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Abstract

Human leucocyte antigens (HLA) or histocompatibility molecules are gly-
coproteins that play a pivotal role in the development of an effective immune
response. An important function of the HLLA molecules is the ability to bind and
present antigen peptides to T cells. Presently there is no comprehensive way of
predicting and energetically evaluating peptide binding on HLA molecules. To
quantitatively determine the binding specificity of a class II HLA molecule in-
teracting with peptides, a novel decomposition approach based on deterministic
global optimization is proposed that takes advantage of the topography of HLA
binding grove, and examines the interactions of the bound peptide with the five
different pockets. In particular, the main focus of this paper is the study of
pocket 1 of HLA DRB1*0101 allele. The determination of the minimum energy
conformation is based on the ECEPP/3 potential energy model that describes
the energetics of the atomic interactions. The minimization of the total poten-
tial energy is formulated on the set of peptide dihedral angles, euler angles, and
translation variables to describe the relative position. The deterministic global
optimization algorithm, BB, which has been shown to be e-convergent to the
global minimum potential energy through the solution of a series of nonlinear con-
vex optimization problems, is utilized. The PACK conformational energy model
that utilizes the ECEPP/3 model but also allows the consideration of protein
chain interactions is interfaced with aBB. MSEED, a program used to calculate
the solvation contribution via the area accessible to the solvent, is also interfaced
with aBB. Results are presented for the entire array of naturally occurring amino
acids binding to Pocket 1 of the HLA DRB1*0101 allele and very good agreement

with experimental binding assays is obtained.



1 Introduction

The docking problem has received a lot of attention in the open literature. The
presented methods can be classified as shape-based methods that are based on
molecular surface representation and energy-based methods that optimize inter-
action energy in order to determine good dockings. Shape-based methods have
the advantage of being less computationally intensive since the number of possi-
ble different binding modes can be greatly reduced by using a simplified model
for the shapes of the receptor and binder. Based on this idea, are the works of
Lee and Richard [22], Connolly [8], Bacon and Moult [5], Jiang and Kim [19],
Kuntz and co-workers [17].

Energy-based methods on the other hand, represent a more precise way of
determing good dockings but they are more computationally demanding. Due to
this fact most of the proposed approaches are based on Monte Carlo simulation
and Simulated Annealing such as the works of Goodsell and Olson [12], Hart and
Read [16] and Calfisch [7]. Rosenfeld et al, [35], present a peptide binding study
based on random selection and minimization among potential peptide structures.
More recently, dynamic programming optimization, [21], is used for optimizing
the overall free energy based on a fragment assembly algorithm and molecular
dynamics simulation is also utilized for studying the binding afinity of the HLA-
B*2705 protein,[34]. All the proposed approaches identify the importance of
accurate prediction which leads to the need of establishing efficient and systematic
ways of predicting the global energetically most favorable docking mode.

Histocompatibility molecules or human leucocyte antigens (HLA) are cell sur-
face molecules that form complexes with self and non-self peptides. The HLA-
peptide complex is recognized by the T-cell receptor and initiates antigen specific
immune responses. HLA molecules are very polymorphic and each of them may
interact with large number of peptides. Both characteristics, their polymorphism
and their binding promiscuity serve the basic function of presenting a wide range
of antigens to the immune system. Appropriately presented antigens induce ei-
ther tolerance or an active immune response. HLA molecules are classified as
class I and class II. This distinction relates to the mode of interaction with pep-
tides as well as to their function and distribution in the tissues. The study of
the differences between the two classes as well as a trial to predict the struc-
ture of class I MHC based on the structure of class I is the subject of a recent
publication of [20].

In this study the presented results involve the class I1 molecule HLA-DRB1*0101.
A deterministic global optimization approach is proposed for determining the con-
formation of the binding complex with the global minimum of interaction energy.
This approach is applied on evaluating the total potential energy of the entire
array of amino acids interacting with pocket 1 of HLA-DRB1*0101. A detailed
description of the HLA-DRBI allele is presented in the next section. Following
this introduction the problem definition and formulation are presented in sections



2 and 3, respectively, whereas section 4 presents the proposed global optimization
approach. The results for all naturally occurred amino acids binding in pocket
1 of HLA-DRI are given in section 5 and discussed in comparison with provided
experimental data.

2 Problem Definition and Proposed Approach

2.1 HLA-DR1 molecule

The binding of an influenza virus peptide to the MHC protein HLA-DR1 [38]
is illustrated in Figure 1. The HLA-DR1 molecule is in white, while the bound
peptide is in grey with the different locations of the major protein pockets defined
by the residues shown in different shades. Notice that the peptide obtains an
extended conformation in the binding groove on this comlex. (All pictures were
created in the molecular graphics program GRASP, [31]).

Histocompatibility proteins are organized into two major classes. Polymor-
phic residues in both class I and II proteins are clustered in the peptide-binding
region and are responsible for the different peptide specificities. The major dis-
tinctive features of the class I and class II locci are: (i) allograft rejection prop-
erties, (ii) relative tissue distributions, and (iii) differing chemical compositions,
[32]. Class I proteins generally bind fragments that range from eight to ten
residues in length. Additionally, the protein pockets in this class show allele
defined tendencies to bind particular amino acid side chains, or to bind unspecif-
ically. In contrast, class II molecules bind much longer fragments and it has
proven difficult to define the binding tendencies of the various pockets, [38]. The
different binding properties of these two classes are conjectured to be a result of
the more open structure of class Il peptides. This allows longer peptides to be
situated in the MHC binding groove, [32].

In humans, the major histocompatibility proteins are referred to as Human
Leukocyte Antigens (HLA). These proteins are then further distinguished by
serological studies into HLA-x. Class I locci fall under the classification of HLA-
D. The first alleles discovered at this locus were termed HLA-DR (D-related).
Subsequently, different class 11 locci were discovered and now define the categories
of HLA-DQ and HLA-DP, [32]. The HLLA-DR1 protein will be the major concern
of this paper.

