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Abstract

In Floudas and Visweswaran (1990), a new global optimization
algorithm (GOP) was proposed for solving constrained nonconvex
problems involving quadratic and polynomial functions in the ob-
Jjective function and/or constraints. In this paper, the application
of this algorithm to the special case of polynomial functions of one
variable is discussed. The special nature of polynomial functions
enables considerable simplification of the GOP algorithm. The
primal problem is shown to reduce to a simple function evaluation,
while the relazed dual problem is equivalent to the simultaneous
solution of two linear equations in two variables. In addition, the
one-to-one correspondence between the z and y variables in the
problem enables the iterative improvement of the bounds used in
the relaxed dual problem. The simplified approach is illustrated
through a simple example that shows the significant improvement
in the underestimating function obtained from the application of
the modified algorithm. The application of the algorithm to sev-
eral unconstrained and constrained polynomial function problems
is demonstrated.

Keywords : Global Optimization, Polynomial functions, Uncon-
strained and Constrained Optimization, The GOP algorithm.

1 Introduction

Polynomial functions of one variable occur frequently in mathematical
programming problems. Problems involving the unconstrained or con-
strained optimization of these functions are interesting not only because
of the inherent simplicity of the problem structure, but also because these
functions form the backbone of larger optimization problems involving
more variables. Often, the solution of these larger problems becomes
much easier if a few of the variables are fixed. Consequently, they can
be viewed as parametric problems in one variable. The solution of opti-
mization problems involving one (or a few) variable(s) can often provide
significant insight into the nature of larger problems.

The unconstrained minimization of Lipschitz continuous functions (of
which polynomial functions are a subset) has been studied extensively
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in the past two decades. Algorithms for solving this problem have been
proposed by Evtushenko (1971), Piyavskii (1972), and Timonov (1977),
among others. Shen and Zhu (1987) proposed an interval version of
Schubert’s algorithm for univariate functions. Galperin (1987) and Pin-
ter(1988) also considered the incorporation of constraints in the problem.
Hansen (1979) proposed an algorithm for minimizing univariate functions
using interval analysis. A comprehensive review of global optimization
of univariate Lipschitz functions (including functions other than poly-
nomials) is given in Hansen et a/ (1989a). They provide the necessary
conditions for finite convergence of algorithms addressing this problem
and the characteristic that a best possible algorithm should have. An
extensive comparison of the computational aspects of these algorithms as
well as new improved algorithms are provided in Hansen et al (1989b).
Wingo (1985) proposed a method for locally approximating the poly-
nomial function to enable the solution without evaluating derivatives.
However, the algorithm fails to identify the global solution in some cases.
Dixon (1990) proposed several methods for accelerating the search pro-
cedure using interval methods to locate the global solution for functions
of one variable.

Floudas and Visweswaran (1990) proposed a deterministic approach
for global optimization of problems involving quadratic and polynomial
functions in the objective function and/or constraints. They made use
of primal-dual decomposition to solve the originally nonconvex problem
through a series of primal and relazed dual subproblems. The algorithm
(GOP) was shown to have finite convergence to an e-global minimum of
the problem. The algorithm was applied to several classes of problems in-
cluding polynomial function problems. Visweswaran and Floudas (1990b)
presented new properties that exploit the structure of the Lagrange func-
tion and showed that they enhance the computational efficiency of the
GOP algorithm when applied to problems with quadratic terms in the
objective function and/or constraints.

In this paper, the application of the GOP algorithm to the special
case of polynomial functions in one variable is discussed. Use is made of
the new properties presented in Visweswaran and Floudas (1990b) as well
as the structure of polynomial functions to reduce the GOP algorithm
to an extremely simple form of application. The modified algorithm is
also shown to be applicable to constrained optimization problems with
polynomial functions in one variable. The improvements over the original
GOP algorithm are illustrated both computationally and geometrically
through the use of a simple example. In addition, several examples of un-
constrained and constrained problems help to highlight the effectiveness
of the proposed algorithm.



2 Problem Statement

In this paper, the application of the GOP algorithm to optimization
problems involving polynomial functions of one variable in the objective
function and/or constraints is presented. These problems have the fol-
lowing form :

min  F(y) = ao + a1y + azy® + ...... +any

Ajo+Aj1y+ Ay + o+ vy <0 Yi=1,2,..,0 (1)
Bpo + By + Broy? 4 eeeoo + Buny® = 0 Ym=1,2,...,. M
yh <y <y,

where y is a single variable and A;;, A,,; are the coefficients of ' in the jth

inequality and mth equality constraint respectively. The nonconvexities

in this problem arise due to the existence of polynomial terms in either

the objective function or the set of constraints. It is assumed that the

polynomials have nonconvex terms right up to the N** degree term.
Consider the following transformations:

) = 1

1 = Y

Ty = y2 = (zl)y
g3 = Yy = (z2)y
TN = yN = (-’EN—1)Z‘/-

Then, the problem can be written in the following equivalent form:

N
min E a;z;
T,y

=0
N
Y Ajm <0 j=1,2,..,7 (2)
=0

N
Y Buizi = 0 m=1,2,..,M
1=0

zi—z;1y = 0 2=1,2,...,N

where zg = 1.

The case of unconstrained optimization problems is considered in the
following section. The theoretical development is extended to the case of
constrained problems in Section 7 .



3 Unconstrained Problems

For the case of unconstrained optimization, problem (2) can be simplified
to the following form :
N
IEiyn Z a;z;

=0
z, —zi1y=0 1=1,2,...,,N, (3)

where zq = 1. For a fixed y = y¥, the primal problem can be written as

N
min E a;z;
T .
1=0

s.t. z,—zi_y" =0 i=1,2,..,N (4)

with zg = 1.

