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ABSTRACT

In Floudas and Visweswaran (1990, 1993), a deterministic global optimization approach was
proposed for solving certain classes of nonconvex optimization problems. A global optimization
algorithm, GOP, was presented for the solution of the problem through a series of primal and
relaxed dual problems that provide valid upper and lower bounds respectively on the global
solution. The algorithm was proven to have finite convergence to an � -global optimum. In this
paper, a branch-and-bound framework of the GOP algorithm is presented, along with several
reduction tests that can be applied at each node of the branch-and-bound tree. The effect of the
properties is to prune the tree and provide tighter underestimators for the relaxed dual problems.
We also present a mixed-integer linear programming (MILP) formulation for the relaxed dual
problem, which enables an implicit enumeration of the nodes in the branch-and-bound tree
at each iteration. Finally, an alternate branching scheme is presented for the solution of the
relaxed dual problem through a linear number of subproblems. Simple examples are presented
to illustrate the new approaches. Detailed computational results on the implementation of both
versions of the algorithm can be found in the companion paper in chapter 4.

1 INTRODUCTION

In recent years, the global optimization of constrained nonlinear problems has
received widespread attention. A considerable body of research has focused on the
theoretical, algorithmic and computational aspects for identifying the global solution.
Comprehensive reviews of the various existing approaches can be found in Dixon and
Szego (1975, 1978), Archetti and Schoen (1984), Pardalos and Rosen (1986, 1987),



Torn and Zilinskas (1989), Mockus (1989), Horst and Tuy (1990) and Floudas and
Pardalos (1990, 1992).

Floudas and Visweswaran (1990, 1993) proposed a deterministic primal-relaxed
dual global optimization approach for solving certain classes of smooth optimization
problems. A global optimization algorithm (GOP) was presented for the solution of
the nonconvex problem through a series of primal and relaxed dual subproblems that
provide upper and lower bounds on the global optimum. The algorithm was shown
to attain finite � -convergence and � -global optimality regardless of the starting point.
The application of the algorithm to several test problems was detailed in Visweswaran
and Floudas (1990). Visweswaran and Floudas (1993) presented properties that vastly
improve the efficiency of the algorithm.

The GOP algorithm presented in Floudas and Visweswaran (1990, 1993) follows a
cutting plane approach to the solution of the relaxed dual subproblems. While this
approach provides tight lower bounds by including all the valid cuts in the relaxed dual
subproblems, it renders the implementation of the actual relaxed dual problem more
complex. In particular, the identification of valid underestimators at each iteration of
the algorithm must be followed with care. Moreover, the algorithm leaves open the
questions of (i) an implicit enumeration of all the relaxed dual subproblems, and (ii)
the reduction of the number of relaxed dual subproblems from exponential to linear,
which would greatly improve the efficiency of the solution procedure.

This paper presents the GOP algorithm in the framework of a branch-and-bound
approach. At each node in the branch and bound tree, a primal problem is solved, and
the solution of this problem is used to provide a Lagrange function. By branching on
the first derivatives of this Lagrange function, several new children nodes are created.
This framework has several advantages over the original cutting plane approach,
including considerably simplifying the formulation and solution of the relaxed dual
problem and allowing for the incorporation of pruning and reduction tests at each
node in the tree. While the approach is derived from the same basic properties that
motivated the earlier algorithm, it differs sufficiently from the earlier approach so as
to merit a complete discussion, which is presented in Section 4.

One of the main advantages of the branch-and-bound framework for the GOP algorithm
is that it allows naturally for an implicit enumeration of the relaxed dual subproblems
at each level. The introduction of binary variables linked to the sign of the derivatives
of the Lagrange function results in mixed integer linear and nonlinear programming
formulations that offer considerable scope for incorporation of reduction tests on a per
node basis. The resulting GOP/MILP algorithm is discussed in detail in Section 5.



Due to the partitioning of the variable domain using the gradients of the Lagrange
function, the GOP algorithm can require, in the worst case, an exponential number of
dual subproblems at each iteration. This can lead to large CPU times as the number of
variables increases. Therefore, it is worth considering alternate partitioning schemes
that can reduce the number of subproblems that need to be solved at each iteration. In
Section 6, one such branching scheme is presented that requires only a linear number
of subproblems for the determination of the lower bound. A simple example is used
to illustrate the new scheme.

In a companion paper (Visweswaran and Floudas, 1995b), a complete implementation
of the algorithms presented here, along with comprehensive computational experience
on several problems in chemical process design and control, is described.

2 PROBLEM FORMULATION

The general form of the optimization problem addressed in this paper is given as
follows: ������	��
 ��
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differentiable over

)102,
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is incorporated into the first two sets of constraints. In addition, the problem is
also assumed to satisfy the following conditions:
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(d) An appropriate constraint qualification (e.g., Slater’s qualification) is satisfied for
fixed

�
.

It has been shown (Floudas and Visweswaran, 1990) that the class of problems that
satisfies these conditions includes, but is not restricted to, bilinear problems, quadratic
problems with quadratic constraints and polynomial and rational polynomial problems.
Recently, it has also been shown (Liu and Floudas, 1993; Liu and Floudas, 1995) that
a very large class of smooth optimization problems can be converted to a form where
they satisfy Conditions ( 3 ), and hence are solvable by the GOP algorithm.

3 PRIMAL AND RELAXED DUAL PROBLEMS

The GOP algorithm utilizes primal and relaxed dual subproblemsto obtain upper and
lower bounds on the global solution. The primal problem results from fixing the

�
variables to some value, say

�.Q
, and is defined as follows:�N���� ��
������ Q ���
�R� �	� � 
������ Q �%�! 

(3.2)"#
������ Q �7$& 
where

��Q#'S,
. It has been assumed here that any bounds on the

�
variables are

incorporated into the first set of constraints. Notice that because of the introduction of
additional constraints by fixing the

�
variables, this problem provides an upper bound

on the global optimum of (3.1). Moreover, T QI
G�.QU� , the solution value of this problem
yields a solution

�VQ
for the

�
variables and Lagrange multipliers W Q and X Q for the

equality and inequality constraints respectively Y .
The Lagrange function constructed from the primal problem is given as:Z Q 
������[� W Q � X Q �C$%��
����-�.��\ W Q^] "#
����-�.�K\ X Q^] � 
����-�.� � (3.3)

The
�

variables that are present in the linearization of the Lagrange function around�VQ
, and for which the gradients of the Lagrange functions with respect to

�
at
�VQ

are_
It is assumed here that the primal problem is feasible for `bac`ed . See Floudas and Visweswaran (1990,

1993) for the treatment of the cases when the primal problem is infeasible for a given value of ` .



functions of the
�
-variables, are called the connected variables. It can easily be shown

that the linearization of the Lagrange function around
�VQ

can also be written in the
form: Z Q 
������[� W Q � X Q ��ff�g h�ijek $7Z Ql 
m�[� W Q � X Q ��\onqp krs hut Y

� hGv Qh 
G�.� (3.4)

where w2x Qy is the number of connected variables at the z.{L| iteration (representing the�
variables that appear in the Lagrange function), and

ZCQl 
G�}� W Q.� X Q�� represents all the
terms in the linearized Lagrange function that depend only on

�
. The positivity and

negativity of the functions v Qh 
G�.� define a set of equations that are called the qualifying
constraints of the Lagrange function at the zA{G~ iteration, and which partition the

�
variable space into � nqp k� subregions. In each of these subregions, a Lagrange function
can be constructed (using the bounds for the

�
variables) that underestimates the global

solution in the subregion, and can therefore be minimized to provide a lower bound
for the global solution in that region.

