
V. Visweswaran* and C. A. Floudas**

* Mobil Research and Development Corporation, Princeton, NJ
** Department of Chemical Engineering, Princeton University, Princeton, NJ

ABSTRACT

Recently, Floudas and Visweswaran (1990, 1993) proposed a global optimization algorithm
(GOP) for the solution of a large class of nonconvex problems through a series of primal
and relaxed dual subproblems that provide upper and lower bounds on the global solution.
Visweswaran and Floudas (1995a) proposed a reformulation of the algorithm in the framework
of a branch and bound approach that allows for an easier implementation. They also proposed
an implicit enumeration of all the nodes in the resulting branch and bound tree using a mixed
integer linear (MILP) formulation, and a linear branching scheme that reduces the number
of subproblems from exponential to linear. In this paper, a complete implementation of the
new versions of the GOP algorithm, as well as detailed computational results of applying the
algorithm to various classes of nonconvex optimization problems is presented. The problems
considered including pooling and blending problems, problems with separation and heat
exchanger networks, robust stability analysis with real parameter uncertainty, and concave and
indefinite quadratic problems of medium size.

1 INTRODUCTION

Floudas and Visweswaran (1990, 1993) proposed a global optimization algorithm
(GOP) for the solution of a large class of nonconvex problems. The algorithm
solves the original problem iteratively through a series of primal and relaxed dual
subproblems, which provide upper and lower bounds on the global solution. The
algorithm has a guarantee of finite convergence to an � -optimal solution; however,
the nature of its cutting plane approach renders the implementation very difficult,
especially in the steps leading to the choice of underestimators to be used during

various iterations. To circumvent this problem, Visweswaran and Floudas (1995a)
proposed the reformulation of the algorithm in the framework of a branch and bound
approach. At each iteration, the gradients of the Lagrange function are used for
branching, with the primal and relaxed dual problems at each node are used to
provide upper and lower bounds on the global solution. The paper also addressed
the question of implicit enumerations of all the nodes in the tree by using a mixed
integer linear (MILP) formulation for the relaxed dual problem, and proposed a new
branching scheme that only requires a linear number of relaxed dual subproblems at
each iteration.

In this paper, a complete implementation of the new versions of the GOP algorithm,
along with computational results, is discussed. The actual details of the implementation
can be found in Appendix A, which discusses the various aspects involved in the
implementation, including reduction tests and local enhancements at each node of the
tree. In particular, the movement of data from one part of the program to another is
discussed in detail. In the following sections, the results of applying the implementation
to various classes of nonconvex optimization problems, including pooling and blending
problems, problems with separation and heat exchanger networks, and quadratic
problems from literature are described.

2 COMPUTATIONAL RESULTS

A complete description of the GOP and GOP/MILP algorithms can be found in
Visweswaran and Floudas (1995a). These algorithms have been implemented in a
complete package cGOP (Visweswaran and Floudas, 1995b). The details of the
implementation can be found in Appendix A. In this section, we present the results
of the application of the cGOP package to various problems in chemical engineering
design and control and mathematical programming.

2.1 Heat Exchanger Network Problems

Heat exchanger network synthesis problems have traditionally been solved using a
decomposition strategy, where the aims of targeting, selection of matches and opti-
mization of the resulting network configuration are treated as independent problems.
Given the minimum utility requirements and a set of matches, a superstructure of
all the possible alternatives is formulated. The resulting optimization problem is
nonconvex. In this section, two such superstructures of heat exchanger networks are
solved using the GOP algorithm.

The problems solved in this section have the following form:����� � �	��
������������ ����� ��� �� � � ��!#"�$ � �&%('*) +
s.t.

(Initial splitter mass balance) �,(-.��/103254, - �7698
(Mixer balances at exchanger inlets)254, -;: �, - - �=< 0 - 25>, -@? , - -BA 2BC, - �ED;FEGIHIJLKLM "9N
(Splitter balances at exchanger outlets)2PO, -5: �, - - �=< 0 - 2B>, - -@? , -QA 2BC, - �7D;FRGSHTJLKLM "9N
(Energy balances at mixers)U 8 2 4, - : �, - - �=< 0 - 2 >, -�? , - -.V O, - - A 2 C, -.V 4 , - �7D;FRG	HIJWKLM "XN
(Energy balances in exchangers)� � � � 2 C ? ��ZY V 4 ? �� A V O ? ��\[G Y^]`_a[J !#b� � � � 2 C ? ��cY V O ? �� A V O ? ��d[G Ye]f_=[J !#b

��!#"�$ ��� �Zghji Y $�"lk ��� i $�" g ��� [nmponq : kr i Y $�"lk ��� : $�" g � � [

Here, s � � are the fixed heat transfer coefficients. It should be noted that for fixedt ��� , the objective function is convex. Therefore, by projecting on the flow rates2 � , the primal problem becomes convex in the remaining variables (the temperatures
and temperature differences). Linearization of the Lagrange function ensures that the
relaxed dual subproblems are LP subproblems in the flowrates.

Example 2.1 This example is taken from Floudas and Ciric (1989). In this problem,
the objective is to determine the globally optimal network for a system of two hot
streams and one cold stream. The superstructure of all possible solutions is shown in
Figure 1. Based upon this superstructure, the model can be formulated as the following
optimization problem :

�T�u
 k h D=Dwv k D*D=DD N D=x v qy Y{z " m m z " m|q [~} : m� Y{z " m m : z " m|q [}(��� � :
k h D=D v r D=DD N D=x v qy Y{z " q�m z " q q [~} : m� Y{z " q�m : z " q q [} ��� �� N���N 2 4m : 2 4q � k D2B4m : 25>m|q A 2BCm � D2 4q : 2 >q�m A 2 Cq � D2POm : 25>q�m A 2BCm � D2POq : 25>m|q A 2BCq � Dk x*D 2B4m : V Oq 2B>mpq A V 4 m 2BCm � Dk x*D 2B4q : V O m 2B>q�m A V 4 q 2BCq � D2BCm Y V O m A V 4 m [� k D=D*D2BCq Y V Oq A V 4 q [� r D=Dz " mnm ��x*D=D A V O m�� z " mpq � g x=D A V 4 mz " q�m � h x=D A V Oq�� z " qnq � g D=D A V 4 qz "1mnm � z "3m|q � z "�q�m � z "�q q�� k D

Considering the set of possible solutions inherent in Figure 1, it is obvious that the
bypass streams (2 >mpq and 2 >q�m) can never be simultaneously active, i.e. at least one of
these streams has to be zero. Therefore, two different problems can be solved, one
with 2 >mpq ��D

and another with 2 >q�m ��D
. When the GOP algorithm is applied to the

1
I f

1
O

o
500

o
250

o
350

o
200

H1

o
310

10

4

4

150
o

10

f O
2

f E
2

f I
2

f
12
B

f

f

H

21
B

t I
1

t
1
O

t
2
Ot I

2

1
Ef

2

Figure 1 Heat Exchanger Network Superstructure For Example 2.1

4o
350 4

o
150

o
310

o
210

o
500

1H
10

o
250

2H

o
200

10 10

Figure 2 Optimal Configuration For Example 2.1

problem in this form, the optimal solution (given in Figure 2) is found in 11 iterations,
needing 0.54 cpu seconds on an HP 730.

Example 2.2 This example is also taken from Floudas and Ciric (1989). It features
three hot streams and two cold streams.�T�u
 k h D=D v k D*D=DD N x v qy Y{z " m m z " mpq [|} : m� Y{z " m m : z " m|q [} ��� � :

k h D=D v r D=Dk�N D v qy Y{z "�q�m z "�qnq [} : m� Y{z "�q�m : z "�q q [} ��� � :
k h D=D v r D=Dg N D v qy Y{z " y m z " y q [} : m� Y{z " y m : z " y q [} ��� �� N���N 2 4m : 2 4q : 2 4y � �;x2B4m : 2B>mpq : 2B>m y A 2BCm � D2 4q : 2 >q�m : 2 >q y A 2 Cq � D2B4y : 2B>y m : 2B>y q A 2BCy � D2 Om : 2 >q�m : 2 >y m A 2 Cm � D2POq : 2B>mpq : 2B>yny A 2BCq � D2POy : 2B>m y : 2B>q y A 2BCy � Dk D=D 2B4m : V Oq 2B>mpq : V Oy 25>m y A V 4 m 2BCm � Dk D=D 2B4q : V O m 2B>q�m : V Oy 25>q y A V 4 q 2BCq � Dk D=D 2B4y : V Oy 2B>y m : V Oq 25>y q A V 4y 2BCy � D2BCm Y V O m A V 4 m [� g D=D*D � 25Cq Y V Oq A V 4 q [� k D*D=D � 25Cy Y V Oy A V 4y [� k x=D*Dz " m m � g k D A V O m�� z " q�m � g k D A V Oq9� z " y m � g k D A V Oyz " mpq � k h D A V 4 m�� z " q q � k r D A V 4 q�� z " y q � k�� D A V 4yz "1mnm � z "3m|q � z "�q�m � z "�q q z " y m � z " y q�� k DD�� 2B4m � 254q � 2B4y � 2POm � 2POq � 2POy �

The superstructure for this example is shown in Figure 3. There are a total of 27
variables and 19 constraints (of which six are bilinear). With a projection on the flow
rates, there are six connected variables. The GOP algorithm requires a total of 39
iterations and 54.62 cpu seconds to solve this problem. The optimal solution found by
the algorithm is given in Figure 4.

