.

Fi1G. 23. Unequal work—load distribution resulting in deceleration anomaly.

formance of the implementation. Regarding the computational behavior,
four global optimization problems were examined and the wide spectrum
of computational behaviors were presented. These include: ideal behav-
ior, speedup anomalies, detrimental anomalies, and deceleration anomalies.
The response of the distributed implementation of a branch and bound al-

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION 23

TABLE 4
Speedup and Efficiency of deceleration anomaly.

(PIT[S [NTL]
1 | 502 | 1.00 | 200 | 1.00
4 | 298 | 1.68 | 180 | 1.11
8 | 400 | 1.26 | 290 | 0.69
16 | 680 | 0.74 | 390 | 0.51
32 | 690 | 0.73 | 240 | 0.83

F17(A)

F18 (B)

F14, x11

F3 F23, %6 F24, x8
R2 . R3 :
e)

F15, x12 F16(C)

F26 (A)

F1G. 24. Reactor/Separator/Recycle System Optimal Structure.

gorithm was found to be dependent on the inherent characteristics of the
problem that is solved.

Acknowledgment: The authors gratefully acknowledge the support from
the Air Force Office of Scientific Research, the National Science Founda-
tion,the National Institutes of Health, and the National Supercomputing
Center at the University of California, San Diego.

APPENDIX

For completeness purposes, we present the detailed formulations of the
examples solved. The first, third and fourth problems have quite compli-
cated mathematical formulations. In order to present those, we explore
an additional capability of the computational implementation of the aBB
algorithm which allows for the automatic generation of the complete math-
ematical model at run—time, [1]. The computer implementation generates
a detailed model, with the original variable names which, as will be seen,
is extremely useful to the user. More specifically the problems addressed

24

IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

were the following:

e Example 1 of Section 5.
This problem, corresponds to a variation of problem 10.2 in [16]. It
describes a benzene chlorination process. It can utilize up to three
reactors, of unknown size, and up to two separators. The super-
structure allows for various possible interconnections between the
reactors and the separators. We optimize an economic objective
describing;:

— a reaction process:

CGHG + Cl2 - 06H5Cl + HC(CI
CGH5Cl + Cl2 — CGH4Cl2 + HCI

— a separation process: the components to be separated consist
of benzene (A), mono-chloro benzene (B), di-chloro benzene

(©)
— recycling components: Benzene (A).
The detailed mathematical formulation, as it is generated auto-
matically by aBB, is as follows:

Minimize

obj = ((((C((((147.62 * £14) * x4a)

((-445.544 % £17) * x4b))

((2793.79 * £22) * x5b)) + ((190.114 x £17) * x4a))
((146.502 * £17) * x4b)) + ((559.829 * £22) * x5b))
((-1547.81 % £22) * g4))

+ + + +

Subject To:

comp(1) ((xla + x1b) + xlc) ==

comp(2) ((x2a + x2b) + x2c) ==

comp(3) ((x3a + x3b) + x3c) ==

comp(4) ((x4a + x4b) + x4c) ==

comp(5) (x5b + x5¢) ==

cmbP (1) ((((((£f5 * xla) + (£8 * x2a))

- (f15 * x3a)) - (f12 * x3a)) - ((0.412 * y1) * x3a))
+ (f11 + £19)) <=0

cmbP (2) (((((((£5 * x1b) + (£8 * x2b))

- (£f15 * x3b)) - (£12 * x3b)) + ((0.412 * y1) * x3a))
- ((0.055 * y1) * x3b)) + (0 * £2)) <=0

cmbP (3) ((((((£f5 * x1c) + (£8 * x2c))

- (£15 * x3c)) - (£12 * x3c)) + ((0.055 * y1) * x3b))
+ (0 * £2)) <=0

cmbP (4) (((((((£4 * x1la) + (£13 * x3a))

- (£10 * x2a)) - (£8 * x2a)) - (f9 * x2a))

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION 25

- ((0.412 * y2) * x2a)) + (£7 + £20)) <=0

cmbP(5) ((CCC(((f4 * x1b) + (£f13 * x3b))

- (£f10 * x2b)) - (£f8 * x2b)) - (f9 * x2b))

+ ((0.412 * y2) * x2a)) - ((0.055 * y2) * x2b))

+ (0 * £2)) <=0

cmbP(6) (((((((f4 * x1c) + (f13 * x3c))

- (f10 * x2c)) - (£8 * x2c)) - (£f9 * x2c))

+ ((0.055 * y2) * x2b)) + (0 * £2)) <=0

cmbP(7) (((C((£f10 * x2a) + (f14 * x3a))

