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Abstract

A large number of nonlinear optimization problems involve bilinear, quadratic and/or polynomial functions
in their objective function and/or constraints. In this paper, a theoretical approach is proposed for global opti-
mization in constrained nonconvex NLP problems. The original nonconvex problem is decomposed into primal
and relazed dual subproblems by introducing new transformation variables if necessary and partitioning of the
resulting variable set. The decomposition is designed to provide valid upper and lower bounds on the global opti-
mum through the solutions of the primal and relazed dual subproblems respectively. New theoretical results are
presented that enable the rigorous solution of the relazed dual problem. The approach is used in the development
of a Global OPtimization algorithm (GOP). The algorithm is proved to attain finite e-convergence and e-global
optimality. An example problem is used to illustrate the GOP algorithm both computationally and geometrically.
In an accompanying paper (Visweswaran and Floudas, 1990), application of the theory and the GOP algorithm
to various classes of optimization problems, as well as computational results of the approach are provided.

Keywords : Global Optimization, Primal-Dual Decomposition, e-optimal solutions.

1 Introduction

Nonlinear programming problems form a major subset of the field of mathematical programming. In particular,
problems related to chemical process design and control can often be formulated as nonlinear optimization problems.
These problems may involve nonconvexities which imply difficulties with determining a global solution. Chemical
engineering examples of such problems abound in reactor network synthesis, phase and chemical reaction equilibrium,
heat exchanger network design, batch processes, scheduling and planning, pooling and blending problems, and optimal
design of distillation sequences.

For over five decades, there have been a number of algorithms developed for determining local optima for mathe-
matical programming problems. However, the use of a conventional algorithm designed for NLP problems is highly
dependent on the starting point provided for the algorithm, often leading to the solver failing to determine even
a feasible solution. It has been shown that for constrained nonlinear programming problems, the computational

complexity of determining whether a given feasible point is a local minimum is an NP-complete problem, and the
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global optimization of such problems is NP-hard (Murty and Kabadi, 1987). For constrained quadratic programming
problems, it has also been shown that determining a global solution is NP-hard (Pardalos and Schnitger, 1988).

With the advent of advanced computer architectures and the emerging new theoretical results, there has been a
growing interest in developing algorithms that locate a global optimum. No attempt is made in this paper to review
the different approaches within the global optimization area, since extensive surveys and books on the existing
approaches for global optimization are available by Dixon and Szego (1975, 1978), Archetti and Schoen (1984),
Pardalos and Rosen (1986, 1987), Torn and Zilinskas (1987), Ratschek and Rokne (1988), Hansen et a/ (1989a,b),
Horst and Tuy (1990) and Floudas and Pardalos (1990).

The proposed approaches for global optimization can be largely classified as deterministic or probabilistic ap-

proaches. The deterministic approaches include :

(i) Covering methods (e.g. Piyavskii, 1972);

(ii) Branch and bound methods (e.g. Al-Khayyal and Falk, 1983; Horst and Tuy, 1987; Hansen et al, 1990);
(iii) Cutting Plane Methods (e.g. Tuy, Thien and Thai, 1985);

(iv) Interval methods (e.g. Hansen, 1979);

(v) Trajectory methods (e.g. Branin, 1972); and

(vi) Penalty methods (e.g. Levy and Montalvo, 1985).

Probabilistic methods for global optimization include :

(i) Random search methods (e.g. Kirkpatrick et al, 1983; Pinter, 1984);

(ii) Clustering methods (e.g. Rinnoy Kan and Timmer, 1987); and

(iii) Methods based on statistical models of objective functions (e.g. Zilinskas, 1986).

Stephanopoulos and Westerberg (1975) presented an algorithm for minimizing the sum of separable concave
functions subject to linear constraints. The approach utilizes Hestenes’ method of multipliers, and accounts for
duality gaps in the original problem. Westerberg and Shah (1978) considered structured optimization problems
where the problem can be decomposed into several subsystems, and proposed an algorithm for determining whether
a given local minimum of such problems is a global solution, through the use of an upper bound on the dual bound
for the problem. The algorithm was applied to three heat exchanger network problems involving separable objective
functions. However, there is no guarantee of determination of the global solution. Kocis and Grossmann (1988)
used Outer Approximation with Equality Relaxation as the basis for a two phase strategy for solving nonconvex
MINLP algorithms, and implemented the approach in the program DICOPT (Kocis and Grossmann, 1989). These
methods solve the original problem through a series of NLP (which can be nonconvex) and MILP subproblems.
This work does not address the global optimum issue of the nonconvex NLP, and thus provides no guarantee for
global optimality.

Floudas et al (1989) utilized the principles of Generalized Benders Decomposition (Geoffrion, 1972) and projected
on a subset of variables so as to induce a special convex structure in the primal and master subproblems. Even
though global optimality could not be guaranteed, the approach was shown to be very effective for solving nonconvex

nonlinear and mixed-integer nonlinear programming problems. The approach was also utilized in developing a



global optimum search approach for solving bilinear, definite, indefinite and mixed-integer quadratic programming
(Aggarwal and Floudas, 1990), and was applied to the Haverly’s pooling problem (Floudas and Aggarwal, 1990).
In this paper, a primal-relaxed dual approach for global optimization is proposed. A statement of the global
optimization problem is given in section 2, and a motivating example for this work is presented in section 3. Section
4 presents the duality theory used in the development of the algorithm, while Section 5 contains new theoretical
results which form the basis for the global optimization (GOP) algorithm. Section 6 describes the global optimization
algorithm. Proofs of finite e-convergence and e-global optimality are provided in section 7. The GOP algorithm is
illustrated through an example problem in section 8, and a geometrical interpretation of the algorithm is given in
section 9. Proofs for some of the properties presented in section 5 are detailed in Appendix A, while Appendix B

contains three Lemmas used in the proof of finite e-convergence and e-global optimality of the algorithm.