H1
t I
1

f O
2

f E
2

t
2
Ot I

2

o
210 25

o
130

o
210 20

o
210 50

o
180

f E
3

f O
3

o

45

100
o

f

200

45

H3

2H

t
1
O

t O
3

t I
3

f I
2

f
1
I

f I
3

o
160

1
E f

1
O

Figure 3 Heat Exchanger Network Superstructure For Example 2.2

H

o

o

130

210 25

1

o

o 20210

160

H2

o

o

180

210 50

H3
o

45

100
o

45

144
o

45

166
o

45

200

Figure 4 Optimal Configuration For Example 2.2

1 H2 H3

1T T 2 T 3

T 4 T 5

H

31
C

300 400

450 500 550

2

Figure 5 Heat Exchanger Example From Quesada and Grossmann (1993)

2.2 Heat Exchanger Problems With Linear Cost Functionals

In this section, we apply the GOP algorithm the global optimization of several heat
exchanger networks with fixed topology. The problems are taken from Quesada and
Grossmann (1993) and assume linear cost functionals for the exchanger areas as well as
arithmetic mean driving forces for the temperature differences between the exchanging
streams. Under these assumptions, the problems reduce to the minimization of a sum
of linear fractional functions (which is nonconvex) over a set of linear constraints.

In order to reduce these problems to a form where the GOP algorithm could be applied,
we employ the ideas of Liu and Floudas (1993), which involve a difference of convex
functions transformation. This involves use of eigenvalue analysis on the resulting
fractional objective functions in order to determine the smallest quadratic terms that
are needed to ‘‘convexify’’ the objective function. Since this method is very general
and can be of use in various problems of this type, it is outlined in some detail here for
one of the examples.

This example (Example 4 of Quesada and Grossmann, 1993) features a network of
three exchangers used to heat one cold stream and cool three hot streams. This network
is shown in Figure 5, with � Mw��� k D for all the streams. The minimum temperature
of approach is k D ��� .

The problem formulation, featuring constraints for the heat balances, minimum
temperature approaches and feasibility is shown below:�	��
 t mg z "3m : t qg z "�q : t yg z " y

�������1�n� B¡p¢��n�¤£¦¥�§��n� �n¨P©��nª�«g z "3m � k x=D : "3m A "P¬g z " q �Zx*D=D : " q A " ¬ A "�g z " y � k x=D : " y A "�®��� B¡�¯X a°@ a¨±©��nª�« t m � k D Y "P¬ A h D*D [� k D Y �;x=D A "1m [t q � k D Y "� A " ¬ [� k D Y x=D*D A " q [t y � k D Y �;D=D A " [� k D Y x*x=D A " y [²³¥�¨5¥��L¢��´���n�I�&�n�n 5¡µ¢�� �¦¶·�B�±� ¸* =©µ¹±�nª�«
" m A h D=D �ºk D �;x=D A " ¬ �»k D" q A " ¬ �ºk D x*D=D A "�¦�»k D" y A "���ºk D¼±�� aªp¥~½�¥�°�¥~¡.¾�«

" m � " q � " y � " ¬ � "�¦� D
The three heat balance equations can be used to eliminate three of the variables in the
problem. Choosing the intermediate streams "±¬ and " as the independent variables
leads to "1m �Z¿=x=D A "±¬" q �Zx=D=D : " ¬ A "�" y � k x=D : "
Using the minimum temperature approaches, tighter bounds on " ¬ and "� are obtained:"3mZ� h k D À ¿=x*D A "P¬ � h k D À "P¬ � �*�ÁD" q � k D : " ¬ À x=D*D : " ¬ A "�Â� k D : " ¬ À "� � �;Ã=D
Similarly the temperature differences reduce toz "3m �Ä�Áx=D A "±¬

z "�q �Zx=D=D A " z " y � k x=D
Thus, the problem formulation reduces to�T�u
 k D=D*D=D	Å "±¬ A h D*D�Áx=D A " ¬ : " A "P¬x=D*D A "� : �ÁD*D A " k x=D Æh D=D�� " ¬ � "� �Ç�;D=D
Consider now the three individual terms inside the parentheses. For the sake of clarity,
the factor of 10000 is omitted below.

The first fractional term is � m � " ¬ A h D=D�Áx*D A " ¬ N
The Hessian of this function is given byÈ q � mÈ " q¬ � h D=DY �;x=D A "P¬ [y
which is always positive, since "P¬ �É�;D=D

. Therefore, this term is convex for all
values of "P¬ and " .

The third term � y � �ÁD*D A " k x=D �
is a linear term and therefore always convex.

The second term is � q � " A "P¬x=D*D A " N
The Hessian of � q is given byK q � Ê D Ë mÌ�ÍË mÌ(Í qµÎÌ�Ï#Ð
where Ñ �Òx=D*D A " ¬ and Ó ��x=D*D A "� . The eigenvalues of this Hessian are
given by Ô m � Ô q �ÕÑlÖÉ× Ñ q : Ó qÓ y

It can be seen that the second eigenvalue (for the negative value of the square root)
will always be negative. Thus, the Hessian has mixed eigenvalues, indicating
that the second term in the objective is nonconvex.

In order to ‘‘convexify’’ this term, a quadratic term in one or more of the variables
can be added. Suppose that the term � " q¬ is added. Then, the term becomes��Øq � " A "P¬x=D*D A "� : � " q¬
The Hessian of this term is given byK Øq �ÙÊ g � Ë mÌ ÍË mÌ Í qpÎÌ Ï Ð
where again Ñ �Úx=D*D A "±¬ and Ó �»x*D=D A " . The eigenvalues of this Hessian
are given by Ô m � Ô q � kÓ yÇÛ Ñ : � Ó y Ö × Y Ñ A � Ó y [q : Ó q�Ü
For the second eigenvalue to be positive for all values of " ¬ and "� , the term in
the square brackets must be positive. In other words,Ñ : � Ó y Ö × Y Ñ A � Ó y [q : Ó q � D
This leads to the inequality � � k� Ñ5Ó
Since k D*D�� Ñ � Ó � g D*D , we obtain� � k�ÁD*D=D*D

Thus, adding the term m¬ �n� �n� " q¬ to � q is sufficient to make this term convex. The net
result of this is that the objective function can now be written as�T��
 k D=D*D=D	Å " ¬ A h D*D�Áx*D A " ¬ : "� A " ¬x*D=D A "� : �ÁD*D A "�k x*D : " q¬�;D=D*D=DBÆ A " q¬�
where the first term is convex, and the second term is concave. By the addition of an
extra variable and renaming all the variables, the problem now becomes�	��
 k D*D=D=D Å Ó m A h D=D�Áx=D A Ó m : Ó q A Ó mx=D*D A Ó q : �ÁD*D A Ó qk x=D : Ó q m�ÁD*D=D=DBÆ A D N g x Ñ m Ó m

Problem Problem Size GOP Algorithm
Name Variables Constraints Iterations CPU (sec)

Example 1 12 13 4 0.09
Example 2 12 13 3 0.06
Example 4 11 9 3 0.10
Example 5 11 9 8 0.20
Example 7 26 30 4 0.11

Table 1 Heat Exchanger Network Problems from Quesada and Grossmann (1993) with
variables eliminated as detailed in Section 2.2

Ñ m A Ó m �ZDh D*D�� Ñ m � Ó m � Ó q �Ý�ÁD=D
Now the problem satisfies the conditions of the GOP algorithm, being a convex
problem in Ó for all fixed Ñ and a linear problem in Ñ for all fixed Ó .

