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Abstract

In Part I (Floudas and Visweswaran, 1990), a deterministic global optimization
approach was proposed for solving certain classes of nonconvex optimization problems.
An algorithm, GOP, was presented for the rigorous solution of the problem through
a series of primal and relared dual problems until the upper and lower bounds from
these problems converged to an e-global optimum. In this paper, theoretical results
are presented for several classes of mathematical programming problems that include :
(i) the general quadratic programming problem, (ii) quadratic programming problems
with quadratic constraints, (iii) pooling and blending problems, and (iv) unconstrained
and constrained optimization problems with polynomial terms in the objective func-
tion and/or constraints. For each class, a few examples are presented illustrating the

approach.
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1 Introduction

A large number of nonlinear programming problems can be written in the following form :
min f(z,y)
g(zy) <

h(z,y) =
T &€
c

%XOO

y

where f(z,y), g(x,y) and h(x,y) can be nonlinear functions leading to nonconvexities in the
problem.

Floudas and Visweswaran (1990) proposed a new deterministic global optimization ap-
proach for solving problems of the form (1) that satisfy conditions (A) ( see Part 1 ). The
proposed algorithm (GOP) uses duality theory to decompose (1) into primal and relazed
dual subproblems, which are then solved rigorously making use of several theoretical prop-
erties utilizing the convexity of the projected problem in the space of the subsets = and y.
The algorithm was proved to have finite e-convergence to an e-global optimum of (1).

Through the use of transformations and partitioning of the variable set, many standard
programming problems can be converted to the form given by (1). This paper discusses
the mathematical properties of several classes of optimization problems and presents the
application of the GOP algorithm to some of these classes that have special structure. Of
particular interest are problems that commonly appear in chemical engineering applications,
such as quadratic programming problems with linear or quadratic constraints, pooling and
blending problems, and polynomially constrained problems.

Section 2 discusses the application of the GOP algorithm to quadratic programming
problems with linear constraints. Examples are presented for bilinear programming and in-
definite quadratic programming problems. In section 3, this approach is extended to include
quadratic programming problems with linear and quadratic or bilinear constraints. Pooling
and blending problems, with linear objective function and bilinear constraints, are consid-
ered in section 4. Finally, section 5 considers unconstrained and constrained optimization

problems involving polynomial functions in the objective function and/or constraints.



2 The General Quadratic Programming Problem

2.1 Theory

The general quadratic programming problem, with linear constraints, has the following form:

. T T
iré%lc x4+ x Qx
subject to Ajx —b; < 0
Ag{l/’—bg =0

where x an n-vector of variables, and ¢, b; and by are constant vectors. (), A; and A, are
constant matrices. Depending on the nature of the eigenvalues of the matrix (), the problem
can be a definite or indefinite quadratic programming problem.

By defining a new set of variables y = z, and introducing a set of equality constraints,

this problem can be converted to the following equivalent problem :

min fz 4+ zTQy

m,y
s.t Aly — bl <0
Azy — bg = 0
r—y =0

By projecting on y, the following linear primal problem is obtained at the & th iteration:

min ¢fz + 2T Qy*
x

st Aixz—b <0
Agll’} — bg =0
T — yk =0
The solution to this problem provides the optimal multiplier vectors p®, \*¥ corresponding
to the original inequality and equality constraints, and the multipliers v* for the equality

constraints due to the introduction of the y-variables.



The Lagrange function can be formulated as

L(z,y, Ae, %, %) = Ta 4+ 2TQy + p*" (Are — by) + A (Agz — by) + o4 (2 — y)
= «TQy + 2T[c+ ATp* + ATIe 4+ ¥ — (¥ by + A¥Tby 4 1+ 7 y]
(2)

From the KKT gradient condition for the primal problem we have
VoL (xF oy NE % %) = QyF + e+ ATpF 4 ATNE 4R =0
Hence,
e+ ATpF + ApA 0k = —Qyt (3)
Thus, (2) and (3) can be combined to give

L(z,y, X5, 1k, %) = 2T (Qy — QuF) — (¥ by + X by + 4T y)
= 2TQy — y*) — (¥ by + X by 4 1 y).

Hence, the qualifying constraints to be added along with the Lagrange function in the relaxed

dual problem take the form
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Qily —yF) >0 if 2

where (); is the i th row of @), i.e. the row corresponding to z; in the matrix Q.

For iterations where the primal problem is infeasible, the relaxed primal problem is linear,
and hence the Lagrange function generated from this problem (by use of the KKT optimality
conditions for the relaxed primal problem) will not contain any terms involving z. Hence,
for such iterations, only one relaxed dual problem needs to be solved. It should also be noted
that if transformation variables had been introduced for all the z variables (as in the case
of negative definite quadratic problems), the constraints from the original problem can be
introduced into the relazed dual problems (in terms of the y variables). For such problems,

the primal problem will never be infeasible.



2.2 Computational Results

2.2.1 Bilinear Programming Problems

Example 1 : This example is taken from Konno (1976).

rgiyn Ty — T2 — Y1 — (l‘l - $2)(y1 - yz)

IN

8
12
12

subject to  x1 + 4xy
dx1 + 9

IN

31}1 + 4.1’2

IA N

2y1 + a2

IN

Y1 + 2y,

IN

Y1+ Y2

o Ot oo 0o

Vv

T1,22,Y1,Y2

The bilinear terms in the objective function are the only source of nonconvexity in this
problem. By projecting on y; and y,, the primal and relaxed dual problems become linear
in z and y respectively. Since the primal problem is solved for fixed values of y; and vy,
the three constraints that contain only y; and y, can be directly used in the relaxed dual
problem.

Iteration 1:

For a starting point of y] = 0, y; = 0, the primal problem is given by

min i — Iy
xT

IN

8
12
12
0
0

subject to  x1 + 4xy
4z1 + 9

IN

31}1 + 4.1’2

VAN VAN

0-.1’1

IN

0—.172

The solution of this problem yields x1 = 0, z3 = 2, p} = 0.25, pi = 1.25 and pj = pu3 =
ps = 0, where ul, p3. p3, p3 and pi re the Lagrange multipliers for the five constraints. The

objective function has a value of -2.