Consider the first iteration of the GOP algorithm. The initial parent region is the
entire space

�#'�,
from the original problem. This region is subdivided into � n�p^��

subregions, and in each of these subregions, a subproblem of the following form is
solved: ����������V� ��� X��

�R� �	� X���� Z Y 
�� �K� �-�}� W Y � X Y ��ff�g h�ij � �v Yh 
m��� �  � D�� �K�h $%�}�hv Yh 
m�����! � D�� � �h $%���h
����� ' x Y� �

where x[Y� is the set of connected variables at the first iteration, w2x Qy is the number
of connected variables, and

�[�h and
�V�h are the lower and upper bounds on the

� {G~
connected variable respectively. This subproblem corresponds to the minimization
of the Lagrange function, with the connected variables replaced by a combination of
their lower and upper bounds. Note the presence of the qualifying constraints in the
problem. These constraints ensure that the minimization is carried out in a subregion
of the parent node. If this problem has a value of X�� that is lower than the current
best upper bound obtained from the primal problem, then it is added to the set of
candidate lower bounds; otherwise, the solution is fathomed, that is, removed from
consideration for further refinement.

Consider a problem with two
�

and two
�

variables. In the first iteration, assuming
that both

� Y and
�V�

are in the set of connected variables for the first iteration, there
are four relaxed dual subproblems solved. These problems are shown in Figure 1a. It
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can be seen that the qualifying constraints partition the
�
-space into the four regions.

Each of the relaxed dual subproblems solved provides a valid underestimator for the
corresponding region, as well as a solution point (denoted in the figure by

�U�
,
� � ,

� y
and

�U�
) in the region.

Figure 1b shows the corresponding branch-and-bound tree created by the solution of
these four problems. The starting point

� Y is the root node, and it spawns four leaf
nodes. The infimum of the four nodes provides the point for the next iteration, in this
case, say

�U�
.

In the second iteration, the relaxed dual problem is equivalent to further partitioning
the subregion that was selected for refinement. In each of these partitions, a relaxed
dual subproblem is solved. Figure 2a shows the subregions created in the example,
assuming that there was only one connected variable in this iteration. The two relaxed
dual subproblems solved in this iteration give new solutions

�U�
and
�I 

and are possible
candidates for entering at future iterations. Figure 2b shows the corresponding nodes
in the branch-and-bound tree created by this iteration.

The preceding discussion illustrates the key features of a branch and bound framework
for the algorithm. The framework is based upon the successive refinement of regions
by partitioning on the basis of the qualifying constraints. In the next section, the key
features of its implementation are discussed, based on which a formal statement of the
algorithm is then presented.

4 A BRANCH-AND-BOUND FRAMEWORK FOR THE GOP

ALGORITHM

The terminology used in this section is as follows. Given a node ¡ in the branch and
bound tree, T�¢ is its parent node, and xL¢ is the iteration at which node ¡ is created. £q¢
is the set of constraints defining the region corresponding to node ¡ . At any point, w
denotes the total number of nodes in the tree, and ¤ denotes the current node.

4.1 Root Node and Starting Region

At the beginning of the algorithm, there are no subdivisions in the
�
-space. Therefore,

the root node in the branch and bound tree is simply the starting point for the
algorithm,

� Y . The region of application for this node (i.e., the current region) is the
entire

�
-space.



4.2 Reduction Tests at Each node

At each node, the current region of application is divided into several subregions using
the qualifying constraints of the current Lagrange function. It is possible to conduct
simple tests on the basis of the signs of the qualifying constraints that can be used to
reduce the number of connected variables. One such test, based upon the properties
first presented in Visweswaran and Floudas (1993) is presented below:

Reduction Test:

Suppose a node ¡ is to be partitioned in the z {G~ iteration (i.e., x¥¢ $ z ). Then,

(i) If v Qh 
m��� �  
� �2' £ ¢ , set

� h $9�[�h in
ZCQA
����-�}� W QI� X Q�� and remove

�
from the

set of connected variables.

(ii) If v Qh 
m���b�@ 
� �N' £q¢ , set

� h $9���h in
Z?Q.
������[� W QI� X Q�� and remove

�
from the

set of connected variables.

The proofs of the validity of these reductions can be easily obtained by considering
that the term

� huv Qh 
G�.� can be underestimated by
�[�h v Qh 
G�.� for all positive v Qh 
m��� and�V�h v Qh 
G�.� for all negative v Qh 
G�.� . For more details, the reader is referred to Visweswaran

and Floudas (1993).

4.3 Evaluation of bounds for the ¦ variables

Often, the original problem contains linear and/or convex constraints in both
�

and
�
.

When the relaxed dual problem is being solved at a given iteration, the region for the�
variables is smaller than for the original problem. This can be exploited to provide

tighter bounds on the
�

variables.

Consider, for example, a problem where there is a one-to-one correspondence between
the
�

and
�

variable set in the feasible region of the problem (i.e.,
� h $§� h ). Then,

consider the ¨ th iteration of the GOP algorithm, where the node ¡ is being partitioned.£�¢ is the set of constraints defining the current region. Then, it is possible to obtain
tighter bounds on the

�
variables by the following procedure:

1. Choose an

� ' xU©� .



2. Solve the following two problems: �����j ª � h��«#�¬$& �+' £�¢
Use the solutions of the two problems for the lower and upper bounds on

� hrespectively. Note that the set £�¢ includes all linear and convex constraints from
the original problem.

3. Repeat Step 1 and 2 for all

� ' xU©� .

Similarly, when there are other convex constraints in
�

and
�
, these constraints can

be added to the above problem. This procedure can be very useful in obtaining the
tightest bounds on the connected

�
variables at each iteration and consequently in

obtaining the tightest underestimators for the relaxed dual subproblems. Note also that
in the case of nonconvex constraints, we can incorporate their convex underestimators
in the evaluation of the bounds problems.

4.4 Branch-and-Bound Algorithm

The major steps of the branch-and-bound version of the GOP algorithm are described
in this section. The terminology is the same as described in section 4. In addition,

�
denotes the set of iterations with a feasible primal problem, while x denotes the set of
iterations when the primal problem was infeasible.