2 Problem Statement

The global optimization problem addressed in this paper is stated as:

Determine a globally e-optimal solution of the following problem:
min f(z,y)

subject to  g(z,y)
h(z,y)

z

A

%NOO

S
Yy €
where X and Y are non-empty, compact, convex sets, g(z,y) is an m- vector of inequality constraints and h(z,y)
is a p-vector of equality constraints. It is assumed that the functions f(z,y), ¢g(z,y) and h(z,y) are continuous,

piecewise differentiable and given in analytical form over X x Y. The variables y are defined in such a way that the
following Conditions (A) are satisfied:

Conditions (A)

(a) f(z,y) is convex in z for every fixed y, and convex in y for every fixed z.
(b) g(z,y) is convex in z for every fixed y, and convex in y for every fixed z.
(c¢) h(z,y) is affine in z for every fixed y, and affine in y for every fixed z.

At this point, the following question needs to be asked : What are the classes of mathematical problems that can
be represented within the framework of (1) and satisfy Conditions (A) ? To answer this question, the concepts of

partitioning and transformations have to be introduced.

2.1 Partitioning of the variable set

In some classes of optimization problems, the structure of the problem is such that a direct pariitioning of the variable
set is sufficient to ensure that Conditions (A) are satisfied. This is true in the case of quadratic programming

problems where the nonconvexities arise solely due to the presence of bilinear terms in the objective function and/or



constraints. For such problems, the projection of the problem into the space of a subset of the variables results in a
convex programming problem. Hence, it is possible to partition the variable set into two subsets z and y in such a
way that Conditions (A) are satisfied (Floudas et al, 1989). This is illustrated by the following example.
Tlustration:

min —w; — wo
w

subject to wiws < 4
0 S w1 S 4
0 S (5) S 8

The nonconvexity in this problem arises due to the presence of the bilinear term w;ws, in the first constraint.
This naturally suggests partitioning the variable set into the subsets w; and wy. Redefining w; as # and ws as v, it
can be seen that for a fixed value of #*, the constraint is linear in y, and vice-versa. Hence, such a partition ensures
that Conditions (A) are satisfied for this problem.

For larger problems, the choice of subsets for partitioning is not so obvious. However, as shown by Floudas et al

(1989), graph theory can be used to determine the partitions that satisfy Conditions (A).

2.2 Partitioning and Transformations

In the more general case of the nonlinear programming problem, it cannot be expected that simply partitioning the
variables will ensure that Conditions (A) are satisfied ( for example, when the nonconvexities are due to general
quadratic or polynomial terms ). Fortunately, for a number of problems, it is possible to overcome this difficulty by
introducing new “transformation” variables so as to reformulate the problem in such a way that the nonconvexities
are due to bilinear terms in the objective function and/or constraint set. The resulting variable set can then be
partitioned so as to satisfy Conditions (A).

Consider the minimization of the following 6'* order polynomial function in one variable subject to bound

constraints (Wingo, 1985) :

Ll 52539 0 Tlo 79, 1

min —y° — — — —y — —y° = —
v 6y T 257 TeoY T10Y T20Y V10

s.t. —2<y<11

The nonconvexity is due to the terms containing —y?, ¥ and —3° in the objective function. Since there is only one
variable, a simple partitioning of the variable set is not possible.

By introducing five new variables z; to 5 and adding the following five inequalities :

zi—y =0
zo—z1.y = 0
z3—zo.y = 0
zs—xz3.y = 0
zs —z4.y = 0

the problem can be converted to a form where the variable set can be partitioned, as shown below:

Lo 52 .39, 71 79 L1
M ey T g T oY T10% T 20”27 Y T 10



st. 1 —y =
T2 —L1Y =

0
0
z3—x2y = 0
0
0
1

L4 —2T3Y =
Ts — T4y =
—2<y <11
zf <z < @

where ' =(—2,0,-8,0,-32) and  zU = (11,121,1331,14641,161051)

For every fixed y = v*, the objective function and the equality constraints are linear, and therefore convex, in z;,
and for every fixed z;, the objective function is convex in y, and the equality constraints are linear and therefore
convex in y. Hence, the reformulated problem satisfies Conditions (A).

Such a reformulation is possible for (a) quadratic programming problems with linear and/or quadratic constraints
(including pooling/blending problems), and (b) optimization problems involving polynomial functions of one or more
variables in the objective function and/or the constraint set. In general, problems with any combination of bilinear,
quadratic or polynomial terms can be made to satisfy Conditions (A) by the use of transformation variables and
partitions. Thus, the theoretical results of this paper will be applicable to all of the above mentioned classes of

nonconvex continuous nonlinear optimization problems.