The peptide binding site of HLA-DR1 molecule consists of an « chain (33-35
kD), and a 8 chain (26-28 kD) consisting of 366 amino acid residues. The 1
chain of the HLA-DRI1 locus is highly variable, while all other regions tend to be
relatively invariant.

Crystallographic studies [38] have shown that peptide binding is accommo-
dated by five polymorphic pockets on the surface of the HLA-DR1 molecule. Each



Figure 1: HLA-DR1 bound to an influenza virus peptide



of these pockets can accommodate a single amino acid residue when a particular
peptide is bound, [38]. Accordingly, these pockets play a major role in deter-
mining the peptide specificity of class II molecules. Both pocket 1 and pocket
4 have been implicated as playing vital roles in peptide binding and subsequent
recognition by T cells, [14, 10].

Pocket 1 is the largest and deepest pocket of the HLA-DR1 molecule. The area
of contact for potential binders has been estimated at 200 /012, [38]. The pocket
has been implicated as being an “anchor” peptide. It has been postulated that
the residues that bind to the other four pockets are mainly determined by which
residue in the binding peptide attaches to this pocket, [14]. Pocket 1 consists
of hydrophobic residues including several phenylalanine groups. This accounts
for the preference of this pocket to accommodate hydrophobic residues, such as
tyrosine and phenylalanine, [38]. The large size of this pocket makes it the most
solvent accessible of the five pockets.

Pocket 4 is a relatively large pocket that is much shallower than pocket 1. The
pocket consists of predominately hydrophobic amino acids, except for a positively
charged arginine group. This accounts for this pocket’s tendency to bind residues
that have large, aliphatic side chains, or negatively charged side chains. Thus,
residues such as glutamate and aspartate bind favorably to this pocket while
positively charged groups such as lysine, or arginine are repelled, [38]. Pocket 4
has been shown to play an important role in the recognition of the bound peptide
by T cells, [10]. Pocket 4, in addition to pockets 6, 7, and 9, has been shown to
be 90% inaccessible to solvent, [38].

The other three pockets (6, 7, and 9) are considered to affect to a lesser degree
the determination of peptide binding. Pocket 6 is a shallow pocket that prefers
smaller residues. The similarly shallow pocket 7 is nondiscerning in its binding
activities, and only partially accommodates side chains. Pocket 9 binds aliphatic
side chains due to its small, hydrophobic nature, [38].

A large array of diseases have been linked to HLLA mutations by statistical
association. Omne study has established a definite link between the HLA-DR1
locus and rheumatoid arthritis. It has been shown that a particular peptidic
sequence between residues 67 and 71 on the 3 strand of the HLA molecule plays
a significant role the determination of an individual’s susceptibility to this disease,
[32].

Mechanisms for increased disease susceptibility can be posed, but are much
more difficult to verify. For example, it is not difficult to postulate that if a
mutation weakens antigen binding, then the process of disease identification and
eradication will be retarded. But quantitatively establishing binding potential
in the laboratory is a difficult task. Thus, diseases have been associated with
mutations to various locii within the MHC molecule, but precise mechanisms
for disease manifestation have yet to be established. A sampling of the diseases

associated with the HLA-DRI1 locus is present in Table I. The HLA-DR locus



Table I: Mutations to the HLA-DR1 locus and Associated Diseases

Changes in Pocket 4 of HLA-DR1 | Associated Disease | HLA Locus

(313: Phe — Arg Multiple Sclerosis DR1(1501)
B71: Arg — Ala
(313: Phe — Arg Leprosy DR1(1501)
B71: Arg — Ala
$313: Phe — His Rheumatoid Arthritis | DR4(0401)

B71: Arg — Lys

313: Phe — His

B70: Gln — Asp Rheumatoid Arthritis | DR4(0402)
B71: Arg — Glu
$313: Phe — His Rheumatoid Arthritis | DR4(0403)
B74: Ala — Glu
$313: Phe — His Rheumatoid Arthritis | DR4(0404)

that coincides with each of these mutations is also presented. Note that the locus
presented in this paper corresponds to DR1(0101). Specifics of the research per-
formed to solidify these associations are given in [44, 15] for theumatoid arthritis,
in [43, 44] for multiple sclerosis, and in [45] for leprosy.

2.2 Proposed approach

The modeling and optimization studies of the interactions between the HLA-DR1
protein and a virus peptide are based on a novel decomposition scheme. As it has
been described in the previous section, the binding specificity of the HLA-DR1
molecule is mainly determined by the binding characteristics of its five pockets
which enables the investigation of each one separately. This paper will concen-
trate on the study of pocket 1. The key ideas in the proposed decomposition
approach are: (i) to consider the binding at each pocket separately, (ii) to study
the binding of each amino acid to each pocket by considering one at a time, and
(iii) to create a rank ordered list of the binding amino acids for each pocket, based
on an energetic criterion that reflects the binding specificity.

The proposed decomposition approach consists of the following stages:

Stage 1 In this stage the pocket of the HLA-DR]1 protein is represented by a number
of residues as described in detail in section 3.2. The work of Stern et al. [38]
provides information on the constituent amino acids of each pocket of HLA-
DR1 protein. Furthermore, this work provides the cartesian coordinates of
the atoms that participate in each amino acid of the HLA-DR1 protein.
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Stage 2

Stage 3

Stage 4

Stage 5

Stage 6

For the specific pocket interacting with each naturally occurring amino
acid a mathematical model is formulated that represents all the energetic
atom-to-atom interactions. These interactions are classified as (i) inter-
interactions between the atoms of the residues that define the pocket of
HLA-DR1 protein and the atoms of the considered naturally occurring
amino acid, and (ii) intra-interactions between the atoms of the considered
naturally occurring amino acid. These interactions consist of electrostatic,
nonbonded, hydrogen-bonding, torsional, and loop-closing components. In
addition, solvation energy is also considered based on solvent accessible ar-
eas. The detailed mathematical model and potential functions used are
described in sections 3.1 and 3.3.

Having a mathematical model which accounts for all the inter and intra
interactions of the specific pocket and the considered naturally occurred
amino acid, in this stage we formulate the global optimization problem
which minimizes the total potential energy as it is explained in detail in
section 3.4.