Note that for any fixed value of y = y*, all the z variables are uniquely
determined. Therefore, this problem is simply one of function evaluation,
with the solution being as follows :

T = 1

z = yK

z5 — (yK)2

T3 — (yK)S

TN = N(?/K‘)N
F(y¥) = ¥ ai(y").

The KKT gradient conditions for the primal problem (4), for a fixed
y = y¥, can be written as :

Vo, L(z, y*,v5) = a; + v — u{j_lyK =0 vVi=12,..,N

where v are the Lagrange multipliers for the new equality constraints
introduced, with v{ = VJI\f_H = 0. Here, the Lagrange multipliers can be
found by backward substitution :

K _

I/N = —ay

”Jg—l = vgyK —an-1 = —aN(yi)?— aN-1

UN_y = Vn_1¥" —an-—2 = -—an(y" )’ —an-1(y")—an-2
vt = vyl —af = —an(y*)V 7 —as(y") —ar



The Lagrange function formulated from the primal problem (4) can
be written as

T,Yy,V Za'zmz+zy —mi_ly).

Separating the terms in z, this can be rewritten as

z,y,v Z a; + V ﬁ-ly] Zj. (5)
=0

Using the KKT gradient conditions, the Lagrange function becomes

L,Y, Vv Zyz+1 - z’i-

Thus, the qualifying constraint for each z; is of the form
v —y>0,0r y¥ —y<0,

depending on whether 1/;“_}_1 is greater than or less than zero respectively.
Therefore, two relaxed dual problems are solved at every iteration. These
two problems are separately considered below.

First Relaxed Dual Problem

Consider the relaxed dual problem solved for the region y® —y > 0.
Before solving the relaxed dual problems, the Lagrange functions from
previous iterations are selected. From the kth iteration (k =1,2,..., K —
1), the two Lagrange functions have gqualifying constraints of the form
y* —y > 0 and y* —y < 0. These Lagrange functions are selected on
the basis of satisfaction of their gualifying constraints at y = y®. Since
y* —y¥ must be either positive or negative, exactly one Lagrange function
from every iteration will be present for the current relaxed dual problems.

Now, the previous iterations correspond to valuesof y = ', ..., y%¥ L.
Some of these fixed values of y will be less than y*. Suppose that

y'= max {y:y <y"}
Then, the Lagrange function formulated from the Lth iteration (for which
the fixed value of y is y”) has the qualifying constraint y* —y < 0.
Therefore, for the current relaxed dual problem, the lower bound on the
y variable is y”. At the same time, the gualifying constraint from the
current iteration ensures that the upper bound on y is ¥*. Thus, for the
current relaxed dual problem, y* < y < y¥



Now, the z variables are related to y through the equivalence relations

) = 1

T =

o = y2 = ($1)y
N = yN = (-’EN—l)?/-

Therefore, the bounds on the z variables can be changed to suit the new
bounds on y for the current relaxed dual problem. This is done in the
following manner :

L _ L U _ K

Ty = ¥y, T = Y

zy = MIN[(y")?,(y%)?], =) = MAX[(y")* (y")"]

=5 = MIN[W")®,(s%)"], 2§ = MAX[")* (v")"

ey = MIN[")Y, (" )], 2} = MAX[y")", (" )"
If y* < 0and y¥ >0, then 2zl =zL = 2L ... = 0.

The reason for the use of these expressions is as follows. If y* > 0,
then the lower and upper bounds on z1, z,,...zx are simply given by

2 N
zL = (yL:(yL) :"'(yL) ):a'nd
N

2V = @) ).

However, if y* < 0 and y¥ > 0, then the value of y can be either positive
or negative. Therefore, any even power of y can be as low as zero. Hence,

¢zl = 2l ... = 0. Furthermore, | y* | can be either greater than or less
than | y* |. Therefore, for each of the powers of y, the minimum and

maximum values are given by the minimum and maximum values of the
corresponding terms in both y” and y*.

These new bounds for the z variables are then used in the Lagrange
functions in the following form :

If vi41>0, then mf =zl
If vi41<0, then zf =z .

It should be noted here that due to the nature of the transformation
variables that are introduced into the problem, the Lagrange function is
linear in z for every fixed y. Therefore, there is no need to linearize the
Lagrange function with respect to z (Visweswaran and Floudas, 1990).
Now, there are (K — 1) Lagrange functions from previous iterations
that can be used for the current relaxed dual problem. However, it is suffi-
cient to consider only one of these Lagrange functions, since the omission



of the remaining constraints does not destroy the validity of the relaxed
dual problem as a lower bound on the global solution. The obvious choice
for this is to use the Lagrange function corresponding to the nearest point
on the left side, that is, the Lagrange function corresponding to ", and
ignoring all other Lagrange functions from previous iterations. The cur-
rent relaxed dual problem then has the following form :

min up
NS

s.t.
KB Z L(T’BL:y: VL)
y >yt
KB Z L(m’BK:y: UK)
y <yX

where By and By are two combinations of bounds of the z variables
that are being used in the Lagrange functions from the Lth and Kth
iterations, respectively.

Again, due to the nature of the transformations, the two constraints
are linear in y. Therefore, it is clear that the solution to this problem
will be either at the intersection of the two constraints, or at one of the
two bounds for y, namely, y* or 4¥¥. Consider the three cases.