- (£3 * x1a)) - (£6 * xla)) - ((0.412 * y3) * xla))
+ (£2 + £21)) <=0

cmbP(8) (((((((£10 * x2b) + (f14 * x3b))

- (£3 * x1b)) - (f6 * x1b)) + ((0.412 * y3) * xla))
- ((0.055 * y3) * x1b)) + (0 * £2)) <=0

cmbP (9) (((C((f10 * x2c) + (f14 * x3c))

- (£3 * x1c)) - (£6 * x1c)) + ((0.055 * y3) * x1b))
+ (0 * £2)) <=0

cmbP (10) (((((f15 * x3a) + (f9 * x2a))

+ (f6 * x1a)) - (f17 * x4a)) + (0 * £2)) <=0
cmbP(11) (((((f15 * x3b) + (f9 * x2b))

+ (f6 * x1b)) - (£f17 * x4b)) + (0 * £2)) <=0

cmbP (12) (((((f15 * x3c) + (f9 * x2c))

+ (f6 * x1c)) - (f17 * x4c)) + (0 * £2)) <=0

cmbP (13) ((£f17 * x4a) + -(f18)) <=0

cmbP (14) (((£f17 * x4b) - (£22 * x5b)) + (0 * £2)) <=0
cmbP (15) (((£f17 = x4c) - (£f22 * xb6c)) + (0 * £2)) <=0
cmbP(16) ((£f22 * x5b) + -(£23)) <=0

cmbP (17) ((f22 * xbc) + -(£24)) <=0

cmbP (18) (((((-0.412 * y1) * x3a)

- ((0.412 * y2) * x2a)) - ((0.412 * y3) * xl1a))

+ ((£2 + £7) - f11)) <=0

cmbP (19) ((((((((0.412 * y1) * x3a)

- ((0.055 * y1) * x3b)) + ((0.412 * y2) * x2a))

- ((0.055 x y2) * x2b)) + ((0.412 * y3) * xla))

- ((0.055 x y3) * x1b)) + -(£23)) <=0

cmbP (20) (((((0.055 * y1) * x3b)

+ ((0.055 * y2) * x2b)) + ((0.055 % y3) * x1b))

- (f24)) <=0

cmbN (1) ((((((-(f5) * xl1la) - (f8 * x2a))

+ (£15 * x3a)) + (£12 * x3a)) + ((0.412 * y1) * x3a))
+ (-(£11) - £19)) <=0

cmbN(2) (((((((-(£5) * x1b) - (£8 * x2b))

+ (£15 * x3b)) + (£12 * x3b)) - ((0.412 * y1) * x3a))
+ ((0.055 * y1) * x3b)) + (0 * £2)) <=0

cmbN(3) ((((((-(f5) * x1c) - (f8 * x2c))

26 IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

+ (£f15 * x3c)) + (£12 * x3c)) - ((0.055 * y1) * x3b))
+ (0 * £2)) <=0

cmbN(4) (((C(((-(£f4) * xla) - (£13 * x3a))

+ (f10 * x2a)) + (£f8 * x2a)) + (f9 * x2a))

+ ((0.412 * y2) * x2a)) + (-(£f7) - £20)) <=0
cmbN(5) (((C(C((-(f4) * x1b) - (£13 * x3b))

+ (£10 * x2b)) + (£8 * x2b)) + (£f9 * x2b))

- ((0.412 * y2) * x2a)) + ((0.055 * y2) * x2b))

+ (0 x £2)) <=0

cmbN(6) (((((((-(£f4) * x1c) - (f13 * x3c))

+ (f10 * x2c)) + (£8 * x2c)) + (f9 * x2c))

- ((0.055 * y2) * x2b)) + (0 * £2)) <=0

cmbN(7) ((((((-(£10) * x2a) - (£f14 * x3a))

+ (£3 * xla)) + (£f6 * xla)) + ((0.412 * y3) * xla))
+ (-(£2) - £21)) <=0

cmbN(8) (((((((-(£10) * x2b) - (f14 * x3b))

+ (£3 * x1b)) + (£f6 * x1b)) - ((0.412 * y3) * xla))
+ ((0.055 * y3) * x1b)) + (0 * £2)) <=0

cmbN(9) ((((((-(£10) * x2c) - (£f14 * x3c))

+ (£3 * x1c)) + (£6 * x1c)) - ((0.055 * y3) * x1b))
+ (0 * £2)) <=0

cmbN(10) (((((-(£f15) * x3a) - (f9 * x2a))
- (f6 * x1a)) + (f17 * x4a)) + (0 * £2)) <=0
cmbN(11) (((((-(£15) * x3b) - (f9 * x2b))
- (£6 * x1b)) + (£17 * x4b)) + (0 * £2)) <=0
cmbN(12) (((((-(£f15) * x3c) - (f9 * x2c))