3 Motivating Example

Consider the following example, which involves the minimization of a nonconvex objective function subject to a linear

set of constraints :

Inxin—-’h + z12z2 — 22
st. —6z1+8z,<3
3z — 25 < 3
0<z,290<3

This problem has a local minimum of -1.0052 at z = (0.916, 1.062), while the global minimum occurs at z =
(1.167,0.5) with an objective value of -1.0833.

When this problem is solved as an NLP using MINOS 5.2 ( Murtagh and Saunders, 1988), the solution found
is dependent on the starting point. If the solver is provided with the local optimum as a starting point, the solution
found is the same point. Perturbation of the variables in a small region around the local optimum shows that the
local optimum is a strong local optimum. Hence, a local search technique can fail to find the global optimum at
(1.167,0.5).

When the Global Optimum Search (GOS) technique was applied to this problem (Aggarwal and Floudas, 1989)
the global optimum was identified from several starting points, but from some of the starting points, the algorithm
converged to the local minimum. An explanation of this provided in section 6.3, and it is illustrated in the example
problem considered in section 8.

To determine the global solution from the considered initial points, special procedures had to be devised (Aggarwal

and Floudas, 1989) that involve properties that exploit the symmetry and utilize a “restart” feature. Further more,



regardless of these special schemes, there was no theoretical guarantee that convergence to the global optimum can
be obtained from any initial starting point.

It is, however, the very good performance of the Global Optimum Search (Floudas et al, 1989) in several classes
of problems and the assumptions within it that motivated us towards establishing rigorous theoretical results for
both finite e-convergence and e-global optimality that can be applied to different classes of nonconvex nonlinear
programming NLP problems. Prior to presenting these mathematical properties, the duality theory for problems of

form (1) satisfying Conditions (A) is presented.

4  Duality Theory

Define the following problem as the Primal Problem (P) :

min f(z, yk)

subject to  g(z,y*) < 0

h(z,y") = 0 (2)
z € X

This problem is simply problem (1) solved for fixed values of y = y*. Therefore, it is equivalent to solving the original
problem with some additional constraints. Hence, regardless of the value of y*, any feasible solution of problem (2)
provides an upper bound on the solution of problem (1).

The theory for feasible primal problems is first considered in section 4.1 . Section 4.2 considers the case where

the primal problem is infeasible for a given fixed value of y = y*.

4.1 Feasible Primal Problems

Problem (1) can also be regarded in an equivalent form where the minimization over the z and y variables occurs

separately. That is, problem (1) is equivalent to :
minmin f(z,y)
oy

subject to  g(z,y)

h(z,y)
r €
S

IN

%NOO

)

The projection of this problem in the space of the y variables (Geoffrion, 1972) further enables (1) to be written in

the following form, featuring inner and outer optimization problems :



min v(y)

subject to  v(y) = min f(z,y)
z€X

st. h(z,y)=0 (3)
g9(z,y) <0
z e X
y € YNV

where V = {y: h(z,y) =0, g(z,y) <0 for somez € X}

Remarks on formulation (3):

(a) The inner minimization problem is parametric in y. For any fixed value of y, say 4*, this problem is simply the
primal problem (P) solved for that y = y*.

(b) The function v(y) is defined as the set of solutions of (2) for different values of y. Invariably, this is a nonconvex
set. Moreover, this set is known only implicitly. For this reason, problem (3) can be very difficult to solve

in the form shown above. One way to overcome this difficulty is to consider the inner problem in its dual
representation.

From the Strong Duality Theorem, if problem (2) satisfies the following conditions:
(a) f(z,y) and g(z,y) are convex in z for every fixed y = y* ,
(b) h(z,y) are affine in z for every fixed y = y*,
(c) X is a nonempty, compact convex set, and

(d) For every fixed y = y*, there exists an 2 € X such that g(2,y*) < 0, h(2,%4") = 0 and 0 € int h(X) where
h(X) = {h(z): z € X} (Constraint Qualification)

then, the solution of (2), for any fixed y = y*, is identical to the solution of its corresponding dual problem. That is,

: k
e fey) = sup int {f(z,5")+ \Th(e,y") + " o(z, )}
p>0 T
st. g(z,y") < 0 A
h(:z:,yk) -0 forall y* cY NV

where, A and p are the Lagrange multipliers corresponding to the equality and inequality constraints of the primal
problem (2).

Remark on the Strong Duality Theorem:

Conditions (A) ensure that conditions (a) and (b) of the Strong Duality Theorem are satisfied. Condition (c) is
also satisfied by the definition of the problem (1). Therefore, the Strong Duality Theorem will hold for this problem

as long as the constraint qualification ( condition (d) ) is satisfied.




The use of the Strong Duality Theorem permits the set v(y) to be written as

v(y) = sup i?f {f(z,y) + N h(z,y) + u" g(z,9)} YyeYnvV
>

From the definition of supremum, the maximization over A and u can be relaxed to an upper bound :
v(y) > inf { f(z,9) + 2\ h(z,y) + wg(z,y) } for all p>0,2

Thus, assuming the existence of feasible solutions to the inner minimization problems, the dual representation of

v(y) leads to the following formulation, equivalent to (3) :

min v(y)
subject to
o(y) > min{ f(e,y) + X h(z,9) + 4"g(2,9) }, VB >0, (4)
y € YNV

{y : h(z,y) = 0,9(z,y) < 0for some z € X}

Remark on formulation (4) :

The last two sets of constraints in problem (4) represent an implicitly defined set in y. Therefore, the presence
of these constraints makes the solution of (4) extremely difficult. This can be avoided by simply dropping the two
constraints from (4). This is equivalent to relaxing the constraint region for the problem, and thus represents a lower

bound for the solution of the problem.