(i) The solution of the current relaxed dual problem lies at y”*. In this
case, the value of the first Lagrange function (that is, the one for-
mulated from y”) must equal the value of the objective function
at y*. This arises as a result of the strong duality theorem. This
means that due to the presence of the first constraint, the value of
wup must equal the value of the objective function at y”. Therefore,
it is not necessary to consider this solution.

(i) The solution of the current relaxed dual problem lies at y*. In this
case, the value of the second Lagrange function (that is, the one
formulated from ) must equal the value of the objective function
at y®. This arises as a result of the strong duality theorem. This
means that due to the presence of the second constraint, the value of
wup must equal the value of the objective function at y*. Therefore,
again it is not necessary to consider this solution.

(iii) The solution of the current relaxed dual problem lies at the inter-
section of the two constraints. In this case, the solution cannot be
omitted.



Thus, the relaxed dual problem can be solved easily by considering only
the third possibility and solving for the intersection of the two constraints
in the problem. This is very easy to do since the constraints are linear in

y.

Second Relaxed Dual Problem

For the case when y® — y < 0, the nearest point to the right side of
y® becomes the upper bound for y, while the value of ¥ becomes the
lower bound for y. That is , for this case, y¥ < y < y®, where now y? is
found as

oy = v, 2l = v

ey = MIN[(y")?,(y")], =5 = MAX[(y")’ (y")’]

ey = MIN[(y")(y")], 2§ = MAX[@"),(¥")]

ey = MIN[y")Y,(s")"], =k = MAX[y")", (y")V].
If Y <0, then 2l =2} =zL ... = 0.

In this case, the relaxed dual problem is solved by considering the
current Lagrange function, that is, the Lagrange function formulated from
the current iteration corresponding to ¥ — y < 0, and the Lagrange
function from the Rth iteration corresponding to y* —y > 0. Again, the
relaxed dual problem can be solved simply by considering the intersection
of the two Lagrange functions and comparing the corresponding value of
up to the values of the objective function at y¥ and y.

4 The Improved GOP Algorithm

The modified algorithm for minimizing unconstrained polynomial func-
tions in one variable can be stated in the following steps :

STEP 0- Initialization of parameters:

Define the storage parameters ;LSBtO’”I(Km“), ugo’"z(Km‘”),
y”"l(Km“), y”o’"2(Km“), and y* (K™%) over the maximum expected
number of iterations K™2". Define PUVPP and RYPP as the upper and
lower bounds obtained from the primal and relaxed dual problems re-
spectively. Also define the parameters y*#¥7 and y®/“H7T and initialize
them to the original lower and upper bounds y”, 4" on y. Set

Msgor (Kmax) — U, Msgor (Kmax) U



PUBD —y. and R*PP = L.
where U is a very large positive number and L is a very large negative
number. Define the logical variables LRD and RRD (for the left and
right relaxed dual problems, respectively). Select a starting point y'

for the algorithm. Set the counter K equal to 1. Select a convergence
tolerance parameter e.

STEP 1- Primal problem:
Store the value of ¥¥. Calculate the solution of the problem as follows

Lo = 1

£l = (yK)

z — (yK)2

z5 — (yK)S

an = . (yk)N |
Fy*) = Ya") .

1=0
Also find the Lagrange multipliers for the problem as follows :

K

vy = —apnN

VJIV(_1 = VJ{?:‘/K —aN-1 = —GN(yK)?— aN_1

VJIv(_z = Vﬁ_lyK —aN_32 = —GN(yK)‘ - GN—1(yK) —aN-2
v = uEyK oK = —aN(yK)N_1~~~—a,2(yK)—a1 .

Store the lagrange multipliers ». Update the upper bound so that

STEP 2- Determination of nearest points from the previous values of y:
Set yLEFT — oL oRIGHT — U GQet TRD =Y ES, RRD=YES. If
y® = y*, then set LRD = NO. If y¥ = 4V, then set RRD = NO.

a =1, then set y =y, y" =1y" . Go to Step 3.
IfK=1,th t ylEFT L yRIGHT Y. Go to Step 3

(b) If K = 2, then yX is either the lower bound y” or the upper bound
U
yv.

(i) If y? = y~, then set y=“ I = yL, yHIGHT — 41 Go to Step 3.

(ii) If ¥* = yY, then set y“FI'T = y!, yRIGHT — 4U_ Set Go to
Step 3.



(c) If K > 2, then then do the following steps for k = 1,2,..., K — 1.

(i) If y* < y¥, then set y“PI'T = MAX(y*,y*EIT), L=k
(ii) If y* > y¥, then set y*ICHT = MIN(y*,y®ICHT) U =k
STEP 3- First Relazed dual problem (i.e. for y* —y>0):

Updating bounds on z:
Reset the bounds on the z variables as follows :

zf = ytEIT, zf = yF
oo g oy
ez = (7)., wyo= (v7)
gk = (yFEFT)V | 2y = (yF)V.