The Lagrange function formulated from this problem is given as

Ll(l’ayaﬂl) = T1— T2 — Y1 — (11?1 - 51?2)(y1 - yz)
—|—().25(:1;1 +4xq9 — 8) + 1.25(0 — :1;1)
= —(y1 —y2)r1 + (Y1 — y2)T2 — Y1 — 2

on rearranging the terms in x together. From this, it can be seen that the qualifying con-
straints for both z; and z, are equivalent to (y1 — y2) being greater than or less than 0
depending on the nature of the bound chosen for x; or z5. Hence, it is sufficient to solve two

relaxzed dual problems, once for (y; — y2) greater than zero, and once for (y1 — ya2) being less

than zero. From the constraint set, the bounds on x; and x, are obtained as ${J = a:g’ =0,
U _ U _
and z{ =3, z; = 2.

The two relaxed dual problems to be solved at the first iteration are shown below:

(i) For (y1 — y2) > 0 : The bounds for = are 22 = 2V =3, and 28 = 2L = 0.

min IB
Y

st. pp > LYy =3,20=0,y,p") = —4y1 + 3y2 — 2
y1—y2 =0
200 +y2 <8, 142y <8, yi+y2<5, y,y2>0

The solution of this problem is y; = 4, y, = 0, and ug = —18.

(i) For (y1 — y2) <0 : The bounds for z are 28 = 2L = 0, and 28 = 2¥ = 2.

min B
| H

sd. pp > LYo =0,29 =2,y,p') = y1 — 2y — 2
1 —y2<0
200+ y2 <8, y1+2 <8, mty2<>5, y,y220

The solution of this problem is y; = 0, y3 = 4, and ug = —10.

Thus, after the first iteration, there are two solutions in the stored set - (i) up = —18, y =
(4,0) , and (ii) pup = —10, y = (0,4). Of these two solutions, the first one gives the lowest

bound for the global solution; therefore, this solution is chosen from the stored set. Hence,



the lower bound on the problem is -18, and the fixed value of y for the second iteration is
(4,0). Since this solution is selected, it is deleted from the stored set.

Iteration 2: For the second iteration, the primal problem is

min  —3xz1 + 31, — 4

IN
o0

subject to 11 + 4x,
12
12
0
0

4z1 + 9

IN

3.1’1 + 4£L'2

IAIA

O—ZL'l

IN

O—ZL'z

This problem has the solution @3 = 3, @ = 0,43 = p2 = p2 =0, p3 = 0.75 and p2 = 3.75.
The objective function value is -13, and becomes the new upper bound on the global solution.

Before solving the two relazed dual problems in the second iteration, a Lagrange function
from the first iteration needs to be chosen. To do this, the qualifying constraints for the two

Lagrange functions are tested for feasibility at the current y, i.e. at y = (4,0). At this point,
y1—y2=420

Hence, the Lagrange function that has the qualifying constraint y; — y2 > 0 is chosen to be
present in the relaxed dual problems of the current iteration.

The Lagrange function formulated from the second primal problem is

L2($7yaﬂ2) = T1— T2 — Y1 — (l‘1 - 51?2)(?%1 - yz)
—|—0.75(4:(:1 + x5 — 12) + 3.75(0 — :r:g)
= —(n—y2—Hr1+ (1 —y2—4)r2—y1 — 9

Hence, the qualifying constraints have the form (y; —ya —4). The two relazed dual problems

for the current iteration are :
(i) For (y1 — y2) > 4 : The bounds are z2 = 3, and 22 = 0.
min UB

sit. pup > L'z1=3,29=0,y, ") = —4dy; + 3yp — 2



y1—y22>0
pp > L*(x1=3,29 = 0,y, %) = —4y1 + 3ya + 3
Y1 — Y2 > 4
2y +y2 <8, yi+2y2 <8, yitya <5, y,y2=>0

The solution of this problem is y; =4, y3 = 0, and ug = —13.
(ii) For (y1 — y2) < 4 : The bounds are 28 = 0, and 22 = 2.

sd. pp > L'z =3,25=0,y,p') = —dy; + 3y, — 2
y1—y2 >0
pp > L*(xy=0,25=2,y, %) = y1 — 2yp — 17
Y1 —y2 <4
21+ Y2 <8 y1+2y2 <8, y1+y2<5, y1,y22>0

The solution of this problem is y; = 3.667, y, = 0.667, and up = —14.667.
Thus, after the end of the second iteration, there are three solutions in the stored set -
(1) s =—10, y; =0, y, = 4 from the first iteration,
(i) g = —13, y1 =4, y2 = 0 from the second iteration, and
(iii) pp = —14.667, y; = 3.667, y; = 0.667 from the second iteration.

From these, the third solution provides the minimum value of pg. Hence, the lower bound is
updated to -14.667 and the fixed value of y = (3.667,0.667) is chosen for the third iteration.

The algorithm continues in this fashion for one more iteration, converging to a solution of
-13. This is the global solution for the problem. Similarly, the algorithm took 2-3 iterations

to converge from several other starting points.

2.2.2 Indefinite Quadratic Programming

Example 2 :



This example is a large indefinite quadratic programming problem, and is taken from

Floudas and Pardalos (1990).

min = ®(z,y) = ®1(x) + Pa(y)

z,y

s.it. Az 4+ Ay < b
z; >0, 1=1,2...10
y, > 0, :=11,12..20
where

9 10
O, (z) = 51201-(:51-—3;—1)2 0, <0, C; >0, i=1,2..10
=1

9 20
a(y) = 5 3 Cilyi =) 02>0, >0, i=11,12,..20

=11
where 6; is a negative constant, 8, is a positive constant, and Cy, Cy, T and 3 are constant
vectors. Hence, the function ®;(z) is concave, while ®5(y) is convex. The data for this

problem is given below :
C = (63,15,44,91,45,50, 89, 58, 86, 82,
42,98,48,91,11,63,61,61,38,26)
= (—19,—-27,-23,—53, —42,26, —33, —23,41, 19)

8|

7 = (—52,-3,81,30,—85, 68,27, —81,97, —73)
(3556 4 456 4 4| (8 24111217 3]
545 41 4425 2 3617758721
1524731576 1 724753412
32632161 73 778234581 2
4|6 6645 22432 4| T P36 T 58463
552135574 3 41738316238
3663161671 4314364675 4
1217876587 2 3554542 2 8
8525381335 4556171224
111111111 IR




b = (380,415, 385,405,470, 415, 400, 460, 400, 200)

The global solution of this problem occurs at

T = (0,0,0,62.609,0,0,0,0,0,0)
7 = (0,0,0,0,0,4.348,0,0,0,0)

In order to remove the nonconvexity in the problem, new transformation variables y; through

Y10 are introduced in the following manner:

Y1 = 21, Y2 = T2,...,Y10 = T10

so that 5 10

Py(z,y) = 51 z; Ci(ws —73)(ys — Ts)
Then, projectingon y;, ¢+ = 1,2, ...,20 leads to the primal problem being essentially a function
evaluation at x = y*®. This implies that the original constraints can be ignored for the primal
problem. Hence, the primal problem at the kth iteration can be written as shown below :

. 91 10 _ k _ 02 20 k —\9
mn o > Ciles — %) (yf — 7)) + B > Cilyf — W)
=1

1,%2.-T10 ;
' i=11

subject to z;—yF =0 1=1,2...10

The constraints from the original problem are used in the relazed dual problem, since they
can be written with y;,¢ = 1,2,...,20 as the variables ( Since y; is equivalent to z; for i =
1,2,...,10). It should be noted that if the variables x and y are linearly transformed to account
for T and 7, this problem is equivalent to the general form of the quadratic programming
problem considered in section 2.1, with a diagonal matrix () formed from the vectors C}
and (3, and the constraint matrices being given by the bounding constraints on = and the
equality constraints introduced for the concave (x) variables.

Through the formulation of the Lagrange function and use of the KK'T conditions for the
primal problem, the qualifying constraints to be added to the relazed dual problem can be

written as
Oy —yf) 2 0 if 2l =2, and
Or(yi —yf) <0 if 2l =]
for 1=1,2...10

10



The relazed dual problem will thus contain the Lagrange function with z; set to a combination
of bounds, and the corresponding qualifying constraint. Also, the original constraints for the
problem are present in the problem with the z;, : = 1,2, ..., 10 replaced by the corresponding
y;. This also helps to ensure that the relaxed dual problem never returns infeasible values of
y; for the next iteration.

The (GOP) algorithm was applied to this problem from three different starting points,
including the starting point of 0. In each case, the globally optimal solution was located in
the first iteration, and the algorithm took 3-4 iterations to actually converge to this solution,

with 1025 subproblems being solved at every iteration.

3 Quadratic Programming Problems with Quadratic

Constraints

3.1 Theory

The quadratic programming problem with quadratic constraints has the following form:

min cfx + ;L'TQ:L'
x

subject to 2T Apa + Bz — by, < 0 m = 1,2...p
T Apr + Cx — by, = 0 m =p+1l,p+2.p+gq (4)
Dx—d <0
Fr—e =10

where x an n-vector of variables, and ¢, d and e are constant vectors. ), B, C, D, and F are
constant matrices. A,, i1s an n x n matrix corresponding to the mth quadratic constraint,
and b,, is a constant for that constraint.

By defining a new set of variables y = z, this problem can be converted to the following

equivalent problem:
min ¢z + 2TQy
m,y
subject to 2T Apy+ Bz — by < 0 m = 1,2...p

2T Ay +C2—bp =0  m =p+1,p+2.p+gq

11



Dxr—d <0
Fxr—e =0
r—y =0

By projecting on y, the following linear primal problem is obtained at the k th iteration:

min ¢fz + 2T Qy*
x

subject to zT Apy® + Bz — by < 0 m = 1,2..p
2T Apy® 4+ Co — by = 0 m =p+1,p+2.p+gq
Dx—d <0
EFr—e =10
r—y* =0

The solution to this problem provides the optimal multiplier vectors p* and \* corre-
sponding to the quadratic inequality and equality constraints, the multiplier vectors p% and
M¥ corresponding to the linear inequality and equality constraints, and the multipliers v* for
the linear equality constraints due to the introduction of the y-variables.

The Lagrange function can be formulated as

¥4
T
L(x,y, N b ek %) = o+ 2TQu+ Y. 1f (2T Ay — bm) + 4% Bz
m=1
p+q T T
+ D> M (@TAmy — b)) + XY Ca 4y (D2 —d) ()
m=p+1

+ M (Bx—e)+v* (z —y)

The KKT gradient condition for this problem is

Y4
Vo L(z*, y* N8 ik s b vF) = QuF 4+ e+ Y uf Any* + BTk
m=1
p+aq
+ 3 N AnyF+CTN 4+ DT+ BTN 4+

m=p+1

12



Hence,

p+q
c+ BYuf + +CTN + DT pg + ETXS + 0% = —Qy* - Z uE Amy® — 30 N A (6)

m=p+1

Using (5) and (6), the Lagrange function can be reformulated to give

T
Lix,y, e, i Xs ik v) = 2T(Q + (1E 0D A)(y — o¥)
—(/L’fT, A’fT)b — kA= N e — Ty

Hence, the constraints to be added along with the Lagrange function in the relaxed dual

problem take the form

p+q

Q+Zu1mAmt+ YoM Am).(y—v*) <0 if xf=af
m=1 m=p+1
p+q

Q+ZM1AME+ZA’° Dly—y*) >0  if aB=at

m=p+1

where the subscript ¢ refers to the ¢th row of the matrices () and A,,, i.e., the rows cor-
responding to the variable z; in the matrices. Similarly, the qualifying constraints for the

infeasible primal problem can be generated.

3.2 Computational Results

Example 3 : Hesse’s Function
This problem is taken from Hesse (1973). It involves the minimization of a concave
function subject to linear and quadratic ( nonconvex ) constraints. This function has 18

local minima, with a global minimum of -310 at (5,1,5,0,5,10).

mzin —25(z1 — 2% — (22— 2% — (2a — 1)® — (24 — 4)® — (25 — 1)® — (26 — 4)°

subject to

Y
N

z1 + 22

VAN
o

z1 + 22

13



IN
V)

—z1 + 22

IN
V)

Z1 — 322
(23 — 3)2 + 24
(25 — 3)2 + zg

AVARRAVS

21, 29
1 < 2z,
0< 24
1 < zy
0 < zg

AN VAN VAN VAN AV
— Ol O Ot O i
o

The following transformations are made :

Ty = Z4 — 24

where z = {2,2,1,4,1,4}

Using these transformations, the problem can be written in the form given by (4), with z

as the set of variables. The data for this problem is given below :

0 0

e
I
2
]

14



T =(0,0,0,0,0,0) 1 -1 0 0 0 0
1 1 0 0 0 0
o004 10 0 -1 1 0 0 0 0
o000 0 4 —1 1 =3 0 0 0 0
-1 0 0 0 0 0
- [—4] 0 -1 0 0 0 0
—4 H_| 0 0 -1 0 0 0
0 0 0 -1 0 0
[ —25 ] 0 0 0 0 -1 0
—1 0O 0 0 0 0 —1
—1 0O 0 1 0 0 0
©= 1 0 0 0 1 0 0
—1 0 0 0 0 1 0

i ~1 | 0 0 0 0 0 1]

dT = (2,2,2,6,2,2,0,4,0,4,4,2,4,6)