- (f6 x x1c)) + (f17 * x4c)) + (0 * £2)) <=0
cmbN(13) ((-(£f17) * x4a) + £18) <=0

cmbN(14) (((-(£17) * x4b) + (£22 * x5b))

+ (0 *x £2)) <=0

cmbN(15) (((-(£f17) * x4c) + (£f22 * x5c))

+ (0 *x £2)) <=0

cmbN(16) ((-(£22) * x5b) + £23) <=0

cmbN(17) ((-(£22) * xbc) + £24) <=0

cmbN(18) (((((0.412 * y1) * x3a)

+ ((0.412 * y2) * x2a)) + ((0.412 * y3) * xla))
+ ((-(f2) - £f7) + f11)) <=0

cmbN(19) ((((((((-0.412 * y1) * x3a)

+ ((0.055 * y1) * x3b)) - ((0.412 x y2) * x2a))
+ ((0.055 * y2) * x2b)) - ((0.412 x y3) * xla))
+ ((0.055 * y3) * x1b)) + £23) <=0

cmbN(20) (((((-0.055 * y1) * x3b)

- ((0.055 * y2) * x2b)) - ((0.055 * y3) * x1b))
+ £24) <=0

£f£(1) (((((f11 + £5) + £8) + £19) - f15) - f12) =0

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION

££(2)
- £9)
££(3)
££(4)
££(5)
££(6)
££(7)
££(8)
££(9)
££(10)
fq4P

fq4N

Bounds

OO OO OO0 O OO

7

(¢)]
N
1]

O OO OO OO OO
A
1]

(CCCCET + £20) + f4) + £13) - £10) - £8)

=0

(CC((£f2 + f21) + £10) + f14) - £3) - £f6) =0

(((£15 + £9)
((£17 - £18)
((£22 - £23)
((((£2 + £7)
((£12 - £13)

((£3 - £4) -

f2

f4

6

£8

£10
f12
f14
£17
£19
£21
£23
xla
x1c
x2b
x3a
x3c
x4b
x5b
yi

y3

<= 1000,
<= 500,
<= 500,
<= 500,
<= 500,
<= 500,
<= 500,
<= 500,
<= 500,
<= 500,
<= 75,
<= 1,
<= 1,
<= 1,
<= 1,
<= 1,
<= 1,
<= 1,
<= 500,
<= 500,

-1e+06 <= g4 <=

e Example 2 of Section 5

+

£f6) - £17) =0
£22)
£24)
f11)
f14)
£5) =0
((£18 - £19) - £20)
(g4 + -((x5b ~ 2)))
(-(q4) + (x5b "~ 2))

QO OO OO OO OOOOOOOO O OO0

1e+06

- £23) - £24) =0

£3

£5

£7

9

f11
£13
f15
18
£20
£22
£24
x1b
x2a
x2c
x3b
x4a
x4c
xbc

y2

500,
500,

= 1000,

500,
500,
500,
500,
500,
500,
500,
500,

-

N s s
M

500,

27

This problem belongs to the class of quadratic programming and it
corresponds to case 5 of Problem 2.7 in [16]. Specifically, for this
example the following parameters are used:

The 10 x 20 A matrix, and vector b are defined as follows:

b = (-5,2,-1,-3,5,4,—1,0,9,40)T

28

IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

3 7 0 5 1 1 0 2 -1 1
T 0 5 1 1 0 2 -1 -1 1
0 5 1 1 0 2 -1 -1 -9 1

5 1 1 0 2 -1 -1 -9 3 1
11 0 2 -1 -1 -9 3 5 1
1 0o 2 -1 -1 -9 3 5 01
o 2 -1 -1 -9 3 5 0 01
2 -1 -1 -9 3 5 0 0 11

-1 -1 9 3 5 0 0 1 7 1

A = -1 -9 3 5 0 0 1 7 -7 1

9 3 5 0 0 1 7 -7 41
3 5 0 0 1 7 -7 4 6 1
5 0 0 1 7 -7 4 -6 -3 1
o o 1 7 -7 4 6 -3 7 1
o 1 7 -7 4 6 -3 7 01
1 7 -7 4 6 3 7 0 -5 1
T -r 4 6 3 7 0 -5 11