A deterministic global optimization method, aBB, [3, 4, 24, 25] is adopted
at this stage for the solution of the resulting nonconvex mathematical model
of stage 3. This stage requires the connection of the «BB global optimiza-
tion method with the conformation energy program PACK, [37], which
utilizes ECEPP/3, [36], and the program MSEED, [33], that supplies the

solvation contribution as described in detail in section 4.

In this stage, we introduce an energetic-based criterion that allows for the
comparison of the binding between a given pocket and each naturally occur-
ring amino acid. This measure, which is denoted as AFE, corresponds to the
difference of (i) the global minimum total potential energy that is obtained
in stage 4 and which is indicated as FErear, and (ii) the global minimum
potential energy of the considered naturally occurring amino acid when it
is far away from the pocket and which is denoted by E%,,:

AE = ETUtﬂl - Eloaes (1)

Note here that the energies Froer and F%,, include the consideration of the
solvation energy as it will be discussed in more detail in section 3.3. This
criterion represents a measure of the binding affinity of each amino acid to
the given pocket, in the sense that it quantifies the tendency of an amino
acid to bind with the pocket of the HLA-DR1 molecule. The amino acid
that exhibits the least AF corresponds to the one with the best possible
binding to that pocket of the HLA-DR1 protein.

In this stage we repeat the previous stages for each naturally occurring
amino acid and hence create a rank ordered list for the binding of each of
them to the specific pocket. The detailed results are shown in section 5.



3 Mathematical Modeling

3.1 Protein representation

The geometry of a protein can be fully described by defining the relative cartesian
coordinates of each atom. Instead of specifying the coordinate vector for all atoms
in a protein, one can specify all bond lengths, covalent bond angles and dihedral
angles. Under biological conditions, the bond lengths and bond angles are fairly
rigid and thus can be assumed to be fixed at their equilibrium values. Under
this assumption, the dihedral angles determine the geometric shape of the folded
protein. The names of the dihedral angles of a folded protein chain follow a
standard nomenclature as shown in Figure 2.

Xk

Figure 2: Dihedral angles of a standard amino acid

If more than one polypeptide is involved then the relative orientations, and
locations of these different chains must be defined. This can most easily be accom-
plished by defining a translation vector and a rotation matrix. The translation
is achieved through the cartesian coordinates of the initial nitrogen atom of each
independent chain. The Euler angles specify the rotations necessary to orient a
particular polypeptide and are defined as the angles between the coordinate axes
defined by the initial hydrogen, nitrogen, and alpha carbon of each residue. The
detailed determination of the euler angles is given in the Appendix A.



3.2 Pocket definition

The relative energies of minimization of each of the five protein pockets is mainly
determined by the residues that constitute these pockets. A Program for Pocket
Definition, denoted as PPD, constructs these pockets through the selection of all
residues that are within a radius R of the atoms of the crystallographic binder.
A range of values for R have been evaluated in an attempt to discover a radius
that realistically represents the pocket, while limiting the number of residues nec-
essary to define the pocket. The information required by the user is provided in
a file containing the coordinates of the HLA-DR1 molecule and a file with the
coordinates of the influenza virus binding peptide, as well as the value of radius
R. Each of the five pockets of the HLA-DR1 molecule were run through PPD for
three different radius lengths (R = 4.0, 4.5, 5.0 A) The program filters through
the a and 3 strands of the molecule and returns two output files one having a list
of all atoms within a radius R, as well as the exact distances and a PDB file with
the coordinates of all residues hat define a given protein pocket for the specific
radius. Table II presents the residues defining each of the protein pockets for the
various radii considered. There are several important observations that should be
made. First, there is the intuitive trend of the pockets becoming more complex
with increased radius. Second, note that pocket 1 is composed of a significantly
larger number of residues than any of the other pockets. Finally, note that in
some cases an increase in radius does not cause the inclusion of additional amino
acids. An example of this is pocket 7, where the pocket is identically defined
across the entire range of radii.

The resulting PDB file is then translated to the internal coordinate system
by a program denoted as ARAS (Amino acid Residue Angle Solver). The output
file obtained by this program is the one required by the conformational energy
program PACK to evaluate the potential energy as is described in detail in the
next section.

3.3 Potential Energy model

Molecular dynamics calculations employ an empirical derived set of potential en-
ergy contributions for approximating the force field of the protein system. These
energy functions are based upon specific types of interactions instead of being
associated with a particular molecule. The parameters for these correlations
have been determined to provide the best possible agreement with experimental
data. Many different parameterizations have been proposed for approximating
the force field in protein folding calculations. Some of the most popular ones
are: ECEPP [26], MM2 [1], ECEPP/2 [30], CHARMM [6], DISCOVER
9], AMBER [41, 42], GROMOS [39], ENCAD [23], MM3 [2], and ECEPP/3
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Table II: PPD Pocket Compositions for R = 4.0-5.0 A

Pocket | R = 4.0 4.5 5.0
ilea3l  phea32 || ilea31  phea32 || ilea3l  phea32
trpad3  alaab2 || trpadd  alaab2 || trpad3d  alaab2
serab3  pheadd || serah3  pheabd || serab3  pheabd

1 valg8s  gly386 || valg85  glys86 || valg85  gly386
phe389 phe389 phea24 || phes89 phea24
asn /382 asnf382  gluahh
thr390
glna09  asnab2 || glna09  asnab2 || glnal9  asnab62
phef13  glnp70 || phes13  glng70 || phef13  glng70
4 arg71  alap74 | argB71 alag74 || argB71 alaf74
tyr378 tyrg78  gluall || tyrg78  gluall
leu326 leu326
gluall  asnab62 || gluall  asnab62 || gluall  asna62
valabb  aspabb || valabh  aspab6 || valabb  aspab6
6 leug11 leug11 leug1l  pheg13
arg371
valabb  asnab69 || vala6b  asna69 || valab6b  asna69
glup28  tyrp4a7 || glup28  tyrp47T || glup28  tyrp4T
7 trpB61  leup67 || trpB6l  leuB67 || trpB61  leug67
arg71 arg371 arg371
ilea72  asnab69 || ilea72  asna69 || ilea72  asna69
meta73  argaT6 || meta73 arga76 || meta73 argaT6
trpB09  aspBHT || trpB09  aspB5T || trpB09  aspB5HT
9 tyr360 tyrg60  trpg61 || tyrg60  trpg6l
leua70
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[29]. In this work the ECEPP/3 [29] detailed potential model is utilized. In this

potential model, it is assumed that the covalent bond lengths and angles are fixed

at their equilibrium values and the conformational energy is treated as the sum of

electrostatic, nonbonded, hydrogen bonding, torsional and cystine contributions.
The potential function of ECEPP/3 includes the following terms :