As the objective function and constraints are nonconvex, it is necessary to introduce new
variables y so that the resulting problem (GOP) algorithm can be applied. These y variables
are defined as :

Ui = Ty, = 1,26

From Section 3.1, the qualifying constraints to be added along with the Lagrange functions

to the relazed dual problem at the kth iteration can be written as :

—25 - (y1 —y¥) <0 if 2P =af
—25-(yr—yf) 2 0 if 2P =2l
1 (y2—y§) <0 if a8 =2j
L (y2—y§) >0 if a8 = 2]
(—1—p})-(ys—y5) <0 if 2§ =uaf
(—1—p¥)-(ys—y5) <0 if f=2a3
1 (ya—yk) <0 if af =af
~1-(ya—yf) <0 if af =af
(—1—pf,) (ys—y8) <0 if af =ag

15



(=1—p5) (ys—uE) <0 if af =af
—1-(ys—ye) <0 if ag=af
—1-(ye—y§) <0 if z§ =ag

IA TN

The (GOP) algorithm was applied to this problem from several starting points. In each
case, the optimal solution of -310 was found in 3-4 iterations, with 65 subproblems being

solved at every iteration .

Example 4 :
This example features the minimization of a linear function of two variables subject to

two quadratic constraints, one of which is nonconvex, and two linear constraints.

H{}ﬂ Y1+ ya2

st P 4y: < 4
yity, > 1
y1—y2—1 <0
y2—y1—1 <0
—2<y <2
—2<y, <2

The feasible region formed by the constraint set is shown in Figure 1. As can be seen, there
are two distinct but separated regions where the problem is feasible. Hence, a conventional
solver cannot be expected to determine the global minimum of -2.828 at (—1.414, —1.414).

If the following two variables are introduced :
T1=y1, and T3 =y
the problem can be written in the following equivalent form :

min i + 2
z,y

INA
o

s, z1y1 + 22y — 4

INA
o

I — 211 — 22y

16



1 —x9—1 <0
—r1+x—1 <0
r1—y1 =0
r2—y2 =0

Iteration 1 :

Consider a starting point of (1,1) for the GOP algorithm. The solution of the primal
problem, which is feasible, yields z; = 1, 23 = 1 and the multipliers pj, = p3, = p3, =
@2 =0, v = v; = —1 . The objective function has a value of 2.

The Lagrange function formulated from the first primal problem is

LMy, p1,ppevt) = a1+ 22— 1 (21— y1) — 1+ (22 — y2)
= Y1+ Y2
This Lagrange function is independent of z; and z,. Hence, the relaxed dual problem needs

to be solved only once, since it does not depend on the bounds of the x variables. This

relazed dual problem is given below :

min ug
YEeB M

v

Y1 + Y2
0

st. up

IN

y1—y2 — 1

IN

—y1 +y2 —1
—2<1

IN

0
2
—2< 1y 2

IN

where the linear inequality constraints from the original problem have been added in terms
of y1 and ya. The solution of this problem is y = (=2, —2), and pg = —4. Since this is
the only relaxed dual problem solved at the first iteration, there is only one stored value of
(1B,y). Hence, the fixed value of y for the second iteration is (—2, —2), and the lower bound
for the optimal solution is —4.
Iteration 2 :

For the second iteration, for a fixed value of y = (=2, —2), the primal problem is infeasible

because the first quadratic constraint is violated. Hence, a relazed primal problem is solved.

17



A form of this problem, with the slack variables a; and a3 only in the nonlinear constraints,
is shown below :

min oq + oy
z,o

st. —2x1 —2x9—4—0a7 <0
142214229 —ay <0
r1—x9—1 <0

—r1+zo—1 <0

r1+2 =0

z9+2 =0

The solution of this problem is z = (=2, —2), &y = 4 and a3 = 0. The optimal multipliers
for this problem are pf =1, v} = v = 2, and p3 = p3 = pj = 0. The sum of the
infeasibilities is 4.

The Lagrange function from this problem can be formulated as

L2(z,y, 013, 45, 0%) = 1+ (21y1 + w2y2 —4) + 2 (21 — 1) + 2 (22 — )
= (y1+2)x1+ (y2+ 2)x2 — 2y1 — 2y, — 4
where the terms containing a; and «aj vanish because of the KKT conditions for the second
primal problem. The Lagrange function to be added to the relazed dual problem for the

second iteration has the form
L2z, y, i, py,v?) <0

The qualifying constraints of this Lagrange function w.r.t z; and z, are given as

leLzzyl—l—Z >0 if:c?::ff -2

S

<0 ifaB=2V=2
VE2L2:y2—|—2 >0 if;r;fzxg: -2
<0 ifzl=2V= 2

There are four relazed dual problems solved at the second iteration, corresponding to the
combinations of bounds (2,2), (—2.,2), (2,—-2), and (—2,—2) for z; and z,. Of these, the
first is irrelevant, since this corresponds to y; < —2 and y; < —2, which implies that this

problem cannot provide any useful solution. Also, the relazed dual problems corresponding

18



to (—2,2) and (2, —2) for 2 are complementary due to the symmetry of the problem. Hence,
only one of these problems, say, for 22 = (—2,2), needs to be solved, along with the relazed
dual problems corresponding to 8 = (-2, -2).

There is one Lagrange function from the first iteration, and it is present since it depends
only on y (i.e., its qualifying constraints are always satisfied). The relazed dual problem
solved with g = (—2,2) has a solution of y = (=1, —2) and g = —4. The complementary
relazed dual problem, that is, the relaxed dual problem solved with ( B = (2, —2)), has the
solution y = (=2, —1), with ug = —4. The relazed dual problem solved with xp = (-2, —2)
has a solution of y = (—1,—2) and pp = —4, which is identical to the one found for the
relazed dual problem solved with 28 = (-2,2).