-r 4 6 -3 7 0 -5 1 1 1

4 6 -3 7 0 -5 1 1 01

6 -3 7 0 -5 1 1 0 21

e Example 3 of Section 5

This is problem 9.2 of [16]. It involves the Van der Vusse reactions:

A— B
B—C
24 =5 C

A superstructure involving two reactors and various possible re-
cycle is postulated, and an economic objective is optimized. The
precise mathematical formulation used is:

Minimize
fn_n = (((((-0.001 * y1) * x3a)
+ ((0.0001 * y1) * x3b))
- ((0.001 * y2) * x4a)) + ((0.0001 * y2) * x4b))

Subject To:
1f1 ((1 * £2) + (1 * £3)) ==

1f2 (((1 * £2) + (1 * £5)) - (1 * £9)) ==
1£f3 ((((1 = £3) + (1 = £4)) + (1 * £6))

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION

- (1 x £21)) ==

fgl ((((f5 * x4a) - (f9 * x3a)) + (y1 * rl))

+ (0 * £2)) <=-5.8

fg2 ((((-(£f5) * x4a) + (f9 * x3a)) - (y1l * r1))

+ (0 x £2)) <=5.8

fg3 ((((f5 * x4b) - (£9 * x3b)) + (yl1 * r2))

+ (0 * £2)) <=0

fgd ((((-(£f5) * x4b) + (f9 * x3b)) - (y1 * r2))

+ (0 *x £2)) <=0

fgb ((((f5 * x4c) - (£f9 * x3c)) + (y1 * r3))

+ (0 * £2)) <=0

fg6 ((((-(£f5) * x4c) + (f9 * x3c)) - (y1 * r3))

+ (0 *x £2)) <=0

fg7 ((((f5 * x4d) - (£9 * x3d)) + (y1 * r4))

+ (0 * £2)) <=0

fg8 ((((-(£5) * x4d) + (f9 * x3d)) - (y1l * r4))

+ (0 x £2)) <=0

fhl (((((f4 * x3a) + (f6 * x4a)) - (£f21 * x4a))

+ (y2 * rB)) + (0 * £2)) <=-5.8

fh2 (((((-(f4) * x3a) - (f6 * x4a)) + (£f21 * x4a))
- (y2 * r5)) + (0 * £2)) <=5.8

fh3 (((((f4 * x3b) + (f6 * x4b)) - (£21 * x4b))

+ (y2 * r6)) + (0 * £2)) <=0

fhd (((((-(f4) * x3b) - (f6 * x4b)) + (f21 * x4b))
- (y2 * r6)) + (0 * £2)) <=0

fhs (((((f4 * x3c) + (£6 * x4c)) - (£f21 * x4c))

+ (y2 * r7)) + (0 * £2)) <=0

fhé (((((-(£f4) * x3c) - (£f6 * x4c)) + (£f21 * x4c))
- (y2 *x r7)) + (0 * £2)) <=0

fh7 (((((f4 * x3c) + (f6 * x4d)) - (£f21 * x4d))

+ (y2 * r8)) + (0 * £2)) <=0

fh8 (((((-(f4) * x3c) - (f6 * x4d)) + (£f21 * x4d))
- (y2 * r8)) + (0 * £2)) <=0

fm1 (-(x5a) + ((y1 * r1) + (y2 * r5))) <=-5.8
fm2 (xba + ((-(y1) * r1) - (y2 * r5))) <=5.8

fm3 (-(x5c) + ((y1 * r3) + (y2 * r7))) <=0

fmd (x5c + ((-(y1) * r3) - (y2 * r7))) <=0

fmb (-(x5d) + ((y1 * r4) + (y2 * r8))) <=0

fm6 (x5d + ((-(y1) * rd) - (y2 * r8))) <=0

ratel ((r1 + (0.1 * x3a)) + (0.01 * (x3a ~ 2))) <=0

rate2 ((-(r1) - (0.1 * x3a))

+ (-0.01 * (x3a "~ 2))) <=0

rate3 ((r2 - (0.1 * x3a)) + (0.01 * x3b)) <=0
rated ((-(r2) + (0.1 * x3a)) - (0.01 * x3b)) <=0
rateb (r3 - (0.01 * x3b)) <=0

29

30 IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

rate6 (-(r3) + (0.01 * x3b)) <=0

rate?7 (r4 + (-0.01 * (x3a ~ 2))) <=0

rate8 (-(r4) + (0.01 * (x3a ~ 2))) <=0

rate9 ((r5 + (0.1 * x4a)) + (0.01 *x (x4a ~ 2))) <=0
ratel0 ((-(r5) - (0.1 % x4a))