STEP 0: Initialization

(a) Read in the data for the problem including tolerance for convergence, � .
(b) Define initial upper and lower bounds ( ­ �b� ­ � ) on the global optimum.

(c) Generate initial bounds for the
�

variables,
� �

and
� �

.

(d) Choose a starting point
� Y for the algorithm.

(e) Set ¨ $�® , ¤ $ T y $�® , w $¯® .
STEP 1: Selection of Current Region



(a) If ¨ $�® , set £ y $7° and goto Step 2.

(b) If ¨±�7� , set £ y $7° , ² $ ¤ . Then:

(i) Add the Lagrange function and qualifying constraints for node ² to £ y .

(ii) Set ² $ TK³ . If ² $9® , then goto Step 2.

(iii) Repeat steps (i) and (ii).

STEP 2: Primal problem

(a) Solve the primal problem (3.2) to give T´© 
G� © � .
(i) If feasible, set

�%$µ�·¶ ¨ and update ­ ��$µ¸ x.w�¹�­ �q� T´© 
G� © �mº .
(ii) If infeasible, solve a relaxed primal problem. Set x $ x ¶ ¨ .

(b) Store
� © , W}© and X�© .

STEP 3: Determination of Current Partitions

(a) Generate the current Lagrange function
Z © 
����-�}� W}© � X�© � .

(b) Determine the set of connected variables xU©� and the corresponding partial
derivatives v ©h 
m��� (

� $¯®R� �^�^� � xU©� ) of the current Lagrange function.

(c) For each connected variable, determine (if possible) tight lower and upper bounds�[�h and
���h in the current region

��' £ y . Otherwise, use the original bounds.

(d) Evaluate lower and upper bounds on v ©h 
m��� in the region
�>' £ y .

(i) If v ©h 
m��� �  
� �#' £ y , set

� �h $5�[�h in the current Lagrange function,
and remove

�
from the set xU©� .

(ii) If v ©h 
m���»�¯ 
� �#' £ y , set

� �h $5�V�h in the current Lagrange function,
and remove

�
from the set xU©� .

STEP 4: Relaxed Dual Problem

(a) Select a combination of the bounds ¼ g of the connected variables, say ¼ g $ ¼ Y .



(b) Find the solution ( X[½ � ��� ½ ) to the following relaxed dual subproblem:�N����R�e��� � � X �
��� �	� X � � Z © 
�� �K� �-�}� W © � X © �Rff g h�ij�¾

v ©h 
m��� �  
� ­ � �K�h $µ� �hv ©h 
m���b�@ 
� ­ � � �h $µ� �h
G�}� X�� �&' £ y

(i) If X[½ ��¿ ­ �À« � , set ¡ $ w \9®�� T 
 ¡ �Á$ ¤ � w $ w \9® , and store the
solution in X ¢ � �-� ¢ .

(ii) If X[½ � �Â­ �#« � , fathom the solution.

(c) Select a new combination of bounds, say ¼ g $ ¼ � , for the connected variables.

(d) Repeat steps (b) and (c) until all the combinations of bounds for the connected
variables have been considered.

STEP 5: Selecting a new lower bound

Select the infimum of all X ¢ � , say X[Ã � . Set ¤ $ÅÄ��-� ©ÇÆEY $È� Ã , ­ �É$ X[Ã � .

STEP 6: Check for convergence

If
fffGÊ�Ë�ÌVÊ�ÍÊ Ë fff ¿ � , STOP; otherwise, set ¨ $ ¨ \%® and return to step 1.

4.5 Illustration

Consider the application of the branch and bound algorithm to the following problem,
taken from Al-Khayyal and Falk (1983):�N���jI� � «Ç�Î\S�[�´«��«ÇÏU�Î\SÐR�´«ÀÑÒ�! .�ÑI��«É�»«ÀÑÒ�! .����-� �  
Note that with these constraints, the bounds on both

�
and

�
are

� .��® �ÔÓ � . Consider a

starting point of
� Y $9® for the algorithm.



Iteration 1

For
� Y $Õ® , the first primal problem has the solution of

�2$¯ 
, XÖYY $ XÖY� $ XÖY× $¯ ,

with the objective value of
«Î®

. The upper bound on the problem is therefore
«Î®

. The
Lagrange function is given byZ Y 
������[� X Y �C$�«b�»\Â�}�´«���$%� v YY 
m���Ö«��
where v YY 
m���´$9��«µ® is the first (and only) qualifying constraint. From the original
problem, the bounds on

�
are

� .��® �ÔÓ � . Therefore,

«Ø® �  �� v YY 
m���b�@ �ÔÓ , implying that
two relaxed dual subproblems need to be solved. These problems, solved for positive
and negative v YY 
G�.� (with

�
set to 0 and 1.5 respectively), are shown below:

Node 1�N������ � � X �X���� «Á�
v YY 
m���9$Ù�Î«7® �   Ú�����µ® �ÔÓ

Solution:
��$�® �ÔÓ , X � $9«Î® �ÔÓ

Node 2�N������ � � X �X����  �ÔÓ �´«7® �ÔÓ
v YY 
G���9$Ù�»«7®Ç�7  Ú���c�;® �ÛÓ

Solution:
�>$7 �  , X � $9«Î® �ÔÓ

The solution of these two problems provides the first partition in the tree depicted
in Figure 3. R is the root node corresponding to the starting point

� Y $·® �  . At
this iteration, two nodes 1 and 2 are created by the solution of the two relaxed dual
subproblems. Both nodes have the root node R as their parent node. Both problems
have equal objective values, and are thus equal candidates for the best lower bound.
Suppose that node 2 is selected for further exploration.

Iteration 2

From node 2, the current value of
�

is 0.0. For this value, the primal problem has the
solution

�O$Ú® �  , X � Y $5 , X �� $ Y× , X �× $5 , with the objective value of
«Î® �  . The

Lagrange function from this problem isZ � 
������[� X � �C$�«Ç�Î\Å�}�Î«��Ü\ ®Ñ 
�ÑU��«#�Î«ÅÑU�Ö$%� v �Y 
m���Ö«9ÝÑ �»«@®
where v �Y 
m���C$È� is the qualifying constraint for this Lagrange function.

For this iteration, the relaxed dual subproblems are solved in the region
 ��µ�2�Þ®

.
The tightest bounds on

�
for this region can be found by solving the following two
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problems: �N���j ª �«ÇÏU�Î\oÐ��»«ÀÑÒ�! .�ÑI�Î«��»«ÀÑÒ�! .� ��o�·�ß®��� �  �
The solutions of these problems provide lower and upper bounds for

�
respectively.

Thus, for the region
 Î�S���µ®

, this yields the bounds
 ��Â�à�¯á× .

