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Abstract. Quadratic optimization comprises one of the most important areas of nonlinear pro-
gramming. Numerous problems in real world applications, including problems in planning and
scheduling, economies of scale, and engineering design, and control are naturally expressed as
quadratic problems. Moreover, the quadratic problem is known to be NP-hard, which makes this
one of the most interesting and challenging class of optimization problems. In this chapter, we
review various properties of the quadratic problem, and discuss different techniques for solving var-
ious classes of quadratic problems. Some of the more successful algorithms for solving the special
cases of bound constrained and large scale quadratic problems are considered. Examples of various
applications of quadratic programming are presented. A summary of the available computational
results for the algorithms to solve the various classes of problems is presented.
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1. Introduction

Nonlinear programming problems arise in the mathematical modeling of several
problems in real world applications. A large number of these problems can be
formulated as quadratic programming problems (QP) with a quadratic objective
function and a linear set of equality or inequality constraints. Primarily, quadratic
programming with linear constraints can be viewed as a generalization of the linear
programming problem (LP) with a quadratic objective function. Therefore, it en-
compasses all LP problems, including applications in scheduling, planning and flow
computations. Moreover, quadratic programming is known to be NP-hard, which
means that some of the most interesting combinatorial optimization problems can
be posed in a quadratic programming framework. In addition, quadratically con-
strained quadratic programs occur frequently in the engineering modeling, design,
and control.

Apart from these indirect applications, there are several classes of problems that
are naturally expressed as quadratic problems. Examples of such problems can
be found in planning and scheduling, game theory, problems involving economies
of scale, facility allocation and location problems, quadratic assignment problems
(which might also involve mixed 0-1 variables in the quadratic formulation), prob-
lems in engineering design, and a number of problems in microeconomics. In the
area of chemical engineering process modeling, quadratic models are often used to
formulate problems in pooling and blending, multiperiod tankage quality problems,
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and problems involving separation sequences. Finally, certain aspects of VLSI chip
design can be formulated as linearly and quadratically constrained quadratic models.

It is clear, therefore, that the quadratic programming problem has great impor-
tance both from the mathematical and application viewpoints. This is reflected in
the large number of approaches that have been proposed for the solution of these
problems. Traditionally, quadratic problems have been treated as a subclass of the
general nonlinear programming problem, and methods of solving these problems
have relied on local optimization techniques. However, in recent years, there have
been attempts at developing global optimization algorithms for this class of prob-
lems. It should be noted that there are several global optimization algorithms that
have been developed for the more general nonlinear programming problem. A com-
prehensive review of these algorithms can be found in Pardalos and Rosen (1986),
Pardalos and Rosen (1987) and Horst and Tuy (1993).

Global optimization approaches for the general nonconvex nonlinear problem (in-
cluding approaches for quadratic optimization) can be primarily classified as being
either deterministic or stochastic approaches. In this review, we will restrict our-
selves to the deterministic approaches for quadratic optimization. For approaches
for more general nonlinear global optimization, the reader is referred to Tuy (1987),
Floudas et al. (1989), Al-Khayyal (1990), Shor (1990), and Hansen ef al. (1991).
Recent developments in global optimization approaches can be found in Floudas
and Pardalos (1992). Discussions on stochastic methods can be found in Rinnooy-
Kan and Timmer (1985,1987), Mockus (1989) and Torn and Zilinskas (1989). The
reader is also referred to the chapters on concave minimization, d.c. programming,
stochastic optimization and Lipschitz optimization in this handbook.

The rest of this chapter is organized as follows. In Section 2, we present the
definition of the general quadratic problem with linear constraints along with a clas-
sification based upon the structure of the problem. Section 3 discusses the basic
properties of this class of problems (including various forms of the necessary condi-
tions for optimality), and provides the known results that characterize their solution.
In Section 4, we discuss the quadratic problem from the view point of complexity,
and show why these problems are difficult to solve. Sections 5, 6 and 7 discuss the
particular nature of bilinear, concave and indefinite quadratic problems respectively,
and present an overview of the existing algorithmic approaches. Section 8 consid-
ers algorithms for solving the most general form of the quadratic problem, namely
problems with quadratic objective functions and quadratic constraints. Section 9
briefly outlines the relations between quadratic programming and linear complemen-
tarity problems. Section 10 presents examples from several application areas that
can be formulated in the quadratic programming framework. Finally, section 11 dis-
cusses available computational results for bilinear, concave, and indefinite quadratic
programming problems, as well as quadratically constrained problems.

2. The General Quadratic Programming Problem

The general quadratic problem consists of a quadratic objective function and a set
of linear inequality constraints, as shown below:
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1
min Q(z) = ¢’z + izTDz

b (1)

s.t. Az

z

IV IA

where ¢ is an n vector, b is an m vector, A is an m x n matrix and D isan n x n
matrix. Without any loss of generality, it may be assumed that D is symmetric.
If this is not the case, then it can be converted to symmetric form by replacing D
by (D + DT)/2, which does not change the value of the objective function Q(z).
Similarly, any problem where the variables are not necessarily nonnegative can be
converted by a linear transformation to (1).

If the matrix D is positive semidefinite or positive definite, then (1) becomes a
convex programming problem. Since any local optimum is equivalent to the global
optimum in convex problems, (1) can be solved by any of a number of algorithms
for convex quadratic programming. In particular, it is well known that the convex
quadratic problem is in P (the class of problems solvable in polynomial time), and
therefore there exist polynomial time algorithms that can be applied to solve these
problems. For example, when the data for the problem is integers, Chung and
Murty (1981) showed that the ellipsoid algorithm of Khachiyan (1979) could be
used to solve convex quadratic programming problems in polynomially bounded
computation time. A polynomial time algorithm for this problem was also presented
by Kozlov et al. (1979). Other polynomial algorithms (including some interior-point
approaches) for convex quadratic programming have been proposed by Nesterov
(1988), Monteiro and Adler (1989), Ye (1989), Ben-Daya and Shetty (1990), Granot
and Skorin-Kapov (1990), Monteiro et al. (1990), and Goldfarb and Liu (1991).
Moreover, there are a large number of algorithms for convex nonlinear programming
that can be applied to solve (1). Therefore, the cases of interest, from the viewpoint
of global optimization, are when D is not positive semidefinite. In such cases, (1)
becomes a nonconvex problem, and the application of local optimization procedures
for this problem can no longer guarantee the identification of the global optimum.

2.1. CLASSIFICATION OF QUADRATIC PROGRAMMING PROBLEMS

The main basis for classification of quadratic problems of the form (1) comes from
the nature of the quadratic matrix D. Based upon this, quadratic problems can be
classified as:

1. Bilinear Problems: Often, the matrix D is such that there exist two subvectors of
distinct variables y and z of  such that the problem is linear when one of these
vectors is fixed. Such problems are termed bilinear problems, and are considered
in Section 5.

2. Concave Quadratic Problems: When the matrix D is negative semidefinite (i.e.
all its eigenvalues are nonpositive), then problem (1) reduces to one of concave
minimization. This is further discussed in detail in Section 6.

3. Indefinite Quadratic Problems: These problems arise when the matrix D has
both positive and negative eigenvalues. From the view point of solution, this class
of problems is the most intractable among these subclasses, and consequently
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there are not too many methods for solving these problems. The available ap-

proaches for solving indefinite quadratic problems are discussed in Section 7.

It should be noted that problems in these categories can often be converted
into the other forms (see Konno (1976) and Hansen and Jaumard (1992) for some
examples of how this can be achieved). Hence, algorithms that address one of these
classes can also be used for problems in the other categories.

3. Optimality Conditions and Solution Characterization

A good starting point for approaching the solution of (1) is to review what can
be gathered from general duality theory for nonlinear programming problems. The
Lagrange function for (1) is given by

1
L(z,y,u,v) =c'z + §$TD:Z: +uT(Az — b) + 47 (0 — 2)

where u and v are the Lagrange multipliers for the inequality and nonnegativity
constraints respectively. Using this, the first-order Karush-Kuhn-Tucker (KKT)
optimality conditions for (1) can be written as follows (Bazaraa and Shetty, 1979):

—Dz—ATu+v =

c (2)

ul(Az —b) = 0 (3)
v =0 (4)

Az -5 < 0 (5)
z,u,v > 0 (6)

Here, (2) is the stationarity condition, (3) and (4) are the complementary slackness
conditions, and (5) and (6) ensure feasibility of the resulting solution. Any point z*
which satisfies (2)-(6) is called a KKT stationary point of (1). It can be shown that
if * is an optimal solution of (1), then z* must be a KKT point of (1) regardless of
whether D is positive semidefinite or not. However, the converse is not necessarily
true. In other words, the KKT conditions (2)-(6) are necessary for all quadratic
problems (whether convex or not) but sufficient only for convex problems.

3.1. FEASIBLE DESCENT DIRECTIONS AND OPTIMALITY CONDITIONS

It is also possible to formulate the necessary and sufficient conditions for local opti-
mality for (1) using the concept of a feasible descent direction at a given point. At
any feasible point z*, a vector d € R" is a feasible direction if there exists an € > 0
such that z* + ¢d is feasible for all ¢ € [0,€]. The vector d is said to be a descent
direction if there exists an ¢ > 0 such that f(z* + td) < f(z*) for all ¢t € [0,¢]. A
vector d is a feasible descent direction if it is a feasible direction as well as a descent
direction. Then, the following two conditions are equivalent to the KKT conditions

for (1):

Theorem 3.1 (Necessary and Sufficient Conditions for Local Optimality)
If g denotes Dz* +c, the gradient of the objective function at * and A, denotes the
subset of constraints that are active at *, then, a necessary and sufficient condition
for * 1o be a local minimizer for (1):
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(i) For all d such that A,d <0, ¢g'd>0

(ii) For all d such that A,d <0 and g"d =0, d" Dd > 0.

Proof. See Theorems 5.2 and 5.3 of Vavasis (1991).

It can be easily shown that condition (i) of the above theorem, when combined
with the feasibility requirement, leads to the KKT conditions (2)-(6). Condition (ii)
is simply an additional second order optimality condition. Moreover, it follows as a
direct corollary from conditions (i) and (ii) that there is no feasible descent direction
at any local optimum z*.

The following theorem shows the equivalence between (1) and a corresponding
linear problem, and can be used as a sufficient test of global optimality.

Theorem 3.2 (Murty, 1988) If z* is an optimum solution of (1), then * is also
an optimum solution of the LP

min (c+ T D)z

s.t. Az

z

AV

3.2. AcTIVE CONSTRAINTS AND OPTIMALITY

One of the more interesting results for quadratic problems comes from the consider-
ation of the active set of constraints at the optimal solution. The following theorem,
taken from (Hager et al, 1991), is an adaptation of their original theorem for the
general nonlinear programming problem:

Theorem 3.3 If at some point *, the matriz Q has s negative eigenvalues (counting
maultiplicities), then there must be at least s active constraints at z*.

Theorem 3.3 provides a direct correlation between the geometric structure of the
feasible region and the algebraic structure of the @ matrix. It follows directly that
if at any z*, there are n negative eigenvalues, then z* is an extreme point of the
feasible region. Consequently, for problems where the objective function is bounded
over the feasible set and there is at least one optimal solution, the following results
follow:

(a) For concave quadratic problems, there exists an optimal solution at an extreme
point of the feasible set.

(b) For indefinite quadratic problems, there exists an optimal solution at a boundary
point of the feasible set.

(c) If there exists an optimal solution at an interior point on a facet of the polytope
defined by the feasible set, then @ must have exactly one negative eigenvalue.

These results can be particularly useful for algorithms that are based upon an
active set strategy for solving (1).
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3.3. GLOBAL OPTIMALITY CRITERIA

While there are a large number of necessary and sufficient conditions of local opti-
mality that are applicable to the solutions of (1), there are very few results of global
optimality. One of the few criterion that is specifically directed towards this end is
given by the following theorem

Theorem 3.4 (Warga (1992)) There exist N* € {1,2,...} and ¢* > 0 such that for
every choice of real numbers N > N* and ¢ > ¢*, * is the optimal solution to (1)
if and only if z* also minimizes ¢’ @ + %zTDz + c|Az — b|1/N over the nonnegative
orthant of R*. Moreover, if v,y > 0, Az* +b = 0 and z* minimizes ¢’ ¢+ %zTDz—}—
v|Az — b|'Y, then z* is the optimal solution to (1).

It is not clear how this theorem can be implemented in practice. A more useful

criterion for checking global optimality when Q is negative definite comes from con-
sidering the copositivity of @, as shown by the following theorem.