Similar reductions were obtained for all the example problems given in Quesada and
Grossmann (1993). The results of applying the GOP algorithm to these problems is
given in Table 1. Note that in all the cases, the problems reduced to either one or
two variable unconstrained problems. Consequently, the subproblems solved by the
algorithm are very small in size, as shown in the CPU times taken to converge to the
optimum.

2.3 Pooling and Blending Problems

Pooling and blending problems are a feature of models for most chemical processes.
In particular, for problems relating to refinery and petrochemical processing, it is
often necessary to model not only the product flows but the properties of intermediate
streams as well. These streams are usually combined in a tank or pool, and the pool
is used in downstream processing or blending. The presence of these streams in the
model introduces nonlinearities, often in a nonconvex manner. The nonconvexities
arise from the interactions between the qualities of the input streams and the blended
products.

Traditionally, pooling problems have been solved using successive linear programming
(SLP) techniques. The first SLP algorithm (Method of Approximation Programming)
was proposed by Griffith and Stewart (1961). Subsequently, SLP algorithms have

y

Cy

xC

Px

P
Pool

Max 1.5% S

Max. 2.5% S

3% S

1% S

2% S
y

x

C

B

A

Figure 6 The Haverly Pooling Problem

been proposed by Lasdon et al. (1979), Palacios-Gomez et al. (1982) and Baker and
Lasdon (1985) among others. These algorithms have been applied to pooling problems
by Haverly (1978) and Lasdon et al. (1979). SLP algorithms have the advantage
that they can utilize existing LP codes and can handle large scale systems easily.
However, to guarantee convergence to the global solution, they require convexity in
the objective function and the constraints. For this reason, these methods cannot be
relied upon to determine the best solution for all pooling problems.

Various formulations have been proposed for pooling and blending problems. In
the following sections, we consider the application of the GOP algorithm to three of
these formulations, namely, the Haverly Pooling problem, two pooling problems from
Ben-Tal and Gershovitz (1992), and a multiperiod tankage quality problem commonly
occuring in refineries.

The Haverly Pooling Problem

In his studies of the recursive behavior of linear programming (LP) models, Haverly
(1978) defined a pooling problem as shown in Figure 6. Three substances b , Þ andM

with different sulfur contents are to be combined to form two products Ñ and Ó
with specified maximum sulfur contents. In the absence of a pooling restriction, the
problem can be formulated and solved as an LP. However, when the streams need to
be pooled (as, for example, when there is only one tank to store b and Þ), the LPmust
be modified. Haverly has shown that without the explicit incorporation of the effect
of the economics associated with the sulfur constraints on the feed selection process,
a recursive algorithm for solving a simple formulation having only a pool balance
cannot find the global solution. Lasdon et al. (1979) added a pool quality constraint
to the formulation. This complete NLP formulation is shown below :

�	��
 r b : k r Þ : k D Y M Î : M Ì [A Ã Ñ A k x Óß N V N à Î : à Ì A b A Þ �#Dâá ãBä�ä=å5ænç5å�ç;è�é�êÑ A à Î A M Î � DÓ A à Ì A M Ì � D ë é�ä�ì�ã5ä�è�ê�è V ænç5å�ç;è�é�êã N Y à Î : à Ì [A h b A Þ �#Dâá ãBä�ä=å;í�î±ç5å] V Óã N à Î : g N M Î A g N x Ñ � Dã N à Ì : g N M Ì A k�N x Ó � D ë ãBï�ä�ðÁîPé V í�î±ç5å] V Ó é�ä�è ß V ï�ç] è V ßÑ � ÑPñÓ � Ó ñ ë î;ã=ãBê(ï�ænä�îPè�ð ß ä�èlãBï�ä�ð;î±é V ß
where

ã
is the sulfur quality of the pool; its lower and upper bounds are 1 and 3

respectively. This problem was solved by both Haverly (1979) and Lasdon et al.
(1979). In all cases, however, the global optimum could not always be determined,
the final solution being dependent on the starting point.

More recently, Floudas and Aggarwal (1990) solved the problem using the Global
Optimum Search (Floudas et al., 1989). They had to reformulate the problem by
adding variables and constraints, and despite being they were successful in finding
the global minimum from 28 out of 30 starting points, they could not mathematically
guarantee that the algorithm would converge to the global minimum.

The GOP Algorithm

By projecting on the pooling quality
ã

, the problem becomes linear in the remaining
variables. Hence,

ã
is chosen as the ‘‘ Ó ’’ variable. From the constraint set, it can

be seen that only
à Î and

à Ì are the connected variables. Hence, four relaxed dual
subproblems need to be solved at each iteration. Three cases of the pooling problem
have been solved using the GOP and GOP/MILP algorithms. The data for these
three cases, as well as the average number of iterations required by the algorithms to
converge, are given in Table 2. It can be seen that in all cases, the algorithms require
less than 15 iterations to identify and converge to the global solution.

Case Bounds Cost Optimal Solution GOP GOP/MILPÑ±ò ÓÁò of B 2=ó ã ó Iter. CPU Iter. CPU

I 100 200 $16 -$400 1.0 12 0.22 12 0.49
II 600 200 $16 -$600 3.0 12 0.21 12 0.45
III 100 200 $13 -$750 1.5 14 0.26 14 0.56

Table 2 Data and results for the Haverly Pooling Problem

Pooling Problems From Literature

We have also applied the GOP algorithm to two pooling problems taken from Ben-Tal
and Gershovitz (1992). The following notation is used for these problem models :ô k � g ��õ(õ�õ~�] �öõ�õ(õµ�n÷ áºø �pù �wú�ûwü�ú �Tý ú
 ù
 � �ô k � g ��õ(õ�õ~� _ �öõ�õ(õ|��þ áºø �pù �wú�û ý5ÿ ú����Bü�� �ô k � g ��õ(õ�õ~� H ��õ(õ�õ~� � áºø �pù �wú�û������ � � � � ù��ô k � g ��õ(õ�õe� å �öõ�õ�õp� � áºø �pù �wú�û ý ú;ú � �
The following variable sets are present in the model :Ñ) � A � � ú	�
 ��úaû ü�ú �	ý ú
 ù
 �] � �
� ú;ü��*� ù ���pú ý ú;ú � åÓ � + A � � ú	�
 ��*ú ��
 � û ÿ ú ��ý ú;ú � å �µú ý5ÿ ú����5ü�� _�) + A � � ú	�
 ��úaû ü�ú �	ý ú
 ù
 �] �=ú �u
 ���pú ý5ÿ ú����Bü�� _ã � 0 A � ù��*ù � ú�û������ � � ��� H���
lý ú;ú � å
The parameters in the problem are :b) A � ýBý ù ÿ�� ú��
 � � û^ú ÿ ü�ú �	ý ú
 ù
 �� � � � � � �5� � � � � ù��$ + A � ýBý ù ÿ�� ú��
 � � û^ú ÿ1ý5ÿ ú����5ü���� ù � �
 � �� � A � ýBý ù ÿ�� ú��
 � � û^ú ÿ1ý úÁú � � ��� ù��t + 0 A � ýBý ù ÿ�� ú��
 � � û^ú ÿ1ý5ÿ ú����5ü�������� � � � � ù��í) 0 A � ù��=ù � úaû������ � � ��� Hl��
 ü�ú �	ý ú
 ù
 �]é) A �
B� � ý5ÿp� ü ù úaû ü�ú �	ý ú
 ù
 �]ð + A �
B� � ý5ÿp� ü ù úaû ý5ÿ ú����5ü�� _
Using this notation, these pooling problems have the following form:� ��� A � � � é � Ñ �! : � � � ð � Ó � : � � � � Y ð � A é � [� ���

Problem No. Problem Size GOP Algorithm

I J K L Iterations CPU (HP730)
1. 4 2 1 1 7 0.95
2. 5 5 2 1 41 5.80

Table 3 Pooling Problems From Ben-Tal and Gershovitz (1992).ß N V N � Ñ �" : � � � ��� � b �� � Ñ �" : � � Ó � �ZD� � Ñ �" �#� A � � í �f, Ñ �" : ã �, � � Ó � �ZD� Ó � : � � � ��� � $ �� Y ã �, A t �(, [Ó � : � � Y í �f, A t ��, [� ��� � D
The data for these problems can be found in Ben-Tal and Gershovitz (1992). The
results of application of the GOP algorithm to these problems is given in Table 3.