+ (-0.01 * (xd4a ~ 2))) <=0

ratell ((r6 - (0.1 * x4a)) + (0.01 * x4b)) <=0
ratel2 ((-(r6) + (0.1 * x4a)) - (0.01 * x4b)) <=0
ratel3 (r7 - (0.01 * x4b)) <=0

rateld (-(r7) + (0.01 * x4b)) <=0

ratel5 (r8 + (-0.01 * (x4a ~ 2))) <=0

ratel6 (-(r8) + (0.01 * (x4a ~ 2))) <=0

Bounds
0 <= f2 <= 1, 0 <= f3 <= 1,
0 <= f4 <= 1, 0 <= f5 <= 1,
0 <= f6 <= 1, 0 <= f9 <= 1,
0 <= f21 <= 1, 0 <= x3a <= 5.8,
0 <= x3b <= 5.8, 0 <= x3c <= 5.8,
0 <= x3d <= 5.8, 0 <= x4a <= 5.8,
0 <= x4b <= 5.8, 0 <= x4c <= 5.8,
0 <= x4d <= 5.8, 0 <= xba <= 5.8,
0 <= xbb <= 5.8, 0 <= xbc <= 5.8,
0 <= xbd <= 5.8,

-10 <= r1 <= 10, -10 <= r2 <= 10,

-10 <= r3 <= 10, -10 <= r4 <= 10,

-10 <= r5 <= 10, -10 <= r6 <= 10,

-10 <= r7 <= 10, -10 <= r8 <= 10,
0 <=y1 <= 40 0 <=y2 <= 40,

e Example 4 of Section 5.
This last example is a variation of the first one with a more com-
plicated supestructure. We allow for 4 reactors (in parallel and
in series) with various recycle streams. The precise mathematical
formulation is as follows:

Minimize

obj = ((CCC(((147.62 *x £14) * x11a)
((-445.544 x* £14) * x11b))
((2793.79 * £15) * x12b))

((686.426 * £14) * x11a))

((146.502 * £14) * x11b))

((559.829 * f15) * x12b))
((-1547.81 * £15) * q4))

+ 4+ + 4+ + 4+

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION 31

Subject To:

comp(1) ((x10a + x10b) + x10c) == 1
comp(2) ((x3a + x3b) + x3c) ==

comp(3) ((x6a + x6b) + x6c) ==

comp(4) ((x8a + x8b) + x8c) ==

comp(5) (x12b + x12¢) ==

comp(6) ((xlla + x11b) + x1lc) ==

cmbP (1) (((((f5 * x10a) - (£f7 * x3a))

- (f4 * x3a)) - ((0.412 * y1) * x3a))

+ (f2 + £11)) <=0

cmbP(2) ((((((£f5 * x10b) - (f7 * x3b))

- (f4 * x3b)) + ((0.412 * y1) * x3a))

- ((0.055 * y1) * x3b)) + (0 * £2)) <=0
cmbP (3) (((((f5 * x10c) - (f7 * x3c))

- (£f4 * x3c)) + ((0.055 * y1) * x3b))

+ (0 x £2)) <=0

cmbP(4) ((((f4 * x3a) - (£f23 * x6a))

- ((0.412 * y3a) * x6a)) + (£3 + £26)) <=0
cmbP(5) (((((f4 * x3b) - (£23 * x6b))

+ ((0.412 * y3a) * x6a)) - ((0.055 * y3a) * x6b))
+ (0 * £2)) <=0

cmbP(6) ((((f4 * x3c) - (£f23 * x6c))

+ ((0.055 * y3a) * x6b)) + (0 * £2)) <=0
cmbP(7) (((((f6 = x10a) + (£f23 * x6a))

- (£f24 x x8a)) - ((0.412 * y3b) * x8a)) + £27) <=0
cmbP(8) ((((((f6 * x10b) + (£23 * x6b))

- (£24 * x8b)) + ((0.412 * y3b) * x8a))

- ((0.055 * y3b) * x8Db)) (0 *x £2)) <=0
cmbP(9) (((((f6 * x10b) (£23 * x6c))

- (f24 * x8c)) + ((0.055 y3b) * x8b))

+ (0 * £2)) <=0

cmbP (10) ((((f24 * x8a) - (f10 * x10a))

- ((0.412 x y3c) * x10a)) + £28) <=0
cmbP(11) (((((f24 * x8b) - (£f10 * x10Db))
+ ((0.412 * y3c) * x10a)) - ((0.055 * y3c) * x10b))
+ (0 x £2)) <=0

cmbP (12) ((((f24 * x8c) - (f10 * x10c))