Theorem 3.5 (Danninger and Bomze (1993)) Let @ be negative definite, and let
z* be a feasible point of (1). Let I(z*) be the sels of active constraints at *, and
u; = b; — (Az*); > 0 be the slacks for the inactive constraints. Also define

B, = —a;(Qz* +¢)T — (Qz* + ¢)(a))7,
QO = Q:
Qi :U,Z'Q—Bi, i:l,...,m,

I = {veR":(4v); <0, if (Az"); = b;},
o = {wvel:(4v); <0, Vie {1,...,m}\ I(z")}, and
I[; = {veTl: (4v); >0, and u;(Av); > u;(Av); Vje{l,...,m}\I(z")},

where (a;)T denotes the ith row of A. Then, z* is a global solution of (1) if and only

(a) z* is a KKT point of (1) and Q; is T';-copositive for all 1 € {0,...,m}\ I(z*).

(b) z* satisfies vI(Qz* +¢) < 0 for all v € Ty and Q; is T;-copositive for all
1€{0,...,m}\ I(z*).

In practice, this involves m — 1 problems of checking I-copositivity. In the worst
case, this still has the exponential complexity of checking local optimality.

4. Complexity Issues

What makes the nonconvex quadratic programming problem so hard (and conse-
quently so interesting) to solve? The reason partly can be understood by analyzing
the complexity of these problems. Although such an analysis can only provide firm
results in worst-case scenarios, it can nevertheless give a good idea of the possibility
of developing efficient algorithms for solving the problem.

It has long been known that the general nonconvex nonlinear problem is a tough
problem to solve. For the case of quadratic programming, the first result in this
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direction was presented by Sahni (1974), who showed that for a negative definite
matrix @, the QP is NP-hard. This result was also later proved by Vavasis (1990;
1991) who showed the result by reduction of the QP to the satisfiability problem,
and Pardalos (1991), who proved it by reduction to the knapsack feasibility problem.

More recently, several authors have shown that QP is actually in NP, that is, it
is an NP-complete problem. Murty (1988) showed this result for special cases of the
QP. Vavasis (1990; 1991) proved that the decision version® of the QP is NP-complete.
This is mainly a theoretical result, since it helps to determine the complexity of QP
exactly.

These results are not surprising. In fact, it has also been shown that just check-
ing local optimality for the QP is an NP-hard problem (Murty and Kabadi, 1987;
Vavasis, 1991). Pardalos and Schnitger (1988) showed the same result by proving
that checking for strict convexity (which is a requirement for checking local optimal-
ity as part of the second order necessary conditions) in these problems is NP-hard,
with one exception 2. When this is combined with the fact that there might be a
large number of local minima for the problem, the intractability of the general QP
becomes obvious. Consider, for example, the following QP:

n
: 2
min — E z;
i=1

1<z, <1 2=1,...,n

This problem has a local minimum at each vertex of the feasible region (that is,
at (£1,+1,...,21)7. There are 2" such points. In general, therefore, the QP
cannot be expected to be solved for its global minimum very efficiently. In fact,
even finding a local minimum (and proving local optimality of such a solution) may
take exponential time.

Most of the above results concern the general case of QPs. What about cases
when there are a small number of concave variables? It would be natural to expect
that such problems might be easier to solve. However, it was shown by Pardalos
and Vavasis (1990) that even when the matrix @ is of rank one with exactly one
negative eigenvalue, the problem is NP-hard. However, a larger number of negative
eigenvalues does not necessarily make the problem harder to solve. Consider, for
example, the following problem:

1
min EzTDz + 'z

1 The decision version for the quadratic programming problem (1) can be posed as follows:
Given a number K, does there exist an z such that

a:TD:x:—}- o <K, and
Az <b.

2 For concave quadratic problems, each local solution will lie at a vertex of the feasible region.
For any such vertex, its adjacent vertices can be computed in polynomial time. To verify local
optimality at a vertex, it is therefore sufficient to consider the optimality over the simplex defined by
the adjacent vertices. This involves solving a linear number of one-dimensional problems minimizing
the objective function over each of the adjacent edges. Hence, for the concave case, local optimality
can be verified in polynomial time.



8 CHRISTODOULOS A. FLOUDAS AND V. VISWESWARAN

z>0

Suppose that (n—1) of the eigenvalues of D are negative. Hager et al. (1991) showed
that there must be at least (n — 1) active constraints at the optimal solution. In
other words, to find the optimal solution, it is sufficient to solve (n — 1) different
problems, in each case setting (n — 1) of the constraints to equalities.

In general, if there are n — k negative eigenvalues, then we need to solve #Lk)'
independent problems. It can be shown that the total computational time required
to solve this problem is proportional to % Thus, if k is a fixed constant
independent of n, then the computational time is bounded by a polynomial in n.
However, if k grows with n (for example, if £ = n/2) then the problem solution time
can grow exponentially with n.

5. Bilinear Programming Problems

One of the earliest applications involving a quadratic programming formulation
comes from the class of bimatrix games. These games involve fixed sets of strategies
available to two players, each of whom must then select a mixed strategy involving
given payoffs. This problem was first investigated by Nash (1951), who introduced
the concept of the Nash Equilibrium Point (NEP) for these problems. Given prob-
ability vectors z and y for the mixed strategies and payoff matrices A and B for the
two players, a NEP (z*, y*) is the solution to the following problem:

2T Ay* = max z” Ay* (8)
reX

z*” By* = max z*” By
yey

where X and Y are the sets of permissible strategies for the two players, given by
X = {:cER'” :eT:czl,zZO}
Y = {yeR"™:e'y=1,y >0}

e (1,1,...,1)7 is the unit vector.

It can be shown that finding a NEP in the bimatrix game is equivalent to finding
the global solution to the following bilinear programming problem:

max z!(A+ B)y—z' —v

z,y,e'y’
st. Ay—1v'e,, <0
BTy — z'e,, <0
zeX,y eyY

If constraints are now imposed upon the set of available strategies to each player,
this reduces to the classical bilinear programming problem with disjoint constraints.
This problem can be written as:

min Q(z,y) =c'z+2  Dy+d’y
@,y
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st. X ={z|d1z (9)

Y = {y|Azy

bl, :L‘.ZO

S
——

<
S b2: yZ

Note that the QP (1) can be reduced to this form by keeping ¢ = d = %C,Al =
A; = A,b; = by = b and introducing an additional set of constraints z = y. In
addition, several other problems, such as dynamic Markovian assignment problems,
multi-commodity network flow problems and some complementarity problems, that
can be written in this form.

The set X x Y of feasible solutions to this problem is generally a polyhedral
convex set (although it may not be bounded) with each vertex of X x Y being
given by an ordered pair of the vertices of X and Y. It can easily be shown that
if (9) has an optimal solution, then it has an extreme point optimal solution. This
property has been utilized extensively to develop algorithms for solving (9). These
approaches may properly be termed as vertex enumeration methods. Czochralska
(1982a) proposed an algorithm for solving (9) that utilizes a method for maximizing
a linear function over a convex hull of vertices on a convex polyhedral set. In order to
eliminate the vertices for which the linear objective does not increase, the algorithm
uses a method for ranking the vertices of the set proposed by Murty (1968). The
approach was extended by Czochralska (1982b) for solving the standard QP via
reduction to a bilinear formulation.

Some of the earliest methods for solving (9) utilized the use of cutting planes.
These methods were inspired by work done on concave problems by Tuy (1964)
and Ritter (1966). One of the first such methods was proposed by Konno (1976),
who proposed solving (9) by using Ritter cuts to eliminate Karush-Kuhn-Tucker
points generated during the algorithm. Konno’s method could be considered the
natural approach to solving bilinear problems of the form (9). The method consists
in starting with an arbitrary fixed ' € X, and solving the related linear problem

min Q(z',y) =’z + :c'TDy +d%y
y

st. Y ={yldy < by, y2>0}
The solution of this problem, 3 is then used to solve another linear problem:

n;in Q(z,y)=c"z + 2" Dy +d7y

st. X ={z|d1z < by, z>0}

This in turn yields a new value for z’. This procedure is repeated until a pair of
values (Z,7) is found that solves both these linear programs. Such a point can be
shown to be a KKT point of (9). A linear cut is then constructed to delete Z from
X and y from Y, and the process is repeated using the reduced feasible domain thus
obtained. Although Konno (1976) could not theoretically guarantee convergence
for the algorithm, no counterexample has been presented to date to show that the
method fails.
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Vaish and Shetty (1977) proposed using specialized polar cuts to solve bilinear
programs, and showed that these cuts are deeper than those proposed by Konno
(1976). Their algorithm converges to an e-approximate solution, and in the limit has
asymptotic convergence, although exact convergence to the global optimum cannot
be guaranteed. Vaish and Shetty (1976) modified the algorithm of Tuy (1964) so
as to generate all the facets of the polytope under consideration, and were able to
avoid the problems of cycling that the original algorithm of Tuy (1964) exhibited.
However, since the number of facets that need to be generated can be large, this
approach is not computationally feasible for larger problems. Sherali and Shetty
(1980) improved upon the algorithm of Vaish and Shetty (1977) by simultaneously
employing negative edge extension cuts and disjunctive face cuts, and were able
to prove finite convergence of the overall procedure. This approach is probably the
most efficient algorithm available for the bilinear programming problem with disjoint
constraint sets.

The bilinear programming problem (9) can also be approached from the viewpoint
of linear duality theory. It can be shown (Falk, 1973) that this problem can be writ-
ten as an equivalent linear max-min problem. Using this formulation, Falk (1973)
proposed a branch and bound algorithm to solve (9) (note that this was the first
algorithm that could guarantee convergence in a finite number of steps) while Gallo
and Ulkucu (1977) developed two algorithms (one based upon the use of cutting
planes and the second upon an enlarging polytope approach) that are modifications
of the algorithms proposed by Tuy (1964) for concave programming. However, nei-
ther of these algorithms has a proof of convergence, and counterexamples exist for
which the second algorithm cycles.

A more general formulation for the bilinear programming problem is to consider
the case when there are joint constraints in z and y. In such cases, the problem can
be written as:

min Q(z,y) =c'z+2' Dy+d'y
@,y

s.t. Az + By

z

Y

IV IV IA

It is easy to show that the general quadratic problem (1) can be converted to the
form (10). Another class of problems that can be converted to this form is the
set of linear complementarity problems. Problems of the form (10) have received
considerably less attention in the literature as compared to problem (9). Primarily,
this is because for these problems, the solution can no longer be guaranteed to lie
at a vertex of the feasible region (although it will still lie on the boundary defined
by the linear constraint set).

The first algorithm for solving (10) was proposed by Al-Khayyal and Falk (1983),
who considered a branch-and-bound approach to solving the problem, using convex
envelopes of the objective function. The algorithm utilizes the fact that the minimum
of the bilinear functional over a convex set is the same as the minimum of its convex



QUADRATIC OPTIMIZATION 11
envelope over the same set. The problem (10) is first converted to the form

min dTy +z7y’

@,y
st. Az + By < b,
y = Dy+c
z >0
y >0

Given a bilinear term z;y; and a rectangle R; = {(z;,v}) : L < z; < L;ym; < 9y} <
M;}, the convex envelope of the term over R; is given by

Ci(z;,y;) = max{m;z; + Ly; — lym;, M;z; + L;y; — L; M;}

and therefore, the convex envelope of the bilinear objective term z”4/ is given by
n
C(z,y) =) _ Ci(=i,y))
i=1

At each iteration of the algorithm, the current rectangular region is partitioned
into four nodes. The convex envelope of the objective function is minimized over
the subset of the feasible region given by the current partition, and this helps to
provide a bound on the global solution. However, the algorithm can only be shown
to converge in the limit. For specific instances, though, the algorithm can be shown
to have finite convergence. Al-Khayyal (1990) presented some improvements that
enable the direct application of the algorithm for more general problems without
resorting to increasing the number of variables and constraints.

Recently, Sherali and Alameddine (1992) proposed a reformulation-linearization
algorithm for solving the bilinear problem of the form (10). Their approach consists
in generating valid quadratic constraints by using pairwise products of the linear
inequalities (or products of inequalities with variables) and subsequently linearizing
the quadratic constraints by defining new variables. The bilinear objective term is
similarly linearized. This results in a lower bounding linear program. The resulting
linear program generates a lower bound that theoretically dominates the bound
produced by the algorithm of Al-Khayyal and Falk (1983), and in practice provides
tighter bounds. Moreover, the partitioning process for the algorithm can be modified
to generate only two node subproblems instead of four. Computational results for
both these approaches are provided only for small size problems (5-10 variables).