Since
�>â@ 

, it is obvious that v �Y 
m��� is positive for all
�

in the current region. Therefore,
only one relaxed dual problem needs to be solved, with a valid underestimator toZ � 
������[� X � � being used by fixing

�
to its lower bound. Moreover, from the first

iteration, the Lagrange function corresponding to node 2 is also a valid cut for this
region. Note, however, that instead of using the original bounds on

�
in both these

Lagrange functions, the improved bounds can be used. This yields the following
relaxed dual problem:

Node 3�N������ ��� X��X � � Y× �Î« á×v YY 
m���9$Ù�Î«7®ã�7 X � � « á× �Î«7® Ú�����µ® �ÔÓ
Solution:

��$µ � � , X � $9«Î® � � ÏUÏIÏUä .
At the end of this iteration, there are two candidate regions for further partitioning: (i)
the region

®Ø�Å�N�9® �ÔÓ corresponding to node
®
, with a lower bound of

«Î® �ÔÓ , and (ii)
the region

 ��9�O�Þ®
corresponding to node

Ñ
, with the lower bound of

«Î® � � ÏIÏUÏIä .
Following the criterion of selecting the region with the best lower bound, node

®
is

chosen for further exploration.



Iteration 3

From node 1, the current value of
�

is 1.5. For this value, the primal problem has the
solution

�2$5® �ÔÓ , X × Y $ YY � , X × � $9 , X ×× $9 , with the objective value of
«Ç � ä Ó . The

Lagrange function for this iteration isZ × 
������[� X × �C$�«Ç�Î\S�[�´«��´\ ®® � 
L«ÇÏU�»\ÂÐR�´«ÅÑU�Ö$µ� v × Y 
G�.�Ö« ®Ñ �Î« ®Ý
where v × Y 
m���C$È�Î«7® �ÛÓ is the qualifying constraint for this Lagrange function.

For this iteration, the relaxed dual subproblems are solved in the region
®´�S�N�9® �ÔÓ ,

In this region, solving the bounds problems for
�

yields åæ �@���9® �ÔÓ . Since v × Y 
G���ç�@ for all
�
, only one relaxed dual problem needs to be solved, with

�
fixed to its upper

bound. From the first iteration, the Lagrange function corresponding to node 1 is also
a valid cut for this region. Using the improved bounds on

�
shown above yields the

following relaxed dual problem:

Node 4�N������ ��� X��X���� « Yæ �Î« åæv YY 
m���9$Ù�Î«7® �  X � � èæ �Î« � �ÔÓ Ú�����µ® �ÔÓ
Solution:

��$¯® � � Ó , X�� $%«Î® �  Ý ®^ÏUä .
Again, there is no partition of the region in this iteration, but the relaxed dual provides
a tighter lower bound for this region than was originally available.

At the end of this iteration, there are two candidate regions for further partitioning: (i)
the region

 »�S�>�;®
, corresponding to the node

Ñ
, with the lower bound of

«Î® � � ÏIÏUÏIä ,
and (ii) the region

®>�9�#�Þ® �ÔÓ , corresponding to node Ý , with the lower bound of«Ø® �  Ý ®^ÏUä . Following the criterion of selecting the region with the best lower bound,
node

Ñ
is chosen for further exploration.



Iteration 4

From node 3, the current value of
�

is 0.2. For this value, the primal problem has
the solution

��$é® �  UÏIÏUä , X á Y $ê , X á � $Þ � � ÏUÏIä , X á× $Ú , with the objective value
of
«Î® �  Ó ÑIÑUÑ . Note that the solution of this problem has the immediate consequence

that it provides an upper bound that is lower than the lower bound for node Ý (which
is
«Î® �  Ý ®^ÏUä ). Therefore, node 4 can be immediately fathomed, i.e., removed from

consideration for any further refinement or exploration.

The Lagrange function from the current primal problem isZÖáI
����-�}� X á^�C$9«Ç�Î\S�}�´«��Ü\S � � ÏIÏUäA
�ÑU�Ø«É�»«ÀÑI�Ö$µ� v á Y 
G�.�Ö«7® � � ÏIÏUäR�Ç«� � Ð
where v á Y 
m���C$È�Î«Å � � is the qualifying constraint for this Lagrange function.

For this iteration, the relaxed dual subproblems are solved in the region
 ��S�N�9® �  ,

and try to provide refined lower bounds by partitioning the region further. The tightest
bounds for

�
in this region are

 »�7��� á× .
Unlike the previous two iterations, it is necessary to partition the current region
since

«Ç � � � v á Y 
m���Ø�§® � Ñ and the reduction tests of Section 4.2 do not provide any
help. It is therefore necessary to solve two relaxed dual subproblems in the current
iteration. For both these problems, the Lagrange functions from nodes 2 and 3 are
valid underestimators. These two problems are shown below:

Node 5�N������ � � X��X���� Y× �Î« á×v YY 
G�.�µ$Ù�»«@®ã�7 X���� « á × �Î«7®X���� «Î® � � ÏUÏUäR�´«/ � Ðv á Y 
G�.�µ$Ù�»«À � �´�   Ú�����µ® �ÔÓ
Solution:

�ë$% � ÑUÑIÑ ,X�� $�«Î® � �U�I�U� .

Node 6�N������ � � X��X��Ù� Y× �Î« á×v YY 
G�.�9$Ù�Î«Â®Ø�Â X��Ù� « á× ��«Â®X��Ù�  �  UÏIÏUä��ã«7® �  UÏIÏUä
v á Y 
G�.�9$Ù�Î«/ � � �7  ì���>�;® �ÔÓ

Solution:
��$µ �  Ý äIÏ � ,X�� $�«Î® �  UÏIÑ Ý.í .

Together, these two problems provide a tighter lower bound (
«Î® � �I�U�I� ) for the region Î�S���µ®

than before (
«Î® � � ÏUÏIÏUä ).



At the end of this iteration, there are two candidate regions for further partitioning --
the region

 ��S�>�@ � � , corresponding to node
Ï
, with the lower bound of

«Î® �  UÏIÑ Ý.í ,
and (ii) the region

 � � �9�#�î® , corresponding to node Ó , with the lower bound of«Ø® � �U�U�I� . Therefore, node Ó is chosen for further refinement.

The algorithm continues in this fashion for 18 iterations, converging to the global
solution of

«Î® �  IÐUÑIÑ at
�O$é® � ®^ÏUÏIä.���ë$5 �ÔÓ with a tolerance of 0.001 between the

upper and lower bounds. It is interesting to note that the original GOP algorithm,
which does not compute the tightest bounds on the

�
variables at each iteration, takes

76 iterations to converge with the same tolerance. This indicates the importance of
having the tightest possible bounds on the connected variables at each iteration.