By dropping the last two constraints from (4), the Relaxed Dual (RD) is obtained:

min up
yeY #

kB

subject to pp > min{f(z,y) + AT h(z,y) + 1" g(z,v)}, VYu>0,X (5)
z€X

where pp is a scalar.

The inner minimization problem is denoted as the Inner Relaxed Dual (IRD) problem. This problem is:

min L(z,y, A", u*) (6)
z€X
where
T T
L(z,y, A" u") = f(e,y) + 3" h(z,y) + 4" g(z,v) (7)

is the Lagrange function formulated for problem (2) at the kth iteration.
Remarks on the Relaxed Dual (RD) Problem :

1. The use of projection and duality theory as presented provides an obvious way of obtaining upper and lower
bounds on the global solution of (1). The primal problem, given by (2), represents an upper bound on the
original problem (1). The relaxed dual (RD) problem in the form (5) contains fewer constraints than (4).
Hence, it represents a valid lower bound on the original problem (1). Thus, these two problems can be used in

an iterative fashion to determine a global solution of (1).



2. In the form given by (5), the relaxed dual (RD) problem is difficult to solve, since it contains the inner relaxed
dual (IRD) problem, which is parametric in y (infinite programming problem in y). Hence, it is necessary
to determine an equivalent problem that has only constraints and still provides a valid underestimator of the
relaxed dual problem, enabling it to be solved rigorously. Section 5 presents theoretical properties, by the use

of which this can be achieved.

4.2 Infeasible Primal Subproblems

In cases where the primal subproblem (2) is infeasible, a third subproblem must be solved for generating the appro-

priate values of A and u. One possible formulation for this problem is

gt.87,a >0
z€X

m P
min Y o+ Y (B +87)
i=1 i=1

h(z,y)+Bt -8~ = 0 (8)
g(z,y)—a < O

In problem (8), for every fixed ¥, the objective function is linear, the equality constraints are linear and the inequality

m P
constraints are convex. If § = 3~ a; + 3 (B + B;), then, the strong duality theorem provides

i=1 i=1
1120 xg
st. g(z,y)—a <0 .
T
h(z,y)+ Bt -8~ = 0 +u (9(z,y) —@) }

where A; and p; are the Lagrange multipliers for the equality and inequality constraints for the solution of (8)
for fixed y = y*. If § is the optimal solution of (8), then (9), together with the optimality conditions for problem (8),
implies that

& = maxmin{A{ h(z,y) + p{ 9(z, 1)}

A1 zeX
n120

Since we seek to minimize the infeasibilities &, this can be used as a constraint for the master problem in the following

form :
max min{A\{ h(z,y) + p1 9(z,)} = 0
p120
A relaxed form of this constraint is
minLl(z’:y:)‘luu’l) S 0 (10)
z€X
where
L1(-’ﬂ;y;)\1;l$1) = A?h(l‘.,y) +,U:,{g(§l},y) (11)

This is the appropriate constraint to be added to the master problem for those iterations where the primal problem

is infeasible.



5 Mathematical Properties

The mathematical properties are presented first in section 5.1 for the case of feasible primal subproblems. The
equivalent properties for iterations involving infeasible primal subproblems are considered in section 5.2 . Insights

on the mathematical properties are provided through the illustration presented in Section 2.1 .

5.1 Feasible Primal Subproblems

Property 1 : The solution of each primal subproblem (P) is the global solution of that problem.

Proof: From the criteria given by Conditions (A), the primal problem is a convex programming problem in z, and
hence its global optimality conditions (Avriel, 1976) are satisfied. Hence, the solution of every primal subproblem is

its global solution . O

Tllustration - Continued: As detailed in section 2.1, by selecting w; as z and w- as y, the variable set can be

partitioned so as to satisfy Conditions (A). For a fixed value of y = y*, the primal subproblem for this example can

be written as:

min —z — ¢*

s.t. myk < 4
0—z < 0
z—4 < 0

This is a linear programming problem in z. Hence, property 1 holds.

Property 2 : The Lagrange function of the k th iteration, L(z,y, A*, u*), satisfies the following Conditions (B) :

Conditions (B):

(i) L(z,y, A%, u*) is convez inz YV y=y?, and
(ii) L(z,y, A\*, p*) is conver iny V z = z*.

Proof : The Lagrange function is a weighted sum of the objective function, equality and inequality constraints of
the primal subproblem. For each discretized y = y?, the Lagrange function is convex in z since it is a sum of convex
functions in z (by Conditions (A)). Similarly, for every fixed z = z*, the Lagrange function is a sum of convex
functions in y (by Conditions (A)). D

Illustration - Continued :

L(z,y,u") = —z — y + pi (2y — 4) + p5(0 — ) + pi(z — 4)
As can be seen, once either z or y is fixed, the Lagrange function is linear, and thus convex, in the other variable.
Property 3 : The solution of the Inner Relaxed Dual (IRD) problem is ils global solution for each discretized
d
y=v.