When the matrix D has very low rank (less than 3), problem (10) reduces to
the special form of minimizing a linear multiplicative functional subject to a linear
constraint set. For this class of problems, several efficient approaches have been
proposed for their solution (Konno and Kuno, 1989a; Konno and Kuno, 1989b;
Konno et al, 1990; Konno and Yajima, 1990). These approaches use paramet-
ric simplex algorithms to solve the problem, and have computational performances
comparable to similar size linear programming problems.
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5.1. TRANSFORMATION OF QUADRATIC PROBLEMS TO BILINEAR PROBLEMS

The importance of bilinear programming comes not only from the direct applications,
but also because the other classes of quadratic problems (namely indefinite and
concave quadratic problems) can be transformed into bilinear formulations. The
easiest way to achieve this is by introducing new variables and constraints (Floudas et
al., 1989; Aggarwal and Floudas, 1990). Recently, Hansen and Jaumard (1992) have
proposed graph theoretic results and an algorithm for the efficient bilinearization
of general quadratic problems. The algorithm provides the set of new variables
that must be introduced in order to convert the problem into bilinear form. The
bilinearization can be achieved with the objective of minimizing either the number
of z (or y) variables or the number of new variables that must be introduced in order
to make the problem completely bilinear. Moreover, given a bilinear problem with
variable subsets z and y, the algorithm can also be used to identify any changes in
these subsets that will result in a smaller number of either the z or the y variables.
Liu and Floudas (1993a; 1993b) have shown using perturbation theory that a large
class of smooth mathematical programming problems can be converted to biconvex
and bilinear form.

6. Concave Problems

Concave quadratic problems arise often in fixed charge problems and problems in-
volving economies of scale. Certain aspects of VLSI chip design can also be for-
mulated as concave QPs (Watanabe, 1984). In addition, several other classes of
optimization problems can be reformulated as concave QPs, the classical quadratic
assignment problem, for example. Another example of such problems is the class
of 0-1 integer programming problems, which can be formulated as concave QP with
linear constraints (Raghavachari, 1969). Under certain conditions on the bounded-
ness of the objective function and with Lipschitzian continuity, the general nonlinear
nonconvex mixed integer program can be reduced to a concave program, although
not necessarily quadratic (Giannessi and Niccolucci, 1976). The general bilinear pro-
gramming problem with a disjoint constraint set is equivalent to concave minimiza-
tion (Konno, 1976). Frieze (1974) reduced the 3-dimensional assignment problem to
a bilinear formulation, and then to a special concave form.

Concave quadratic problems are by far the simplest of QP, although not necessar-
ily the easiest in terms of solution of QP. As mentioned earlier, all solutions (local or
global) to the concave QP lie at some vertex of the feasible region®. A considerable
amount of research has therefore focused on utilizing this property in order to solve
the concave QP.

6.1. EXTREME PoOINT RANKING METHODS

Because the solution of the concave quadratic programming problem lies at a vertex
of the polytope, a natural method to solve this problem is by complete enumeration
of the extreme points.

3 On the face of it, this should make these problems relatively easy to solve; however, it is very
easy to construct concave QPs where each vertex of the feasible set is a local minimum. Hence, in
the worst case, the enumeration of all these vertices can take an exponential amount of time.
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The basic idea in these methods is to use an extreme point ranking. In other
words, the vertices of the polytope defining the feasible region are ranked in order
of importance regarding the global solution. Starting from one of the vertices of
the polytope, the nearby vertices are ranked using an extreme point approach. This
provides a new vertex to move to, and the process continues until no adjacent vertices
can be found with a decreasing objective function value. At each step, usually a
linear programming problem is solved to provide a bound on the global optimum.
Cabot and Francis (1970) proposed such an approach where a LP is solved (with a
linear underestimator of the concave function being used for the objective function
of the LP), utilizing the extreme point ranking approach proposed by Murty (1968).
Carillo (1977) proposed the use of nonlinear programming duality theory and a
lexicographic ordering of the basic feasible solutions (that is, the vertices) in order
to obtain lower bounds on the objective function, and used this as the basis for a
finitely convergent global optimization algorithm for concave problems.

Several techniques have been proposed for ranking and enumeration of all the
vertices of a polyhedral set. Surveys and comparisons of these methods can be found
in Matheiss and Rubin (1980) or Dyer (1983). The computational effectiveness of
extreme point ranking algorithms is discussed in McKeown (1986).

In general, extreme point ranking methods are not very attractive, because in
the worst case, these approaches might degenerate to a complete inspection of all
vertices. Consequently, these approaches are not computationally feasible for large
problems.

6.2. CuTTING PLANE METHODS

Over the years, a large number of approaches have been proposed for solving concave
quadratic programming problems; however, most of these approaches (except for a
few recent ones) can be traced back to a seminal paper by Tuy (1964). In that
work, Tuy considered the more general case of minimization of an arbitrary concave
function (not necessarily quadratic) under linear constraints. His approach was
based upon the existence of vertex solutions for these problems. In addition, Tuy
recognized the following property of concave functions:

Property 6.1 With every concave function f(z) defined on a conver sel, there exists
a concave extension F(z) such that F(z) > F(z) Yz € R" and any other concave
extension F(z).

This is a useful property in that for the region outside the polytope, the values of
the concave extension can be utilized, thereby restricting the number of vertices of
the polytope that need to be considered.

Tuy’s basic approach involved starting from a specific vertex of the polytope.
The edges of the polyhedron issuing from this vertex are used to define a cone that
contains the feasible region. Tuy proposed the use of cuts to successively reduce this
cone. These cuts are essentially used to eliminate parts of the feasible region from
further consideration. At each step, an auxiliary subproblem is solved in the sub-
cone, that gives rise to a new vertex point, and possibly a better candidate for the
global solution. The advantage of such an approach is that at each iteration, the aux-
iliary problem has the same set of constraints (that is, the constraints corresponding
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to the original polytope) and differ only in the objective function. Moreover, the
objective function at each step can be obtained from the previous iteration by a
simple linear transformation and column replacement. It should be noted that this
method relies on all the vertices being nondegenerate. In the case of degeneracy, a
suitable perturbation method needs to be used.

A similar approach using cutting planes to reduce the feasible region was proposed
by Ritter (1966). However, it was shown by Zwart (1973) that both these proposed
approaches can be nonconvergent. He cited two examples to show that the methods
either fail to converge due to cycling, or need an infinite sequence of cutting planes.
The reason for the cycling behavior as well as nonconvergence of these approaches
lies in the fact that although the approaches generate cones during the algorithm,
they failed to explicitly incorporate these cones into the remaining steps. This is
essential to avoid the reemergence of vertices that have already been considered.
This difficulty with the approaches was recognized by Zwart (1974), who proposed
a modified e-convergent approach where, at each iteration, constraints are added to
ensure that the solution of the LP at each iteration is contained in the cone with the
vertex at the current local minimum and a perturbed set of extreme rays coincident
at that vertex. Similar algorithms have been proposed by Bali (1973) and Jacobsen
(1981). However, it has been shown recently (Tuy, 1991) that for ¢ = 0, Zwart’s
algorithm is essentially the same as Bali’s algorithm. Moreover, the convergence of
Bali’s algorithm is still open to question, depending upon a separation property that
may not hold for the general case.

Several other variants to Tuy’s algorithm have been proposed (Glover, 1973;
Krynski, 1979; Bullatov and Kasinskaya, 1982). In general, however, there are sev-
eral difficulties associated with the Tuy-cut approaches. These come from the fact
that to guarantee convergence, the cuts of the feasible region need to be incorpo-
rated at each iteration. Moreover, these cuts can generate new vertices that must be
accounted for in a way that they do not multiply indefinitely. However, it is possible
to incorporate a branch and bound scheme to monitor a sequence of subproblems
generated from the local solutions (Thoai and Tuy, 1980). Tuy (1991) has also pro-
posed a normal conical algorithm that avoids the exhaustive subdivision process of
his earlier algorithm.

6.3. CONVEX ENVELOPES

A different approach to solving the concave quadratic problem can be developed
from the use of the convex envelope of the concave function. This concept was first
developed by Kleibohm (1967), and can be stated as the following theorem:

Theorem 6.1 (Falk and Hoffman (1976)) If F(z) is the convexr envelope of a con-
cave function f(z) taken over a conver domain S, then any point that globally min-
imizes f(z) over S also minimizes F(z) over S.

Proof. The proof of this theorem can be deduced from the fact that the global
minimum of the concave function lies at a vertex. See Falk and Hoffman (1976) for
more details.

The applicability of this theorem is not immediately obvious. This is because the
convex envelope of a function is generally extremely hard to generate (often, this is
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as tough as solving the original problem). However, for the case of the quadratic
objective function with a linear constraint set, it is quite easy to generate the convex
envelope, as shown by the following theorem*:

Theorem 6.2 Let v°,v',...,v" be the vertices of a bounded linear polyhedron P.
The convez envelope F(z) of a concave function f(z) defined over P can be expressed

as
k
F(z)= min a; f(v')
Qp,x1,...,0k i—0

k
s.t. Zaivi =z
=0
k
Zai =1
=0

;>0  i=0,1,...k

Proof. See Falk and Hoffman (1976).

For the case of concave minimization, this property was utilized by Falk and
Hoffman. Their method uses linear underestimating functions (developed using the
convex envelopes) for the original concave function over different regions of the
feasible domain, and does not involve any cuts of the feasible region. The algorithm
converges finitely. However, a disadvantage of the approach is that in order to
approximate the convex envelope implicitly, the size of the linear subproblems solved
grows in size from one iteration to the next. However, the maximum number of rows
in these subproblems (and also the number of such subproblems solved) is limited by
the original number of constraints. Hence, the growth of the subproblems is mainly
in the addition of new columns.

6.4. REDUCTION TO BILINEAR PROGRAMMING

The concave quadratic program can also be solved by reduction to (and solution
of) an associated bilinear programming problem. This was first shown by Konno
(1976), who proved that when Q(z) in (1) is negative definite (with the constraints
being equalities) then that problem is equivalent to the following bilinear problem:

min ¢’z +d 'y + 27 Qy
@,y

% The approach of using convex envelopes of the nonconvex function has also been proposed by
several other authors. Originally, Falk and Soland (1969) proposed such an approach to solve the
general nonconvex separable programming problem. The branch and bound type approach solves
a series of subproblems in which a linear or convex objective function is minimized over successive
partitions of the feasible domain. This approach was also used by Falk (1972), who replaced the
original function with its piecewise linear convex envelope over different regions, again employing a
branch-and-bound approach to minimize these functions and derive new underestimating functions
in the case that convergence is not yet achieved.
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st. Az = b (11)
Ay = b
z,y >0

Then, (11) and (1) are equivalent in the following sense: If z* is an optimal solution
of (1), then (z*,z*) solves (11). Conversely, if (z*,y*) is optimal for (11), then
both z* and y* are optimal for (1). This property enables the application of all the
bilinear programming algorithms discussed in Section 5. Moreover, it also enables
the development of specialized bilinear programming algorithms for application to
the concave quadratic problem.

Konno (1976) used this approach to propose a cutting plane algorithm for bilinear
programming, which he then used to solve the concave quadratic problem. See also
Konno (1980) and Konno (1981) for other problems and methods of solution using
a similar approach. Similarly, Czochralska (1982b) used his previous approach for
bilinear problems (Czochralska, 1982a) to address the nonconvex quadratic problem.
The resulting bilinear problem is greatly simplified because of the problem structure,
and also since the verification of necessary and sufficient conditions for the existence
of an optimal solution is reduced to the solution of an LP in this case.

6.5. SOLUTION OF LARGE CoONCAVE QPs WITH LINEAR TERMS

Because of the existence of a large number of local solutions, it cannot be ex-
pected that the concave QP could be solved efficiently for anything other than small
size problems. Computational results from the literature (Heising-Goodman, 1981;
Rosen, 1983) point this out, indicating that it would be impractical to solve problems
where the number of variables appearing in quadratic terms is over 50.

Until recently, all approaches for concave QPs had essentially treated the problem
assuming that all the variables may appear nonlinearly in the problem formulation.
However, as observed in numerous problems of practical interest, a large number
of variables appear linearly in the mathematical formulation. The number of such
variables usually far exceeds the number of quadratic variables. Hence, it is natural
to attempt to take advantage of the fact that only a small fraction of the variables
appear nonlinearly. In such cases, a good solver such as MINOS (Murtagh and
Saunders, 1988) that treats the linear variables in a different way than those variables
appearing nonlinearly, can be used very efficiently. A major portion of the research
in recent years in this area has consequently focused on problems of the form:

1
min Q(z,y) = ¢’z + EzTDz +dTy

s.t. Az + By
z, Y

(12)

IV IA

0

where y € R* is a new vector of variables with k > n.

A common approach to solving (12) is to obtain upper and lower bounds on the
optimal solution through linear programming problems and iterate between these
bounds until convergence is achieved. An easy formulation for the upper bound
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problem involves solving a linear programming problem where the terms in z are
ignored, that is, the following problem:

min d7y

st. Az + By

<
z,y >

0

The solution of this problem will give a vertex (z;,y;) and an upper bound Q(z;, y)
on the globally optimal solution @* of (12). When the linear terms dominate in the
objective function of (12), then the global minimum of (12) is given by Q(z;,y;) and
these approaches terminate immediately.