E = > 332.0 445 (Electrostatic)
(i,5)€ES Tij
A C
+ ) Frj s (Nonbonded)
(¢,7)ENB 2] %7
Al B
+ Z F—5 — =5 (Hydrogen bonding)
(he)erx T"hz  Thx
E, .
+ Y (Z2)(1 £ cosngby) (Torsional)
keTOR 2

11—3
+ > B Z(ril —r;,)?  (Cystine Loop-Closing)
leLooP  4=1
+ Z Ar(rg, —ra,)® (Cystine Torsional)
1eLOOP

In addition, the solvation energy is also considered through the utilization of
the program MSEED [33] which supplies solvent accessible areas. Once these
areas have been calculated, the following formula can be utilized to define the
solvation potential:

Esor = ) owa)As (2)
i=1

where n equals the total number of atoms in the molecule, oy;) is a coefficient
dependent upon the atom type, and A; is the solvent accessible area of the it

atom. The o coefficients were determined by the research performed in [40].
The solvent accessible area is determined by rolling a spherical test probe over
the surface of the molecule (see Figure 3). The areas of direct contact between
the molecule and the probe define the accessible surface. Additionally, the area
of the bottom most part of the probe traces the surface in inaccessible cavities of
the protein. The probe radius is equivalent to the van der Waals radius of a water
molecule, which is equivalent to 1.4 A. These empirical solvent accessible surface
areas are calculated by the program MSEED. This program utilizes Connolly’s
analytical algorithm, which is described in [33]. Note that Esor is only added
to this overall potential at local minima, and hence is not explicitly stated in
the above equation. This is done because the parameters of the JRF set used in
[40] were derived based on a set of tetrapeptide conformations that correspond
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Figure 3: Determination of solvent accessible area

to local minima of the ECEPP potential energy, [38]. The total energy Frosa is
then defined as:
Erotar = £+ Esor,

3.4 Problem Formulation

As it was described in section 3.1 a particular amino acid chain could be defined
by a translation vector, a rotation matrix, and the corresponding set of dihedral
angles. The translation vector will be defined as the coordinates of the nitrogen
atom on the first residue of a chain, while the rotation matrix will be defined by
the euler angles. Since the pocket is considered to be rigid, the only variables
will be the amino coordinates, euler angles, and dihedral angles of the amino acid
binder.

Let £ = 1,..., K, where K is the total number of side chain angles of the
amino acid residue that attempts to bind the pocket. Then, the set of variable
dihedral angles would include the backbone angles (¢, ¥, and w), and the side
chain angles (x*). The cartesian coordinates of the amino translation vector will
be defined by the variables N, N,, and NV,. Similarly, the cartesian coordinates
of the backbone carboxyl carbon are represented by €7, €, and 7. Finally, the
euler angles will be represented by ¢1, €5, and 3. Utilizing the above definitions
the potential energy minimization problem can be formulated as follows:

min E (¢777Z)7w7xk7vaNy7N27€1752753) (3)
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st. —71 < ¢ < (4)
—r < ¢ < (5)
—r < Xk < T, kzlv 7[( (7)
1 < a<n (8)
-1 < g <7 (9)
—7 < &3 < (10)
Nl < N, < N (11)
N < N, < N (12)
N, < N, < N (13)
O;:l § O;: (¢7¢7W7Xk7Nﬂ:vNy7N27€17€2753) S O:::u (14)
C < O (9,0, x5 Nay Ny, Nsex,e,63) < Ot (15)
O;l § C; (¢7¢7waxk7vaNy7N27€17€27€3) § O;u (16)

Note that the superscripts v and [ denote upper and lower bounds, respec-
tively, for the cartesian coordinates of both the amino nitrogen and the carboxyl
carbon. In addition to the constraints on the amino nitrogen, note that in the
above formulation there are additional constraints on the carboxyl carbon. It has
been assumed due to the decomposition employed that enables the consideration
of each pocket separately, that the conformational movements of the binding
peptide are only constrained by the locations of these two atoms. In the original
problem though, the binding residue is part of a longer antigen peptide. The
rest of the binding peptide is assumed to bind normally so even if the binding
residue is changed these backbone atoms will be relatively confined to their initial
positions due to their peptidic linkages. Although the constraints of amino nitro-
gen can be directly considered in the above formulation since they correspond to
problem variables, the C” coordinates are not explicit variables and consequently
they must be defined as a function of the other variables (see Appendix B). Note
that E is a nonconvex function involving numerous local minima that correspond
to metastable states of the specific amino acid binding to the pocket 1. A single
global minimum defines the energetically most favorable peptide conformation.
In establishing a ranked-order list of binding peptides, one needs to identify rig-
orously the best conformation of (i) the binding residue far from the pocket and
(ii) the complex of Pocket 1 with the binding residue. Consequently, there is a
need for a method that can guarantee convergence to the global minimum poten-
tial energy conformation and which is capable of solving large scale constrained
optimization problems. In this paper, the global optimization approach o«BB
[3, 4, 25], described in more detail in the next section, has been extended to pep-
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tide systems interacting with realistic atomistic potential energy models (e.g,,
ECEPP/3 [36]), which include solvation contributions via surface accessible area

as the solvent method (e.g., MSEED [33]).