Formulating the Lagrange functions

(i) For the Lagrange function from the Lth iteration (i.e. the Lagrange
function from the Lth constraint with the qualifying constraint y* —
y<0):

If ViL+1 >0, then Pt =2V

: : Vi=1,2,..,N—1.
If I/Z-L+1<0, then sz:zZL} ¢ T

(ii) For the Lagrange function from the K'th iteration (i.e. the Lagrange
function from the current iteration with the gqualifying constraint
y¥ —y>0):

If vE >0, then zBx =z

o= B Vi=1,2,.,N—1.
If VZ»I_(H<0, then zf“‘:m?} ¢ T

Solving the Relaxed dual problem
Find the intersection of the following two constraints :

KB = L(zBL:y:VL): and
KB = L(zBK:y:VK)'

If ug < PUBP then store the solution of the problem. That is, set

Mgorl(K) — 'ul%lt’ and ystorl(K) — yint’



where int denotes the value of the variable obtained by the intersection.
STEP 4- Second Relazed dual problem: (i.c. for y* —y <0) :

Updating bounds on z:
Reset the bounds on the z variables as follows :

el = yF, gV =  yRIGHT
ek = (y%)?, el = RIGHT 2
ek = (y5)3, 2l = (yRIGHTY3
ok = WOV, ef = @OV,

Formulating the Lagrange functions

(i) For the Lagrange function from the Uth iteration :

If v, >0, th Bu — oL, ,
f UZL+1_ , en z; z;j Vil2..N-1.
If VZ'+1 < 0, then :L‘,Z» U = z;.

(ii) For the Lagrange function from the Kth iteration :

If UZ-I_(I_120, then zBK:zZU.

)

If Vz'l-(|-1 <0, then sz =zl

Solving the Relaxed dual problem
Find the intersection of the following two constraints :

KB = L(zBU:y: VU): and
KB = L(mBK:y: VK)'
If upint < PUBP then store the solution of the problem. That is, set
2 . 2 .
,qugtor (K) — 'u‘%n’ and ystor (K) — ymt.

where again int denotes the value of the variable obtained by the inter-
section.

STEP 5- Selecting a new lower bound and y%+1:
1 2 « . ; .
From the stored sets u§i°" and pii°"", select the minimum p*" (in-
cluding the solutions from the current iteration). Also, select the corre-
sponding stored value of y as y™". Set RFBD = wg'", and YK+l = ymin,

Delete ,u,”B“m and y™" from the stored set.



STEP 6- Check for convergence:
Check if REBP > PUBD _¢ [IF yes , STOP. Else, set K = K + 1 and
return to step 1.

Remark 1 : Since the primal problem in Step 1 is solved for a fixed
value of y, the problem is just a function evaluation at y = y*¥.

Remark 2 : Each of the two relaxed dual problems solved (in Steps 3
and 4) are solved by calculation of the intersection of two linear equality
constraints in two variables and the comparison of the resulting solution
for up with the values of the objective function at the two relevant bounds
of y.

5 An Illustrating Example
Consider the following unconstrained optimization problem :
min —y° + 4.5y — 6y
¥

s.t. 0<y<3.

Thus, ag = 0,a; = —6,a; = 4.5, and a3 = —1. The nonconvexity in
this problem arises due to the presence of the term —y? in the objective
function.

Introduction of three transformation variables z1, 5 and 3 and their
equivalence relationships to y results in the following equivalent form of
the problem :

min —6z; + 4.525 — 23

st. zy—y =

L2 — 1Y
L3 — I2Y
0<y
0< 2

© W w o o o
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Consider a starting point of y' = 1 for the GOP algorithm. The



solution of the primal problem can be found as follows :

ZQ = 1
n = () 1
o = (yl)d = 1
3
3 = (y1) 1
3
FiyY) = X al(yl)l = =25
=0
Ué = —as = 1
vi = viyl—ay = -35
vi = viyl—a; = 25.
Since K = 1,and y' = 1, set y“FFT = yL = 0 and y*/FHT =4V =3,

Also,set LRD =Y ES and RRD=YES.

The Lagrange function for the problem can be formulated as

L(z,y,v') = —=3.52,(1 —y) + 22(1 — y) — 2.5y .

First Relaxed dual problem (Solved for 1 — y > 0)
According to Step 3 of the modified algorithm, set :

el = yLEFT‘) - 0, 2/ = oyl = 1
= o= (7)) =0, e = () =
o= @Y = 0, &) = () = 1.

The proper bounds to be used for the z variables in the Lagrange
function are then determined as follows :

Since vi <0, zjlgl =z =1
: 1 B L
Since vz >0, z;' =25 =0.

Using these bounds for the z variables, the current Lagrange function

becomes
L(z,y,v') = —3.5(1 — y) — 2.5y = y — 3.5.

Since this is the first iteration, there are no previous Lagrange functions.
Therefore, the solution to this problem will lie at y = 0, since the coeffi-
cient of y in the Lagrange function is positive. The objective value, that
is, the value of up, is -3.5 .

Second Relaxed dual problem (Solved for 1 — y < 0)




st = ¢ =1, = = YU o=,
D N B O ]
zg (yl) = 1, zg = (yRIGHT) = 27.

The proper bounds to be used for the z variables in the Lagrange
function are then determined as follows :

B,

. 1 _ L _
Since v, <0, z' =27 =1.
Since vs > 0, zfl = 1:2U =9.

Using these bounds for the z variables, the current Lagrange function
becomes

L(z,y,v') = —3.5(1 —y) + 9(1 — y) — 2.5y = —8y + 5.5.

The solution can be found by inspection. In this case, since the coefficient
of y is negative, the solution lies at the upper bound, that is, y = 3, up =
—18.5.

Thus, at the end of the first iteration, the lower bound from the two
relaxed dual problems is -18.5 . The value of y for the next iteration is 3.

It is interesting to compare the two solutions found in the first iter-
ation to the solutions that would be found using the original bounds for
the z variables. If the bounds for z1, z, and z3 were fixed to be [0, 3],
[0,9] and [0, 27] (which are the original bounds for the z variables), then
the solutions found are y = 0, up = —10.5 and y = 3, up = —25.5. Thus,
using the improved bounds for z results in a tighter lower bound from
the relaxed dual problems.