Most approaches for large scale concave quadratic minimization (with most of
the variables being linear) are based upon the original approach proposed by Rosen
(1983). The basic idea of this approach (which was proposed for ordinary concave
global minimization) is to take advantage of the ellipsoid like level surfaces of the
objective function to find a “good” initial vertex and to eliminate a rectangular
domain (enclosed in a level surface) from further consideration. The approaches
start by finding the global maximum point Z of the objective function (in (1)) in
the given feasible domain. Then, a set of orthogonal vectors u;,2 = 1,2,...,nat =
(these vectors could be the eigenvectors of the Hessian of Q(z) at Z) are obtained.
Using u;, a multiple cost row linear program with 2n rows is solved:

max :I:uZ-T:c
T

ze D

The vertex solution for z corresponding to the minimum of all of these problems is
then a candidate for the global minimum (or at least gives a good upper bound on
the global minimum).

Next, a rectangular domain R € R” is constructed with the level set using the
minimum objective value obtained from the multiple cost row programs. For the
concave quadratic case, this can be done by using the eigenvalues and eigenvectors
of the Hessian of the objective function in such a way that the value of Q(z) at each
of the 2" vertices of R is the same as the minimum objective function value. This
involves using the level ellipsoid given by Q(z) = Q where @ is the minimum value
from the multiple cost row linear programs. The main effect of such a partition
is that it can be used to exclude R from all further consideration. Moreover, the
remaining part of the feasible region is partitioned into at most 2n subregions, most
of which might actually be empty. Then, a method such as the approach of Falk
and Hoffman (1976) can be used to solve the concave problem in that subdomain.

For the case of large scale concave problems of the form (12), the same idea has
been extended by several authors. In all the approaches, as a first step, a multiple
cost row linear program is solved in order to determine R;, a subdomain of R"
which contains the projection of the feasible region in the space of the z (nonlinear)
variables. Linear underestimating functions to the original concave function are then
constructed and minimized, giving initial vertices to start the algorithms from. After
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that, the region R, is partitioned and a branch-and-bound scheme is followed that
successively eliminates partitions and obtains tighter bounds.

Several methods have been suggested for the partitioning of R,. Kalantari (1984)
proposes bisecting R, using a cut parallel to one of its faces. For each of the two
rectangular subdomains, a linear underestimator is found, and an LP is solved for
each region. This procedure is repeated in a branch and bound scheme with improved
bounds at each step. Zilverberg (1983) proposes partitioning R, into 2n pyramids,
where each pyramid has as its base one of the 2n faces of R, and the predetermined
vertex as the apex, with the union of all these pyramids giving the original partition
R,. Kalantari and Rosen (1987) proposed a similar branch and bound algorithm
using linear convex envelopes.

These methods are e-approximate, since they successively partition the domain
and may therefore end up close to, but not exactly, at a vertex of the original feasible
region. A good comparison of these methods is given in Rosen (1984), in which it
is shown that the time taken to obtain an e-approximate solution increases linearly
with the number of linear variables, and as O(m?) with the number of constraints.
This indicates that when the number of nonlinearly appearing variables is small,
these approaches can be reasonably effective.

6.6. REDUCTION To SEPARABLE FORM

It is possible to reduce the concave quadratic problem to a separable quadratic form.
One way to achieve this was proposed in Rosen and Pardalos (1986), as follows®.

Given the matrix @, compute the real eigenvalues A1, As, ..., A, of —Q and the cor-
responding eigenvectors [u1,...,u,] so that Q = UDU”,U = [uy,...,u,], UTU =1
and D = diag[X1, ..., A,] (the eigenvalues and eigenvectors can be easily computed

because —@Q is a positive semidefinite matrix for concave QP). Once these values are
computed, then a multiple-cost row linear program with 2n rows is solved. Using
the solutions of these programs, the QP can then be reformulated in a separable
form:

n
min qu(zl)
i=1
st Az<b
z>0

where g;(z;) = ¢;z; — %)\Zm? and A’ and ¥’ are produced from A and b through linear
transformations using U.

Assuming that the feasible region is bounded, each concave separable function
gi(z;) can be easily underestimated over the bounds by linear functions. Usually,
these underestimators are generated so that they meet g;(z;) at the bounds of z;.
For example, the function v; = (¢; — %)\Zﬂl)zl (where 3; is the upper bound on z;)
is a good underestimator of g;(z;) over the region z; = [0, 5;].

Rosen and Pardalos (1986) utilized this approach to solve large-scale concave
programs. The first step is to obtain a bound on the relative error of the approx-

5 This is not the only method for converting the concave QP to a separable form. However, it
has the advantage that it preserves the eigenstructure of the quadratic form. This can be useful in
error analysis of algorithms that may address the original or the separable form.
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imation used (where the relative error is the difference in the approximation from
the original objective function). In general, the relative error is guaranteed to be
at most 0.25. If the approximate solution obtained is not satisfactory, then a single
mixed 0-1 problem is solved. This problem is formulated by a single piecewise linear
underestimator of the separable objective function.

More recently, Phillips and Rosen (1988) proposed a parallel algorithm for large
scale concave quadratic problems. This algorithm also first reduces the concave ob-
jective function to a separable form. At each iteration, it combines a heuristic step
that attempts to eliminate part of the feasible region, with a parallel implementation
of the 2n multiple cost row linear programs. The algorithm has a guaranteed con-
vergence in a finite number of steps to a e-approximate solution, and the number of
subproblems that need to be solved is bounded above by (4n/€)”/%. The algorithm
performs quite efficiently for large problems, with the maximum size of 50 nonlinear
and 400 linear variables being considered. The efficiency of the algorithm primar-
ily comes from the effectiveness of the heuristic step in practice, and the parallel
solution of the multiple-cost row linear programs.

7. Indefinite Quadratic Problems

The case when the matrix D has eigenvalues of mixed sign presents the toughest
problems of quadratic optimization. While many algorithms have been developed for
the more particular cases of bilinear and concave quadratic problems, few approaches
have been proposed for globally optimizing (1) for the case of the indefinite quadratic
objective. Most efforts at solving this difficult class of problems have focused on
first reducing the indefinite quadratic problem to either a bilinear or a concave
minimization problem. However, there are a few algorithms for directly solving this
class, and we discuss them here.

7.1. QUADRATIC PROBLEMS WITH Box CONSTRAINTS

When the only constraints on the variables are lower and upper bounds, then (1)
reduces to the following form, which is probably the simplest problem of global
nonconvex minimization:

1
min Q(z)=c"z + EzTDz (13)
T
s.t. z <z < ¥

It may be assumed without loss of generality that z' = 0 and z¥ = 1 (if necessary,
a linear transformation can be used to convert the problem to this form). This gives
a direct relationship of the QP with box constraints to one of the fundamental prob-
lems of combinatorial optimization, namely minimizing a quadratic function of 0-1
variables. As a special case, if the matrix D has zero diagonal entries, then it can
be shown (Rosenberg, 1972) that if (13) has a fractional solution, then there also
exists an optimal integer solution with the same objective function value, and the
integer solution can be easily derived from the fractional one. Moreover, problems
of the form (13) appear frequently in the solution of partial differential equations,
discretized continuous time optimal control problems, and linear least squares prob-
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lems, and also as subproblems in successive quadratic programming methods. It is
clear, therefore, that the solution of (13) has a special importance.

Due to the presence of only bound constraints in the problem, it is possible to
develop an alternate simplified set of necessary conditions and sufficient conditions
for local optimality for (13). Let D;; represent the i'" diagonal entry of D, D;
represent the i** row of D, and let

gi(z) = Diz + ¢

be the partial derivative of Q(z) with respect to z;. Then, the following theorem
(Hansen et al., 1991) holds®:

Theorem 7.1 (Necessary Conditions for optimality for (13)) If a point z*
is a local minimum of (13), then

(a) For all ¢ such that D;; > 0,

(b) For all i such that D;; <0,

gi(z*) >0 and zF=0, or
gi(z*) <0 and z¥=1.

Proof. See Propositions 1 and 2 of Hansen et al. (1991).

If the point z* is nondegenerate (that is, there is no component z¥ of z* such
that it lies at either the upper or lower bound and also has the gradient g;(z) equal
to zero), then the above conditions are also sufficient to ensure local optimality. If
z* is degenerate, then even determining whether it is a local solution is NP-hard
(Murty and Kabadi, 1987).

Most algorithms for solving (13) have used the conditions in Theorem 7.1 to
develop some kind of active set strategy approach. One such method can be found
in Hansen ef al. (1991). In their branch-and-bound method, branching is done
according to the sign of the first order derivatives g;(z). Branching is possible either
dichotomously (g;(z) < 0 or g;(z) > 0) or trichotomously (g;(z) < 0, g;(z) = 0 or
gi(z) < 0). For example, if g;(z) = 0, then this can be used to eliminate one of
the variables (not necessarily z;). Branching can also be done based upon whether
a particular variable lies at a bound or not. The use of these conditions result
in auxiliary subproblems that are solved at each node. They also provide various
optimality tests at each node of the tree.

The above algorithm is (to the best of our knowledge) the only approach specifi-
cally aimed at solving (13). Most other approaches for solving (13) have concentrated

6 Similar necessary conditions and sufficient conditions for z* to be a local minimum can be
found in Coleman and Hulbert (1989).
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on finding local solutions in the hope that they would be global. Given this circum-
stance, it is important to be able to check if a particular local minimum is the global
one for this problem. Fortunately, it is possible to deduce a sufficient condition for
this to occur.

Suppose that Z is a nondegenerate local solution to (13). Let A and g be the
corresponding vectors of multipliers for the lower and upper bound constraints in
(13) respectively. Let y; = A; — s, @ = 1,...,n. Given the solution Z, we may
assume without loss of generality that

Ei::ﬂ? or ziL, i=1,...,m
zZ»L<EZ' <le, i=m+1,...,n
Then, the matrix D can be partitioned as
o= (5 )
where Dy € R7%7, Dp € R7*(*=") and Do € ROP—7)%(7=m) Then, let
F =D, DpD;'D}

and H be a diagonal matrix with positive entries constructed so that F+ H is positive
semidefinite. If such a matrix can be constructed, then the following theorem can
be proved:

Theorem 7.2 Lei a; = H;;/2y;, i=1,...,m. Then,

(Dz + c)T(z -zZ)>0

and
Q=) ~ Q) > (D7 +0)" (o~ B)(1 - Y as(a: — 70)
If
a= Z lai(zf —2f)| <1

then T is a global minimum of (13). If

m
a=3 lai(zf —2f) <1
i=1

then T is a unique global minimum of (13).

Proof. See Han et al. (1992).

Various other active set methods have been proposed for solving (13) to local
optimality. Of these, the most efficient is the approach of Coleman and Hulbert
(1989) for problems with large sparse matrices. At the start of the algorithm, the
matrix D is subject to Cholesky factorization. At each step of the factorization,



22 CHRISTODOULOS A. FLOUDAS AND V. VISWESWARAN

if a particular diagonal entry becomes positive, then that variable is taken out of
the matrix and set to zero. If the diagonal entry is nonpositive, then the variable
is set to its lower or upper bound depending on the solution of a trivial quadratic
problem in one variable. At the end of the factorization, a free set of variables (that
is, variables that are at neither bound), the submatrix of D corresponding to this
free set, and starting point for the algorithm is obtained. Starting from this point,
a Newton direction is computed and used to switch variables between the free and
bound sets until a constrained stationary point of the problem is obtained. Then, a
check is done to see if the constrained point is locally optimal. In the event of non-
optimality, a new variable that is currently at one of its bounds is switched into the
free set, and the process is repeated. The algorithm is guaranteed to converge to the
solution only for convex quadratic problems. However, the implementation of this
algorithm is probably among the most efficient, and for a large number of indefinite
quadratic problems involving very big problem sizes, the algorithm performs very
well.

One of the problems with active set strategies for solving (13) is that most such
algorithms (like the above one) only allow for the addition or dropping of one con-
straint per search direction computation. For large problems, this could be pro-
hibitively slow. This can be overcome by using projection steps that allow for sev-
eral constraints being dropped without much overhead. However, projected methods
usually drop constraints only after having solved some reduced problem to optimal-
ity, and therefore might end up doing a significant amount of work in a restricted
subspace of the original problem. The best method for solving (13) should therefore
seek to balance between these two extremes. One such method, which uses projected
gradient directions when the active constraint set changes, and conjugate gradient
directions otherwise, can be found in Dembo and Tulowitzki (1984).

When (13) contains an additional ellipsoid constraint in the variables, then it
can be solved in polynomial time (Ye, 1990). This has been used by Han et al.
(1990; 1992) to develop an interior-point algorithm for solving (13). The algorithm
starts from a point z° that is strictly in the interior of the feasible domain. Then,
they construct an ellipsoid with center at z° that is inscribed in the feasible domain,
and solve the quadratic problem with this constraint. The solution of this problem
yields a new point z'. The procedure is repeated, yielding a sequence of points
2% 2!, .... After a sufficient number of steps, a stationary point of (13) is obtained.
Although the procedure cannot guarantee convergence to the global solution, it
seems to perform well on randomly generated test problems with known global
solutions, finding the global solution in most instances.