+ ((0.055 * y3c) * x10b)) + (0 * £2)) <=0
cmbP(13) ((f14 * x11a) + ((((-(f11) - f13)
- £26) - £27) - £28)) <=0

cmbP(14) (((f14 = x11b) - (f15 * x12b))

+ (0 * £2)) <=0

cmbP (15) (((f14 * x11c) - (f15 * x12c))

* + + %

32 IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS

+ (0 * £2)) <=0

cmbP (16) ((f15 * x12b) + -(£18)) <=0

cmbP (17) ((f15 * x12c) + -(£16)) <=0

cmbP (18) ((((((-0.412 * y1) * x3a)

- ((0.412 * y3a) * x6a)) - ((0.412 x y3b) * x8a))
- ((0.412 * y3c) * x10a)) + ((£2 + £3) - f13)) <=0
cmbP (19) (((CCC((((0.412 * y1) * x3a)

- ((0.055 * y1) * x3b)) + ((0.412 * y3a) * x6a))
- ((0.055 * y3a) * x6b)) + ((0.412 x y3b) * x8a))
- ((0.055 * y3b) * x8b)) + ((0.412 x y3c) * x10a))
- ((0.055 * y3c) * x10b)) + -(£18)) <=0

cmbP (20) ((((((0.055 * y1) * x3b)

+ ((0.055 * y3a) * x6b)) + ((0.055 * y3b) * x8b))
+ ((0.055 * y3c) * x10b)) + -(£16)) <=0

cmbP (21) ((((£f7 * x3a) + (f8 * x10a))

- (f14 * x11a)) + (0 * £2)) <=0

cmbP (22) ((((f7 * x3b) + (£f8 * x10b))

- (f14 * x11b)) + (0 * £2)) <=0

cmbP (23) ((((£f7 * x3c) + (f8 * x10c))

- (£f14 * x11c)) + (0 * £2)) <=0

cmbN(1) (((((-(£f5) * x10a) + (£f7 * x3a))

+ (f4 * x3a)) + ((0.412 * y1) * x3a))

+ (-(£f2) - f11)) <=0

cmbN(2) ((((((-(£5) * x10b) + (£7 * x3b))

+ (f4 * x3b)) - ((0.412 x y1) * x3a))

+ ((0.055 * y1) * x3b)) + (0 * £2)) <=0

cmbN(3) (((((-(£5) * x10c) + (£f7 * x3c))

+ (f4 * x3c)) - ((0.055 * y1) * x3b))

+ (0 x £2)) <=0

cmbN(4) ((((-(£f4) * x3a) + (£f23 * x6a))

+ ((0.412 * y3a) * x6a)) + (-(£3) - £26)) <=0
cmbN(5) (((((-(f4) * x3b) + (£23 * x6Db))

- ((0.412 * y3a) * x6a)) + ((0.055 * y3a) * x6b))
+ (0 x £2)) <=0

cmbN(6) ((((-(f4) * x3c) + (£f23 * x6c))

- ((0.055 * y3a) * x6b)) + (0 * £2)) <=0

cmbN(7) (((((-(£6) * x10a) - (£23 * x6a))

+ (£24 * x8a)) + ((0.412 * y3b) * x8a)) + —-(£27)) <=0
cmbN(8) ((((((-(£6) * x10b) - (£f23 * x6b))

+ (£24 * x8b)) - ((0.412 * y3b) * x8a))

+ ((0.055 * y3b) * x8b)) + (0 * £2)) <=0

cmbN(9) (((((-(£f6) * x10c) - (£23 * x6c))

+ (£24 * x8c)) - ((0.055 * y3b) * x8b))

+ (0 *x £2)) <=0

cmbN(10) ((((-(£f24) * x8a) + (£f10 * x10a))

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION

+ ((0.412
cmbN(11)
- ((0.412

* y3c) * x10a)) + -(£28)) <=0
(CC((-(£24) * x8b) + (£10 * x10b))
* y3c) * x10a)) + ((0.055 * y3c) * x10b))

+ (0 * £2)) <=0

cmbN (12)
- ((0.055
cmbN(13)

((((-(£f24) * x8c) + (f10 * x10c))
* y3c) * x10b)) + (0 * £2)) <=0
((-(£f14) * x11a) + ((((f11 + f13)

+ £26) + £27) + £28)) <=0

cmbN (14)

(((-(£14) * x11b) + (£15 * x12b))

+ (0 * £2)) <=0

cmbN (15)

(((-(£f14) * x11c) + (£f15 * x12c))