According to Step 5, the next y is selected as the one that corresponds
to the minimum of the two relaxed dual problems, that is, y> = 3.

Second Iteration
The primal problem is solved for 4> = 3. The solution to this problem

is:

Py} = 1
1 = y2 = 3
T = (y2)2 = 9
3
z3 = (v?) = 27
3
F(y') = Ya(y') = -45
=0
1/32 = —as = 1
v2 = vy —ay; = -15
vi = vy’ —a; = 1.5



Since K = 2, and y' = 1 < 42, set y"FFT = y' =1 and yFIGHT =
yY = 3. Also, since 4> = 4", set LRD =Y ES and RRD = NO.
The Lagrange function for the problem can be formulated as

L(z,y, VZ) = —1.521(3 —y) + z2(3 —y) — 1.5y.

Since RRD = NO, only the relaxed dual problem for y < 3 needs to
be solved.

Relaxed dual problem (Solved for 3 — y > 0)

Set
gl = yLEFT = 1, 2V y! 2 = 3
gf = (yLEFT); =1, f = (yl)3 = 9,
zg (yLEFT) = 1, zg (¥')” = 2T.

The proper bounds to be used for the z variables in the Lagrange
function from the current iteration are then determined as follows :

Since vi <0, 1?2 =2{ =3.
. 2 B L
Since vy >0, z,° =25 =1.

Using these bounds for the z variables, the current Lagrange function
becomes

L(z,y,v?) = —4.5(3 —y) + 1(3 — y) — 1.5y = 2y — 10.5.

For the previous iteration, the Lagrange function has the following bounds
for z:

Since vi> 0, zfl = z2U =9.
Since vi <0, th =zl =1

From this, the Lagrange function from the first iteration becomes
L(z,y,v') = —3.5(1 —y) + 9(1 — y) — 2.5y = —8y + 5.5.

The solution to the current relaxed dual problem lies at the intersection
of the two Lagrange functions, or at one of the two bounds for y in the
current problem, that is, at either y = 1 or y = 3. If the solution lies at
either of these two bounds, then it need not be considered. Therefore,
the only case to be considered is when the solution lies at the intersection
of the Lagrange functions. Here, the intersection lies at y = 1.6, up =
—T7.3. This is less than the objective function values at y = 1 or y = 3,
so this is the solution of the current relaxed dual problem. Therefore,
RIBD — _7.3 and 4° = 1.6.



Third Iteration

The primal problem is solved for ¥ = 1.6. The solution to this
problem is:

s} = 1

T = 3 = 1.6

2, = (B = 256

23 %)’ 4.096
3

F(y¥) = Ya(y’) = -2.176

i=0

vi = —ag = 1

vi = vy —ay = 2.9

v} = vy —a; = 1.36.

Since y' = 1 < 9%, and 3> = 3 > 45, set y*FFT = ¢y = 1 and

yRIGHT — 42 — 3 Also, set LRD =Y ES and RRD =Y ES.
The Lagrange function for the problem becomes

L(z,y,v°) = —2.92,(1.6 — y) + z2(1.6 — y) — 1.36y.

First Relaxed dual problem (Solved for 1.6 — y > 0)

Set
s = ¢ =1, &Y = ¢ = 18
zy = (yLEFT);) =1, = = (y3)3 = 2.56,
¥ (y" 1Ty 1, 2§ = (¥) 4.096.

The proper bounds to be used for the z variables in the Lagrange

function are then determined as follows :

Since vi > 0, 1:]283 =zl =1.
Since v <0, zfgs =z{ =1.6.

Using these bounds for the z variables, the current Lagrange function
becomes

L(z,y,v°) = 2.28y — 5.824.
Since y' = 1 < ¢® and the current relaxed dual problem is being solved
for y < 1.6, the Lagrange function from the first iteration for y > 1 will
be present. With the above bounds for #; and z,, this Lagrange function
becomes

L(z,y,v") = —3.5(1 —y) + 2.56(1 — y) — 2.5y = —1.56y — 0.94.

The intersection of the two Lagrange functions lies at y = 1.2718 and
up = —2.924. Since the value of up is greater than the best upper bound



from the primal problems (-4.5), this solution need not be considered for
future iterations.

Second Relaxed dual problem (Solved for 1.6 — y < 0)

Set

=i = ¥ = 16, af = U =y,
zé = (y?’); = 2.56, zgj = (yRIGHT)3 = 9,
g = (¥°) = 4.09, =i = (YHEHTY = a7

The proper bounds to be used for the z variables in the Lagrange
function are then determined as follows :

Since ug’ <0, mjlgs = zf = 1.6.

Since v5 >0, zfa = zg =9.

Using these bounds for the z variables, the current Lagrange function

becomes
L(z,y,v?) = 6.976 — 5.72y.

Since y? = 3 > 4> and the current relaxed dual problem is being solved
for y > 1.6, the Lagrange function from the second iteration for y < 3
will be present. With the above bounds for #; and z,, this Lagrange
function becomes

L(z,y,v?) = —4.5(3 — y) + 2.56(3 — y) — 1.5y = 0.44y — 5.82.

The solution to this relaxed dual problem lies at the intersection of the
two Lagrange functions, which occurs at y = 2.0772 and pp = —4.9059.

At the fourth iteration, the primal problem has a solution of -2.009.
When the two relaxed dual problems are solved, they both have solutions
greater than -4.5. Therefore, the algorithm converges at the end of the
fourth iteration. In comparison to this, the original GOP algorithm takes
17 iterations to converge to the global solution.