It is also possible to solve (13) by conversion to an unconstrained minimization
problem. Consider the following problem, equivalent to (13):

1
min Q(z) =c’z + EzTD:I:
xr
s.t. 2, — XY +y? =0, i=1,...,n (14)
—zi—}—XZ-L—}—zZ?:O, 1=1,...,n
(15)

An augmented Lagrange function for this problem, with the multipliers for the two
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sets of constraints replaced by the approximation functions u(z) and v(z), can then
be written as follows (Grippo and Lucidi, 1991):

L(z,y,2,¢) = Q(z) + Z [wi(2)(z: — 2} + 47) + vi(2)(—2: + 2] + 2])]

L1 [(eial +48)" | (Ceital +2)
a;(z) bi(z)

€
where the bound constraints have been added as penalty terms with € as the penalty
parameter, and a;(z) and b;(z) are barrier weighting functions for the constraints.
The following theorem establishes a direct relationship of the minimum of this
penalty function and the solution of (13):

Theorem 7.3 Let
P(z,€) = min L(z, y, 2, €)
Y,z

Then,

(1) There exists a computable bound € for the penalty parameter such that for all
€ (0,€*], if * is a point satisfying VP(z,€) = 0, the corresponding iriple
(z*, u(z*), v(z*)) is a Karush-Kuhn-Tucker point for (13).

(ii) For all € € (0,€*], any global minimum point of (13) is a global minimum poini
of P(z,€) and vice-versa.

Proof. See Propositions 3.3 and 4.1 of Grippo and Lucidi (1991).

From a computational point of view, this equivalent formulation permits the use
of standard unconstrained minimization algorithms for differentiable functions to
solve (13). In particular, Newton-type algorithms can be defined that make use of
consistent approximations to the Newton’s direction for the penalty function. Grippo
and Lucidi (1991) present one such algorithm that converges in a finite number of
iterations to a solution of the constrained problem. Under suitable assumptions, it
can also be shown that there exists some neighborhood around the solution where
the algorithm converges in a single step.

7.2. DECOMPOSITION TECHNIQUES

Over the years, several decomposition based approaches have been proposed for
solving (1). Although these approaches are usually for the more general global opti-
mization problems, the nature of the quadratic problem makes them quite attractive
as a method of solution. In particular, decomposition approaches can circumvent
one of the main difficulties associated with the solution of (1), namely problem size.
Decomposition enables the solution of the problem through smaller, and possible
more tractable, subproblems, whereas the original problem might be of a size that
prohibits its direct solution.

Most of the decomposition approaches are based upon the so-called Benders’
cuts, which were proposed by Benders (1962) for the solution of mixed integer 0-1
problems. The approach was subsequently generalized to the continuous biconvex
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case by Geoffrion (1972). To better understand this approach, consider the following
special indefinite quadratic problem, first tackled by Kough (1979):

Tz —yTy (16)

minz
T,y

st. Az+ By<b

A natural decomposition for this problem can be derived from the separability of
the objective function. If the y variables are fixed to y*, then the following problem
(variously called the subsidiary problem or primal problem) is obtained:

T

minz’z — ¥ ¢* (17)
T

sit. Az <b— By*

This problem provides an upper bound on the global solution of (16), and also gives
multipliers u* for the constraints. Given the solution z* to this problem, then the
projection v(y) of (16) in the space of y can be defined by

It is then obvious that the solution to (16) is equivalent to

min v(y)
@,y

st. ye{y:Az+ By <b for some z}

The solution of this problem is nontrivial, since normally v(y) is an implicitly defined
function. However, the solution of (17) can be used to provide a Benders’ cut v*(y)
that can be used to approximate v(y):

T T
v*(y) = 2" 2* —y"y+ " (42 + By —b) (18)

If the primal problem were infeasible, then an alternate problem with a artificial
objective can be solved and the corresponding multipliers A* can be used to generate
a feasibility cut:
T
g*(y) =" (4z + By —b)

The use of these two types of cuts leads to a “master” (or dual) problem which
provides a lower bound on the global solution:

minv
y

v*(y)

" (v)

st. v
0

(AVARAY]

The typical generalized Benders’ approach then involves iterating between the mas-
ter and primal problems until convergence is reached.
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It is the solution of the master problem itself that is the major hurdle in this
approach, since this problem can be considered as the minimization of a piecewise
concave quadratic function over a linear set. For the separable case above, Kough
(1979) proposed solving a set of linear subproblems, each involving the minimization
of one of the Benders’ cuts. The resulting algorithm provides successively tighter
lower bounds, and has finite convergence to an e-approximate solution. However,
the number of subproblems to be solved increases as the iterations progress, so
that the progress of the algorithm becomes very slow at later iterations. Kough
(1979) also proposed a method for developing exact Benders’ cuts for this problem
by representing the solution of the primal problem z* in terms of the y variables.
More recently, Floudas et al. (1989) showed that generalized Benders’ decomposi-
tion was applicable to a wider class of problems (including the general quadratic
problem, polynomial function problems and mixed integer nonlinear programming
problems) providing methods for converting these problems to a form to which gen-
eralized Benders’ decomposition was applicable. They also provided a global search
scheme, which although not guaranteed to converge to the global solution, neverthe-
less proved computationally effective on a large number of problems. This approach
has been used by Aggarwal and Floudas (1990) for solving quadratic and mixed 0-1
quadratic problems.

A related approach for solving quadratic problems is the GOP algorithm proposed
by Floudas and Visweswaran (1990; 1993), which guarantees convergence (to an e-
global solution) for a large class of problems that includes the quadratic problem as
a special case. This algorithm can also handle quadratically constrained problems,
and it is discussed in more detail in Section 8.1.

7.3. LARGE-SCALE INDEFINITE PROBLEMS

As with the concave quadratic case, it often happens that the nonconvexity in the
objective function is due to a small number of variables. This can happen either
because (i) only a small number of eigenvalues of D are negative, or (ii) the number
of variables appearing in the quadratic terms in the objective function are a small
fraction of the total number of variables. For such problems, it is feasible to solve
larger problems than would normally be the case.

Consider the case when the matrix D in (1) has relatively few negative eigen-
values. Without loss of generality, we may assume that these eigenvalues are given
as

_Ala"':_Am:)‘m-I-l:"':)‘n

where A; > 0forz=1,...,mand A; > 0fori =m+1,...,n. We are then concerned
with the case where m is relatively small compared to n. In such a case, it can be
useful to reduce the objective function in (1) to a separable form (Pardalos et al.,
1987). As for the concave case (Section 6.6), a multiple cost-row linear program of
the form

min +u’z

T€EQN
can be solved, where  is the feasible region for (1), and u; are the orthogonal eigen-
vectors of @. Using the solutions of these linear programs, (1) can be reformulated
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min Q(z) = Qi(z) + Q2(z)
Az <
z >0 (19)
oS5 (e 00)
Qs(z) = Z 0i(z;) = Z (Cizi—f-%)\iz?)

Thus, the objective function has a concave part @1(z) and a convex part Qz(z).
The main feature of (19) that makes it interesting is that the real complexity of
any algorithm for solving this problem is likely to depend not on the total number
of variables n but rather on m. One such algorithm that tries to take advantage
of this feature was proposed by Pardalos et al. (1987). The basic idea is to obtain
good approximations to the concave part @;(z) and use them to solve the problem
efficiently. For each function 6;(z;), the linear function v;(z;) = (ci — %AZ,BZ) (where
B; is the upper bound on ;) provides an underestimating function that meets 6;(z;)
at the end points for z;, that is, at its lower and upper bounds. Hence, the function

m

f(=) =Y 7i(2:) + Qa(a)

i=1

is a convex underestimating function to Q(z) in (19). Moreover, it is possible to
show that the maximum error in using this approximation is bounded:

Theorem 7.4

m

Q@) — f(@)] < § S Ab

i=1
Proof. See Pardalos et al. (1987).

This theorem indicates that the error in using a linear approximation depends on
the curvature of the concave functions (through the eigenvalues) and the geometry
of the feasible region (as given by the bounds on the variables).

The solution of (19) using the approximation f(z) instead of Q(z) (which is then
a convex quadratic problem) provides a lower bound on the optimal solution of (19).
If this solution is satisfactory, then the procedure can be terminated. Otherwise, a
branch-and-bound bisection technique is used to continuously bisect the rectangle
defined by the bounds on the concave variables z;, 2 = 1,...,m. In each of the
subregions, then, better approximations can be obtained to the concave function and
the procedure can be repeated to get tighter lower bounds on the global solution.
Finally, it is also possible to obtain a piecewise linear underestimator to the concave
functions that involves the use of 0-1 integer variables. This requires the solution of
a mixed 0-1 linear program. Such an approach can work very well for large problems
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(as reported by Pardalos e? al. (1987)) especially when approximate solutions are
sufficient.

Another instance where it might be feasible to solve large scale quadratic prob-
lems is when there is a dominance of linear terms in the objective function. Consider
the indefinite instance of (12), which is a quadratic problem with a large number
of variables (y) appearing linearly in the objective function. Phillips and Rosen
(1990) proposed an extension of their previous work for concave quadratic problems
(Phillips and Rosen, 1988) to handle indefinite quadratic problems of this form. As
with the above approach, the algorithm first reduces the problem to a form with
a separable objective function. A convex quadratic underestimator to the whole
objective function is then developed, and used to solve an auxiliary problem that
provides upper and lower bounds on the global solution. If the bounds are not tight
enough, then the feasible domain is partitioned along the directions of the concave
variables, and tighter bounds are obtained in these subregions. The procedure con-
tinues till an e-approximate solution has been found to the original problem. The
computational results presented along with the algorithm (for problems having upto
25 concave and 400 linear variables) indicate that this approach works very well
when the number of linear variables dominates at the solution.

7.4. PoryNoMIAL TIME ALGORITHMS

In Section 4, we mentioned that polynomial time algorithms can be developed for
certain classes of quadratic problems. Naturally, this raises the question of whether
such algorithms can be developed for the general indefinite quadratic problem. It is
obvious that a polynomial algorithm for computing the exact solution of (1) cannot
be expected, since that would imply that P = NP (as the general QP is in NP).

It is still open to question, however, whether an approximation’ algorithm can
be developed that solves (1) in polynomial time. One of the more recent results in
this direction, due to Vavasis (1992), can be stated in the following theorem:

Theorem 7.5 Suppose the matriz D is indefinite, and the feasible region for (1) is

compact. Let t be the number of negative etgenvalues of D. Then, there exists an
1

algorithm to find an e-approzimate solution to (1) in O((%) 1) steps. In this

formula, I denotes the time to solve a convexr quadratic programming problem of the

same size as (1).

Proof. See Vavasis (1992).

This result indicates that if the number of negative eigenvalues in D is fixed,
then a polynomial time algorithm can be developed for the general quadratic prob-
lem. One such algorithm was proposed by Vavasis (1992). The approach involves
computing a Lowner-John pair for the constraint region of (1), that is, a pair of

7 One definition of an approximate solution, due to Vavasis (1992), is as follows. Given an
optimum z* to (1), any feasible point z’ is an e-approximate solution if there exists another feasible
point z# satisfying

Q(z') -~ Q(=*) < [Q(=#) — Q(=™)].
This definition has the advantage that it is insensitive to translations or dilations of the objective
function Q(z).
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concentric ellipsoids E; and E; such that By C @ C E3 (where Q is the feasible
region in (1)) and E; is obtained from E5 by shrinking each dimension by 1/n. Such
a pair always exists, and can be computed for a convex feasible region in polynomial
time. Assume that the ellipsoids are defined by

Ei={zcR":(z2-b)"M(@=z-0b)<
Ey ={zcR":(2-b)"M(z—-0b)<(n+1)n}

where M is a positive semi-definite symmetric matrix, and b is some n-vector. Then,
the z variables are translated by b so that the Lowner-John pair is centered at the
origin (this does not affect the quadratic term in the objective function) and a matrix
X is found so that X” M X = I and X7 DX is diagonal. Replacing z by X'z leads
to a new problem that has the form

1
min Q(z) = ¢’z + EzTDz
s.t. Az < b
z >0

where D is now diagonal, and the constraint region 2 now satisfies S; C Q C S,
where

Sy {z:2T2 <1}
Sy = {z:272 <n(n+1)%}

The matrix D still has ¢ negative eigenvalues (say the first k), and z can be split into
vectors y and z corresponding to the first k entries and the remaining n — k entries
respectively. This enables the problem to be rewritten in a form with a concave and
a convex part. The problem is then projected in the space of the concave (y) vari-
ables, and the resulting region is partitioned repeatedly into subcubes, the number
of partitions being given by m’ where m is on the order of n?/\/e. Taking a linear
underestimator for the concave terms, convex quadratic subproblems are solved in
each subregion. The resulting solutions provide a lower bound for the optimal solu-
tion, and using error analysis on the difference between the linear approximation and
the concave terms, it is possible to show that convergence to within € is obtained.
Moreover, the algorithm takes exactly the number of steps given in Theorem 7.5.