+ (0 * £2)) <=0

cmbN (16)
cmbN (17)
cmbN (18)
+ ((0.412
+ ((0.412
cmbN (19)
+ ((0.055
+ ((0.055
+ ((0.055
+ ((0.055
cmbN (20)
- ((0.055
- ((0.055
cmbN (21)

((-(£f15) * x12b) + £18) <=0

((-(£15) * x12c) + f16) <=0

(€€€(€0.412 * y1) * x3a)

* y3a) *x x6a)) + ((0.412 * y3b) * x8a))
* y3c) * x10a)) + ((-(£2) - £3) + £13)) <=0
(CCCCCC((-0.412 * y1) * x3a)

* y1) * x3b)) - ((0.412 * y3a) * x6a))

* y3a) * x6b)) - ((0.412 * y3b) * x8a))
* y3b) * x8b)) - ((0.412 * y3c) * x10a))
* y3c) * x10b)) + £18) <=0

((((((-0.055 * y1) * x3b)

* y3a) * x6b)) - ((0.055 * y3b) * x8b))
* y3c) * x10b)) + f£16) <=0

(CC(-(£7) * x3a) - (£8 * x10a))

+ (£f14 * x11a)) + (0 * £2)) <=0

cmbN (22)

(CC(-=(£7) * x3b) - (£8 * x10b))

+ (f14 * x11b)) + (0 * £2)) <=0

cmbN (23)

((((-(£7) * x3c) - (£f8 * x10c))

+ (£14 * x11c)) + (0 * £2)) <=0

£f£(1) ((((£f5 - £7) - f4) + £2) + f11) ==
ff(2) (((£f3 + £26) + f4) - £23) ==

f£(3) ((£23 + £27) - £24) ==

f£f(4) (((f24 + £28) - £f8) - f5) ==

ff(5) (((((((£f11 + £13) + f26) + £27)

+ £28) - £f7) - £8) + f15) ==

f£f(6) ((£f15 - £18) - f16) ==

£f£(7) ((((£f2 + £3) - £13) - f18) - f16) ==
£f£(8) ((f14 - £f7) - £8) ==

£f£(9) ((((((£f3 + f4) + f6) + £26) + £27)
+ £28) - £10) ==

f£(10) ((((£f2 + f11) + f5) - f4) - £7) ==
f£f(11) (((£f10 - f6) - f4) - £8) ==

fq4P (g4 + -((x12b " 2))) <=0

33

34 IOANNIS P. ANDROULAKIS, AND CHRISTODOULOS A. FLOUDAS
£fq4aN (-(g4) + (x12b "~ 2)) <=0

Bounds

<= f2 <= 500, 0 <= £f3 <= 500,

<= f4 <= 500, 0 <= f5 <= 500,

<= f6 <= 500, 0 <= f7 <= 500,

<= f8 <= 500, 0 <= f10 <= 500,

<= f11 <= 500, 0 <= f13 <= 500,
0

<= f14 <= 500, <= f15 <= 500,
<= f16 <= 500, 50 <= f18 <= 500,
<= £23 <= 500, 0 <= £24 <= 500,
<= £26 <= 500, 0 <= £27 <= 500,
<= f28 <= 500,

x3a <= 1, 0 <= x3b <= 1,
<= x3c <= 1, 0 <= x6a < 1,
<= x6b <= 1, 0 <= x6¢c < 1,
<= x8a <= 1, 0 <= x8b <= 1,
<= x8c <= 1, 0 <= x10a <= 1,
<= x10b <= 1, 0 <= x10c < 1,
<= xl1lla <= 1, 0 <= x11b <= 1,
<= xllc <= 1, 0 <= x12b <= 1,
<= x12c <= 1
<=y1 <= 120, 0 <= y3a <= 100,

QOO OO OO OO0 ODOOOOCOOC0
A
Il

<= y3b <= 100, 0 <=

= y3c <= 100,
-1e+06 <= g4 <= 1le+06

REFERENCES

[1] C. ApjmvMAN, I. ANDROULAKIS, AND C. FLOUDAS, A global optimization method,
abb, for general twice differentiable nlp’s — ii. implementation and computa-
tional results, Computers and Chemical Engineering (in press), (1997).

[2] , Global optimization of minlp problems in process synthesis, Computers and
Chemical Engineering, S21 (1997), pp. 445-450.

[3] C. ADJIMAN, S. DAWLLING, C. FLOUDAS, AND A. NEUMAIER, A global optimization
method, abb, for general twice differentiable nlp’s — i. theoretical advances,
Computers and Chemical Engineering (in press), (1997).

[4] C. ApsiMAN AND C. FLOUDAS, Rigorous convez underestimators for general twice—
differentiable problems, Journal of Global Optimization, 9 (1996), pp. 23—40.