4 Deterministic Global Optimization

4.1 Global Optimization Approach

The global optimization scheme aBB [3, 4, 25] is a deterministic branch and
bound algorithm for locating the global optimum based on the construction of
converging lower and upper bounds. Upper bounds can be simply obtained by
minimizing F using local methods. Lower bounds can be evaluated by construct-
ing the convex underestimator, L, of the original function £ and evaluating the
single global minimum of the resulting convex problem.

A convex lower bounding function L of potential energy function £ can be
defined by augmenting £ using the ideas of the approach introduced in [25]:

L=FE+af (#-9¢)("—9)+

where « is a nonnegative parameter which must be greater or equal to the negative
one half of the minimum eigenvalue of the hessian of £ over the rectangular under
consideration described by the lower and upper bounds of the involved variables
defined by the superscripts [ and u, respectively. The following properties of
function L will enable the construction of a global optimization algorithm. These
properties whose proof is given in [25] demonstrate that:

(i) L is always a valid underestimator of £;

15



11) L matches £ at all corner points of the box constraints;
P )
(111) L is co vex;

(iv) the maximum separation between L and E is bounded and proportional
to a and to square of the diagonal of the current box constraints. This
property ensures that an ey feasibility and €. convergence tolerances can be
reached for a finite size partition element;

(v) the underestimators L constructed over supersets of the current set are
always less tight than the underestimator constructed over the current box
constraints for every point within the current box constraints.

These bounds are successively refined by iteratively partitioning the initial
feasible region into smaller ones. The feasible region partition is achieved by sub-
division of a rectangle into two subrectangles by halving along the longest side
of the initial rectangle (bisection). At each iteration the lower bound would be
the minimum over all the minima in every subrectangle composing the original
domain. Therefore, a simple way to produce a nondecreasing sequence of lower
bounds is to halve only the subrectangle responsible for the infimum of the min-
ima. A nonincreasing sequence of upper bounds can also be produced by solving
locally the nonconvex problem and selecting the minimum over the previously
recorded upper bounds. Based on this procedure a fathoming step of the algo-
rithm leads to no further consideration of a subrectangle where the minimum is
greater than the current upper bound. Convergence proof to an e-global solution
in finite steps is given in [25].

4.2 Algorithmic Description

The proposed approach for the determination of the global minimum of F that
corresponds to the peptide conformation binding to the pocket 1 of HLA-DRI1
as posed in section 2, necessitates the development of an optimization interface
that combines the global optimization program aBB, the conformational energy
program PACK which utilizes ECEPP/3, the solvation program MSEED, and
the local optimization solver NPSOL. Additional program files serve to link these
programs. A schematic diagram of the interface between the used programs is
shown in Figure 4.

The following steps are required in the calculation of the global minimum:

(1) The local solver (NPSOL [11]) obtains a local minimum of the potential
function supplied by PACK in a domain (rectangle) defined by the original
lower and upper bounds of the variables (bounds are supplied by aBB).
PACK determines the energies of individual chains through repeated calls

to ECEPP/3.
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(2) The solvation energy at this local minimum is calculated by MSEED. This
hydration energy is added to the potential function to yield Ergqr, which
will serve as an upper bound on the global minimum solution in the current
rectangle.

e current best upper bound is updated to be the minimum of those thus
3) Th t best upper b d is updated to be th ini f those th
far stored.

(4) The current rectangle is partitioned by bisection along the longest side.

(5) The convex function I, is minimized in each rectangle and the solvation
energy i1s added at the minimum. If a solution is greater than the best
upper bound it will be eliminated, otherwise it will be kept on the stack.

(6) The rectangle with the current minimum solution for L is selected for further
partitioning.

(7) If the best upper and lower bounds are within ¢ the program will terminate,
otherwise it will proceed to Step 1.

It should be noted that ECEPP/3 calculates the potential energy function
for a polypeptide chain, [36], while PACK is a program that inputs multiple
chain data and makes the appropriate calls to ECEPP/3 for calculation of the
interaction energies, [37]. Special type penalty functions had to be added to
the upper bound function, E, in order to implement the previously discussed
constraints on C’, [(15), (16), (17)]. The modified objective function takes then
the following form:

E = E+p{ (C;—CL)+(CL—Cm+
(CF=Co) +(Cy = Cp) +
(ct—cyy+(Cc,—-cm )

The () function is defined as follows: (A) equals A if A is greater than zero,
otherwise (A) equals zero. Thus, as long as the coordinates are within the de-
fined bounds the objective function will not be modified. Yet, if a particular
coordinate falls outside of the bounds, the function will be increased by the value
of the transgression multiplied by the arbitrarily large constant 3.

Since the pocket is assumed rigid, the optimization variables are the dihedral
angles, the translation vector and the euler angles of the amino acid under con-
sideration. These variables are partitioned into three sets. The first one (i.e.,
global variables) consists of the variables where branching occurs; the second set
(i.e., local variables) consists of the variables where branching is not performed,
and the third set (i.e., fixed variables) includes the variables for which there exists
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_______________________________________

— Upper Bound Problem
min E

Lower Bound Problem
min L

_______________________________________

Figure 4: The interface for global optimization.
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sufficient experimental evidence for keeping them fixed.

The information required by the user is provided in four different files. The
first one is required by PACK and contains information about the different
protein chains to be considered. The second one is needed by ECEPP /3 and
contains information about the sequence and number of the amino acid residues
and the type of end groups. It also initializes the dihedral angles, translation vec-
tor and euler angles. The third file provides the bounds on the amino nitrogen
and carboxyl carbon of the binding residue. These bounds are defined around
the cartesian coordinates of these two atoms of the influenza virus peptide, [38].
Thus, for each pocket bounds were set in the x,y,z directions around the coor-
dinates of the corresponding atoms of the influenza virus peptide presented by

Stern et al. [38]. These bounds are given in Table III.