8. Quadratic Problems With Quadratic Constraints

The most general class of quadratic problems arises from the inclusion of quadratic
constraints in (1). These problems can be formulated as follows:

min Q(z) =z’ Dz + 'z,

s.t. zTAjz + Bz

z

<b, j=1,..m, (20)
>
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where A; is an n x n matrix corresponding to the mth quadratic constraint, and
B; is the 7** row of the m x n matrix B. Note that some of the constraints can be
linear due to the absence of the corresponding matrices A4;.

Problem (20) has received far less attention than (1). One of the reasons for this
is that even finding a feasible solution for (20) can be a formidable task. Therefore,
even for the convex case (when D and A,, are positive semidefinite), there are
very few algorithms for solving (20). However, quadratically constrained problems
constitute an important part of mathematical programming problems, arising in
various practical applications including facility location, production planning, VLSI
chip design, optimal design of water distribution networks, and most problems in
chemical engineering design. Moreover, (20) encompasses all the other categories of
quadratic problems as special instances. It is therefore well worth considering the
few algorithms available for solving (20) in detail.

In the early years since it was first introduced in the seminal paper of Kuhn and
Tucker (1951), the only case of (20) considered was when there was a single quadratic
constraint in the problem (Swarup, 1966; Panne, 1966). The first general approach
for solving (20) was proposed by Baron (1972), who considered the following two
Lagrange functions for (20):

Li(z,pu) = zTDz—i—ch—}—Zuj(mTAjz—Bj:n—bj), and
ji=1

LZ(T':/I’: A) = Ll(map’)_)‘imi

Here, p and A are the multipliers for the quadratic and bound constraints respec-
tively. Baron (1972) proposed solving (20) by minimizing these Lagrange functions
through a cutting plane algorithm. The algorithm solves a sequence of linear mas-
ter problems that minimize a piecewise linear function constructed from the La-
grange functions for constant #, and a primal problem with either an unconstrained
quadratic function (using Ls(z, p, A)) or a quadratic function over the nonnegative
orthant (using L;(z, u)). The cuts generated by the problems are used to approx-
imate the two dual forms, and convergence (when both primal and dual problems
have equal objective values) is guaranteed if either the objective function is convex,
or the set of active constraints at each iteration have positive semidefinite quadratic
matrices.

Falk and Soland (1969) proposed a branch and bound algorithm for solving (20)
(and other more general problems) when the objective function is separable, and the
constraint set is linear. The method involves solving bounding convex envelope ap-
proximating problems over successive partitions of the feasible region. The algorithm
was later extended by Soland (1971) to handle nonconvex constraints. Although the
algorithm can be applied to solve (20), it generates a number of infeasible points
during the solution procedure, and does not in general converge in a finite number
of iterations.

Another branch and bound method was proposed by Reeves (1975) to solve (20)
when the objective function and constraints are separable in the variables. The
algorithm uses a similar branching scheme to that of Soland (1971). At each iter-
ation, given a partition of the feasible region, a local minimum of the objective in
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the partition is found, and a small interval surrounding this minimum is eliminated.
The remaining region is then partitioned and the process is repeated for the new
partitions. The algorithm differs from that of Soland (1971) in that bounding con-
vex polytope problems are solved only to eliminate regions, not to generate base
points for further partition. By deriving local minima at each iteration, the algo-
rithm obtains and verifies in a finite number of iterations, either exactly or to some
arbitrarily small precision, a global minimum of the problem.

BenSaad (1989) proposed an algorithm for the solution of linear problems with
an additional reverse convex constraint, of the following form:

min ¢’z
TER™

where g(z) is a concave function (it should be noted that by appropriate transforma-
tions, any problem of the form (20) can be converted to this form). The algorithm
works by partitioning the feasible region into subsets contained in cones originating
at an infeasible vertex of the polytope formed by the linear constraints while ensur-
ing that an interior point of the feasible region is contained in each partition. The
intersection of the rays forming the cone with the reverse convex constraint are used
to determine whether a particular cone is to be made smaller. At each iteration,
n cones are generated (where n is the number of variables) and successively tight-
ened until the convex hull thus obtained contains the solution to the reverse convex
problem.

Al-Khayyal et al. (1990) proposed two algorithms for the solution of problems
with concave objective functions and separable quadratic constraints. These prob-
lems can be given in the following form:

min ¢’z
TER™
21
st gi(z) = E (Epikmi—i—qikmk +7r) <0, i=1,...,m

k=1
M =m, <z, <™y, k=1,...,n

The first algorithm is a branch-and-bound algorithm which works by division of the
initial rectangular domain M into increasingly smaller rectangles with the size going
to zero in the limit (one way to achieve this is to use bisections). In each rectangular
subdivision, lower and upper bounds are obtained for the objective function. The
partitions are deleted either if the lower bound for the objective in that region is
greater than the best obtained solution so far, or if the region is infeasible for the
quadratic constraints. The latter condition is checked by use of bounds on g;(z)
in the partition. In addition, to speed up convergence, various linearizations of
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the quadratic constraints are also added to the problem formulation. The authors
also propose a second approach which uses piecewise linear approximation for the
quadratic constraints. The resulting problem is then solved as a mixed 0-1 linear
problem. This approach is similar to the ones used by Pardalos and Rosen (1986)
for concave quadratic problems and Pardalos et al. (1987) for indefinite quadratic
problems.

8.1. DECOMPOSITION TECHNIQUES

As mentioned in Section 7.2, decomposition techniques have several features that
make them attractive for solving quadratic problems. Foremost among these is that
usually the subproblems solved are of far smaller size than the original problem.
Most of the decomposition approaches for solving the quadratic problem are based
upon the Lagrangian dual formulation. However, one of the main problems with the
quadratic problem (indeed, with all nonconvex programs) is that there can exist a
duality gap between the nonconvex problem and its Lagrangian dual. Consequently,
algorithms that iterate between primal and dual formulations of the original problem
(as, for example, the algorithm of Baron (1972)) can fail to converge except under
special conditions on the problem structure.

Lazimy (1982; 1985) proposed a method based upon the generalized Benders’ de-
composition to solve mixed-integer quadratic problems. The approach first converts
the problem to a form where the integer variables are absent from the objective func-
tion and the resulting master (dual) problem is linear in the integer variables. The
original problem is then solved through a series of relaxed integer-linear master prob-
lems and continuous convex quadratic primal problems. Wolsey (1981) proposed a
resource decomposition algorithm for solving bilinearly constrained problems.

More recently, two decompositions algorithms have been proposed that guarantee
convergence to the global solution for problems of the form (20). The first of these
approaches, due to Floudas and Visweswaran (1990; 1993), considers the solution of
(20) by reducing it to the equivalent problem

min Q(z) =z’ Dy + 'z,

Ty
s.t. mTAjy—i—Bjm < bj, ji=1,..,m,
z;i—1y; = 0 i=1,...,n,

z>0,y >0,

which in turn falls under the framework of the following biconvex problem:

min f(z,y)

T,y

st.  g(z,y) <0 (21)
h(z,y) = 0
reX,y€eyY

where f and g are convex, and h is linear, in z for all fixed y and vice-versa. For
a fixed value of y = y*, the problem (called a Primal problem) is linear in z, and
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provides an upper bound on the global solution. Moreover, the solution of this
primal problem provides multipliers for the constraints which are used to formulate
the Lagrange function:

T T
L(z,y, A", ") = f(z,y) + A" R(z,y) + 1 g(z,v)

It can be shown (Geoffrion, 1972) that a relazed dual formulation for (21) can be
written as

min up
N LB,
EB

sit. up > mminL(z,y, Aok, wpF >0, 20, (22)

where pp is a scalar. This problem provides a lower bound on the global solution of
(21). Because of the presence of the inner minimization problems, this problem can
be very tough to solve. However, because the primal problem is solved in the space
of the z variables and the relaxed dual problem is essentially solved in the space of
y, they can be used as the basis for an iterative algorithm that alternates between
providing bounds as well as solutions for z and y.

Floudas and Visweswaran (1990; 1993) proposed the following method for solv-
ing the relaxed dual problem, which involves linearizing the Lagrange function with
respect to the z variables around the solution z* (of the primal problem corre-
sponding to y = y*). The linearization ensures that each of the Lagrange functions
independently achieves its minimum at a bound of the z variables. This enables the
solution of the relaxed dual problem as a set of linear problems, with the z variables
being replaced by a combination of their bounds in each of the problems. The basic
algorithm (GOP) then can be summarized as follows:

Step O Initialize storage parameters, select a starting point y'.

Step 1 Set & = 1. Solve the primal problem for y = %", generate the Lagrange
function using the optimal multipliers from this problem. Update the best
upper bound on the original problem. If the primal is infeasible, then solve a
relaxed primal problem and use the solution to generate a feasibility cut for the
relaxed dual problem.

Step 2 Generate a set of constraints from previous iterations that provide valid un-
derestimators for the current region, and add them to the relaxed dual problem.

Step 3 Solve the relaxed dual problem as a set of linear subproblems, storing all
feasible solutions. Select the best stored solution as the lower bound, and the
corresponding solution for y as y*+!.

Step 4 Check for convergence between the bounds. Set ¥ = k + 1 and return to
Step 2.

A few points are worth mentioning about the algorithm. At each iteration, the
set of subproblems solved in Step 3 are restricted to a subregion of the y variables.
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This region is defined by a cone formed by a set of constraints from the previous
iterations. These constraints are generated by setting the z variables in the Lagrange
function for that iteration to a particular set of bounds. The actual set of bounds
to be used is determined by the sign of the gradients of the Lagrange function at
the current y*, and are selected in such a way that the underestimators used are
always valid for the current cone. At each iteration, therefore, Step 3 is equivalent
to partitioning Y into a set of subregions. Thus, the algorithm functions both as a
branch and bound as well as a cutting plane method.

The lower bound found at the end of Step 3 is guaranteed to be nondecreasing as
the iterations proceed. This property, coupled with the presence of constraints from
previous iterations that prevent cycling, give a theoretical guarantee of convergence
of the algorithm to an e-global solution in a finite number of iterations.

Visweswaran and Floudas (1990) discussed the application of GOP algorithm to
several classes of problems (including quadratically constrained quadratic problems)
and provided preliminary computational experience for some examples in each class.
Visweswaran and Floudas (1993) proved several properties for quadratic and poly-
nomial problems that significantly improve the computational performance of the
algorithm. More recently, Floudas et al. (1993) have proposed solving the relaxed
dual subproblems at each iteration by a single mixed 0-1 linear problem. It has also
been shown by Liu and Floudas (1993a) that the GOP algorithm is applicable to a
large class of smooth optimization problems. The convergence for the algorithm for
these problems has been shown by Liu and Floudas (1993b).

Problem (20) can often be written in the following form (Ben-Tal and Gershovitz,
1992; Ben-Tal et al., 1993):

min  fo(z,y)
yERP
s.t. zeX(y) = {zeR": filz,y) <0, i=1,...,m} (23)
yeY C R

where p < n and the functions f;(z,y) are such that for every fixed z fo(.,y) is
convex and X(y) is a convex set. Note that the bilinear problem (and therefore all
quadratic problems by reduction to bilinear form) satisfies this condition. A natural
approach for solving this problem is by decomposition:

min{ 40)= min fi(e)} (24)

yey z€X(y)

Although the function ¢(y) may not be smooth (even though the inner problem is
convex), the availability of good algorithms for non-smooth optimization can over-
come this drawback. Therefore, it is the nonconvexity of the outer problem that
poses the main challenge.

The dual form of (23) can be written as

i=1

max { h(y) =: min L(z,y, u) = fo(z,y) + Zmﬁ(z,y)} (25)
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By weak duality, then, the solution of (25) provides a lower bound to (23). In
particular, when there is no duality gap, then the solutions of (23) and (25) are
identical. However, the presence of a duality gap means that (25) may not provide
a tight lower bound. To overcome this, Ben-Tal ef al. (1993) proposed a branch
and bound approach based upon reducing the duality gap by successive domain
partitioning. Consider a partition of the set Y into I subsets Y;,2 =1,...,I. Then,
for the i** partition, the corresponding primal and dual problems are respectively

min { fo(z,y) :y€Yi,z € X(y)} (26)

TER™
yERP

and

max { h) = min_ Do) | (27)

Then, the following theorem can be proved:

Theorem 8.1 If Q* is the optimal value of (23), D* is the optimal value of (25),
and DY is the optimal value for (26), then

Q" >z min{ D} } > D*
1€

This theorem shows that as the set Y is partitioned, the gap between the primal and
dual problems decreases. For problems of the form (23) which also satisfy an appro-
priate constraint qualification, it can be shown that the gap varies directly as the
“size” of the partitions (as measured by, say, the radius of the smallest hypersphere
containing Y;); when the size of the partitions is zero, then there is no duality gap,
and strict equality holds in the left hand side of the theorem.