6 Geometrical Interpretation

The application of the modified GOP algorithm to the example in the
previous section can also be illustrated geometrically. Figure 1(a) shows
the plot of the objective function F(y) as a function of y. Since the
problem is one of unconstrained minimization, is also the plot of the
solutions of the primal problem as a function of y.



For a starting point of y' = 1, the sequence of points generated by
the algorithm is graphically illustrated in Figures 1(b)-1(e). For the first
iteration (Figure 1(b)), with an optimal value of -2.5 for the primal prob-
lem, the relaxed dual problems are solved for y < 1 and for y > 1. For
the relaxed dual problem corresponding to y < 1, the bounds for z; and
z5 (which originally were [0,3] and [0,9] respectively) can be improved to
[0,1] and [0,1] respectively. Li is the Lagrange function that results from
using the improved bounds for the z variables, while P! is the Lagrange
function obtained from using the original bounds for z; and z5. Thus,
the use of the improved bounds results in a tighter underestimator for
the relaxed dual problem. Similarly, for the relaxed dual problem corre-
sponding to y > 1, the bounds for z; and z; can be improved to [1,3]
and [1,9] (instead of [0,3] and [0,9]). This results in a tighter Lagrange
function (L3) when the modified bounds are used as compared to the
Lagrange function (P;)) that results from the use of the original bounds.

For the second iteration, y> = 3 for the primal problem, and the op-
timal solution is -4.5. For this iteration, only one relaxed dual problem
needs to be solved, namely for y < 3. For this problem, the Lagrange
function from the first iteration corresponding to y > 1 is present. There-
fore, the bounds on z; and z, can be modified to [1,3] and [1,9] respec-
tively. The Lagrange function that results from the use of the tighter
bounds on the z variables, namely L?, is a tighter underestimator of the
objective function than the Lagrange function P? obtained from using
the original bounds for z; and #;. The solution of this relaxed dual
problem is shown by point B on Figure 1(c). In contrast, the solution
obtained by the original GOP algorithm at a similar juncture is shown
by point A. As can be seen, the lower bound obtained from the modi-
fied algorithm is tighter than the lower bound from the original GOP
algorithm. It should be noted that the original GOP algorithm and the
modified GOP algorithm differ in the subsequent selections of y for the
third and further iterations.

Figure 1(d) shows the relaxed dual problems solved at the third it-
eration, for which the corresponding primal problem has been soved for
y = 1.6. For this iteration, the nearest points from previous iterations on
the left and right sides are y = 1 and y = 3. Consider the relaxed dual
problem solved for y < 1.6. The bounds on z; and z; can be improved to
[1,1.6] and [1,2.56] respectively. This results in the Lagrange function L3
formulated from the current iteration. It is interesting to note that due
to the improvement of the bounds on the z variables results in an even
tighter form of the Lagrange function from the first iteration. Originally,
at the second relaxed dual problem in the first iteration, this Lagrange
function had been formulated using the bounds of [1,3] and [1,9] for z;
and z respectively, and is represented by Ll in Figure 1(d). Now, how-
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ever, the bounds on z; and z- are [1,1.6] and [1,2.56] respectively. Using
these bounds results in the Lagrange function M4 from the first itera-
tion. Therefore, the solution of the current relaxed dual problem lies at
the point C. Similarly, for the relaxed dual problem solved for y > 1.6, the
bounds on z; and z; can be improved to [1.6,3] and [2.56,9] respectively.
This results in the Lagrange function L3 from the current iteration. At
the same time, the Lagrange function from the second iteration moves up
from L? to M due to the use of the tighter bounds on the z variables.
The solution of this relaxed dual problem is shown by the point D on
Figure 1(d).

Figure 1(e) shows the underestimating function that is obtained after
three iterations of the modified GOP algorithm. Figure 1(f) shows the
underestimating function obtained after three iterations of the original
GOP algorithm when applied to this problem from a starting point of
y' = 1. As can be seen, the modified algorithm provides a tighter un-
derestimator as compared to the the one that is obtained by the original
algorithm. Moreover, the modified algorithm eliminates whole regions of
the problem for future iterations due to the tightness of the underestima-
tor.

At the fourth iteration, the Lagrange functions from the second and
third iteration move up so that the solution of the relaxed dual problems
is -4.5, and the algorithm terminates.

7 Constrained Problems

When the optimization problems involve constraints with polynomial
functions in the objective function and/or constraints, the primal prob-
lem can no longer be solved by function evaluation. In this case, the
primal problem, for a fixed y = ¥¥, can be written as

N
min E a;z;
T .
1=0

N
ZA]'Z':Z:Z' S 0 j:1,2,...,J
=0

N
Y Bpizi = 0 m=12,..,M
+=0

2, —zi_yt =0 i=1,2,...,N,

where zg = 1.



The solution of this problem is obtained by solving a linear program-
ming problem in the z variables, and provides the multipliers used in
formulating the Lagrange function as well as an upper bound on the
global solution.

The KKT gradient conditions for this problem are

7 M
a; + ZM}KAji + Z AKX Bri
j=1 m=1

K K K
+vi — vy
=0

Vo L(z, y™, A, u 0 ")

where A% and u® correspond to the original equality and inequality con-
straints, and »¥ corresponds to the new equality constraints introduced,
with vf< = VJI\§+1 =0.

The Lagrange function for this problem is given by

N J
Lz, y, N 05, 0%) = Y laimi + ) i 4
i=0 j=1
M
+ Z AR Brizi + v (2 — zi_1y)).

m=1
Separating the terms in z, this can also be written as

N J M
L(z:y: AK:IU’K:VK) = Z a; + ZAJZ,u'f( + Z Bmz)‘g
ji=1 m=1

=0
K K
‘v, — VZ»_Hy] ;.