5 REFORMULATION OF THE RELAXED DUAL AS A

SINGLE MILP PROBLEM

The solution of the relaxed dual subproblems at each node is the most time-consuming
step in the algorithm outlined in Section 4. The reduction test mentioned in Section
4.2 can help to prune the branch-and-bound tree at each node; however, it is still
necessary to solve a large number of subproblems at each iteration. It is very likely
that the solution of most of these subproblems are useless as far as the succeeding
iterations are concerned, that is, most of the nodes will be fathomed as soon as they
are spawned. Naturally, this raises the question whether these subproblems can be
solved implicitly. This section presents one possible approach for reformulation of
the relaxed dual problem at each iteration so that the implicit enumeration of all the
solutions can be achieved by solution of an MILP problem.

At the ¨ {m~ iteration, the Lagrange function has the form given by (3.4). Consider the� {G~ term in the summation. In each of the � n�p kr relaxed dual subproblems, this term
takes on either of two values:� hGv ©h 
G���o$�ï �}�h v ©h 
m��� � D v ©h 
m��� �  � �h v ©h 
m��� � D v ©h 
G���b�7 
Now,

� h can be implicitly expressed as a combination of its lower and upper bounds:� h $;
-®q«�ð ©h �¥� �h \�ð ©h � �h (3.5)

where
ð ©h '#:e A�e®RP .



This leads to the following formulation for the

� {G~ term in (3.4):� huv ©h 
G���9$ � h \Å� �h v ©h 
G�.�
where � h � ð ©h 
�� �h «Å� �h � v ©h� h � 
�� �h «Å� �h �ñ
 v ©h 
m���Ö«S
�®q«/ð ©h � v ©h �ð ©h v ©h � v ©h 
G���ç�µ
�®q«/ð ©h � v ©h
where v ©h and v ©h are respectively the lower and upper bounds on the qualifying
constraints. As the following property shows, this can be used to reformulate the
relaxed dual problem as a mixed integer linear program (MILP):

Property 5.1 Suppose that, at the ¨2{G~ iteration, ¤ denotes the current node to be
partitioned, and £ y denotes the set of constraints defining the region associated with¤ . Then, the best solution from all the relaxed dual subproblems at this iteration can
be obtained as the optimal solution of the following mixed-integer linear program.�N���
¥ò<ó^� ô �õ � ö X�� (3.6)

��� �	� X�� � nqp ¾�s
hut Y

� ©h \onqp
¾�s

h÷t Y
� �h v ©h 
G�.�K\SZ ©l 
G�}� W © � X © � (3.7)

� ©h � ð ©h 
�� �h «Å� �h � v ©h (3.8)� ©h � 
�� �h «Å� �h �ñ
 v ©h 
G���ø«S
-®q«Éð ©h � v ©h � (3.9)ð ©h v ©h � v ©h 
G�.�q�%
-®q«�ð ©h � v ©h (3.10)� © ' ù nqp ¾� �Bð © '#:e A�e®RP nqp ¾� �B�c'O, (3.11)
G�}� X�� ��' £ y (3.12)

where v ©h and v ©h are the lower and upper bounds on v ©h 
m��� over
,

.

Proof. Since
ð ©h is a binary variable, it can take on only two values in any solution,

either
 

or
®
. Consider these two possible cases for

ð ©h :

Case I (
ð ©h $% ) :

In this case, equations (3.8)-(3.10) reduce to� ©h �  
(3.13)



� ©h � 
�� �h «Å� �h �ñ
 v ©h 
G�.�Ö« v ©h � (3.14) Ò� v ©h 
m���q� v ©h (3.15)

Since v ©h 
m���c� v ©h for all
��'S,

, (3.14) is redundant. Similarly, the second
inequality in (3.15) is also trivially satisfied. Therefore, if this set of constraints
is active in any solution, then � ©h $% , the contribution from the

� {G~ components
of the first two terms in (3.7) to X � is

�}�h v ©h 
m��� , and in addition, we must also
have v ©h 
G��� �  .

Case II (
ð ©h $�® ) :

In this case, equations (3.8)-(3.10) reduce to� ©h � 
�� �h «�� �h � v ©h (3.16)� ©h � 
�� �h «�� �h � v ©h 
G�.� (3.17)

v ©h � v ©h 
G���b�Â (3.18)

Since v ©h 
m��� � v ©h for all
�7'9,

, (3.16) is redundant. Similarly, the first
inequality in (3.18) is trivially satisfied. Therefore, if this set of constraints is
active in any solution, then � ©h $�
����h «É�}�h � v ©h 
m��� , the contribution from the

� {G~
components of the first two terms in (3.7) to X � is

���h v ©h 
m��� , and in addition,v ©h 
G�.�Á�7 .
Thus, it can be seen that any solution of the relaxed dual problem in Step 4 of the
algorithm in Section 4 is automatically embedded in the set of constraints described by
(3.7)-(3.12). Therefore, (3.6)-(3.12) is a valid formulation for obtaining the solution
of the relaxed dual problem. ú
Remark 5.1 If

Z © l 
G�}� W}© � X�© � are convex functions in
�
, then (3.6)-(3.12) is a

convex MINLP, and can be solved with the Generalized Benders Decomposition
(Geoffrion, 1972; Floudas et al., 1989) or the Outer Approximation algorithm (Duran
and Grossmann, 1986).

It should be noted that the reduction tests of Section 4.2 can also be applied to the
MILP formulation, as shown by the following property.

Property 5.2 At the ¨2{G~ iteration,

(i) If v ©h 
m��� �  for all
�

(respectively v ©h 
G�.�q�7 for all
�
) then variable

ð ©h can be
fixed to 0 (respectively 1.)



(ii) If v ©h 
G�.�C$% for all
�

then variable
ð ©h vanishes from formulation (3.6)-(3.12).

Proof. (i) Suppose that v ©h 
m��� �  for all
�>'O,

. Then, to underestimate the Lagrange
function from the ¨2{G~ iteration,

� �h must be set to
�[�h . By the definition of

ð ©h ,� h $;
-®q«�ð ©h �¥� �h \�ð ©h � �h
Hence, this leads to

ð ©h $9 � Conversely, if v ©h 
G���ã�µ for all
�2'O,

, then
ð ©h must

be equal to 1.

(ii) If v ©h 
m���q$µ for all
�>'2,

, then this implies that

v ©h $ v ©h 
G�.��$ v ©h $% 
Therefore, in (3.6)-(3.12), � ©h is always equal to zero, and the variable

ð ©h vanishes
from the formulation. ú
Backtracking

With the MILP reformulation, it is possible to solve the relaxed dual subproblems
implicitly for the best solution at each iteration. However, it is not sufficient to find
the best solution; it must also be determined whether any of the other partitions can
provide a useful solution for further refinement.