Proof : From Property 2, the Lagrange function is convex in z for every fixed ( discretized ) y = y?. Therefore, the

Inner Relaxed Dual (IRD) problem also meets the global optimality requirements ( Avriel, 1976). O

10



Property 4 :

min L(z, y¢, A¥, u*) > rninL(:.r:,yd,)\k,ka)Wn Yy = 3¢ (12)

zEX cEX zk
where L(z,y?, A¥, pk)|:: is the linearization of the Lagrange function L(z,y?, A\*, u*) around z*, the solution of the
k" primal subproblem.
Proof : For every discretized y = y?, the Lagrange function L(z, y?, Ak uk) is convex in z. Hence, the linearization
of the Lagrange function around some x is a valid underestimator of the function for all values of x. Since this is
true regardless of the point of linearization of z,
lin

L(z,y", A, u*) > L(z,y", X*, u*)| vy =1y’ (13)

Since this applies for every z, the minimum over z can be taken on both sides leading to the desired result. O

Remark : For every fixed y, the linearization of the Lagrange function around z* is given by

lin

L(z,y, A", ")

L(zk:y; Ak: :u’k) + VI‘L(I": Y, Ak: l},k)|£k.($ - z’k)

= L(a",y, M, 6") + ) Ve L(e, 4, A, 4b)| o (i — =)
i=1
where z; is the ith z variable, i = 1,2...n. From this, it can be seen that L(z,y, ¥, uk)|:: can be written as:
lin
L(z,y, A wh)| 0 = @1y, AF, 45). ¥4 (2) + @a(y, A*, 4) (14)
where
(I>1(y:)‘k:y’k) = ch‘L(m:y:)‘k:y’k)Lk (15)
U (z) = z—z" (16)
By(y, A, uf) = L(a,y, 2", ") (17)

In general, if a function ¥y (z, A*, u*) is used to represent terms in the Lagrange function or its linearization that are

linear in the z variables and independent of the y variables, then

(i) If the Lagrange function is linear in z V y = y? and linear in y V z = z*, then L(z,y, A¥, u*) can be written as:
L(z,y, A", 4) = @1(y, A°, 47). W1 (2) + Ua (2, A7, pF) + @o(y, A, 4°) (18)

(ii) If the Lagrange function is convexinz ¥y = y? and convex in y V z = z*, then the linearization of L(z, y, A*, u*)

around z* can be written as
lin
L(z,y, A, 1) = ®1(y, A%, 4h). 01 (2) + o (2, ¥, 1*) + Bo(y, A", ) (19)

Based upon this form of the Lagrange function, the following definition is made:

Definition : The subset of variables z that exist in the function ¥;(z) are called the connected variables.

Illustration - Continued:

&1 (y, A, pb) = why

Ui(z) = ¢
Bo(y, A, pF) = —y— apf — 4pf
¥y(z, )‘k:y’k) = —(1+ y":: - Mg)z

11



Thus, for this problem, z is a connected variable.

Property 5 :The optimal solution of the inner relazed dual (IRD) problem, with the Lagrange function replaced
by its linearization around z*, depends only on those z;, for which ¥(z) is a function of z; (i.e. the connected

variables.)

Proof : See Appendix A.

Illustration of Property 5 :

This property can be illustrated by the following example involving two =z and one y variable.

minziy; + 22
xr

st. —xz+4y; —2
3231—132—3 <0

INA
=)

The solution of the primal problem for this example, for a fixed value of y; = 1 provides z; = 2, z; = 3, and the

Lagrange multipliers 41 = 4 and ps = 1. From this solution, the Lagrange function is given as

L(z,y,u) = z1y1 + 22+ 4(—21 +4y1 — 2) + 1(3z1 — 22 — 3)
= zl(yl — 1) + 16y1 —11

Thus, it can be seen that when the Lagrange function is formulated with the Lagrange multipliers from the solution
of the primal problem, the terms in - cancel out. This will occur for every variable such as z; which is not bilinearly
involved with any y variable, that is, for any z which is not a connected variable. The same can be proved when
a variable such as z5 occurs in a convex fashion in the problem, but is not connected. In such a case, the terms
involving that variable will not vanish in the Lagrange function itself, but will do so in the linearization of the

Lagrange function around the solution of the corresponding primal problem.

Remark: This property is important from the computational point of view. It implies that the inner relaxed dual
(IRD) problem could be replaced by a problem involving the minimization of the linearization of the Lagrange
function over the set of connected z variables. For a number of optimization problems, the nonconvexities are limited
to a small number of terms and variables. This property suggests that for such problems, the computational effort
required to obtain a global solution is not determined by the number of variables in the problem, but rather by the
number of connected variables, which can result in reductions by several orders of magnitude in the time taken to

solve the problem.

Property 6: Define I. to be the set of connected x variables, B; to be a combination of
LOWER/UPPER bounds of these variables and CB to be the set of all such combinations. Then, if the Lagrange

function is linear in z Yy = 32,

min L(z,y, A¥, u¥) > min L(2P,y,\F,pf) vy (20)

z€EX ~ BjecCB

Proof: See Appendix A.
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Tllustration - Continued: It can be seen that the Lagrange function, which is given by

L(z,y, w1, p5, 45) = —z — y + pf(zy — 4) + (0 — 2) + pi(z — 4)

is linear in z for every fixed y = y? . Hence, for this problem, the solution of the inner relaxed dual (IRD) problem,

for any value of y, will lie at a bound of z. There are two possible bounds for z, its upper and lower bound.