Using the KKT conditions, the Lagrange function can be written as

N
L(Z‘.,y, AK:“K:VK) = Zyi{(}-l(yK - y)zl
i=0

Thus, it can be seen that the Lagrange function formulated from the
primal problem is identical to the one formulated in the case of uncon-
strained optimization problems. Therefore, Steps 2-6 of the improved
GOP algorithm presented in Section 4 remain the same as for uncon-
strained optimization problems.

It is possible that for some values of y = ¥, the primal problem is
infeasible. In this case, it is necessary to solve a relaxed primal problem
involving the minimization of the sum of infeasibilities. This problem is
shown below:



J M
H}L‘inza]’ + Z(;Bm +7m)
ji=1 m=1

A\
Q
[
.
Il
u’—‘
n[\D
L

N
E Ajiz;
=0

N
ZBmizi = Bmn—Ym m=12,...,. M
i=0

2, —zi_yt =0 i=1,2,...,N.

The Lagrange function for this problem is given by

J M J N
L(:E,y, AK:F'K;UK) = Zaj + Z(,Bm +'Ym) + Z[L]K ZA]Z:EZ - OL]'
=1 m=1 =1 i=1
J . N J
+ 3 AKO " Buizi — B +vm)
m=1 i=1

N
+> v (e —2i1y)
i=1

Using the KKT gradient conditions for the relaxed primal problem and
separating the terms in z, this again be reduces to

N
L(:l},y, AK:F’K:VK) = Zyi{(}-l(yK - y)zl
=0

In this case, however, the Lagrange function is added to the relaxed dual
problem in the following form:

0> L(z,y, A, u,v5).

This has the same form as the regular Lagrange function, except that pp
has been replaced by 0. Steps 2-6 can again be applied towards solving
relaxed dual problems in these iterations, with the above replacement
being the only change.

8 Computational Experience

8.1 Unconstrained Problems

Example 1 :



This example is taken from Wingo (1985).

o P25 39 TLy T, ]

min y° — — — —y° - —y° - —

dt Y T 95Y TeeY T10Y Ta20Y YT
—2<y<11

This function has a local minimum at 0, with a value of 11—0 . The best
solution reported by Wingo (1985) is -23627.1758, occurring at y = 11.
However, the global minimum of the function occurs at y = 10, with an
objective value of -29763.233 .

For this problem,

1 79 71 39 52
Tn! :__:_:_:__;1): M=J=0.
10 20" 10° 80" 25

When the (GOP) was applied to this problem, it converged to the
global solution of -29763.233 taking around 175 iterations from different
starting points. When the improved GOP algorithm was applied, how-
ever, the global optimum was identified from all starting points in less
than 24 iterations. For a relative tolerance of 1073, the algorithm takes
11 iterations , while the number of iterations required for relative error
between the upper and lower bounds to be less than 10~8 is 23. After 26
iterations, the algorithm converges exactly (with an absolute error of 0)
to the global solution.

Example 2 :
This example is taken from Moore (1979). It involves the minimiza-
tion of a 50" degree polynomial in one variable.

min E a;y’
y

i=1

where

a = {-500.00000,2.5000000, 1.666666666, 1.2500000, 1.000000,
0.8333333,0.714285714, 0.625000000, 0.555555555, 1.0000000,
—43.6363636,0.41666666, 0.384615384,0.357142857,0.3333333,
0.312500000,0.294117647,0.277777777,0.263157894, 0.2500000,
0.238095238,0.227272727,0.217391304, 0.208333333, 0.2000000,
0.192307692,0.185185185,0.178571428,0.344827586, 0.6666666,
—15.483870970, 0.15625000,0.1515151,0.14705882,0.14285712,



0.138888888,0.135135135,0.131578947,0.128205128, 0.1250000,
0.121951219,0.119047619,0.116279069,0.113636363,0.1111111,
0.108695652,0.106382978, 0.208333333, 0.408163265, 0.8000000}.

This function has the global minimum at y = 1.0911, with a value of
—663.5. The improved version of the GOP algorithm takes 45 iterations
to find the global solution from a starting point of y = 1.

Example 3 :
This example is taken from Wilkinson (1963).

min 0.000089248y — 0.0218343y” + 0.998266y° — 1.6995y" + 0.2y°
Y

0<y< 10.

This problem has local minima at y = 6.325, f = —443.67, y = 0.4573,
f = —0.02062, y = 0.01256, f = 0.0 and y = 0.00246, f = 0 among
others. The improved GOP algorithm identifes the global solution from
different starting points within 25 iterations.

Example 4 :
This example is taken from Dixon and Szego (1975).

min 4y? — 4y + ¢*
y

—5<y<5.

This problem has two global minima at y = 0,f =0, and y = 2, f = 0.
There is a local maximum at y = 1. When the original GOP algorithm
was applied to this problem, the global solutions were identified after
around 150 iterations. However, the improved GOP algorithm identifes
the global solution from different starting points within 50 iterations.

Example 5 (Three-hump camel-back function):
This example is taken from Dixon and Szego (1975).

. 1
mnF@Fﬂﬁ—L%ﬁ+gﬁ—mm+ﬁ

=5 < y1,y2 < 5.

The nonconvexities in the problem are due to the —1.05y} and —y;y-
terms in the function. It can be seen that at the optimal solution, the

value of y5 must be either —5, 5 or % Assuming that the solution does



not lie at —5 or 5, y» can be replaced by %-. Then, the problem can be
converted to the following unconstrained optimization problem :

1 .
min F(y) = 1.75y7 — 1.05y} + gy?