Table IIT: Bounds on N and C’ for pockets 1 of HLA-DRB1

‘ Bounds H Lower ‘ Upper‘
x -9.2 -8.4
N Yy 23.3 24.1
z 17.3 18.1

¢ || -100] -9.0
cl y 25.0 | 27.0
2 16.0| 18.0

5 Computational Studies and Discussion

In this section, each one of the naturally occurring amino acids will be examined
and accessed regarding its binding affinity with Pocket 1 of HLA-DR1 molecule.
Prior to presenting the results obtained by the proposed approach, the follow-
ing point regarding the amino acid polarity should be made. The aliphatic side
chains the amino acids Ala, Val, lle and Leu can be clearly considered as nonpolar
ones, whereas, at the opposite end of the polarity scale are the charged residues
Glu, Asp, Arg, Lys. Asn and Gly which have amide side chains, as well as the
hydroxylic amino acids Ser and Thr are polar and expected to interact strongly
with water and have high solubility. The polarity of the rest of the amino acids
is more ambiguous. Cys and His have pK, values close to 7 and may actually
be charged in many proteins under physiological conditions. In our computa-
tional studies we consider as positively charged residues the Arg+, His+, Lys+
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and as negatively charged residues the Asp- and Glu- using the parameters of
ECEPP/3 for eveluating their energy contributions. In Tyr the aromatic ring
compensates for the hydroxyl and makes Tyr a nonpolar residue. Gly and Pro are
special but from the way they behave in proteins can be considered as nonpolar
and polar, respectively.

5.1 Individual Solvated Residues away from Pocket 1

As it has been mentioned in section 2, in order to evaluate the energy of interac-
tion of the 20 naturally occurred amino acids within a pocket the intramolecular
energy due to atomic interactions between the atoms of the single residue far
away from the pocket has to be calculated. Thus, the global minimum energy for
each residue in isolation is found with the consideration of the solvation contri-
bution as described in section 3.3. The results obtained by applying the global
optimization algorithm, aBB, [3, 4, 25] are shown in Table IV where based on
the previous remark regarding amino acid polarity some of them are considered

charged.

5.2 Complex of Pocket 1 and Binding Amino Acids

As mentioned earlier, AF, defined as the difference Erotar — E%e,, has been con-
sidered to represent the binding potential of a specific naturally occurring amino
acid to the pocket considered. As shown in Table II, the number of amino acids
included in pocket 1 increase as R increases. Specifically from 4.5 to 5.0 A the
amino acids that were added involve threonine and glutamic acid. Note that Glu
is negatively charged and is an important factor for evaluating the interactions
with positive charged residues as illustrated in Table VI.

The results for pocket 1 with R=5.0 A are presented in Tables V,VI and in
Figure 5a,b. Tyr, Phe and Trp are found to have the strongest binding affinities
with interaction energies in a range of -20.00 to -16.95. At lower positions in
the middle of the list there are the Leu, Ile and Val having interaction energies
between -12.481 and -11.209. At the bottom of the list finally are the negative
charged residues Glu- and Asp- with 40% smaller interaction energy than that
of Val. An interesting result of the theoretical studies is the one obtained for the
positive charged residues that appear to be the most unfavorable binders for this
pocket.

A series of competitive binding assays was performed that involved analogs of
the HA peptide (306-318) and the DRB1*0101 molecule [28]. Since the HA(306-
318) peptide residue that interacts with Pocket 1 is Y(308) a number of analog
peptides were synthesized that substituted the Y(308) with 11 different amino

20



Table IV: Standard Energies for Individual Solvated Residues

Residue | Code E(I)ifs
(kcal/mol)

Ala A -42.143
Asn N -94.376
Cys C -74.667
Gln Q -86.964
Gly G -56.260
Ile I -17.074
Leu L -23.166
Met M -46.269
Phe F -160.850
Ser S -82.476
Thr T -69.423
Trp W -184.230
Tyr Y -178.950
Val V -25.055
Glu- E- -56.607
Asp- D- -67.416
His+ H+ -125.460
Arg+ R+ -105.800
Lys+ K+ -27.706
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Table V: Relative Energies for Solvated Residues in Pocket 1 (R = 5.0&)

Table VI: Relative Energies for Solvated Positive Charged Residues in Pocket 1

(R =5.0A)

Residue ESyin ESS AE
(kcal/mol) | (kcal/mol) || (kcal/mol)

Tyr -198.950 -178.950 -20.000
Phe -180.475 -160.850 -19.625
Trp -201.180 -184.230 -16.950
Gln -102.360 -86.964 -15.396
Met -60.212 -46.269 -13.943
Asn -108.160 -94.376 -13.784
Thr -82.718 -69.423 -13.297
Leu -35.647 -23.166 -12.481
Ile -29.539 -17.074 -12.465
Ser -94.033 -82.476 -11.557
Cys -85.947 -74.667 -11.280
Val -36.264 -25.055 -11.209
Ala -52.498 -42.143 -10.355
Gly -66.351 -56.260 -10.091
Glu- -64.531 -56.607 -7.744
Asp- -69.847 -67.416 -2.431

Residue ES. . ESS AE
(kcal/mol) | (kcal/mol) || (kcal/mol)

His+ -58.374 -124.870 +66.496
Lys+ +196.15 -27.706 +223.856
Arg+ +182.78 -105.640 +288.420
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Figure 6: Experimental data for the naturally occurring amino acids

acids. The relative binding affinity was derived from the reciprocal of 50% in-
hibitory concentration (IC50) of each analog peptide in a logarithmic scale. Fig-
ures 5a,b and 6 show the results of both the theoretical and the experimental
results, respectively.

Based on the competitive binding assays shown in Figure 6, three groups of
binding affinities have been identified. The first group includes the amino acids
Tyr, Phe, and Trp that are the residues with the highest affinity to DR1. The
second group includes the amino acids lle, Leu, and Val and are characterized by
an intermediate level of affinity to DR1. The third group finally consists of low
level affinity amino acids. This group involves the charged residues Asp-, Glu-,
Arg+, His+ as well as the amino acids serine and threonine.