[5] I. ANDROULAKIS, C. MARANAS, AND C. FLOUDAS, abb : A global optimization
method for general constrained nonconver problems, Journal of Global Opti-
mization, 7 (1995), pp. 337-363.

(6] , Predicting oligopeptide conformations via deterministic optimization, Jour-
nal of Global Optimization, 11 (1997), pp. 1-34

[7] 1. ANDROULAKIS AND G. REKLAITIS, Analysis of the spurious behavior of asyn-
chronous relazation algorithms, Computers and Chemical Engineering, 123
(1994), pp. 456-789.

(8]

[14]

(18]

[16]
(17]
18]
(19]
(20]
(21]
(22]
(23]

[24]

DISTRIBUTED BRANCH AND BOUND, GLOBAL OPTIMIZATION 35

I. ANDROULAKIS, V. VISWESWARAN, AND C. FLOUDAS, Distributed decomposition
based approaches in global optimizatio, in State of the Art in Global Optimiza-
tion: Computational Methods and Applications, C. Floudas and P. Pardalos,
eds., Kluwer Academic Publishers:Book Series on Nonconvex Optimization
and its Applications, 1996, pp. 285-302.

D. BERTSEKAS AND J. TSITSIKLIS, Parallel and Distributed Computing, Prentice
Hall, 1989.

E. DuksTrRA, W. FEUJEN, AND A. VANGASTEREN, Derivation of a termination
detection algorithm for distributed computations, Information Processing Let-
ters, 16 (1983), pp. 217-219.

E. DUKSTRA AND C. SCHOLTEN, Termination detection for diffusing computations,
Information Processing Letters, 11 (1980), pp. 1-6.

J. ECKSTEIN, Parallel Branch-and-Bound Algorithms for General Mized Integer
Programming on the CM-5, Thinking Machines Corporation Technical Report
TMC-257, 1993.

C. FLOUDAS, Deterministic global optimization in design, control and computa-
tional chemistry, in IMA Proceedings: Large Scale Optimization with Appli-
cations. Part II:Optimal Design and Control, L. Biegler, A. Conn, L. Coleman,
and F.Santosa, eds., Springer-Verlag, 1995, pp. 129-184.

, Nonlinear and Mized Integer Optimization: Fundamentals and Applica-
tions, Oxford University Press, 1995.

C. FLouDAs AND I. GROSSMANN, Algorithmic approaches to process synthesis:
Logic and global optimization, in Proceedings of FOCAPD’94, M. Doherty
and L. Biegler, eds., 1995, pp. 198-221.

C. FLOUDAS AND P. PARDALOS, A Collection of Test Problems for Constrained
Global Optimization Algorithms, Springer-Verlag, 1990.

, State of the Art in Global Optimization, Kluwer Academic Publishers,
1996.

B. GENDRON AND T. CRAINIC, Parallel branch-and-bound algorithms: Survey and
synthesis, Operations Research, 42 (1994), pp. 1042-1066.

I. GROSSMANN(EDITOR), Global Optimization in Chemical Engineering, Kluwer
Academic Publishers, 1996.

P. LAURSEN, Simple approaches to parallel branch and bound, Parallel Computing,
19 (1993), pp. 143-152.

G. L1 AND B. WAH, Coping with anomalies in parallel branch-and-bound algo-
rithms, IEEE Transactions on Computers, 35 (1986), pp. 568-573.

C. MARANAS AND C. FLOUDAS, Global minimum potential energy conformations
of small molecules, Journal of GLobal Optimization, 4 (1994), pp. 135-170.

P. PARDALOS, A. PHILLIPS, AND J. ROSEN, Topics in Parallel Computing in Math-
ematical Programming, Science Press, 1992.

P. PARDALOS, G. XUE, AND P. PANAGIOTOPOULOS, Parallel algorithms for global
optimization: Methods and techniques, in Solving Combinatorial Optimization
Problems in Parallel, Lecture Notes in Computer Science, vol. 1054, A. Ferreira
and P. Pardalos, eds., Springer-Verlag, 1996, pp. 232-247.

J. PEKNY AND D. MILLER, A parallel branch and bound algorithm for solving
large asymmetric traveling salesman problems, Mathematical Programming,
55 (1992), pp. 17-33.

M. QUINN, Analysis and implementation of branch and bound algorithms on o hy-
percube multicomputer, IEEE Transactions on Computers, 39 (1990), pp. 384—
387.

O. VORNEBERG, Transputer networks for operations research, Journal of Micro-
computer Applications, 13 (1990), pp. 69-79.