Multiperiod Tankage Quality Problem

This example concerns a multiperiod tankage quality problem that arises often in the
operations of refineries. The models for these problems are similar to the pooling
problem of the previous section.

In order to develop the mathematical formulation, the following sets are defined :à%$ � ô ã�áÇø �pù �wúaû ý5ÿ ú����5ü�� �M%&Â� ô é�áÇø �pù �wú�ûwü�ú �Tý ú
 ù
 � �" � ô V áÇø �µù �wú�û�� ��� ù ý ù ÿµ� ú�� �t � � ô åeáÇø �pù ��úaû������ � � � � ù��

For this problem, there are 3 products (
ã m � ã q � ã y), 2 components (

é m � é q), and 3 time
periods (V � � V m , V q). The following variables are defined :Ñ('*) +,) - � � � ú��
 �±úaû ü�ú �	ý ú
 ù
 � é � �
� ú;ü��=� ù �l�µú ýBÿ ú����5ü�� ã �=� ý ù ÿµ� ú�� Vß +,) - � � �pú;ü . úaû ý5ÿ ú����5ü�� ã �*� ù
 �lú�û ý ù ÿp� ú�� Ví +,) �) - � ����� � � ��� å ú�û ýBÿ ú����5ü�� ã �=� ý ù ÿp� ú�� V
The objective of the problem is to maximize the total value at the end of the last time
period. The terminal value of each product (/ �) is given. Also provided are lower and
upper bounds on the qualities of the products, qualities of stocks at start of each time
period (ß � ? 0), qualities in each component (

t s�'*) �), and the product lifting (� ��+,) -) for
every period. The data for this problem is provided in Table 4.

The complete mathematical formulation for this problem, consisting of 39 variables
and 22 inequality constraints (of which 12 are nonconvex) is given below :

� ��� �� ��1�/ / � N ß � ? - 0 -Íß N V N �� ��1�/ Ñ(2 ? � ? 0 � b $ 2 ? 0 V J ô V m � V q á � é¦JWM3&ß � ? 0 : �2 �	4 O Ñ 2 ? � ? 065 m A ß � ? 0*5 m � � � � ? 065 m V J ô V � � V m á � ã³J à3$ß � ? 0 N ín� ? ? 0 : �2 �74 O Ñ 2 ? � ? 065 m N t s 2 ? �Y ß � ? 0*5 m : � � � ? 0*5 m [õ ín� ? ? 065 m V J ô V � � V m á � ã³J à%$ � å3JLt �
The sources of nonconvexities in this problem are the bilinear terms ß � ? 0 õ í � ? ? 0 in the
last set of constraints. Thus, fixing either the set of ß or

í
variables makes the problem

linear in the remaining variables.

The GOP Algorithm: To apply the GOP algorithm to this problem, we can project
on the qualities (

í m � í q). Then, the stocks are the connected variables. Since there are
six of them (corresponding to three products at two time periods), 64 relaxed dual
problem problems need to be solved at every iteration. The results of solving this
problem using the branch-and-bound GOP and GOP/MILP algorithms are shown in
Table 5.

Component Arrivals and Qualities

Component Arrivals QualitiesV � V m V q í m í qé m 0.20 0.25 0.15 40 80é q 0.20 0.15 0.25 100 50

Product Lifting and Limits on Stocks

Product Product Lifting Stock LimitsV m V q V � V m V qã m 0.08 0.12 0.05 0.10 0.10ã q 0.15 0.10 0.05 0.10 0.10ã y 0.15 0.20 0.05 0.10 0.10

Bounds and Initial Values for Product Qualities

Products Lower Bounds Upper Bounds Initial Valuesí m í q í m í q í m í qã m 70 50 100 100 70 50ã q 80 70 100 100 90 70ã y 60 40 100 100 60 40

Terminal Value of products : / ��� Y r D � Ã=D � �;D [.
Table 4 Data for the Multiperiod Tankage Quality Problem

Starting Point Original GOP GOP/MILP
(Ó) Iter. Subproblems CPU Iter CPU

Lower bound 8 18 3.66 7 14.7
Upper bound 9 19 3.68 9 13.1í 0 m � k D*D � í 0 q ��¿*D

11 18 3.95 13 22.4í 0 m � � D � í 0 q � k D*D 9 19 3.23 13 16.5

Table 5 Multiperiod Tankage Quality Problem

2.4 Problems in Separation Sequences

As in the case of heat exchanger networks, problems involving separations (sharp and
nonsharp) can often be posed as a superstructure from which the best alternative is to
be selected. The following example considers one such formulation.

Example 2.3 This problem involves the separation of a three component mixture into
two multicomponent products using separators, splitters, blenders and pools. The
superstructure for the problem (Floudas and Aggarwal, 1990) is given in Figure 7.
The NLP formulation for the problem is given below:

�	��
 D N Ã*Ã=¿=Ã : D N D=D�� h g*� : D N D k x k ¿ � m yª(¢5½98(��©�¡�¡^¸:<;>= �n�n �°�° ² �ªpª�¯9 �°f a¨±©��nª@? � m : � q : � y : � ¬ � h D=D� � A ��A A �CB �ZD��D A � m � A � mnm A � mpq �ZD� m~¬ A � m A � m � A � m A �ZD� m B A � m D A � q � �ZD
:6E �±°�¥~¡p¡e�n�%F�¸��I�&¸a¨±�n¨�¡w¯X a°@ a¨±©��nª@? � Ñ � ? A � � Ñ � ? � A ��D�Ñ � ? D �ZD _ � b � Þ � M� m y Ñ � ? m y A � m~¬ Ñ � ? m~¬ A � m B Ñ � ? m B �ZD _ � b � Þ � M:"G ¨5°f��¡�²³¥
H5�n��¯9 �°f �¨P©��nª�?

D N h=h*h � m : � m Ñ � ? m{¬ A � Ñ � ? �ZD _ � b � Þ � MD N h=h*h � q : � m � Ñ � ? D A � m y Ñ � ? m y �ZD _ � b � Þ � MD N h*h=h � y : ��A(Ñ � ? � : � mnm Ñ � ? D : � m � Ñ � ? m{¬ : � m D�Ñ � ? m B � h DD N h=h*h � y : ��A�Ñ > ? � : � mnm Ñ > ? D : � m � Ñ > ? m~¬ : � m D�Ñ > ? m B �Zx*DD N h*h=h � y : ��A�Ñ 4 ? � : � mnm Ñ 4 ? D : � m � Ñ 4 ? m~¬ : � m DnÑ 4 ? m B � h D
: F�¸��I�&¸aªp¥~¡f¥f¸a¨5ª�?Ñ � ? � : Ñ > ? � : Ñ 4 ? � � k] �Éx � k r � Ã � k h � k � � k r:6E ¹± a�~� E �±°�¥~¡
?Ñ > ? � � Ñ 4 ? � � Ñ � ? D � Ñ 4 ? m~¬ � Ñ � ? m B � Ñ > ? m B �ZD
By projecting on the compositions Ñ �) � Ñ >) and Ñ 4) , the primal and relaxed dual sub-
problems become linear. There are a total of 38 variables and 32 equality constraints.
There are initially 20 connected variables (the flow rates.) However, considering
Figure 7, it is obvious that the recycle streams cannot both be simultaneously active.
This leads to solving two independent problems, with � m � ��D

in the first case and� m �ÕD
in the second case. In each case, the resulting problem has 9 connected

variables. Application of the GOP algorithm to the problem identifies the optimal
solution (shown in Figure 8) in 17 iterations using the parallel configuration as a
starting point. The total CPU time taken was 3.84 seconds on an HP730.

2.5 Phase Equilibrium Problems

Phase and Chemical equilibrium problems are of crucial importance in several process
separation applications. For conditions of constant pressure and temperature, a global
minimum of the Gibbs free energy function describes the equilibrium state. Moreover,
the Gibbs tangent plane criterion can be used to test the intrinsic thermodynamic
stability of solutions obtained via the minimization of the Gibbs free energy. Simply
stated, this criterion seeks the minimum of the distance between the Gibbs free energy
function at a given point and the tangent plane constructed from any other point in
the mole fraction space. If the minimum is positive, then the equilibrium solution is
stable.