In general, the dual problem solved in each partition involves a linear objective
function minimized over a convex set of constraints. However, when the functions
a;j(y)T u+ ¢; are quasiconcave (as for bilinear problems, for example) each of these
dual problems can be solved as a linear program. Ben-Tal et al. (1993) have applied
this approach to solve several instances of the pooling problem (see Section 10.2 for
one formulation of this problem).

One particular quadratically constrained problem that has received considerable
attention is the following problem, which involves minimizing a quadratic constraint
over a sphere:

1
min EzTDz +cz (28)
st. iz <1

This problem often comes up as a subproblem in general optimization algorithms.
Often, the objective function in nonlinear programming is approximated locally by
a quadratic function. In such cases, the approximation is restricted to a small region
around the current iterate. If the 2-norm is used to define this region, then we end
up with (28). Such methods are referred to as model trust region methods.
Because of the presence of the sphere constraint, the solution of (28) is likely
to be irrational, which implies that it is not possible to exactly compute the solu-
tion. However, there exist polynomial time algorithms to efficiently compute the
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approximate solution to this problem given a desired precision. Sorensen (1982)
proposed a general algorithm using model trust regions, while Ye (1990), Ye (1992)
and Karmarkar (1990) proposed strongly polynomial algorithms for solving (28).

9. Quadratic Optimization and the Linear Complementarity Problem

Closely associated with quadratic problems is the class of linear complementarity
problems (LCP). Given a real matrix M € R"*", the pair of vectors (I;,—M ;) is
called a complementary pair of vectors for M. If we denote a vector from this pair by
A j, then the cone defined by {y:y=a1d 1+ ...+ e,4,, o >0Vi=1,...,n
} is called a complementary cone of M. Then, given any vector ¢ € R”, the LCP
involves finding a complementary cone of M that contains the point ¢, that is,
finding a complementary set of vectors (41,...,4,) such that g can be expressed
as a nonnegative linear combination of these vectors. This is equivalent to solving
the following problem®:

Find a feasible solution vector z to the set of constraints

y= Mz+gq
z,y >0, (29)
:cTyZO

or prove that such a feasible solution z does not exist.

Note that the LCP as given by (29) is not an optimization problem in the strict
sense; there is no objective function to minimize. However, these problems have
a close relationship to several of the most important classes of optimization prob-
lems, including linear programming, convex quadratic programming, bimatrix games
and mixed integer programming. The following quadratic problem, for example, is
equivalent to (29):

min Q(z) =z’ (Mz + q)

s.t. Mz +gq (30)
z

>0
>0
Moreover, the LCP is closely related to the optimality conditions for the solution

of (1). Consider, the KKT conditions for the quadratic problem (1), given by (2)-(6).
Then, it can be easily shown that the KKT conditions for (1) reduce to the LCP

(29) with
=[] e[

1= (2) == (%)

8 Note that when the vector g is nonnegative, then the problem is immediately solved by setting
z = 0 and y = q. Therefore, the only cases of interest are when at least one component of g is
negative.
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where y and z are the original vectors augmented by v and u respectively. Thus,
the LCP can be considered as a problem of finding a KKT point for the quadratic
problem (1). It can be proved (Theorem 1.13 of Murty (1988)) that any solution Z
to the LCP (29) (with the data as given above) is a KKT point for (1). For the case
of positive semidefinite D (convex quadratic programming), the LCP (29) can thus
be used to provide the necessary and sufficient optimality conditions.

For the more general case of indefinite (nonconvex) quadratic problems, since the
KKT conditions are not sufficient to ensure optimality, the LCP cannot directly be
used to obtain a solution to (1). However, even for these problems, the LCP has an
indirect relevance. Consider, for example, the following problem:

¥(z, u) = %( Ty bTw) (31)

st. (2) —(6).
It is well known that at any point (z,y, u,v) that satisfies the KKT conditions for
(1), the value of Q(z) coincides with the value of the objective function ¥(z,u) of
the above problem. This leads to the following theorem (Gianessi and Tomasin,
1974):

Theorem 9.1 Let the QP (1) have an optimal solution. Then, any point z solves
(1) if and only if there ezist vectors y,u and v such that (z,y,u,v) solves (31).

It should be noted that this theorem holds only when Q(z) is bounded from below.
If this is the case, then the above theorem indicates that it is possible to solve (1) by
minimizing a linear function over the solution set of a linear complementarity prob-
lem. Judice and Mitra (1988) present several other equivalences between quadratic
problems and related linear complementarity problems.

It is clear, therefore, that the nature of the linear complementarity problem and
its methods of solution can help provide considerable insight into the solution of
the QP (1). While a detailed treatment of the LCP is beyond the scope of this
chapter, the reader is referred to Mitra (1979), Lemke (1980), Berschanskii and
Meerov (1983), Murty (1988) and Cottle et al. (1992).

10. Applications

In this section, we describe some interesting problems in mathematical programming,
engineering design and control that can be formulated as quadratic programming
problems. Several applications and test problems for quadratic programming, as well
as general nonconvex optimization problems can be found in Floudas and Pardalos
(1990).

10.1. ECONOMIES OF SCALE

Problems involving economies of scale (in production and sales) often can be formu-
lated as concave quadratic programming problems. Consider a case when n products
are being produced, with z; being the number of units of product ¢ and ¢; being
the cost of production per unit of product . Usually, as the number of units pro-
duced increases, the unit cost decreases. Often, this can be correlated by a linear
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Max. 2.5% S
—_— =

Max 1.5% S y
| ——

Fig. 1. The Haverly Pooling Problem (Haverly, 1978)

functional:

Ci = Ci, + €%

where e; is a negative quantity. Then, given constraints on the production demands
and availabilities of each product, the problem of minimizing the total production
cost can be written as

n
Inxin Z(Ciu +ezi)z;
i=1

st. zeD

where D represents the demand and availability constraints. This is a concave
minimization problem. Similarly, if the profits are maximized, the economies of
scale dictate that the profits per unit rise linearly with the number of units produced.
Hence, in this case, the problem becomes one of maximization of a convex functional.

10.2. PooLING AND BLENDING PROBLEMS

Pooling and blending problems are a feature of the models of most chemical pro-
cesses. In particular, for problems relating to refinery and petrochemical processing,
it is often necessary to model not only the product flows but the properties of in-
termediate streams as well. These streams are usually combined in a tank or pool,
and the pool is used in downstream processing or blending. The presence of these
streams in the model introduces nonlinearities, often in a nonconvex manner. The
nonconvexities arise from the interactions between the qualities of the input streams
and the blended products.

A typical pooling problem is shown in Figure 1. It consists of three feed streams
(4, B, and C) being combined in a pool to form two products z and y. In the
absence of the pooling restriction, the problem can be formulated and solved as an
LP. However, when the streams need to be pooled (as, for example, when there is
only one tank to store 4 and B), the formulation becomes a quadratic one, as shown
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below:
min 64+ 16B + 10(C,; + Cy) — 9z — 15y

s.t.
P.+P,—A—B=0} pool balance
zr— P, —C, =0

y—P,—-Cy, =0
p.(P;+P)—3A—B=0

component balance
pool quality

p.P, +2.C, —252 < 0
p.P,+2C, - 15y <0
U
U

}
} product quality constraints
} upper bounds on products

where p is the sulfur quality of the pool; its lower and upper bounds are 1 and 3
respectively.

Traditionally, these problems are solved using successive linear programming
techniques (Haverly, 1979; Lasdon et al., 1979). These methods suffer from the draw-
back of being highly dependent on the starting point. More recently, this problem
has been studied by Floudas and Aggarwal (1990) who applied the global optimum
search method to solve the problem, and by Visweswaran and Floudas (1990), who
successfully applied the GOP algorithm to solve this problem. Similar pooling prob-
lems have been studied by Ben-Tal and Gershovitz (1992) and Ben-Tal et al. (1993).
Multiperiod tankage quality problems that lead to similar formulations have been
studied by Visweswaran and Floudas (1990).

10.3. MULTICOMPONENT SEPARATION PROBLEMS

Like the pooling and blending problems, quadratic models arise in separation of mul-
ticomponent process streams in chemical refineries. These problems typically involve
multicomponent feed streams that need to be separated into one or more products,
each of which may have a specified composition of the various components. One
method of solving such problems is the superstructure approach. This involves first
constructing a superstructure containing all possible options for splitting, bypassing
and blending to achieve the desired products. The resulting model is then optimized
to give the actual configuration that will perform the separation. A typical example
of such a problem (Floudas and Aggarwal, 1990) is shown in Figure 2, which con-
cerns the separation of a 3-component feed stream into two products. The resulting
bilinear formulation for the optimization model is shown below:

min 0.9979+ 0.00432F5 + 0.01517F3
subject to

(Overall Mass Balances)
Fi+Fy,+ F3+ F, = 300
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Fig. 2. Multicomponent Separation Example (Floudas and Aggarwal, 1990)

Fs — F; — Fy
Fyg — Fig— Fi1 — Fys
Fiy— Fi5 — Fig— Fi7

Fig— Fig— Fyy =

(Splitter Component Balances)

Fszjs — Feozjo — Fozjo =

Fizz; 13 — Fiazj 14 — Fi82; 18
(Inlet Mixer Balances)

0.333F) + Fi52j14 — Fszj 5 =

0.333F, + Fiozjo — Fiszj 3
0.333F5 + Frzae + Fr12a9 + F1624,14 + F102.4,18
0.333F3+ Frzp s + Fiizp o + Fiezp,14 + Fiozp 18

0.333F3+ Frzc e + Frizco + Figzc,14a + Fiozc18 =

(Compositions)

Ta;+2p;+zc; =1 1=25,16,9,13,14,16
(Sharp Split)

Ipe6 = TLC6 = LA9 = LTC14— LA 18 = TB 18

where all variables are nonnegative.

10.4. THE QUADRATIC KNAPSACK PROBLEM

The quadratic knapsack problem is given as

1
min ¢’z + -z'Qz
T 2

o o o ©

o

30
50
30

j=A,B,C
j=A,B,C
j=A,B,C
j=A,B,C
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st. a'z= ¥
zt <z < zU.

This problem occurs frequently in resource allocation, multicommodity network
flow problems, and problems in logistics among others. In resource allocation,
for example, v represents the total amount of resource, and a; is the consump-
tion of this resource by the *® activity. The presence of the “knapsack” con-
straint in the formulation makes this problem much easier to solve. Various ap-
proaches have been proposed for this problem (Pardalos and Kovoor, 1990; Ye, 1990;
Vavasis, 1992). Of these approaches, the interior point algorithm of Ye (1990) is the
only one guaranteed to converge to the global minimum in polynomial time.

10.5. IC CircuiT LayouT AND COMPACTION

One of the most challenging and error prone parts of IC design is low level cell
layout. Given a logical design, there are several possible ways to map the layout
geometrically. Often, it is desirable to consider this problem in the context of com-
paction, that is, as the problem of finding the minimum of the area function subject
to linear and nonlinear constraints. Given a two-dimensional layout, variables in
the formulation represent the position of a particular symbol in the logical diagram.
Consider, for example, any two components on the circuit, whose coordinates may
be given by (z1,y:1) and (22, y2). The geometric restrictions on layout can then occur
due to separation rules that require that the two components be at least a certain
distance apart. Such constraints then take the form

Ty —z > dy

or
Yo —y1 > d

where d; and d; are minimum distance requirements. Another form of constraints
can be imposed due to connectivity requirements, which again take the form of linear
inequalities. These and other constraints constitute the feasible region for a set of
points (z;,y;). The area occupied by a cell composed of several such components
can then be given as

f(z,y) = (Tz — Sz)(Ty — Sy)

Thus, the compaction problem becomes one of quadratic minimization:

min f(z,y)
where 2 is the feasible region defined by the set of linear inequalities. For further
discussion on this problem, see Kedem and Watanabe (1983).

A similar model arises in the layout problem, which requires a combination of
space and communication costs to be minimized. This corresponds to the rectangular
dualization problem. An example of such a model, which has quadratic constraints,
is shown below:

min oYs + TpYs + TeYe + TaYa + TeYe + T5Ys
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s.t. —zg+z, =0

—Zg+ oy —zgtze =0

—zot+zT.—2g+zy =0

—Ye+ys =0

“Ya—Y— Yo+t Yat+yt+ty =0

zpy —z, > 1

Ya—Ya > 1

ZaYa > 30

zyyy > 20

z.y. > 20

ziyd > 25

TeYe > 15

zryr > 20
o 2> D5,Zp > 5,2. > 2,20 24,2 > 4,27 >
Yo 25, Y 2 2,Ye 2 5 Ya > 4, 2 5,y 2>

For more details, the reader is referred to Maling et al. (1982).