Remark: Property 6 suggests that it is sufficient to set the connected variables z; , 7 € I. to a set of bounds B;, and
solving the Relaxed Dual problem once for every such combination of bounds. However, no information is provided
about which Lagrange functions from previous iterations could be included in the Relaxed Dual problem. This is

provided by the following property.

Property 7: Suppose that the optimal solution of the Inner Relazed Dual (IRD) problem occurs at T ; that is, for
every y €Y, there exists an T € X satisfying
L*(z,y,A*, u*) = min L(z,y, A", u")

r€X

Then, for every k,

lin
L(zB5,y, M, k)|
min L(z, y, A*, u*) > min with V., L(z,y, \*, ub) | sz =zl Yy. (21)

20
reX 5.
ecB
’ <0

Ve L(z,y, AF, p)| .

z-]:z

where ¥ and =¥ are the LOWER and UPPER bounds on connected z; respectively.
Proof : See Appendix A.

Definition: The constraints requiring the positivity or negativity of the gradients of a particular Lagrange function

w.r.t z; are called the qualifying constraints of that Lagrange function.

Remark: For each discretized y = y¢, the nature of the actual bound of z where the solution lies depends on the sign
of the gradient of the Lagrange function. As a consequence of this property, it is sufficient to evaluate the Lagrange
function over all the possible combinations of the bounds for the connected z;, with the corresponding constraints of

the gradients of L(z,y, A*, u*) with respect to the connected z variables.

Illustration - Continued : The KKT gradient condition for the kth primal problem is given by
Vol(z,v*, ") = -1+ ply* —pb +uf =0

so that
14 pf — ps = piy”

Using this condition, the Lagrange function for the relaxed dual (RD) problem can be written as

L(z,y,u") = —z —y+ pi(zy —4)+ p5(0 — z) + ph(z — 4)
(—1—p5 + ph + piy)z —y — 4ut — 4ph
pi(y — vy )z —y — 4pb — 4pf

Thus, the gradient of the Lagrange function w.r.t z is

VoL(z,y,1") = i (y — ")
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The relaxed dual (RD) problem is solved for the two bounds of z. In each case, the domain of y is restricted by the

corresponding qualifying constraint. This constraint is given by :

If 2P =0, then pi(y—4*) > 0 and
If 2P =4, then pfy—4*) <0

In other words, the relaxed dual problem needs to be solved twice, once for y < y* with z set to its upper bound

(zP = 2V = 4), and once for y > y* with z set to its lower bound (z? = = = 0).

Property 8 : If ®(y, A*, u*) is linear in y, then V,L(z,y, )\k,,uk)|xk, forms a linear set of constraints in y.
Proof : See Appendix A.
Remark :

This assumption of ®;(y, A*, u*) being linear in y is valid for several classes of problems including those mentioned
in section 2, namely, for problems involving nonconvexities due to bilinear, quadratic, or polynomial terms in either

the objective function or constraints.

Illustration - Continued : The assumption holds, since

®1(y, A, ") = iy
is linear in y. It can be easily seen that :
Vo L(z,y, A, 1) 0 = i (v — oF)

which is a linear constraint in y.

Remark: Property 8 ensures that the gualifying constraint for every Lagrange function can be introduced into the

Relaxed Dual problem without destroying the convexity of the problem.

Property 9 : At the Kih iteration, define

(i) UL(k,K) to be the set of Lagrange functions from the kth iteration (k < K ) whose qualifying constrainis are
satisfied at y¥, the fized value of the complicating variables for the Kth primal subproblem.

(ii) @™ to be the optimal value of the K th Relazed Dual Problem. That is,

min up
YL B
B =4 s.t. pp > minL(z,y, A", p") k=12 (K- 1)
z€X

“B 2> II‘él)I{lL(l‘., Y, AK: :u’K)

14



Then

?

min up
YR B
s.t.
KB Z L(mBj:y: )‘k:y’k)|xk

E ok
EBK Z min 4 viﬂzL(z:y:)‘ M )|
Becs Ve L(z,y, AF, u¥)|

lin

|
o

L <0 ifal = Vj € UL(k, K)
>0 ife =2l | k=1,2.K-1

ok =

(22)

i
KB Z L(T’Bl:y:AK:p’K)u:
Ve, L(z,y, )\K,,uK)|xK <0 if zfz =zV

Ve, L(z,y, )‘K:MK)|xK >0 if zfz — gl

i J

Proof : See Appendix A.

Remark: Property 9 is the final link in the series of rigorous simplifications made in the inner Relaxed Dual problem.
From properties 4-9, the Relaxed Dual problem can be replaced by the RHS of (22).

Illustration - Continued: To determine the set of Lagrange functions from the previous iterations that should be

present in the current relaxed dual problems, the qualifying constraints for those Lagrangians are evaluated at y¥,
the fixed value of y that was used in the current primal problem. If the constraint is satisfied, then that Lagrange
function, along with the corresponding qualifying constraint, is added to the current relaxed dual problems. This
implies that from each of the previous iterations, only one Lagrange function can be present. Thus, for example,

from the kth iteration, the Lagrange function with z” = 0 would have the following qualifying constraint:
y—y" >0

If this constraint is satisfied at y, i.e. if y —y* > 0, then the Lagrange function along with the constraint y—y* > 0
will be present in each of the two relaxed dual problems for the current (Kth) iteration.