The tangent plane criterion for phase stability of an
è

-component mixture can be
formulated as the following optimization problem (McDonald and Floudas, 1995):�T��
Ì � Y Ó [�Z��e�	4 Ó � ôJI � Y Ó [A I �� Y � [á

II

P
1

P
2

30 A

40 B

30 C

100 A

100 B

100 C

70 A

50 B

70 C

I

18

A

BC

C

AB

1

2 14

43

5

13

12

11

6

9

7
8

10

15

16

17
19

20

Figure 7 Superstructure for Example 2.3

II

P
1

P
2

100 A

100 B

100 C

30 A

40 B

30 C

70 A

50 B

70 C

C

I
60

20

40

40

90 150
240

20

20

A

B

BC

Figure 8 Optimal Configuration For Example 2.3

ß N V N ��e�	4 Ó � � kD�� Ó � � k
where Ó is the mole fraction vector for the various components,

I � Y Ó [is the chemical
potential of component] , and

I ���Y � [represents the tangent constructed to the Gibbs
free energy surface at mole fraction � . The use of the NRTL equation for the chemical
potential reduces the problem to the following formulation:�	��
 � Y Ó [�LK Y Ó [: ��e�	4 Ó � õ ����	4 M ���JN����POw�

ß N V N O9� õ ��a�	4 M ��� Ó � � Ó � G] JWM��e�74 Ó � � kD�� Ó � � k G] JWM
where N ��� are non-symmetric binary interaction parameters,

M ��� are parameters
introduced for convenience, and the function

K Y Ó [is a convex function. By projecting
on Ó � , it can be seen that this problem satisfies Conditions (b).

The GOP algorithm was applied to solve several problems in this class. These
problems are taken from McDonald and Floudas (1995) and have been solved by them
using the GLOPEQ package (McDonald and Floudas, 1994). The results are shown
in Table 6. It can be seen that for most of the problems, the GOP algorithm performs
very well when compared to the specialized code in GLOPEQ, which is a package
specifically designed for phase equilibrium problems.

2.6 An Example In Robust Stability Analysis

The following example was first studied by de Gaston and Sofonov (1988). It
concerns the exact computation of the stability margin for a system with real parameter
uncertainty. This problem (shown in Figure 9) involves a single-input single-output
feedback system with a lead-lag element controller. The model for the problem is
given below: �	��
 H�Q�� Ñ �Ñ Ó m A Y Ñ ¬ : k D Ñ q : k D Ñ y [Ó m : g*Ñ m �ZD

Problem Problem Size GOP GLOPEQóName RTS RTU R 4 Iterations CPU Iterations CPU

BAW2L 2 2 3 27 0.68 32 0.15
BAW2G 2 2 3 30 0.75 36 0.16
TWA3T 6 3 4 13 0.86 16 0.22
TWA3G 6 3 4 121 9.00 85 0.96
PBW3T1 6 3 4 82 6.33 53 0.63
PBW3G1 6 3 4 393 35.21 213 2.37
PBW3T6 6 3 4 1366 134.99 549 4.98
PBW3G6 6 3 4 1886 207.19 757 7.09

Table 6 Results for the Phase Stability Problem

2
q

3λ(λ+) (λ+)

q
1

q

d

λ+2
λ+10

er yu

Figure 9 Feedback Structure For Robust Stability Analysis Example

Y Ñ q : Ñ y : k D [Ó m A k D Ñ ¬ A Ñ m �ZDÑ ¬ A Ó q Ñ y �ZDÑ A Ó m �ZDÑ q A Ó q �ZD� D*D A � D=D Ñ � � Ñ m � � D=D : � D=D Ñ �� A g=Ñ � � Ñ q �Ý� : g=Ñ �r A h Ñ � � Ñ y � r : h Ñ �
Details of the development of the model can be found in Psarris and Floudas (1993).
The optimal solution for this problem is

H Q � D N h � k ¿ . Application of the GOP
algorithm to this problem converges to the optimal solution in 45 iterations, requiring
1.5 seconds on an HP730.

2.7 Concave and Indefinite Quadratic Problems

The conditions under which the GOP algorithm can be applied make it highly attractive
for problems with quadratic functions in the objective and/or constraints. Of particular
interest are quadratic problems with linear constraints, which occur as subproblems in
successive quadratic programming (SQP) and other optimization techniques, as well
as being interesting global optimization problems in their own right. In this section,
the results of applying the GOP and GOP/MILP algorithms to various problems of
this type is discussed.

2.8 Problems from the literature

Eleven small-size concave quadratic problems from Phillips and Rosen (1988) have
been solved using the GOP algorithm. The problems have the following form:

Problem Problem Size GOP Algorithm P&R
m n k Iterations CPU (HP730) CPU (CRAY2)

1 5 2 0 3 0.09 0.026
2 5 6 0 2 0.07 0.022
3 5 6 0 2 0.06 0.020
4 5 6 0 2 0.03 0.026
5 4 2 0 4 0.12 0.017
6 4 3 0 4 0.11 0.015
7 4 3 0 4 0.14 0.014
8 10 3 0 17 0.50 0.022
9 10 3 0 8 0.20 0.020
10 4 4 0 3 0.18 0.029
11 9 2 1 3 0.08 0.023

Table 7 Test Problems from Phillips and Rosen (1988) (VWYX7Z X�X\[)
�	��
Î ? Ì ��] ^ Y Ñ � Ó [�`_ m�a Y Ñ [: _ q ð�b Óß N V Nca � D N xed� �"f m g � Y Ñ � A h � [q �i � ô Y Ñ � Ó [kj b m Ñ : b q Ó �Éæ � Ñ � D � Ó � D;á �Ñ � g � h J l d � Ó � ð�Jml ,b m J l Qon d � b q Jml Q>n ,_ m � _ q J l N

(4.1)

Here,
ì

is the number of linear constraints,
è

is the number of concave variables (Ñ),
and

H
is the number of linear variables (Ó). The parameters

_ m and
_ q are -1 and 1

respectively, and the relative tolerance for convergence between the upper and lower
bounds (�) is 0.001.

The results of the application of the algorithm to these problems are given in Table 7.
The CPU times for the GOP algorithm and the Phillips and Rosen algorithm (denoted
by P&R) are given in seconds. It should be noted that the P&R algorithm was run on
a CRAY2. As can be seen, the algorithm solves problems of this size very fast, taking
about 5 iterations to identify and converge to the optimal solution.

Problem Problem Size GOP Sherali & Tuncbilek
Name R Î R Ì R 2 Iterations CPU Iterations CPU

CQP1 10 10 11 27 0.68 32 0.15
CQP3 20 20 10 11 10.84 3 3.29
CQP4 20 20 10 4 3.57 1 2.61
CQP5 20 20 10 11 10.91 1 2.55
CQP6 20 20 10 5 5.07 1 2.61
CQP7 20 20 10 229 177.04 11 15.94
IQP1 20 20 10 3 0.65 3 2.73

Table 8 Quadratic Problems from Sherali and Tuncbilek (1994).

Results from application of the GOP algorithm to another set of concave and indefinite
quadratic test problems taken from Floudas and Pardalos (1990) are given in table 8.
These problems have also been solved recently by Sherali and Tuncbilek (1994) whose
results are listed in the same table. Here, R Î , R Ì and R 2 refer to the number of Ñ andÓ variables and the number of linear constraints respectively.

Run Problem size Iterations CPU (sec)
m n k GOP GOP/MILP

CLR1 50 50 50 2.3 0.510 0.317
CLR2 50 50 100 3.0 5.736 2.254
CLR3 50 50 200 4.33 27.620 8.293
CLR4 50 50 300 5.0 ---- 8.977
CLR5 50 100 50 3.5 32.07 5.665
CLR6 50 100 150 6.8 ---- 38.892
CLR7 100 100 100 2.2 3.485 31.147
CLR8 100 200 100 3.8 ---- 100.370
CLR9 100 250 100 3.6 ---- 267.124

Table 9 Concave Quadratic Problems from Phillips and Rosen (1988), VpWqX�Z XJ[
Randomly Generated Quadratic Problems

This section describes the application of the GOP and GOP/MILP algorithms to
randomly generated problems of the form (4.1). Such problems have earlier been

Run Problem size Iterations CPU (sec)
m n k GOP GOP/MILP

CLR1 50 50 50 2.0 0.120 0.116
CLR2 50 50 100 2.0 0.145 0.141
CLR3 50 50 200 2.2 6.047 1.574
CLR4 50 50 500 3.0 ---- 14.125
CLR5 50 100 100 2.0 0.217 1.373
CLR6 50 100 200 2.0 0.360 11.982
CLR7 100 100 100 2.0 0.305 0.306
CLR8 100 100 200 2.0 0.374 0.369
CLR9 100 100 200 2.0 0.374 0.369
CLR10 100 100 500 3.0 ---- 80.028
CLR11 100 150 400 1.7 ---- 182.208