Consider the relaxed dual subproblems solved when node ¡ is being partitioned.
Suppose that this node was partitioned during iteration ¨ . Then, there are w2xU©�
binary variables, and � nqp ¾� partitions to consider. Solving the problem (3.6)-(3.12)
gives the best solution among these partitions. Suppose that this solution corresponds
to the combination

ð y
. Suppose also that û y is the set of binary variables that are

equal to 1 in this combination, and that there are wüû y of them. Consider now the
following cut s

h �Rý r
ð h « sh�þ��ý r

ð h � wüû y «Â®
If problem (3.6)-(3.12) is resolved with the above cut added to the problem, then the
solution will have a value for

ð
different from

ð y
, and will therefore correspond to

a different subregion of the current problem. Note that the objective value of this
problem represents the ‘‘second’’ best possible solution. The best solution, of course,
is the one corresponding to the solution of the first MILP problem, with

ðµ$îð y
.

Therefore, this methodology is sufficient to go back to a partitioned node at any point.



Note that although the size of the MILP problems increases slightly at each iteration
due to the accumulation of constraints from previous iterations, the number of binary
variables present in these problems is equal to the number of connected variables for
each iteration. In other words, the number of binary variables in the MILP problems
is bounded by the number of

�
variables in the original problem.

5.1 The GOP/MILP Algorithm

The terminology is as described in Section 4. In addition, 3�¢ denotes the set of integer
cuts to be used when solving the MILP problem for the node ¡ .
STEP 0: Initialization

This step is the same as in Section 4.4, with the addition of setting 3 Y $7° .
STEP 1 -- Step 3:

Same as in Section 4.4.

STEP 4: Current Relaxed Dual Problem

Solve the MILP problem (3.6)-(3.12).

(i) If X[½ � ¿ ­ �#« � , set ¡ $ w \µ®R� T 
 ¡ �C$ ¤ � w $ w \7® , and store the solution
in X ¢ � ��� ¢ .

(ii) If X[½ � �7­ �#« � , fathom the solution.

Let the solution for the binary variables in this problem be
ðS$9ð y

. Let û y be the
set of variables which are 1 in this solution, and let wOû y the number of such binary
variables.

STEP 5: Selecting a new lower bound

Same as in Section 4.4.



STEP 6: Regenerating Solutions From Partitioned Nodes

Suppose that the solution selected in Step 5 corresponds to node ¤ , and that this node
was originally partitioned at iteration z . Then, add the cuts

h �Rý r
ð h « sh�þ��ý r

ð h � wüû y «Â®
to the set of binary cuts 3 y . Solve the MILP problem (3.6)-(3.12) with the added set
of binary cuts 3 y . Suppose the solution of this problem is X[½ � .

(i) If X[½ �5¿ ­ �o« � , then set ¡ $ w \9®R� T 
 ¡ �ã$ ¤ � w $ w \�® , and store the
solution in X ¢ � ��� ¢ . Also set

ð y
to be the solution of the binary variables in this

formulation.

(ii) If X[½ � �7­ �#« � , fathom the node ¤ .

STEP 7: Check for convergence

Same as in Section 4.4.

Remark 5.2 After the MILP problem has been solved in either Step 4 or Step 6, an
integer cut is added to the corresponding formulation which ensures that that solution
cannot be repeated. This implies that the same MILP formulation might be solved
several times over the course of the iterations with small differences arising from the
additional integer cuts. Subsequently, there is considerable potential for storing the
tree information from these problems for use in future iterations.

Remark 5.3 At each iteration of the algorithm, there is a single MILP problem solved
in Step 4 or Step 6 as compared to the original algorithm, which needs to solve � nqp ¾�
subproblems at the ¨2{G~ iteration. This MILP problem contains w2xU©� binary variables
in the case of Step 4, or w2x �� variables in Step 6. In either case, the number of binary
variables present in any MILP formulation during all the iterations is bounded by the
maximum number of

�
variables. However, it is usually the case that the number of

connected variables is a fraction of the total number of
�

variables, implying that the
MILP problems are likely to have few binary variables.



Remark 5.4 The major advantage of the MILP problem appears when there are more
than about 15 connected variables at any iteration. In such cases, the original algorithm
would need to solve over 2 million problems at that iteration, the vast majority of
which would never be considered as candidate solutions for further branching. In the
case of the MILP algorithm, the implicit enumeration allows for far fewer problems
to be solved. The maximum number of MILP problems solved is twice the number of
iterations of the algorithm.

5.2 Illustration of the GOP/MILP Algorithm

Consider the example from Section 4.5, with a starting point of
� Y $ÿ®

for the
algorithm.

Iteration 1

For
� Y $Õ® , the first primal problem has the solution of

�2$¯ 
, XÖYY $ XÖY� $ XÖY× $¯ ,

with the objective value of
«Î®

. The upper bound on the problem is therefore
«Î®

. The
Lagrange function is given byZ Y 
������[� X Y �C$�«b�»\Â�}�´«���$%� v YY 
m���Ö«��
where v YY 
m���C$È�Î«7® is the first (and only) qualifying constraint.

The following MILP problem is solved first in Step 4:�N������ ��� X��X���� � YY «/�� YY � «Î® �ÛÓ ð YY� YY � ® �ÔÓ 
 v YY «/ �ÔÓ 
-®?«�ð YY �L�ð YY � v YY �7 �ÔÓ 
�®C«#ð YY �v YY $Ù��«S® Ú�����9® �ÔÓ
The solution of this problem is

�S$  �  , X�� $1«Î® �ÛÓ , ð YY $ÿ®
. Note that this

corresponds to node 2 in the branch and bound tree in Figure 3. This solution is
chosen to be the next candidate for branching. However, in order to ensure that the
other regions are also considered for future reference, it is necessary to solve one more
problem, with the cut ð YY �7 



added to the MILP. This problem has the solution
�N$µ A� X � $�«Î® �ÔÓ and

ð YY $5® . It
is stored for future reference.

Iteration 2

For
�ë$9 �  , the primal problem has the solution

��$5® �  , X × Y $9 , X × � $ Y× , X ×× $¯ ,
with the objective value of

«Î® �  . The Lagrange function from this problem isZ × 
������[� X × �C$�«Ç�Î\Å�}�Î«��Ü\ ®Ñ 
�ÑU��«#�Î«ÅÑU�Ö$%� v × Y 
m���Ö«9ÝÑ �»«@®
where v × Y 
m���C$È� is the qualifying constraint for this Lagrange function.

Since
 c�µ�2�¯®

, tight bounds on
�

can be obtained to be
 >�µ�ü� á× . Since

�2â; 
,

a valid underestimator to
Z � 
����-�}� X � � for all

�
can be obtained by fixing

�
to its

lower bound. Therefore, there are no binary variables, and consequently, the MILP
formulation reduces to the same formulation as in Section 4.4. The solution of the
resulting subproblem is

�ë$7 � � , X�� $�«Ø® � � ÏUÏIä .
At the end of this iteration, there are two candidate regions for further branching: (i)
node 1 (

®´�Å���9® �ÔÓ ) with a lower bound of
«Ø® �ÔÓ , and (ii) node 3 (

 »�S�>�;®
) with a

lower bound of
«Î® � � ÏUÏUä . The former node is selected for further exploration.