After the second iteration, there are two stored solutions to choose from :
pp=—-4, y=(-1,-2) and pup=—-4, y=(-2,-1)

Since both these solutions have the same value for up, either one can be chosen. Suppose
the first solution is chosen. Then, the fixed value of y for the third iteration is (—1,—2).
The lower bound for the optimal solution remains at -4.
Iteration 3 :
When the third relaxzed primal problem is solved (since (-1,-2) is infeasible for the primal
problem), the solution is = = (=1,=2), p3, =1, 18 =1, 13 =2, and 3, = p3, = p3, =0.
Before solving the relaxed dual problems, the qualifying constraints for the Lagrange

function from the second iteration need to be checked at y = (=1, —2). This results in

VIILz(yl = —1,y2 = —2) = —1 —|— 2 2 0
VI2L2(y1 = —1,y2 = —2) = -2 —|— 2= 0

Thus, from the second iteration, the Lagrange functions corresponding to 28 = (=2, -2)
and B = (—2,2) can be present in the current relaxed dual problems. However, if both
these Lagrange functions are selected, it is equivalent to fixing the value of y, at -2 for the
current relaxed dual problems, which leads to no improvement in the solutions or infeasible
solutions.

This difficulty can be avoided by introducing the qualifying constraints in a perturbed
form into the relazed dual problems (see Section 6.2 of Floudas and Visweswaran, 1990).

This ensures that only one Lagrange function from every previous iteration can be selected.
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The GOP algorithm was applied to the problem in this form, and the global solution of
-2.828 was identified. The algorithm took 127 iterations to converge, solving 5 subproblems
at every iteration.

Note : The constraint y? + y2 < 4 is a convex constraint, and hence can be kept unal-
tered in the problem formulation. If this is done, with only the nonconvex constraint being

transformed, the GOP algorithm converges to the optimal solution in two iterations.

4 Pooling and Blending Problems

4.1 Theory

Pooling and blending problems are a feature of the models of most chemical processes.
In particular, for problems relating to refinery and petrochemical processing, it is often
necessary to model not only the product flows but the properties of intermediate streams
as well. These streams are usually combined in a tank or pool, and the pool is used in
downstream processing or blending. The presence of these streams in the model introduces
nonlinearities, often in a nonconvex manner.

A general formulation of the pooling or blending problem is given below:

min ¢’z

z,p

subject to pAijx + Bix —b; = 0
pAsz' + le’ — bg <0

where x is an n-vector, A; and Bj are m; X n matrices, corresponding to m; equality
constraints, and A, and B, are ma X n matrices corresponding to my inequality constraints.
The vectors by, by and ¢ are constant vectors, and p is a scalar variable representing the pool
( or tankage ) quality.

The nonconvexities in this problem come from the presence of the bilinear terms in the
equality constraints. By selecting the pool quality p to be the complicating variable, the
primal problem becomes linear in x. At the kth iteration, the primal problem, for a fixed

value p* of the complicating variable, is given by

min 'z
x
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subject to pX Az + Byz — by = 0
pKAg.CL’ + le’ — bg <0

The Lagrange function for this problem is
L(z,p, X8, 1%y = Tz + )\KT(pAlzL’ + Bix —b1) + ,MKT(pAer’ + Byx — by)
= 2Tc 4+ ;L'TAf)\Kp + :L'TBlT)\K — )\KTbl

+2T AL p + o7 BT K — uK ",

Collecting the terms in z together leads to the following:
L(z,p, N, 1K) = 2 (c+ ATAKp 4 BIAK 1 ALK 4 BT %) - Kby — uK T,
The KKT gradient conditions for the Kth primal problem are given by
c+ ATNEpE + BINE + A7 5 p® + BT % = 0
From (7) and (8), the Lagrange function can be written as
Lz, p, M, p5) = 2T (AT M p + AT " p — ANpH — App™p") — ATby — by

and, since p 1s a scalar variable,

L(x, p, N, p%) = 2 (AN 4 A5 pu5).(p — p™) = AThy — " by

Hence, at the Kth iteration, we can consider the relaxed dual problem separately over the

two regions of p given by p — p¥ < 0 and p — p% > 0. For each of these regions, the

appropriate bounds of z; can be found as follows:

(i) Forp—p® >0

If (ATXNE4+ A7 %) > 0 then 2P =af

If (ALNS+ A7 %) <0 then 2P =af
(i) Forp—p® <0

If (AINS+ A %) > 0 then 2P =af

If (Ai,)\K + Ag:,uK) < 0 then 1’? = J;f
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where Aj,, A,, are the ith columns of A; and A, respectively.
Hence, at each iteration, the relaxed dual problem needs to be solved once for each region
of p ( less than or greater than p¥ respectively ), with the noncomplicating variables z; set

to the appropriate bound according to the criteria given by (9).

4.2 Computational Results

Example 5 : Haverly’s Pooling Problem

In his studies of the recursive behaviour of Linear Programming (LP) models, Haverly
(1978) defined a pooling problem as shown in Figure 2. Three substances A, B and
C' with different sulfur contents are to be combined to form two products = and y with
specified maximum sulfur contents. In the absence of a pooling restriction, the problem can
be formulated and solved as a LP. However, when the streams need to be pooled (as, for
example, when there is only one tank to store A and B), the LP must be modified. Haverly
showed that without the explicit incorporation of the effect of the economics associated with
the sulfur constraints on the feed selection process, a recursive algorithm for solving a simple
formulation having only a pool balance cannot find the global solution. Lasdon et al. (1979)
added a pool quality constraint to the formulation. This complete nonlinear programming

NLP formulation is shown below:
min Cost =6A+16B +10(Cz + Cy) — 9z — 15y
s.1. Pr+Py—A—B=01}  pool balance

component balance

r—Px—Cz = 0
y—Py—Cy = 0
p.(Px+ Py)—3A—B=0}  pool quality

p.P 20z —25z < 0
p.Px + x x ; } product quality constraints

p.Py+2.Cy — 1.5y 0
r < 2Y
U upper bounds on products
y <y
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where p is the sulfur quality of the pool; its lower and upper bounds are 1 and 3 respectively.
Lasdon solved this NLP using two different procedures, but in each case, the optimal solution
found depended on the starting point.

Haverly (1979) suggested a formulation using correction vectors representing the pool
quality over and under that assumed for the pooling coefficient. This was solved by both
Haverly (1979) and Lasdon et al. (1979). In both cases, however, the global optimum could
not always be found, the solution being dependent on the starting point.

More recently, Floudas and Aggarwal (1990) solved this problem using the Global Opti-
mum Search (Floudas et al, 1989). They had to reformulate the problem by adding variables
and constraints, and even though they were successful in finding the global minimum from
28 out of 30 starting points, they could not mathematically guarantee that the algorithm

would converge to the global minimum.