274 iteration, with 4> = 8, and let y' = 2. There are two Lagrange functions

Suppose that the algorithm is at the
to be selected from the first iteration. The qualifying constraints for these Lagrange functions are evaluated at

y = y°> = 8. This leads to :

(i) For the Lagrange function from the first iteration with z set to the lower bound (z? = 2z = 0), the qualifying
constraint is
y—y >0

Evaluation of this constraint at y = y? = 8 gives
-y =8-2=6>0

Thus, this qualifying constraint is satisfied at y = y?> = 8. This implies that the corresponding Lagrange

function should be present for the current relaxed dual problems.

(ii) For the Lagrange function from the first iteration with z set to the upper bound (z” = zV = 4), the qualifying
constraint is
y—y <0

15



Evaluation of this constraint at y = y? = 8 gives
v —y'=8-2=6£0

Since this qualifying constraint is not satisfied at y = y*> = 8, the corresponding Lagrange function cannot be

present in the current relaxed dual problems.

Thus, at the second iteration, the following Lagrange function and its corresponding qualifying constraint from

the first iteration is present:

up > L'(z =0,y pi, u, p3)
y—22>0

where L' is the Lagrange function from the first iteration.
At the second iteration, there are two relaxed dual (RD) problems to be solved - one for y > 8, and once for
y < 8. The relaxed dual problem for y > 8, with the Lagrange function from the second iteration evaluated at

zP = 2’ = 0, is shown below :

min up
NS

L'z =0,y,pi, ph, pj)
y—22>0

v

s.t. up

v

L*(z = 0,y,u7, u3, p3)
y—82>0

KB

2nd

Similarly, the other relaxed dual problem for the iteration, that is solved for the region y — 8 < 0 (so that

zP = zU = 4), can be written as :

min up
NSz

s.t.
pp > L'(z =0,y pi, p3, p3)
y—22>0
pp > L*(z =4,y 47, 43, 43)
y—8<0

The only difference in the formulation of these two problems is in the last two constraints, that is, the constraints
that are formulated from the solution of the current (2"?) primal problem. This is because once the right Lagrange
function and its accompanying gualifying constraint from the first iteration has been selected to be present in the
current relaxed dual problems, it has the z set to the appropriate bound, (in this case, z” = z* = 0) and therefore
is a function only of y. Consequently, this constraint remains the same for both the relaxed dual problems solved at

the 279 iteration.

Property 10 : The solution of each relazed dual subproblem in the form given by the RHS of (22) is its global

solution

Proof: At the Kth iteration, the Relaxed Dual (RD) problem is given by the RHS of (22). The Lagrange functions

as used in the Relaxed Dual problem are functions only of y. From Conditions (B), they are convex functions of y.
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The gradients of the Lagrange functions w.r.t #; are linear in y and therefore convex in y. Since the Relaxed Dual
(RD) problem involves the minimization of a scalar subject to a number of convex inequality constraints in y, it
satisfies the global optimality conditions ( Avriel, 1976). O

5.2 Infeasible Primal Subproblems

In cases where the primal subproblem (2) is infeasible, the Lagrange function to be added to the relaxed dual (RD)
problem is of the form given by (10) and (11). This Lagrange function is similar to the form of the Lagrange function
for the iterations when the primal problem is feasible. It can be easily shown that the Properties 2-10 presented
in subsection 5.1 are all applicable directly for the case of infeasible primal problems by simply replacing up by 0
and L(z,y, A¥, u*) by Li(z,y, \*, u¥). The constraints to be added along with the Lagrange function to the Relaxed

Dual problem are again of the form

IA

vszl(m:y: )‘k:p‘k”xk 0 or

vlel(z: Y, Ak; :u’k)|xk

v
=)

depending on whether the variable z; is at its upper or its lower bound respectively.

Remark: It should be noted that for unconstrained optimization problems or for problems where it is possible to
incorporate the constraint set in the relaxed dual problem (e.g. quadratic problems where transformation variables
are used for every z, and concave minimization ), there will be no infeasible primal problems. This is also true for
problems involving only one joint constraint in z and y such as the illustrating example, where the constraint can

be used to generate a bound for the y variable, thus ensuring that it is always feasible w.r.{ the primal problem.

6 The Global OPtimization (GOP) Algorithm

Based on the properties presented in the previous section, it is possible to solve problem (1) through the use of
upper and lower bounds obtained by solving a primal problem of the form (2) and a relaxed dual problem where
the inner optimization problem has been replaced by the right hand side of (22). In this form, the relaxed dual
problem contains only constraints and not inner optimization problems, and therefore it is possible to solve both the
primal and relaxed dual problems using a nonlinear programming solver. Thus, it is possible to iterate between these
two problems until the two bounds are within e. This iterative procedure has been used in developing the GOP
algorithm. A schematic of the algorithm is shown in Figures 1(a) and 1(b).