Based on the theoretical predictions, shown in Figure 5a,b, Tyr, Phe and Trp
are at the top positions of the rank ordered list of the examined naturally oc-
curred amino acids a result that is further supported from the strong preference
of this pocket for large hydrophobic side chains. Furthermore, the amino acids
Leu, Tle, and Val were found by the optimization studies to be characterized by
potential energies that correspond to 7th, 8th and 11th position on the ordered
list, respectively. The binding assays resulted in intermediate affinities for these
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amino acids. The AF value of -11.209 Kcal/mol for the binding of Val, reflects
an approximate increase of 43% as compared to Tyr. Provided that an increase
of 15% in potential energy defines the group of strong binders (tyr,phe,trp), an
increase of up to 43% could very well reflect a group of intermediate level binders.
At the bottom of table V, the global optimization studies put the charged residues
which is also in agreement with experimental data. An increase of approximately
31% between AFE values of Val and Glu- reflects the low affinity group of amino
acids.

The laboratory studies present serine and threonine as relatively weak binders.
The hydroxyl groups on both of these residues would favor interaction with polar
molecules. Thus, weak interactions with the hydrophobic pocket 1 would be a
predictable consequence. Although, valine appears to have comparable binding
energy with these two residues again the optimization results support the obser-
vation of these residues being weaker binders than the small aliphatic residues.

Finally, there is a number of amino acids including Gln, Lys+, Met, Asn,
Cys,Gly and Ala for which no analogs were synthesized. However, it has been
reported in [18] and [13] that the peptides with Met are intermediate binders
while peptides with Ala result in loss of peptide binding. The values of AFE equal
to -13.943, -10.355 for Met and Ala, respectively, found from our global optimiza-
tion studies are consistent with the reported binding studies.

Therefore, the theoretical results are in excellent agreement with those ob-
tained by the experimental approach of competitive binding assays, [28].

Moreover, since the optimization interface produces a PDB file of the coor-
dinates of the minimum energy conformation of the binder a direct comparison
with the crystallographic data can be made for the tyrosine residue that binds
to pocket 1. Figure 7 shows the HA peptide binder (Tyrosine 308) in white and
the minimum conformation of tyrosine for pocket 1 in grey. An almost identical
orientation with 1.28 A is observed. Figures 9 and 10 illustrate the orientation of
plenylalanine and tryptophan in comparison to the virus peptide binding shown
in Figure 11, suggest that these residues are in fact very strong binders.

The need for determining the global minimum conformation is illustrated
in Figure 8 where a local minimum conformation of tyrosine corresponding to
—196.637 kcal/mol, that is having only 1.16% difference from the global mini-
mum of —198.95 kcal/mol is illustrated with blue whereas the global minimum
conformation is shown with yellow. Note that the local minimum energy confor-
mation of tyrosine is very different than the global minimum despite its proximity
to the global minimum energy value.

For the charged residues, experimental data suggest their weak binding affin-
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Figure 7: Comparison of Tyrosine binding to Pocket 1

Figure 8: Local vs Global minimum configuration of tyrosine
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Figure 11: Influenza Virus Peptide binding to pocket 1

ity. The fact that pocket 1 is extremely hydrophobic region intuitively verifies this
result. Charged residues are not stabilized by the weak van der Waals interac-
tions that stabilize the conglomeration of hydrophobic residues. The hypothesis
that results from this knowledge is that the inclusion of charge on the five afore-
mentioned residues should greatly destabilize their interactions with pocket 1,
which corresponds to an increase in their overall conformational energies (AFE).
The theoretical results obtained for the negative charged residues support this
idea. Positive charged residues have large binding energy due to large electro-
static contribution from the interaction with the negative charged glutamic within
the pocket which however does not suggest favorable binders as their orientation
shown in Figures 12,13,14 for arginine+, histidine+, and lysine+, respectively.
The enforcement of these residues inside the pocket gives rise to large (positive)
energies (Table VI, Figure 5b) that indicate highly unfavorable residues (see Fig-
ures 15,16, 17).

6 Summary and Conclusions

In this paper, a novel predictive method is proposed for modeling and studying
the binding affinity of different naturally occurring amino acids with pocket 1 of
the HLA-DRI1 protein. First, the composition of the pocket is identified together
with the cartesian coordinates of the atoms that participate in each amino acid
of the pocket 1 of the HLA-DR1 protein. Second, explicit relations for all the en-
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Figure 12: Arginine+ binding to pocket 1

Figure 13: Histidine+ binding to pocket 1
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Figure 14: Lysine+ binding to pocket 1

Figure 15: Arginine+ forced within pocket 1
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Figure 16: Histidine+ forced within pocket 1

Figure 17: Lysine+ forced within pocket 1
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ergetic inter and intra interactions between the atoms of the residues that define
the pocket of the HLA-DR1 protein and the atoms of the considered naturally
occurring amino acid were derived. Moreover, solvation energy was also taken
into account based on solvent accessible area method. Then, the docking prob-
lem is formulated as a nonconvex optimization problem on a set of independent
dihedral angles, euler angles and translation variables. The deterministic global
optimum method, BB, is then adopted for the solution of the resulting prob-
lem which is based on the generation of a sequence of converging upper and lower
bounds found from the local solution of the nonconvex problem and the convex
lower bounding problem which is constructed based on eigenvalue analysis of the
nonconvex potential energy function. The final step of the proposed approach
consists of evaluating the interaction energy for all naturally occurring amino
acids and generate a ranked-order list.

The results of the proposed approach were found to agree very well with the
experimental competitive binding assays. It should be emphasized that although
in this paper only one of the binding sites of the HLA-DRI1 protein is exam-
ined, the approach is applicable to predict the binding affinity of the amino acid
residues in the different pockets. Our current work focuses on studying the bind-
ing information for the different pockets in order to be able to predict the binding
of the whole peptide to the HLA-DRI1 protein.
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Appendix A
Determination of Euler Angles

The calculation of the Euler angles is complicated by the fact that the loca-
tion of the hydrogen atom in the (x,y,z) space is not known. For this reason,
a discussion of the method of hydrogen position determination will precede the
Euler angle theory.