The GOP Algorithm :

The Haverly pooling problem can be represented in the form given in section 4.1 with the

following data :

r=(A,B,Cx,Cy, Pz, Py,x,y) v = (0,0,0,0)
& = (6,16,10,10,0,0, -9, —-15) % = (0,0)

000O0O0O0OO0O® -1 -1 0 0 1 100
000O0O0O0OTO 0@ O 0 0 -1 0 -1 010
Al = Bl =
000O0O0O0OTO 0O 0 0 0 -1 0 -1 01
000O01T1O00 -3 -1 0 0 0 000
000O01O0O0O0 002000 =25 0
Ag — Bg —
000O0O0OT1TTO0OO 000200 0 —1.5

By projecting on p, the pooling quality, the problem becomes linear in the remaining variables.

From the matrices A; and A,, it can be seen that only Pz and Py are the connected
variables. That is, the terms containing the remaining “z” variables ( namely, A, B, Cx, Cy,
x and y) in the Lagrange function added to the RD problem will disappear. Hence, only
the variables Pz and Py need to be set to the appropriate bounds for each RD problem.
Using (9), these bounds can be found as follows :
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(i) For p> p< :

PeB=pst if OE 45 >0
PeB =PV if OE 445 <0
PyP =Pyt if (Af +pg) 20
PyP=pPy7  if (A 4p5) <0

(ii) For p < p& : The opposite of the bounds given above.

Similarly, the qualifying constraints to be added to the relaxed dual problem at the Kth
iteration along with the Lagrange function can be derived from (9).

Three cases of the Pooling problem were solved using the GOP algorithm. In the first
case, the upper bounds of z and y are 100 and 200 respectively. The global minimum for
this problem lies at p = 1, with the objective function being equal to -$400. For the second
case, the upper bound of z is changed to 600, while the upper bound of y is 200. This case of
the problem has a global optimum of -$600 occurring at p = 3. In the third case,the upper
bounds on x and y are the same as for first case, but the cost coefficient of B in the objective
function is changed from $16 to $13. In this case, the problem attains its global minimum

at p = 1.5, with the objective function being -$750.
The GOP algorithm was applied to this problem from several starting points. The

algorithm found the global optimum in each case from all the starting points. The results
for Case I, Case Il and Case Il are shown in Table 1. For Cases I and II, the algorithm
required an average of 15 iterations to converge, while it took only 6-7 iterations for the

third case.

Example 6 : Multiperiod Tankage Quality Problem
This example concerns the application of the (GOP) algorithm to a multiperiod tankage
quality problem. The following sets are defined for the mathematical formulation of the

problem :

PR = {p} : set of products

CO = {c} : set of components
T = {t} : set of timeperiods

QL = {l} : set of qualities
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Starting Point | Optimal Solution Found
(p) Case 1 | Case II | Case II1
1.00 -400 -600 -750
1.25 -400 -600 -750
1.50 -400 -600 -750
1.75 -400 -600 -750
2.00 -400 -600 -750
2.25 -400 -600 -750
2.50 -400 -600 -750
2.75 -400 -600 -750
3.00 -400 -600 -750

Table 1: Results for the Pooling Problem

For this problem, there are 3 products (pl, p2, p3), 2 components (cl, ¢2), and 3 time periods
(t0,t1,12 - includes the time period corresponding to the starting point). The following

variables are defined :

x amount of component ¢ allocated to product p at period ¢

c,p,t

s stock of product p at end ofperiod ¢

Pt

Gp.: ¢ quality [ of product p at period ¢

The objective of the problem is to maximize the total value at the end of the last time period.
The terminal value of each product (valp) is given. Lower and upper bounds on the quality
variables are provided as well as initial quality values. Limits on product stocks ( stockp: )
for each time period are also provided. Data for the qualities in each component (QU.,) and
the product lifting (LF,,) is also provided for the problem.

The complete mathematical formulation for this problem, consisting of 39 variables and

22 inequality constraints ( of which 12 are nonconvex ) is given below :

max Z val,.sp o
peEPR

subject to
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Y ept < ARy te{tl,12}, c€ CO

peEPR
Spt T Z Tept+1 — Spi+1 = Llpita t € {t0,11}, p€ PR
ceCO
Sp,t-Qp,l,t—I' Z xc,p,t+1-QUc,l 2
ceCO
(Spat1 + LFpt+1)-Gpret1 te{t0,tl}, pc PR, l€ QL

The sources of nonconvexities in this problem are the bilinear terms sp4.9p,:¢+ in the last set
of constraints. Thus, fixing either the set of s or ¢ variables makes the problem linear in
the remaining variables. Here, the ¢ variables are chosen to be the y variables, i.e. they are
fixed for the primal problem. Then, the variables s are the connected variables.

For a fixed ¢ = ¢*, the primal problem is given by :

min E —val,.sp

pEPR
subject to

> ept < ARy te{tl, 12}, c€ CO (10)

pEPR
_Sp,t — Z mc,p,t+1 —|— Sp,t-l—l S _LFP,H'l t € {t(),tl}, P € PR (11)

ceCO
_Sp,t-qs,l,t - Z xc,p,t—}-l-QUc,l S
ceCO

—(ps1 + LFpes1) dpi e te 10,11}, p€ PR, 1€ QL (12)
0—spe <0 pe PR, te{t0,t1} (13)
Spt — stockps < 0 p € PR,l € {10,t1} (14)

where the bounds on the stocks s have been explicitly incorporated in the problem. The
problem has been written as a minimization problem by multiplying the objective function
by -1. It should be noted that s(p,’ t0"), the stock of product p at the beginning of the first
period, is fixed.

The KKT gradient conditions for the x variables are given as

k Kk k
val'c,ga,tl;("’E? 57 q 7ll ) = /Llcyt - N’zp,t—l - Z llgp,l,t—l 'QUC,I = 0
1eQL
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The KKT gradient conditions for the connected variables s in this problem are given by

(i) Fort ='t1', p € PR,

k k k k k k k
Ve l(w,s, 65 0% = ps = pg, + > (3,000 = #3,0,)Gprs — M1, T HE,, =0
1eQL

(i) Fort ="t2', p € PR,

k k k k k k k
v&pyt‘L(‘T7 87 q bl Iu ) = _Ualp—l_ lu2p7t_1 - Iu2p7t —I_IZQ:L(IM:}p,l,t—l - ;lgp,l,t)'qp,l,t - ;l4p7t —I— ’u5p,t = 0
€

where p%, % % % and pf correspond to the constraint sets (1) to (5) respectively.