Iteration 3

For
�>$¯® �ÔÓ , the primal problem has the solution

�N$�® �ÔÓ , X � Y $ YY � , X �� $9 , X �× $9 ,with the objective value of
«Ç � ä Ó . The Lagrange function from this problem isZ � 
������[� X � �C$�«Ç�Î\S�[�´«��´\ ®® � 
L«ÇÏU�»\ÂÐR�´«ÅÑU�Ö$µ� v �Y 
G�.�Ö« ®Ñ �Î« ®Ý

where v �Y 
m���C$È�Î«7® �ÛÓ is the qualifying constraint for this Lagrange function.

For
���;® �ÔÓ , the tightest bounds on

�
are åæ �7�2�9® �ÔÓ . Again, only one relaxed dual

problem needs to be solved, with a valid underestimator to
Z × 
����-�}� X × � being used

by fixing
�

to its upper bound. Therefore, the MILP is again identical to the original
algorithm formulation, and has the solution

��$¯® � � Ó � X�� $%«Î® �  Ý ®<ÏUä .
At the end of this iteration, there are two candidate regions for further partitioning -
(i) the region

 >�7���¯®
, corresponding to node 3, with a lower bound of

«Î® � � ÏIÏUÏIä ,
and (ii) the region

®>�9�#�Þ® �ÔÓ , corresponding to node 4, with the lower bound of



«Ø® �  Ý ®^ÏUä . Following the criterion of selecting the region with the best lower bound,
node 3 is chosen for further exploration.

Iteration 4

For
�N$9 � � , the primal problem has the solution

� $�® �  IÏUÏUä , X á Y $9 , X á � $9 � � ÏUÏIä ,X á× $9 , with the objective value of
«Ø® �  Ó ÑIÑUÑ . Note that the solution of this problem

provides an upper bound that is lower than the lower bound for node Ý (which is«Ø® �  Ý ®^ÏUä ). Therefore, node 4 can be immediately fathomed, i.e., removed from
consideration for any further refinement or exploration.

The Lagrange function from the current primal problem isZ á 
����-�}� X á �C$9«Ç�Î\S�}�´«��Ü\S � � ÏIÏUäA
�ÑU�Ø«É�»«ÀÑI�Ö$µ� v á Y 
G�.�Ö«7® � � ÏIÏUäR�Ç«� � Ð
where v á Y 
m���C$È�Î«Å � � is the qualifying constraint for this Lagrange function.

For this iteration, the relaxed dual subproblems are solved in the region
 ��S�N�9® �  ,

and try to provide refined lower bounds by partitioning the region further. The tightest
bounds for

�
in this region are

 »�7��� á× .
Unlike the previous two iterations, it is necessary to partition the current region since«b � � � v á Y 
G�.�q�9® � Ñ . Therefore, the MILP in this iteration takes the form:

�N������ ��� X �
X���� ®Ñ ��« Ý Ñ

v YY 
G�.�9$Ù�Î«S®´�Â 
X � � «>ÝÑ �Î«S®X���� � á Y «Â® � � ÏUÏIä��� á Y � «Ç � � ÏIÏUÏUäRðÖá Y� á Y � ® � ÑUÑIÑUÑA
 v á Y «S
-®q«ÉðÖá Y � � ® �  IÏUÏIäU�«Ç � � ðBá Y � v á Y �%
-®q«�ðÖá Y � �  � Ðv á Y $Ù�Î«� � � ì���>�9® �ÔÓ

The solution of this problem is
�>$7 � ÑUÑIÑ , X � $�«Î® � �U�I� , ð á Y $% .



Thus, the MILP algorithm produces the exact sequence of solutions given by the
original branch and bound algorithm. As in Section 4.5, this algorithm also takes 18
iterations to converge.

Remark 5.5 Note that in this example, there is no arguable advantage to using the
MILP formulation, since it needs to be solved for both combinations of

ð Y at each
iteration. However, for problems with more than one connected variable, it is obvious
that this formulation can offer a major advantage over the original formulation. This is
because at each iteration, no more than 2 MILP problems need to be solved. Although
these problems are bigger in size and more complex than the original relaxed dual
subproblems, their structure is such that finding their solution is not really dependent
on the presence of the binary variables, and a good MILP solver can be expected to
solve them very efficiently. At the same time, they feature the key advantage of not
having to solve the full set of subproblems at each iteration.

It should be noted, however, that the convenience of solving just one compact problem
is achieved at the expense of problem size. Because all possible solutions of the relaxed
dual problem have to be incorporated in the GOP/MILP formulation, the result is a
much larger problem to solve. A number of constraints and variables need to be used
to implicitly represent all the possible bound combinations. For large problems, this
could cause difficulties, although the availability of increasingly fast MILP solvers
makes this less of a drawback.

6 A LINEAR BRANCHING SCHEME FOR THE GOP

ALGORITHM

In both the GOP and GOP/MILP algorithms, the qualifying constraints (i.e., the
gradients of the Lagrange function) are used to partition the

�
-space. The reduction

properties presented in Section 4 can provide a significant reduction in the number of
connected variables and subsequently the number of partitions. However, in the worst
case, the number of subproblems solved still increases exponentially with the number
of connected variables. It is then natural to ask the following question: Is it possible to
develop a valid lower bound at each iteration using only a linearly increasing number
of relaxed dual subproblems? In this section, we present one branching scheme that
achieves this goal. This scheme originates from the study of Barmish et al (1995a,
1995b) on the stability of polytopes of matrices of robust control systems.



6.1 Reformulation of Qualifying Constraints

Consider the relaxed dual problem at the zA{G~ iteration. This problem has the constraint

X � � Z Ql 
G�}� W Q � X Q ��\ n�p krs hut Y
� h v Qh 
m��� �

Suppose that all the
�

variables are bounded between -1 and 1. If this is not the
case, it can be achieved by use of the following linear transformation. Suppose that�[�ü�@���7�V�

. Then, define
���

such that
«Ø®Ø�@�����µ®

, and��$�� � � � \��
The substitution of the lower and upper bounds gives� � $�� � 
L«Î®^�K\��b�
	 ��� � � $�� � 
-®^��\
�
leading to

��$ ���ü«/�}�� �
	 ��� �Á$ ���2\Â�}��
The variables

���
can then be substituted for

�
using the above transformation, leading

to a Lagrange function in
�

and
���

. We will continue the presentation in this section
by considering the case

«Î®´�Â�à�µ®
.