Table 10 Concave Quadratic Problems from Phillips and Rosen (1988), VpWrX7Z [
Run Problem size � �#D Nfk � ��D N D k

m n k Iter CPU Iter CPU

ILR1 25 25 25 2.0 0.232 2.200 0.312
ILR2 25 25 50 2.0 0.416 2.600 0.606
ILR3 25 25 100 2.2 1.522 3.000 2.030
ILR4 25 50 100 4.0 13.19 11.50 37.56
ILR5 50 50 50 2.0 0.864 2.400 1.504
ILR6 50 50 100 2.0 1.264 2.800 3.018
ILR7 25 75 100 3.0 68.86 30.00 294.3
ILR8 50 75 100 2.0 1.564 3.600 9.724
ILR9 75 75 100 2.0 2.120 2.800 6.304
ILR10 25 75 150 4.0 115.80 ---- ----
ILR11 50 75 150 2.2 9.5380 ---- ----
ILR12 75 75 150 2.0 2.9560 ---- ----
ILR13 25 100 50 3.6 23.21 23.50 118.6
ILR14 50 100 50 2.2 2.130 3.800 6.510
ILR15 75 100 50 2.2 3.544 2.800 5.244

Table 11 Indefinite Quadratic Problems from Phillips and Rosen (1988), VsWtX�Z [andX7Z X\[

studied by Phillips and Rosen (1988), and we generated the data for the constantsg � h � ð � b m � b q and
æ

as they have used. The parameters
_ m and

_ q have been set to
values of A D N D=D k and

D Nfk respectively. Depending on the values of
g � , the problems

generated are either concave quadratic or indefinite quadratic problems. For the
case of indefinite quadratic problems, roughly as many postive

g � as negative
g � are

generated. For each problem size, 5-10 different problems (using various seeds) have
been generated and solved.

Tables 9 and 10 present the results for concave quadratic problems using tolerances of
0.01 and 0.1 respectively, while Table 11 presents the results for indefinite quadratic
problems using tolerances of 0.01 and 0.1 with the GOP algorithm. In all the cases, it
can be seen that the algorithm generally requires very few iterations for the upper and
lower bounds to be within 10% of the optimal solution; generally, the convergence to
within 1% is achived in a few more iterations. Moreover, certain trends are noticeable
in all cases. For example, as the number of constraints (

ì
) grows, the problems

generally become easier to solve. Conversely, as the size of the linear variables (
H

)
increases, the algorithm requires more time for the solution of the dual problems,
leading to larger overall CPU times. In general, these results indicate that the GOP
and GOP/MILP algorithms can be very effective in solving medium sized quadratic
problems with several hundred variables and constraints.

It should be noted that several sizes of these problems have also been solved on
a supercomputer using a specially parallelized version of the GOP algorithm. The
results can be found in Androulakis et al. (1995).

3 CONCLUSIONS

Visweswaran and Floudas (1995) proposed new formulations and branching strategies
for the GOP algorithm for solving nonconvex optimization problems. In this paper, a
complete implementations of various versions of the algorithm has been discusssed.
The new formulation as a branch and bound algorithm permits a simplified implemen-
tation. The resulting package cGOP has been applied to a large number of engineering
design and control problems as well as quadratic problems. It can be seen from the
results that the implementation permits very efficient solutions of problems of medium
size.

Acknowledgments

Financial support from the National Science Foundation under grant CTS-9221411 is
gratefully acknowledged.

REFERENCES

[1] I. P. Androulakis, V. Visweswaran, and C. A. Floudas. Distributed
Decomposition-Based Approaches in Global Optimization. In Proceedings
of State of the Art in Global Optimization: Computational Methods and Appli-
cations (Eds. C.A. Floudas and P.M. Pardalos), Kluwer Academic Series on
Nonconvex Optimization and Its Applications, 1995. To Appear.

[2] T.E. Baker and L.S. Lasdon. Successive linear programming at Exxon. Mgmt.
Sci., 31(3):264, 1985.

[3] A. Ben-Tal and V. Gershovitz. Computational Methods for the Solution of
the Pooling/Blending Problem. Technical report, Technion-Israel Institute of
Technology, Haifa, Israel, 1992.

[4] R. R. E. de Gaston and M. G. Sofonov. Exact calculation of the multiloop
stability margin. IEEE Transactions on Automatic Control, 2:156, 1988.

[5] C. A. Floudas and A. Aggarwal. A decomposition strategy for global optimum
search in the pooling problem. ORSA Journal on Computing, 2(3):225, 1990.

[6] C. A. Floudas, A. Aggarwal, and A. R. Ciric. Global optimum search for
nonconvex NLP and MINLP problems. C&ChE , 13(10):1117, 1989.

[7] C. A. Floudas and A. R. Ciric. Strategies for overcoming uncertainties in heat
exchanger network synthesis. Comp. & Chem. Eng., 13(10):1133, 1989.

[8] C. A. Floudas and P. M. Pardalos. A Collection of Test Problems for Constrained
Global Optimization Algorithms, volume 455 of Lecture Notes in Computer
Science. Springer-Verlag, Berlin, Germany, 1990.

[9] C. A. Floudas and V. Visweswaran. A global optimization algorithm (GOP) for
certain classes of nonconvex NLPs: I. theory. C&ChE, 14:1397, 1990.

[10] C. A. Floudas and V. Visweswaran. A primal-relaxed dual global optimization
approach. J. Optim. Theory and Appl., 78(2):187, 1993.

[11] R. E. Griffith and R. A. Stewart. A nonlinear programming technique for the
optimization of continuous processesing systems. Manag. Sci., 7:379, 1961.

[12] Studies of the Behaviour of Recursion for the Pooling Problem. ACM SIGMAP
Bulletin, 25:19, 1978.

[13] Behaviour of Recursion Model - More Studies. SIGMAP Bulletin, 26:22, 1979.

[14] L.S. Lasdon, A.D. Waren, S. Sarkar, and F. Palacios-Gomez. Solving the
Pooling Problem Using Generalized Reduced Gradient and Successive Linear
Programming Algorithms. ACM SIGMAP Bulletin, 27:9, 1979.

[15] W. B. Liu and C. A. Floudas. A Remark on the GOP Algorithm for Global
Optimization. J. Global Optim., 3:519, 1993.

[16] C.D. Maranas and C.A. Floudas. A Global Optimization Approach for Lennard-
-Jones Microclusters. J. Chem. Phys., 97(10):7667, 1992.

[17] C.M. McDonald and C.A. Floudas. A user guide to GLOPEQ. Computer Aided
Systems Laboratory, Chemical Engineering Department, Princeton University,
NJ, 1994.

[18] C.M. McDonald and C.A. Floudas. Global Optimization for the Phase Stability
Problem. AICHE Journal, 41:1798, 1995.

[19] F. Palacios-Gomez, L.S. Lasdon, and M. Engquist. Nonlinear Optimization by
Successive Linear Programming. Mgmt. Sci., 28(10):1106, 1982.

[20] A parallel algorithm for constrained concave quadratic global minimization.
Mathematical Programming, 42:421, 1988.

[21] Polycarpos Psarris and C. A. Floudas. Robust Stability Analysis of Linear and
Nonlinear Systems with Real Parameter Uncertainty. Journal of Robust and
Nonlinear Control, 1994. Accepted for publication.

[22] I. Quesada and I. E. Grossmann. Global Optimization Algorithm for Heat
Exchanger Networks. I&EC Res., 32:487, 1993.

[23] H. Sherali and C. H. Tuncbilek. Tight Reformulation-Linearization Technique
Representations for Solving Nonconvex Quadratic Programming Problems.
Submitted for Publication, 1994.

[24] V. Visweswaran and C. A. Floudas. New Formulations and Branching Strategies
for the GOP Algorithm. In Global Optimization in Engineering Design, (Ed.)
I. E. Grossmann, Kluwer Book Series in Nonconvex Optimization and Its
Applications, Chapter 3, 1995a.

[25] V. Visweswaran and C. A. Floudas. cGOP: A User’s Guide. Princeton University,
Princeton, New Jersey, 1995b.