The Lagrange function formulated from the kth primal problem is given by

L(*Tvquvﬂk) = Z _valp'sp,'ﬂ'—l_ Z Iu]-c,t( Z xC,P,t_ARC,t>

pEPR te{t1,t2} pePR
ceCO
k
+ Z M%,t(_sm - Z Teptt1 T Spi+1 T LFpis
te{t0,t1} c€CO
pEPR
+ Z ”3Pvl¢(_31”’t‘qp’l=t - Z Tepir1-QUet + [Spe+1 + LFp i) -Gp1e41)
te{t0,t1} ceCO
pEPR
1EQL
+ Z (14, (0 — 5p) + Z tis, , (Spt — stockyy)
te{t1,t2} te{t1,62}
pEPR pEPR

Using the KKT gradient conditions for the = variables, it can be seen that the terms in z
in the Lagrange function will vanish (due to the fact that they are not connected variables).
This, along with the use of the KKT gradient conditions for the s variables, enables the

Lagrange function to be written in the following form :

k k
L(CL‘, .4, 1 ) = = Z Hice — ARC,t + Z /L2p7t‘LFP,t+1
te{t1,t2} te{t0,t1}
ceCO pEPR
+ D0 ma Llperidpiss — D s, -Stocky,
te{t0,t1} te{tl,t2}
pPEPR PEPR
leQL
k k k
+ > (pa,,, ., —#3,,,)(Gobe — Gore)-Sps
te{tl,t2}
PEPR
leQL
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Thus, the qualifying constraints to be added along with the Lagrange function to the relaxed

dual problem are of the form

Z (’ulgp,l,t—l - lu}(;pylyt)'(QP,l,t - q:,l,t) 20 Zf Sp,t = Sﬁ,t
1eQL

Z (N’efpylyt_l - ngylyt)'(%,l,t - q;:,l,t) <0 of spp = Sgt
leQL

for all t € {t1,12}, p€ PR .

There are six s variables (corresponding to three products at two time periods ¢1 and
t2). Hence, there are 64 relazed dual problems solved at every iteration.

The (GOP) algorithm was applied to the problem in this form. It found the global
solution of -9.5316 from all considered starting points. Starting from the lower bound, the

algorithm took 16 iterations to converge, solving 65 subproblems in every iteration.

5 Optimization Problems with Polynomial Functions

in the Objective and/or Constraints

5.1 Theory

In this section, the application of the GOP algorithm to optimization problems involving
polynomial functions in the objective function and/or constraints is presented. It is assumed
for simplicity that the problem is restricted to cases involving one variable. However, the
approach can be extended to problems with more than one variable appearing polynomially
in the objective function and constraints.

Consider the following general problem :

min  f(y) = ao + a1y + azy® + ... + asy

yeY

Ajo+ Ajy + Apy® + o+ Ajy® <0 Vi=1,2.m (15)
Bjo—I-ley—I-Bigyz—l- ..... —I-Bj_,y'g =0 \V/] = 1,2n

where y is a single variable and Aj; is the coefficient of y* in the jth constraint. This problem

can be nonconvex due to the existence of polynomial terms in the either the objective function
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or the set of constraints. It is assumed that the polynomial has nonconvex terms right up
to the s* degree term.

Consider the following transformations:

zo = 1

r1 = Y

g = ¥y = 1y

s = y> = xy

T, = Y = Te1y

Hence, the primal problem, for a fixed y = y¥, can be written as

8
min E a;x’
x 3
2=0

2=0

ZBﬂxz =0 j: 1,2n
2=0
T; — xi_lyK =0 1=1,2..5

where g = 1. The KKT conditions for this problem are

Vo, L(z,y, &y %) = a; + > ,uﬁ{Aji +>° )\ﬁ{Bﬁ- + v — Z-I_{HyK =0 Vi=1,2...5
where A& and p® correspond to the original equality and inequality constraints, and %
correspond to the new equality constraints introduced, with v& = l/fil =0.

The Lagrange function for this problem is given by

n

L(z,y, N, % 05 = Z a;r; + + Zﬂf{(z Ajiz;) + Z )\f{(z Bjiz;) + Z v (zi — zis1y)
=0 7=1 =1 7=1 =1 =1
Separating the terms in z, this can also be written as

Lz,y, )\K,,MK, Z/K) = Z a; + ZAJW;K + ZBﬁ)\ﬁ{ + Z/Z-K - ﬁly X5 (16)

2=0 7=1 7=1
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Using the KKT conditions, the Lagrange function can be written as
Lix,y, X, ™ v%) =3 v (" — y)a
=0
Thus, the qualifying constraint for all the x; are of the form
y  —y <0, 0r y* —y>0

It is therefore sufficient to solve the relaxed dual for these two regions of y, with z; set to the
appropriate bounds. The bounds for x; for these two relaxed dual problems can be selected

as follows:

(i) For y¥ —y >0

If )‘fil >0, then x;=ar
)‘ilil <0, then z;=az!
(ii) For y® —y <0
I1f )\fil >0, then x;=2zY
)‘fil <0, then x;=azr

Using these combinations of bounds, the two relaxed dual problems can be solved for the
appropriate regions of y.

This approach has been outlined for cases when the problem has only one variable. But
as the following example shows, the presence of other variables, as long as they do not
contribute to nonconvexities in the problem, does not affect the procedure outlined above.

This is because such variables can be treated as nonconnected variables.

5.2 Computational Results

Example 7 : This example is taken from Wingo (1985).

. 6 525+394+713 79 , —I-l

min - — — —ys — —ys — —

1 Y1 25?11 80y1 10?11 2091 Y1 10
—2<y <11
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This function has a local minimum at 0, with a value of 11—0 . The best solution reported by
Wingo (1985) is -23627.1758, occurring at y; = 11. However, the global minimum of the
function occurs at y; = 10, with an objective value of -29763.233 .

The problem can be converted to the desired form (15) with

1 79 71 39 52

s=6, a=(p-"b5p 1050 2V

and =10 .
The qualifying constraints for all the x variables are still of the form

yr >0, or yr <0,

depending on whether, for a particular combination of bounds, the particular z; variable is
at 1ts lower or upper bound. Hence, two RD problems are solved at every iteration. The

bounds for z; for these problems are given below :

(i) For the RD problem with y® > 4, :

L K~
B = " Z,f A 20 i=1,2,3,4 .
x?, of )‘fHSO

(ii) For the RD problem with y® < y; :

2

U . K
B w il A =20 i=1,2,3,4 .

where % = (=2,0,-8,0,-32), ¥ = (11,121,1331,14641,161051)

The (GOP) was applied from several different starting points. In every case, the algorithm
converged to the global solution of -29763.233, taking around 175 iterations.