Determination of Hydrogen Location

The basic steps behind finding the location of a hydrogen is the following:
(1) define a basis system, (2) find the relative position of the hydrogen in this
system, and (3) translate and rotate this position to a new basis defined by a
particular molecule. This will become more clear as the explanation proceeds.

y

Vw 121°

N %

Z @
Figure 18: Axes defined by the relative positions of C’, N, and C*.

The diagram in Figure 18 shows how the axes are defined in relation to the
prime carbon, nitrogen and alpha carbon. The phi angle is always approximately
equal to 180 degrees. Hence, the N-C'* bond defines the x-axis, while the C'-
C’and N-H bonds lie in the XY plane.

The position of the hydrogen is initially unknown. The position of the nitrogen
is taken to be at the origin. The position of the alpha carbon is known because
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the N-C bond length is approximately 1.435 A. By this definition, the positions
of the atoms are N(0,0,0), and C*(1.435,0,0). The position of the hydrogen
can be found by the knowledge that the H-N-C'* bond angle is 121 degrees.
This angle is illustrated by the arrow in Figure 18. Since the hydrogen lies in
the x,y plane then the hydrogen will lie in the quadrant defined by negative x
and positive y. Hence the position is easily found remembering that the N-H
bond length is approximately 1.0 A. The x and y coordinates are just the cosine
and sine of the angle of 121 degrees, respectively. Solving this system yields:
H(-0.5150,0.8570,0), or since Nitrogen is defined as the origin in this basis, the

following vector is defined:

NH = —0.4226i + 0.3791j + —0.8232k (17)

where, 1, j, and k are the defined unit vectors for the basis.

Now if N, C’; and C* are at a random orientation in space, the magnitudes (or
distances from the defined origin, nitrogen) do not change, but the directions of
the unit normals do change. Hence if 1, j, and k are defined in the new orientation
the vector will still be defined as above, but will have a different value due to the
change in the unit vectors.

The final step is to define these unit vectors as the basis of the orientation of
a particular molecule, where the coordinates of N, C’, and C'* are known. The
vectors NC'*, and C'*C* are easily defined by subtraction of coordinates. Then
the unit vectors in the axis directions can be defined as follows.

In the x-direction,

NC~

1= 18
N (18)
In the z-direction,
z = (C*C')x(NC*) (19)
z
k=— (20)
2|
In the y-direction,
j=kxi (21)
Then for the particular orientation:
NH = —0.51501 + 0.8570j + 0.00k (22)

Finally the exact coordinates of hydrogen can be determined by adding NH
to the given coordinates of nitrogen for the system.
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Determination of Fuler Angles

The euler angles are found by comparing the angles between the unit nor-
mals defining the coordinate axes. The basis coordinate system is defined as fol-
lows and is subscripted with a 1 when mentioned later: N(0,0,0), C'*(1.435,0,0),
H(—0.515,0.857,0).

So initially for given coordinates of the H, N, and C'* atoms, the unit vectors
defining the coordinate axes must be found. First, the vectors NC'* and NH are
found by subtracting the respective coordinates. These vectors define the axes
as shown in Figure 18. Once again the N-C'* bond lies on the x-axis, and the
N-H bond is defined as lying in the xy plane. This orientation is shown on the
coordinate axes in Figure 19. The unit vectors on the axes are easily described
by the following equations.

y

N——c

Z

Figure 19: Axes defined by the relative positions of H, N, and C<.

In the x-direction,

NC=
~ |NCe| (23)
In the z-direction,
n



where,

n =ix(NH) (25)
In the y-direction,

j=kxi (26)

After performing the above operations on the initial basis and a residue there
are two coordinate systems to compare. By definition the following relations hold
for the euler angles in the basis system defined above:

sinf; = —iy-ka (27)
cosf; = —j1-ka (28)
cosfy = ky-ko (29)
sinfy = —ky-iz (30)
cosfs = ki-j2 (31)
sin20y = 1 — cos®6, (32)

The appropriate euler angles (6, 0, #3) can easily be found by taking the
arctangent of the ratio of sine to cosine. The signs on the euler angles are de-
termined by using the signs of the sine and cosine of the angle to determine the
quadrant where the angle is defined.
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Appendix B
Determination of C’ Location

As mentioned in section 3.4 the coordinates of the backbone carboxyl carbon
have to be expressed as a function of other variables since they do not correspond
to explicit optimization variables. This can be made using analytical geometry
and linear algebra. In particular, for each amino acid the coordinates of C’
atom can be expressed as a function of the coordinates of the N atom (i.e., the
translation vector) denoted as ng,ny, n,, the euler angles 60,605,605 and the ¢
dihedral angle, and requires the knowledge of the following parameters the bond
lengths NC* and C'*C’ as well as the value of the angle NC*C’ taken from the
literature [27].

Given the above information and based on the graphic representation of protein
shown in Figure 7, the following expressions are derived for the coordinates of C’
atom:

T = ng+ scxtempxsin(fq)x sin(6,)
(— cos(f3) % cos(f3) x sin(f1) — cos(f1)x sin(f3))

(1 — cos?(¢))
+ ((NC?*) + (C*C')x cos(8))x(cos(f1) x cos(f3) — cos(fz2) x sin(f1) x sin(f3))

+ saxscx cos(¢)xtempx

Yy = ny— sextempx cos(fp)x sin(6y)
(cos(f1) % cos(fz)x cos(f3) — sin(f;)x sin(63))

(1 — cos?(9))
+ ((NC%) + (C*C')x cos(8))x (sin(f1) x cos(f3) + cos(#1)x cos(f2)x sin(f3))

+ saxscx cos(@)xtempx

sin(f3)
(1 — cos?(¢))

z = ny+ sextempx cos(by) + saxsex cos(¢)xtempx cos(f3) ¥

+ ((NC%) + (C*C')x cos(f))x (sin(f2) x sin(f3))

1+ cos2 (4)

Jemp — J (C*C’)2 — (C=C")2 x cos?(h)
1—cosz(d>)

sa=1.0,sc=—-1.0if¢ >0

sa=—1.0,s¢c=1.0if ¢ <0
and @ is the angle NC*(C’.
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