Appendix A: Implementation of the GOP and GOP/MILP Algo-

rithms

This section describes the key features of the implementation of the GOP and
GOP/MILP algorithms. In particular, the interaction of the various subroutines and the
storage and transfer of relevant data between these routines are crucial to the efficiency
of the algorithm, and are therefore discussed in some detail. The implementation has
been written so as to be a useful framework in the development of any generic branch
and bound algorithms for global optimization.

Overview of the cGOP package

The cGOP package is written entirely in the C programming language, and consists
of approximately 8000 lines of source code, of which around 30% are comments.
The algorithms can be called either in standalone mode or as subroutines from within
another program. The primal and relaxed dual subproblems are solved either using
CPLEX 2.1 (for linear or mixed integer linear) problems or MINOS 5.4 for nonlinear
problems. Various options are available to change the routines that are used, such as
obtaining tighter bounds on the Ñ variables and u ,� Y Ó [(the gradients of the Lagrange
function), as well as solving the full problem as a local optimization problem at each
node.

Data Structures

Since the cGOP package is written in C, it is highly convenient to aggregate the data
transfer from one routine to another using structures (equivalent to COMMON blocks
in Fortran). The primary data structures used in the package describe the problem
data, the solutions of the various primal problems, the data for the various Lagrange
functions, and the solutions of the relaxed dual subproblems at each iteration.

The most important group of data is obviously the problem data itself. In order to
facilitate easy and general use of this data, the implementation was written assuming

that the following types of problems would be solved:�	��
v)xw é�yz Ñ : ð�yz Ó : Ñ y5t z Ó : � z Y Ñ [:|{ z Y Ó [ß N V N å + �Çé y+ Ñ : ð y+ Ó : Ñ y t + Ó � î + �] � k � N�N(N � ! m� + Y Ñ [:}{ + Y Ó [� î +] � ! m : k � N(N�N � ! q� ��~ ÑÓ�� � s (4.2)

where _ � k � N�N�N � ! m are the set of bilinear constraints, and _ � ! m : k � N�N�N � ! q are
the set of general nonlinear constraints. It is assumed that the functions � � Y Ñ [and{ � Y Ó [are convex in Ñ and Ó respectively. Under this assumption, it can easily be
shown that (4.2) satisfies Conditions (b). Note also that while the bilinear constraints
can be equalities or inequalities, the other nonlinear terms in the constraints are
assumed to lie in convex inequalities.

Given the formulation (4.2), the data for the problem can be separated into one part
containing the linear and bilinear terms, and another part containing the nonlinear
terms � � Y Ñ [and { � Y Ó [. The first part can be specified through a data file or as
arguments during the subroutine call that runs the algorithm. The nonlinear terms,
which in general cannot be specified using data files, can be given through user defined
subroutines that compute the contribution to the objective function and constraints
from these terms, as well as their contribution to the Hessian of the objective function
and the Jacobian of the constraints. The problem data is therefore carried in one
data structure (called pdat from here on, and shown in Figure 10) that describes the
following items:

Control Data This refers to the type of the problem (bilinear, quadratic, nonlinear,
etc), number of Ñ and Ó variables, the number of constraints, type and value of
the starting point for the Ó variables, as well as tolerances for convergence.

Bilinear Data For reasons of convenience, the linear and bilinear terms in the
objective function and constraints are treated together. The data is stored in
sparse form, with only the nonzero terms being stored. For each term, the value
of the term as well as the indices of its Ñ and/or Ó terms are stored.

Bounds The global bounds on the variables (which can be changed before the start of
the algorithm, but thereafter remain constant) are stored in arrays.

Nonlinear Data The pointers to the functions that compute the nonlinear terms and
their gradients are stored in the data structure.

Iteration Data Various counters and loop variables that control and aid in the progress
of the iterations are stored in the main data structure. In addition, the best solution
obtained by the algorithm so far is also stored.

It is important to note that almost all of the main data structure, once it has been
read in from the data file or passed to the main subroutine in the algorithm, remains
constant throughout the progress of the algorithm. The only exceptions are the iteration
variables and the best solution obtained by the algorithm so far.

The solution of the primal problem is stored together as another data structure, psol
(shown in Figure 11). This contains the value of Ó�� for which the primal problem was
solved, solution for the Ñ variables, the marginals for all the constraints and variables
at their bounds, as well as an indicator of whether the primal was feasible or not.

Because of the form (4.2), the Lagrange function (for iterations with feasible primal
problems) can be written (after linearization of the terms with respect to Ñ and
substitution of the KKT optimality conditions for the primal problem) as

� Y Ñ � Ó � g � [��� � dÎP� � ��� : � b � Ó :}� 4 �'� �"f m Ñ � u b� Y Ó A Ó � [:}{ Ø Y Ó [
where { Ø Y Ó [represents all the nonlinear terms weighted by the marginals, and can be
written as { Ø Y Ó [� { z Y Ó [: � Í��\fP��� 5 m g �� { + Y Ó [
By introducing new variables to represent the nonlinear constraints, the Lagrange
function can be rewritten as

� Y Ñ � Ó � g � [��� � dÎ � � � � : � b � Ó : � 4 �'� �"f m Ñ � u b� Y Ó A Ó � [: � Í��\fP��� 5 m g �� � � (4.3)� � � { z Y Ó [:�{ + Y Ó [(4.4)

Note that a simplistic implementation of the algorithm for the general nonlinear
problem in (4.2) leads to a problem with nonlinear terms in each Lagrange function,
making it much more computationally intensive. Given the fact that the nonlinear
terms are the same in each Lagrange function except for a factor due to the marginalsg �� , it is far more efficient to group the terms together, and therefore to compute
their gradients only once. Moreover, the regrouping of the terms means that as far as

struct pdat {
/* Control section */
char *probname; /* Name of original problem */
char objtype; /* Type of objective function */
char contype; /* Type of constraints */
char primaltype; /* Type of primal problems */
char rdualtype; /* Type of relaxed dual problems */
int nxvar; /* Number of x variables */
int nyvar; /* Number of y variables */
int ncon; /* Number of constraints */
int nzcnt; /* Total number of non-zeros */

/* Data */
char *ctype; /* Type of X and Y variables */
int *sense; /* Sense of row: <=, ==, >= */
double *rhs; /* Right hand sides of the rows */
int *count; /* Number of entries in each row */
int *begin; /* Start of entries for each row */
TERMS terms; /* Bilinear terms in problem */
double *xlbd, *xubd; /* Bounds on X variables */
double *ylbd, *yubd; /* Bounds on Y variables */
double objconst; /* Constants in the objective */
double epsa; /* Absolute tolerance specified */
double epsr; /* Relative tolerance specified */
int maxiter; /* Maximum number of iterations */

/* Various functions */
void userobj(); /* Nonlinear terms in objective */
void usercon(); /* Nonlinear terms in constraints */

/* Solution */
int niter; /* Number of iterations so far */
double primalubd; /* Current upper bound from primals */
double rdlbd; /* Current lower bound from duals */
double *x; /* Starting point, solution for X */
double *y; /* Starting point, solution for Y */
double abserror; /* Absolute error between bounds */
double relerror; /* Relative error between bounds */

};

Figure 10 Main data structure for the GOP and GOP/MILP algorithms

struct psol {
int modstat; /* Feasible or infeasible */
int nxvar; /* Number of x variables */
int nyvar; /* Number of y variables */
int ncon; /* Number of constraints */
double *yval; /* Fixed values for Y variables */
double objval; /* Objective value for primal */
double *varval; /* Solution for X variables */
double *cmargval; /* Marginals for constraints */
double *bmargval; /* Marginals for bounds */
char *varstat; /* Status for each variable */
char *solver; /* Which solver was used */

};

Figure 11 Solution of the Primal Problem

/* Structure to hold the data for the Lagrange function */
typedef struct lagdata {

int NIc; /* Number of connected X */
int nyvar; /* Number of Y variables */
double *xlbd; /* Lower bounds for connected X */
double *xubd; /* Lower bounds for connected X */
int *xindex; /* Indices of connected X */
double *ylbd, *yubd; /* Bounds on Y variables */
double *glbd, *gubd; /* Bounds on qualifying constraints */
double **glin; /* Terms in qualifying constraints */
double *gconst; /* Constants in qualifying const. */
double *llin; /* Terms in Lagrange function */
double lconst; /* Constants in Lagrange function */

};

Figure 12 Lagrange function data structure

each individual Lagrange function is concerned, only the data regarding (4.3) need to
be stored, .e. the coefficients of the linear terms � b � , the bilinear terms u b� and the
multipliers

g �� . Its structure is shown in Figure 12.