—5<y <5
The modified GOP algorithm was applied to the problem in this
form. The solution of y; = 0, F(y) = 0 was identified in 31 iterations for
an absolute error of 107° between the upper and lower bounds on the
global solution.

Example 6 :
This example is taken from Goldstein and Price (1971).

min 3% — 15y* + 27y? + 250

-5 <y<5.

This function has local minima at (0,250), (3,7) and (-3,7). When the
GOP algorithm was applied to the problem, the two global solutions
were simultaneously identified in 68 iterations for a relative tolerance of
1073,

Example 7 :
This example is taken from Dixon (1990).

min y* — 3y° — 1.5y + 10y

-5 <y<B.

This function has a global solution of -7.5 at y = —1. When the modified
GOP algorithm was applied to the problem, the global solution was
identified in 24 iterations for a relative tolerance of 1073,

Remarks :

The number of iterations taken by the above problems for different
orders of accuracy in the convergence of the upper and lower bounds is
given in Table 1. Some interesting points to note about the computa-
tional results of the modified algorithm are given below :

(a) For all the problems for which the algorithm was applied, the num-
ber of iterations required for convergence increases almost linearly
with the accuracy desired. For Example 1, the number of iterations
required for an accuracy of 1073 is 11, while the number of itera-
tions required for the bounds to be within 10~ is only 26. This is
in direct contrast to most algorithms that require an increasingly
larger number of iterations as the accuracy is increased.



(b) For three of the problems considered (Examples 1,2 and 3), the algo-
rithm terminates exactly after a certain number of iterations. This
is because after some iterations, the use of the improved bounds for
the z variable results in tighter underestimating functions. Even-
tually, at some iteration, all the points in the stored sets are used
up, and the Lagrange functions formulated for that iteration are
such that no new points are generated that can improve the so-
lution. Thus, for these problems, the algorithm converges to the
global solution exactly.

(c¢) For Examples 4 and 5, the convergence is in terms of the absolute
difference between the upper and lower bounds. This is because the
global solution of these problems is 0.

(d) At every iteration of the algorithm, there is one function evalua-
tion associated with the solution of the primal problem, and two
problems involving the solution of the simultaneous solution of two
linear equations in two variables (which correspond to the solution
of the two relaxed dual problems).

Problem | Relative Tolerance for Convergence
1073 ] 1075 | 10=7 10~8
Example 1 11 15 19 23
Example 2 34 39 45 45
Example 3 13 18 28 33
Example 4 30 40 54 56
Example 5 27 31 34 36
Example 6 68 161 - -
Example 7 24 7 216 491

Table 1: Number of iterations of the modified GOP algorithm

8.2 Constrained Problems

Example 8 :
This example is taken from Soland (1971).

min —12y; = 7y: + 4}



subject to  — 2y +2 — y»
0<wy
0<w

<
< 3.

The nonconvexity in this problem comes from the presence of the poly-
nomial term —2y} in the first constraint.

When the original GOP algorithm was applied to the problem in this
form, from a starting point of 0 for y;, the algorithm converged to the
global solution of -16.73889 at y = (0.7175,1.47) in 89 iterations, solving 3
subproblems at every iteration. When the improved GOP algorithm was
applied from the same starting point, the global solution was identified
in 14 iterations.

It should be noted that the constraint can be written in the following
form :

Y2 = 2 — 2y

Then, using this constraint to substitute for y, and utilizing the bounds
on Yy, the problem can be converted into the following unconstrained
optimization problem :

min 4y} + 6y} — 12y, — 10

0<y <1

When the modified GOP algorithm was applied to the problem in this
form, the algorithm converges exactly to the global solution in 14 itera-
tions. It should also be noted that in this form, the problem is convex,
and therefore any conventional solver should be able to identify the global
solution.

Example 9:
This is a test example that has a feasible region consisting of two
disconnected sub-regions.

rrg/in —Y1 — Y2

y2 < 2+ 2yf — 8y} + 8y;

yo < 4y, — 32y] + 88y} — 96y, + 36
0 < y1 <3

0 < ¥y <4

The constraint region for this problem is given in Figure 2(a). As can be
seen, there are two distinct regions where the problem is feasible. Because
of this reason, if a conventional NLP solver were applied to this problem,



it is highly unlikely that the solver would converge to the global solution
at point C. Depending on the starting point, the solution will be one of
the points A, B, or C.

From a starting point of 0 for y;, the original GOP algorithm takes
210 iterations to converge to the global solution of -5.50796 (occurring
at y1 = 2.3295). When the improved GOP algorithm was applied to
it, however, the algorithm took 24 iterations to converge to the global
solution.

Conclusions

In this paper, the application of the GOP algorithm ( Floudas and
Visweswaran, 1990 ) to problems involving polynomial functions in one
variable is considered. The problem is solved by decomposition into a
series of primal and relazed dual problems. The solution of the primal
problem can be obtained by simple function evaluations. The relaxed
dual problem can be solved through two subproblems, each of which is
shown to reduce to a problem of finding the intersection of two linear con-
straints in two variables. The simplfied primal and relaxed dual problems
result in a modified algorithm that is computationally very efficient. The
application of the modified algorithm is shown through an illustrating
example that details the improvement of the modified algorithm over the
original GOP algorithm both numerically and geometrically. Several ex-
amples of unconstrained and constrained polynomial function problems
are presented to highlight the efficiency of the new algorithm.
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