Example 8 :
This example is taken from Soland (1971).

min —12y1 — Tya + 3
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subject to —2yt+2—yy, = 0
0<y, <2
0<y, <3
The nonconvexity in this problem comes from the presence of the polynomial term —2y; in

the first constraint.

If the following transformation variables are introduced :

1 = N
o 2
Ta = T1Y1 =Yg
_ _ .3
T3 = TaY1 = Yq

Then, by fixing y; = y*, the primal problem at the kth iteration becomes

min —12yf — Ty, + y3

Z,Y2

subject to x1 —y*® = 0
llfz—ﬂl’w{c =0
:L'g—xgyf =0

ks 42—y, = 0
0—y2 <0
y2 —3 < 0

The solution of this problem gives the Lagrange multipliers \*, \¥ and A\* corresponding
to the three new equality constraints introduced, A% for the original equality constraint, and
u¥ and pE for the lower and upper bound constraints for ys,.

The Lagrange function formulated from this problem can be written as
L(z,y, ¥, p*) = —12y1 — Tya + y3 + Ne(z1 — y1) + A (22 — 2191)
A5 (23 — way1) + M5(—223y1 + 2 — ya2) + 117 (0 — y2) + ph(y2 — 3)
The KKT gradient conditions for the kth primal problem are
Vo, L(x,y2, 97, A5, 1) = Ag = Agyr =0
Ve L(x, y2, 51, N, 1*) = A — Ayt =0
Vo L(x, y2, 51, A%, %) = Ad = 2)gyr = 0
( )

V’y2L $7y27y17 7Mk :2y§_7_)‘5_1u;c+/uﬁ:0
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Using these conditions, the Lagrange function (after linearizing the terms in y, around y¥)

can be reformulated as

L(w,y, Mo, iR [gF = Mk — y)os + M(yF — yn)aa + 205(y8 — y)aa
—yb = (124 M)y + 205 - 34k,

It can be seen that the connected variables are x1, x3, and x3. The qualifying constraints for
x1, Tg, and x3 are all of the same form except for their sign. This means that only two relaxed
dual problems need to be solved at every iteration. The bounds for x for these problems are

shown below :

For yf—ylz() : For

B _ ay, if AE>0 B _
Ty = UK < 3
r3, if Ay <

The GOP algorithm was applied to the problem in this form. From a starting point of
0 for y1, the algorithm converged to the global solution of -16.73889 at y = (0.7175,1.47) in

89 iterations, solving 3 subproblems at every iteration.

Example 9:
This is a test example constructed to illustrate the application of the GOP algorithm
when the feasible region consists of two disconnected sub-regions.

Consider the following problem :

H{}ﬂ —Y1— Y2
y2 < 24 2yy — 8y 4 8ys
y2 < 4yt — 32y5 4 88yF — 96y; + 36
0 y1 <3
0 Yo < 4

IAIA IAIA
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The constraint region for this problem is given in Figure 3(a). As can be seen, there are two
distinct regions where the problem is feasible. Because of this reason, if a conventional NLP
solver were applied to this problem, it is highly unlikely that the solver would converge to
the global solution at point C. Depending on the starting point, the solution will be one of
the points A, B, or C.

Consider the application of the GOP algorithm to this example. The following transfor-

mation variables are defined first :

1 = N
.2
T2 = Y1 = T1lh
[
T3 = Y1 = T2

Then, by projecting on y;, the following linear primal problem is obtained at the kth
iteration :

min —x; — Y
1,92

—2yF2s + 823 — 8+ 1y —2 < 0

—4dy¥rs + 3273 — 885 + 9671 +y5 — 36 < 0
T1 — yf =0

Lo — yf:xl =0

T3 — yf:xg =0

The optimal solution of the primal problem as a function of y; is plotted in Figure 3(b).
From the solution of the primal problem for a fixed value of y = y*, and through the use

of the KKT conditions for the primal problem, the Lagrange function can be formulated as

Lz, y, X, %) = Xs(yf — ya)os + M (yF — ya)wa + (265 + 4p5) (vt — v1)7s
=24y — 3645 — iy

where M* are the multipliers for the equality constraints due to the introduction of the z
variables, and p* and p% are the multipliers corresponding to the original inequality con-

straints.

34



Thus, the qualifying constraints to be added to the relaxed dual RD problem are of the
form y® — y; being greater than or less than zero, with the actual form being determined
by the nature of the bound for the corresponding = variable. Hence, there are two relaxed
dual problem solved at every iteration. These two problems provide underestimators for the
optimal solution for values of y both less than and greater than y*. Hence, this ensures that
the difficulty of crossing from one part of the feasible region to the other part is removed.
Also, it is ensured that for every value of y, there will be a corresponding RD problem (solved
from some y* near that y which provides a stored solution as well as an underestimating
Lagrange function.

The global solution of -5.50796 (occurring at y; = 2.3295, point C on Figure 3(a) ) was
determined from all starting points on applying the GOP algorithm. From a starting point

of 0 for y;, the algorithm took 210 iterations to converge.

6 Conclusions

The GOP algorithm represents a generalized approach for determining a global optimum for
different classes of nonconvex programming problems. The application of the algorithm to
quadratic programming problems with linear and/or quadratic constraints, and to problems
involving polynomial objective function and/or constraints has been presented in this paper.
For each of the classes of problems discussed in the paper, it is possible to formulate a very
general algorithm for solving problems of that class, with specific details for a problem being
required only in terms of the data for the problem. Indeed, it is possible to develop a general
mathematical model that can be applied to problems involving any combination of quadratic
and polynomial terms in the objective function and/or constraints.

It should be noted that the overriding factor in the computational time requirement lies
in the solution of the relaxed dual problem. Since this is directly related to the number
of connected variables, the GOP algorithm is computationally efficient when the number
of connected variables is small compared to the total number of variables, as shown by the
pooling and blending problems.

An important consideration in the proposed GOP algorithm is that the relaxed dual
subproblems solved at every iteration are structurally identical, except for a change in some
parameters, namely the bounds used for the z variables and the sign of the qualifying con-

straints. Since the solution of these problems are independent of each other, the algorithm

35



is ideally suited for use of parallel processing. This can be of great significance for problems
involving a large number of variables.

Research work on (a) the use of parallel computing for the GOP algorithm and (b)
the development of additional theoretical properties that can enhance its computational

efficiency are currently underway, and results will be reported in a future publication.
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