The solutions of the relaxed dual subproblems comprise the last major data structure.
Apart from the actual objective value for the solution and the values of the Ó variables,
this data includes information about which iteration and parent node generated each
child node in the branch and bound tree. Thus, the entire information about the tree is
stored in the array of relaxed dual solution structures, rdsol.

Based upon these various data units, the overall scheme of the implementation is now
presented. A pictorial view of the algorithm is given in Figure (13).

Initialization of parameters

At the start of the algorithm, the list of relaxed dual solutions rdsol is initialized to
contain the starting point for the Ó variables, indicating the root node for the whole
branch and bound tree. An initial local optimization problem can be solved to find a
good upper bound and starting point for the Ó variables, if desired. Various counters
and bookkeeping variables are initialized before the start of the iterations.

Selection Of Previous Lagrange Functions and Current Region

At any given iteration, the relaxed dual subproblems will contain a Lagrange function
from the current iteration, and one from each of the parent nodes of the current node
in the branch and bound tree. In order to select these functions, a backward search
is done through the list of solutions to the relaxed dual problems starting from the
current node (i.e. the node that has been chosen at the end of the previous iteration).
The following steps are repeated:

Step 0. Initialize lagsel[MAXITER], the array of parent nodes for the current node.

Step 1. Add the current node
M

to lagsel. Set lagsel[1] =
M

, and set the number of
Lagrange functions

è�î±ì³å�ç u � k .

Step 2. Find the iteration
à

that generated the current node.

Step 3. Go to the node corresponding to iteration
à

(say node $) and add this node
to the list, i.e. set

è�îPì å�ç u � è�î±ì³å�ç u : k , lagsel[
è�î±ì³å�ç u] = $.

Step 4. Repeat Steps 2 and 3 until the root node has been reached.

Input the data
for the problem -- Data includes

-- Tolerances

-- Read input file or pass via function
-- All data in ONE STRUCTURE

-- Starting Point for Algorithm

Initialize data
arrays

-- Storage for Algorithm/Solvers

-- Parameters for Solvers

-- CPLEX/OSL : Load dummy problems

START

Invoke any solver
specific routines

Start Of The Algorithm

BEGIN ITERATIONS

-- Read in option files

Figure 13 Implementation of the GOP Algorithm in C

PRIMAL
PROBLEM

Set up data
for the

Primal Problem

Function
Generate Lagrange

Pointer to Lagrange data

Primal problem solution

SOLVE THE

-- Number of connected variables

Pointer to data for primal

Data for Problem, current Y

(nonlinear)

Nonlinear
Subroutines

Pointer to data for primal

Pointer to solution of
Primal problem

Primal Problem

(linear)

Function
Evaluation
(square)

NPSOL/MINOS

CPLEX/OSL

(Black box)

-- Bounds for X variables

-- Bounds for gradients

Figure 13 (continued) Implementation of the GOP Algorithm in C

-- One Solution

-- Branch on gradients of

-- Several subproblems

-- Solutions stored in linked list

from one problem to another

Lagrange function

-- CPLEX/OSL can reuse bases

-- One problem

Nonlinear: NPSOL/MINOS

Set of solutions for
relaxed dual
problems

UPDATE BOUNDS

Relaxed Dual Problem

Lagrange Functions
Select Previous

Current and Previous fixed Y
-- Gradients used as criterion

Set of constraints for
relaxed dual problems

Lagrange data

RELAXED DUAL

SOLVE THE
Constraint data

-- One Lagrange function
per iteration

PROBLEM

MILP Form

Nonlinear
Subroutines

(CPLEX/OSL)

Original Form
Linear: CPLEX/OSL

Figure 13 (continued) Implementation of the GOP Algorithm in C

Solution From
The Stored Set

-- Go through the linked list
and delete selected node

-- Update the linked list

Solution From
All iterations

Select Best Stored
-- All solutions are stored

in a single linked list.

Bound and new value for
-- Solution Provides Lower

Y variables

Delete the selected

-- Clean up and exit

STOP

Check for
Convergence

-- Are Bounds within
Specified Tolerance ?

Selecting The Best Solution and Lower Bound

YES

Go to next iteration

Figure 13 (continued) Implementation of the GOP Algorithm in C

The list of nodes generated in the above steps provides a set of qualifying constraints
(one set per node) that define the region of operation for the current node.

Obtaining Tighter Bounds For The � Variables

If desired, a set of bounds problems are solved that try to find the tightest bounds on
the � and � variables given any linear and convex constraints in the original problem,
and the current region for the � variables as defined by the qualifying constraints
for the parent nodes of the current node. This is a very important step, because the
tightness of the bounds on the � variables is crucial to obtaining tight underestimators
for the relaxed dual problems.

Primal problem

The primal problem takes as data the pdat structure, along with the current vector
for �	� . It is also given the current region for the problem as defined by the selected
qualifying constraints. There are several schemes that can be followed to solve the
primal problem, all of which involve various combinations of the primal, relaxed
primal or a local optimization problem solved in the current region. One possible
scheme is as follows:

1. Solve the primal problem at the current �	� .

2. If the primal problem is feasible, update the upper bound.

(a) Solve the full NLP as a local optimization problem in the current region.

(b) If the NLP solution is lower than the upper bound, replace �	� with the NLP
solution and go to Step 1. Otherwise go to Step 4.

3. If the primal problem is infeasible

(a) Solve the full NLP as a local optimization problem in the current region.

(b) If the NLP provides a feasible solution, then replace ��� with the new
solution from the NLP and go to Step 1. Otherwise, solve the relaxed primal
problem go to Step 4.

4. Return the solution of the problem as a psol data structure.

Determination Of Connected Variables

The solution of the current primal (or relaxed primal) problem is used to determine
the set of connected variables. Several reduction tests are used to determine the set.
These include testing for the lower and upper bounds on the gradients of the Lagrange
function and the tightness of the bounds on the � variables. If the lower and upper
bounds on an � variable are within a certain tolerance, that variable can be fixed at
its bound. Provision is also made for user defined tests for reducing the number of
connected variables.

Generation of Lagrange Function Data

As mentioned earlier, only the data for the Lagrange functions (4.3) are stored. This
data is generated from the current psol structure. Once the data is generated, it can be
used again whenever the Lagrange functions from that iteration need to be generated.

Global Lagrange functions

If there are no connected variables in the Lagrange function generated at the current
iteration, then this function contains only the � variables. Therefore, it is a valid
underestimator for the entire � space, and can be included as a cut for all future relaxed
dual subproblems. In such a case, the current Lagrange function is added to the list of
‘‘global’’ Lagrange functions.

Relaxed Dual Problem

Given the current region and a set of connected variables, the region is partitioned
using the qualifying constraints of the current Lagrange function. Then, a relaxed
dual subproblem is solved in each region, and the solutions are stored as part of rdsol
if feasible. The nonlinear terms in the objective function and constraints are again
incorporated through calls to the user defined functions. In the case of the GOP/MILP
algorithm, only one MILP problem needs to be solved.

Selection of the Lower Bound

After the relaxed dual problem has been solved for every possible combination of the
bounds of the connected variables (in the case of the GOP/MILP algorithm, after the
MILP has been solved), a new lower bound needs to be determined for the global
solution. Since the solutions are all stored as a linked list, this permits a simple

search for the best solution. This solution is then removed by simply removing the
corresponding node from the linked list. At the same time, the corresponding value of� is also extracted to use for the next iteration.

Resolving the MILP Formulation

In the case of the GOP/MILP formulation, after a solution has been selected from
the list of candidate solutions, the MILP formulation corresponding to the iteration
from which the solution was generated needs to be resolved. To accomplish this, a
binary cut that excludes the selected solution is generated and added to the MILP
formulation, which is then solved. Because of the likelihood that the formulation for
any given iteration is likely to be solved again and again at least a few times, several
such formulations are stored in memory, so that when they are resolved, it is merely
a matter of restarting the problem with the additional binary cut. This saves valuable
loading and startup time for the solution of these problems.

Convergence

Finally, the check for convergence is done. The algorithm is deemed to have converged
if the relative difference between the upper bound from the primal problems and the
lower bound from the relaxed dual problems is less than � . Then, the algorithm
terminates (in the case of the standalone version) or returns to the calling routine (in
case of the subroutine version). Otherwise, the algorithm continues with the new fixed
value of � for the primal problem found from the previous step.