The following observation is now made:

(a) If v Qh 
m��� �  , � h v Qh 
m��� � � �h v Qh 
m��� � � h v Qh 
G�.� � « v Qh 
G�.�
(b) If v Qh 
G�.�Á�7 , � hmv Qh 
m��� � � �h v Qh 
m��� � � hGv Qh 
G��� � v Qh 
G�.�
Combining these two cases leads to the inequality� huv Qh 
m��� � «�� v Qh 
m�����
and

X � � Z Ql 
G�}� W Q � X Q �E« n�p krs h÷t Y
� v Qh 
G�.��� (3.19)



The first term on the right hand side is convex, and can remain unaltered. Consider
now the summation term. Using the concept of the infinity norm, (3.19) can be written
as X��7� Z Ql 
G�}� W Q � X Q �E« w2x Qy � 
 � 	��h � v Qh 
G�.��� � (3.20)

For any value of
�
, there is some ¡ '�®�� �^�<� � w2x Qy such that

� v Q¢ 
m�����.$ � 	��hut Y ��������� nqp kr � v
Qh 
G�����

implying that � v Q¢ 
G�.��� � � v Qh 
m�������
� $�®�� �<�^� � w2x Qy (3.21)

Consider the following two possibilities:

(a) If v Q¢ 
m��� �  , then
� v Q¢ 
G�����U$ v Q¢ 
G�.� , and (3.21) reduces to the two inequalities

v Q¢ 
m��� � v Qh 
G�.�v Q¢ 
m��� � « v Qh 
G���
� � $�®�� �^�<� � w2x Qy � ���$ ¡ (3.22)

and (3.20) becomes

X��S� Z Ql 
m�[� W Q � X Q �ø« w2x Qy � v Q¢ 
m���
(b) If v Q¢ 
G�.�Á�7 , then

� v Q¢ 
m�����.$%« v Q¢ 
m��� , and (3.21) reduces to the two inequalities

v Q¢ 
m����� v Qh 
G�.�v Q¢ 
m�����&« v Qh 
G���
� � $�®�� �^�<� � w2x Qy � ���$ ¡ (3.23)

and (3.20) becomes

X � � Z Ql 
m�[� W Q � X Q �E\ w2x Qy � v Q¢ 
m���
The two cases presented above indicate how the summation in (3.19) can be replaced
by a linear term when v Q¢ 
G�.� represents the maximum of all the qualifying constraints
at a given value of

�
. This concept can then be extended to cover the entire region for�

. To do this, the above procedure needs to be repeated for all values of ¡ , resulting
in � 0 w2x Qy subproblems that need to be solved in order to properly underestimate the
Lagrange function at all values of

�
.

Remark 6.1 It should be noted that with the use of the linear branching scheme, the
same space in

�
is now spanned by a linear number of underestimators (as opposed



to an exponential number in the original algorithm). Therefore, the tightness of these
underestimators will be less than with the original algorithm. Therefore, at the end
of each iteration, the lower bounds obtained from the dual problems with the linear
branching scheme will be looser than those obtained with the original algorithm,
resulting in an increase in the number of iterations required for convergence. At the
same time, the number of subproblems solved at each iteration is vastly reduced.
Therefore, the total computational effort required for the entire algorithm is likely to
be much smaller with the linear branching scheme.

6.2 Illustration

Consider the following problem:�����jI� � «Ç� Y � Y «/� � � ���� �	� � Y «�� Y $µ ���?«��U�Á$µ «Î®ã�7�����>�µ®
Suppose that the GOP algorithm is applied to this problem, with the starting point of� $5 

. The first primal problem has the solution
�O$5 

, W�YY $5 and W�Y� $5 . This
leads to the following constraint in the first relaxed dual problem:

X���� � Y 
� ´«#� Y ��\S� � 
� ã«�� � �� «��  ã«#� Y �e«��  b«��U���
where v YY 
G���´$Þ Ø«Å� Y and v Y� 
m���´$Þ Ø«Å� � are the two qualifying constraints. The
region in the

�
variables, as well as its division using these qualifying constraints as

used by the original GOP and GOP/MILP algorithms, is shown in Figure 4(a). Note
that the four regions 3 , ¼ , ¤ and � represent the four relaxed dual subproblems
solved by the original algorithms.

Suppose that
� v YY 
G����� � � v Y� 
G�.��� . There are two possibilities:

(a) v YY 
m��� �  . Then, the use of (3.22) results in� Y «�� � �! � Y \o� � �! � Y �! 
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The region of
�

described by these constraints is shown as region E in Figure 4(b).
The corresponding constraint for the relaxed dual problem is given by

X��S� « � v YY 
G�.�C$ � � Y
(b) v YY 
G�.�Á�7 . Then, the use of (3.23) results in� Y «��U� �  � Y \o�U� �  � Y �  

These equations describe region F in Figure 4(b). The corresponding constraint
for the relaxed dual problem is given by

X � �7� v YY 
G���q$�« � � Y
Similarly, when

� v Y� 
m����� � � v YY 
G����� , there are two possibilities:

(a) v Y� 
m��� �  . Then, the use of (3.22) results in� � «�� Y �! � � \o� Y �! � � �! 
The region of

�
described by these constraints is shown as region G in Figure 4(b).

The corresponding constraint for the relaxed dual problem is given by

X��S� « � v Y� 
G�.�C$ � � �
(b) v Y� 
G�.�Á�7 . Then, the use of (3.23) results in�U�q«�� Y �  �U�C\o� Y �  �U� �  

These equations describe region H in Figure 4(b). The corresponding constraint
for the relaxed dual problem is given by

X � �7� v YY 
G���q$�« � � Y



Thus, it can be seen that the use of the equations (3.22) and (3.23) result in a new
set of partitions of the region in

�
. For this example, there are still 4 partitions, so

there is no reduction in the number of subproblems to be solved. However, when
the number of connected variables is more than 2, the use of these transformations
will result in a linearly increasing (as opposed to exponentially increasing) number of
subproblems at each iteration. For example, when there are 10 connected variables,
the new partitioning scheme requires 20 relaxed dual subproblems as opposed to 1024
for the original GOP algorithm.

7 CONCLUSIONS

This paper has focussed on presenting the GOP Algorithm of Floudas and Visweswaran
(1990, 1993) in a branch and bound framework. This framework is based upon
branching on the gradients of the Lagrange function, and is considerably simpler
than the original cutting plane algorithm. The primary advantage of the framework
is in simplicity of implementation. In particular, the selection of previous Lagrange
functions as cuts for current dual problems is considerably simplified. Moreover, the
framework allows for the use of a mixed integer formulation that implicitly enumerates
the solutions of all the dual subproblems. This paper has also considered the issue
of reducing the number of subproblems at each iteration, and in Section 6, a new
partitioning scheme was presented that requires only a linear number of subproblems.
This is a significant reduction from the exponential number of subproblems required
by the original algorithm.

The new algorithms have been implemented in a package cGOP (Visweswaran and
Floudas, 1995a) and applied to a large number of problems. The results of these
applications can be found in the companion paper (Visweswaran and Floudas, 1995b).
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