10.6. OPTIMAL DESIGN OF TRUSSES

The structural design of trusses typically involves the minimization of the total
weight of the structure. Such problems have a large field of practical applications
and often result in bilinear models. A typical problem is shown below (Simdes,
1987):

min 1 + €9 + 3

st. zizyt+x325 = 0
3z124 + 1.22925 — 2326 = 10
bzs+ x5+ x5 < 2.5
0.1 <z, < 5.0
0.1 <zy < 5.0
0.1 <z3 < 5.0
0.0<z4 <25
0.0<z; < 2.5
—25<z5 < 0.0

10.7. ROBUST STABILITY ANALYSIS OF FEEDBACK CONTROL SYSTEMS

Feedback controllers are widely used to stabilize plant operations in various pro-
cesses. Because of mismatches between the plant model being used and the physical
systemn, it is important that the controller be designed for robustness, i.e. to satisfy
stability and performance requirements for a range of values for the parameters of
the plant model. A typical example of a problem (de Gaston and Sofonov (1988))
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Disturbances
Controller Plant Model
e A+2 u q, y
Set Point A+10 AA+9,) (A+D3)

Fig. 3.

involving the analysis of the robust stability of feedback control structures with real
parametric uncertainty is shown in Figure 3. The y variables are the measured vari-
ables from the plant output, u are the manipulated variables, and e are the errors
between the measured values and desired set points for the measured variables. A
refers to the variables in the Laplace domain. The variables ¢, g and g3 are three
parameters in the plant model, with nominal values of 800, 4 and 6, but these values
can vary due to uncertainty. The requirement that the controller be robust leads
to the following quadratically constrained optimization problem (see Psarris and
Floudas (1993) ):

min zg

s.t. z5y; — (24 + 1022 + 1023)y; + 221 = 0
(z2 + 23+ 10)y; — 1024 —2z; = O
zs—y2z3 = 0
zs—y1 = 0
zy—y2 = 0
800 — 800z < 2; < 800 + 800z
4 — 226 < 2y <4+ 2z
6 — 3z < 23 <64 324
zeX, yey

where #1 = q1, 2 = g3, 3 = ¢3, L4 = ¢2¢3, &5 = A and ¢ is the stability margin
for the control problem.

Detailed discussions of the importance of real parameter uncertainty as a tool for
robustness analysis in control systems can be found in Ackermann (1993). See Psarris
and Floudas (1993) for more details on the solution of such quadratic problems.
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Problem Problem size CPU Times
Nna Ty m S-A A-F
1 2 4 8 4.1 894
2 2 4 16 4.4 4.5
3 3 5 20 5.4 105+
4 3 5 24 3.7 3.7
5 6 3 24 7.8 81
6 7 4 24 | 14.1 30.0
7 4 7 20 | 20.0 25.0
8 5 4 24 | 11.0 844
9 4 5 24 | 14.3 14
10 7 6 20 | 27.0 28.0
11 7 7 24 | 69.0 | 163+
TABLE 1

Random runs of bilinear problems using the
algorithms of Al-Khayyal and Falk (1983)
and Sherali and Alameddine (1992)

11. Summary of Computational Results

The real test of any algorithm comes in how well it performs in an efficient im-
plementation. For most of the algorithms discussed in the preceding sections, very
little computational results have been reported. In this section, we summarize the
best known algorithms for the various classes of quadratic problems in terms of the
computational effort required. Almost all of the results reported consider randomly
generated test problems. Often, the solution times for the algorithms can vary a lot
depending on the type of problems generated. Therefore, while the results presented
here are indicative of the general performance of the algorithm, they should not be
taken as criteria for evaluating one algorithm vis a vis another algorithm.

11.1. BILINEAR PROGRAMS AND QUADRATICALLY CONSTRAINED PROBLEMS

For problems of the form (10), computational results for three algorithms are avail-
able. The performance of two of these algorithms, due to Al-Khayyal and Falk
(1983) and Sherali and Alameddine (1992) is shown in Table I. In Table II is given
the performance of the GOP algorithm as described in Floudas et al. (1993).

Several instances of the pooling problem (which has bilinear constraints) have
been studied by Visweswaran and Floudas (1993) and Ben-Tal and Gershovitz
(1992). The results for these problems are given in Table III.

11.2. CONCAVE QUADRATIC PROBLEMS

For concave quadratic problems, the branch-and-bound algorithm of Phillips and
Rosen (1988) and the GOP algorithm of Visweswaran and Floudas (1993) have been
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Problem Size Iterations and CPU

na ny m Iter. Cpu.
5 10 15 | 1.800 0.356
5 15 20 | 2.400 0.386
5 20 25 | 4.400 5.192
5 25 30 | 4.200 1.046
5 30 35 | 5.400 5.662
5 35 40 | 4.750 34.000
5 40 45 | 7.500 306.720
5 45 50 | 6.333 120.217
10 10 20 | 3.800 3.566
10 15 25 | 6.750 11.957
10 25 35 | 4.000 21.060

TABLE II

Randomly Generated Bilinear Prob-

lems Solved Using the GOP Algorithm
(Floudas et al., 1993)

Problem No. Problem Size GOP Ben-Tal & Gershovitz
Nna ny m Iterations. Dual Problems
1. 8 1 7 7 25
2. 15 2 19 19 339
3. 32 6 24 47 438
4. 32 6 24 42 283
TABLE III

Pooling Problems From Ben-Tal and Gershovitz (1992)

applied to similar categories of problems. Two classes of problems were considered
- a set of small example problems and a large number of randomly generated test
problems. For both cases, the problems considered have the following form:

where

min Y(z,y) = 61p(z) + Od'y
z,yeN

z, A, w € ®",

n
v = 0-52)\i($i — )%
7=1

Q= {(z,y): diz + Ay < b,z > 0,y > 0},
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y, d € RF,
A, € {mxn
A, € Hrxk

6., 6, € R

Here, m is the number of linear constraints, n is the number of concave variables
(z), and k is the number of linear variables (y). The parameters §; and 6, are -1
and 1 respectively, and the relative tolerance for convergence between the upper and
lower bounds (¢) is 0.001.

Problem | Problem Size | GOP Algorithm P&R
m | n k CPU (HP730) CPU (CRAY?2)
example 5 2 0 1.09 0.026
probl 5 6 0 0.54 0.022
prob2 5 6 0 0.55 0.020
prob3 5 6 0 0.45 0.026
probl0 4 2 0 1.17 0.017
probll 4 3 0 1.48 0.015
probl2 4 3 0 1.50 0.014
probl3 10 | 3 0 0.68 0.022
probl4 10 | 3 0 0.82 0.020
probl5 4 4 0 2.03 0.029
prob20 9 2 1 8.98 0.023
m = Number of constraints
n = Number of concave variables
k = Number of linear variables

TABLE IV
Concave Quadratic Problems from Phillips and Rosen (1988) us-
ing the algorithms of Phillips and Rosen (1988) and Visweswaran
and Floudas (1993)

Table IV contains the results for 11 example problems from Phillips and Rosen
(1988). Solution times for the randomly generated test problems are reported in
Table V. In this table, the times of the algorithm of Phillips and Rosen for sequential
and (4) parallel processors are given in columns P&R1 and P&R2. Note that the
cpu times reported for the Phillips-Rosen algorithm are for the CRAY?2, while the
times for the GOP algorithm are on an HP730.

11.3. INDEFINITE QUADRATIC PROBLEMS

For the case of the indefinite quadratic problem with box constraints, computational
results are presented for two algorithms, the global optimization algorithm of Hansen
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Run Problem size CPU Time
m | n k P&R1 | P&R2 GOP
1 20 | 25 100 4.5 1.5 16.508
2 20 | 25 200 27.5 9.0 33.149
3 20 | 25 400 58.0 19.0 82.026
4 20 | 50 100 28.0 7.0 46.761
5 20 | 50 200 45.0 15.0 108.968
TABLE V

Random runs for concave quadratic problems us-
ing the algorithms of Phillips and Rosen (1988) and
Visweswaran and Floudas (1993)

Density (%) CPU for Problem size

20 30 40 50 60 70 80
10 0.08 0.13 0.36 1.14 92.32 | 81.13 | 488.06
20 0.13 0.70 8.90 132.30 — — —
30 0.23 3.39 143.0 — — — —
40 0.51 9.12 — — — — —
50 1.07 50.85 — — — — —
60 1.15 116.2 — — — — —
70 3.81 160.9 — — — — —
80 8.82 — — — — — —
90 8.12 — — — — — —
100 17.87 — — — — — —

( — indicates problems could not be solved).
TABLE VI

Results of runs of the algorithm of Hansen et al. (1991) for quadratic prob-
lems with box constraints

et al. (1991), and the local optimization algorithm of Coleman and Hulbert (1989).
These results are given in Tables VI, and VII. These results indicate that both the
density and type of eigenvalues play crucial roles in the performance. As the number
of negative eigenvalues increases, the problem behaves more like a concave quadratic
problem, with the solution likely to lie at a vertex. Consequently, the solution times
are less for these problems. It can be seen that due to the sparsity of the problems
considered in Table VII (which consider about 4% dense problems) it is possible
to solve much larger problems in reasonable time. As the density of the matrix D
increases to 100%, it becomes impossible to solve any but the smallest size problems.



QUADRATIC OPTIMIZATION 47

No. variables | CPU for % Negative Eigenvalues
10 50 90
503 193.76 62.86 34.38
1005 523.36 503.34 461.04
2680 1009.5 | 1092.96 873.78
TABLE VII

Results of runs of the algorithm of Coleman and
Hulbert (1989) for large sparse quadratic problems
with box constraints

Run Problem size GOP Algorithm
m n k Iter CPU
1 20 | 25 0 2.61 21.552
2 20 | 25 50 6.87 50.703
20 | 25 | 100 | 11.32 | 121.718

m = Number of constraints
n = Number of concave variables
k = Number of linear variables

TABLE VIII
Random runs of indefinite quadratic prob-
lems for the GOP algorithm (Visweswaran
and Floudas, 1993)

Table VIII gives the results of runs of the GOP algorithm of Visweswaran and
Floudas (1993) for large indefinite quadratic problems. As the number of linear vari-
ables increases, the size of the linear relaxed dual problems solved at each iteration
increases.

Conclusions

In this chapter, we have reviewed the proposed global optimization approaches for
quadratic programming and quadratically constrained problems. Starting with the
definition of the general quadratic programming problem and its classification, we
discussed the local and global optimality conditions, as well as complexity issues.
Subsequently, we discussed the theoretical and algorithmic developments in bilinear,
concave, and indefinite quadratic programming. The important class of problems,
from the application point of view, of quadratically constrained problems and de-
composition based global optimization approaches for such problems were discussed



48 CHRISTODOULOS A. FLOUDAS AND V. VISWESWARAN

next. After a brief discussion on the relation between quadratic programming and
linear complementarity problems, we presented several examples of important ap-
plication areas for quadratic programming and quadratically constrained problems.
Finally, we discussed the computational results for a number of global optimization
approaches.

From this review, it becomes clear that there has been a significant progress, es-
pecially in the last decade, towards the theoretical and algorithmic development of
global optimization approaches for quadratic programming and quadratically con-
strained problems. At the same time however, the available computational studies
of proposed global optimization algorithms on either randomly generated test prob-
lems or actual applications of engineering design and control described in section
11, indicate the current limitations and the need for future work. The difficulty of
the reviewed classes of global optimization problems can be attributed to two main
features. The first characteristic is the degree of nonconvexity which is associated
with the number and balance of the mixed-sign eigenvalues of the Hessian Q for
the general quadratic programming problem for instance. The second characteristic
is related to the sparsity of the the objective function and constraints, as well as
the relative contribution of the nonconvex terms versus the linear or convex terms.
Based on the existing computational experience, there now exist a number of efficient
global optimization algorithms that can address medium to large size sparse concave
quadratic programming problems. The classes of bilinear and indefinite quadratic
programming appear to be more challenging, and the existing global optimization
approaches are effective only for small to medium size problems that have desirable
sparsity characteristics. The important class of quadratically constrained problems,
for which a few existing global optimization algorithms can be applied, is also very
challenging even though very encouraging computational results have been reported
for application problems whose mathematical structure is exploited effectively.

The classes of bilinear and indefinite quadratic programming, and quadratically
constrained problems with linear or quadratic objective function deserve serious at-
tention with respect to both new theoretical, algorithmic, and computational studies
so as to succeed in addressing medium to large size global optimization problems
effectively. Furthermore, it is expected that global optimization approaches that
take advantage of the special mathematical structure exhibited in a number of im-
portant application areas may become more efficient and capable of addressing these
problems at the expense however of being less general.
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