First, an initial set of values y' is selected for the complicating variables. A counter K is set to 1, and sets K/
and K"/ are set to empty sets. Next, the primal problem (P) of the form shown in section 4 is solved for this

K and

fixed value of y. If the primal problem is feasible, the set K7°%* is updated to contain K, and the solution =
the optimal Lagrange multipliers AX and p® obtained from the primal problem are stored. The upper bound is
updated, being set equal to the lowest feasible solution of the primal problems obtained up to the current iteration.
If the primal problem is infeasible, the set K??f°?* is updated to contain K, and a relaxed primal problem is solved.
The optimal multiplier vectors AX and uf are again stored.

Before solving the relaxed dual problem, the Lagrange functions from all the previous iterations that can be used
as constraints for the current relaxed dual problem are determined. To achieve this, the qualifying constraints of
every such Lagrange function are evaluated at y’, the fixed value of the complicating variables for the K th (current)

primal problem. If the qualifying constraints are satisfied at ¥, then the Lagrangian and its accompanying qualifying
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constraints are selected to be constraints for the current relaxed dual problem. This criterion is applied for every
previous iteration, even if the primal problem is infeasible for that iteration.

The relaxed dual problem is then solved for each combination of 2 . In each case, the Lagrange function
formulated from the current primal problem is chosen as a constraint for the relaxed dual problem, with the La-
grangian being used with 2 = 2%/, In addition to this, a corresponding constraint for the gradient of the Lagrange
function is added to the relaxed dual problem. The optimal values of pup for every such relaxed dual problem, and
the corresponding optimal y, are stored.

After the relaxed dual problem has been solved for every possible combination of the bounds z?/ , the only
remaining task is to determine a new lower bound for the problem and select a fixed value of y for the next primal
problem. This is done by taking the minimum of all the stored values of pp as the lower bound, and the corresponding
stored values of y as the y*** for the next primal. Once a particular up and y have been selected, they are dropped
from the stored set. This is to ensure that the relaxed dual problem will not return the same value of y and up
during successive problems, except during the final convergence stage of the algorithm, when the solutions of the
relaxed dual problems at successive iterations can be very close to each other.

Finally, the check for convergence is done. If the lower bound from the relaxed dual problem is within € of the
upper bound from the primal problems, an e-optimal solution to the original problem has been reached, and the

algorithm can be stopped. Else, the algorithm continues with the solution of more primal and relaxed dual problems.

6.1 The GOP algorithm

The GOP algorithm can be formally stated in the following steps:

STEP 0- Initialization of parameters:
Define the storage parameters ui (K™, B;) , y*'°" (K™, B;) and y*(K™%", B;) over the set of bounds CB
and the maximum expected number of iterations K™". Define PVB? and MTB? as the upper and lower bounds

obtained from the primal and relaxed dual problems respectively. Set
pR" (K™, B;) = U, PYPP = U, and M'BP = L.

where U is a very large positive number and L is a very large negative number. Select an initial set of values y'
for the complicating variables. Set the counter K equal to 1, and sets K/°?* and K'"/*%* to empty sets. Select a

convergence tolerance parameter €. Identify the set of connected = variables I..

STEP 1- Primal problem:
Store the value of y*. Solve the following primal problem :

min f(z,y")

rEX

subject to g(z,y™) < 0
h(z,y") = 0

If the primal problem is feasible, update the set K/°?* to contain K, and store the optimal Lagrange multipliers A%
and p®. Update the upper bound so that
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where PX(yX) is the solution of the current (K th) primal problem. If the primal problem is infeasible, update the

set K"/¢%% to contain K, and solve the following relaxed primal subproblem :

min Y e+ Y (B +67)
a8t 8750 S -
Sex' é é

subject to  g(z,y")—a < 0
h(z,y") +B* -8~ = 0

Store the values of the optimal Lagrange multipliers AX and uf€.

STEP 2- Selection of Lagrangians from the previous iterations:

For k = 1,2..K — 1, evaluate all the qualifying constraints of every Lagrange function ( i.e., corresponding to
each set of bounds of z ) at y*. If every qualifying constraint of a Lagrange function is satisfied at y’, select that
Lagrange function to be in the set U L(k, K), that is, to be present in the current relaxed dual problems along with

its qualifying constraints.

STEP 3- Relazed Dual Problem:
Formulate the Lagrange function corresponding to the current primal problem. Add this as a constraint to the

relaxed dual problem. Then:
(a) Select a combination of the bounds of the connecied variables in z, say B; = Bj.

(b) Solve the following relaxed dual problem:

min up
yE€EY n g
subject to
. 5 .
pe > L(zPi,y, AP, uf)| Vi € UL(k, K)
Ve, L(z,y, )\k,uk)|xk <0 if zfj =V E=1,2..K—-1
Vo L(z,y, A, ph) . 2 0 if 27 = af ke Kfen
. 15 .
0> Li(zB,y, A%, uh)| . Vj € UL(k,K)
Ve, Li(z,y, Alf,u’f)bk <0 ifz;’ =zV k=1,2..K -1
Ve, Li(z,y, Alf,u’f)bk >0 if zfj =zl k € Kinfeas
i
KB Z L(z’Bl:y: AK:IU’K)L,Z:
Vo L(z,y, M, p)| o <0 if 2t =2V if K € Kfeos
Vo L(z,y, M, pK)| o >0 if 2l = 2f
i
0> Ly(zB,y, M )]
Vo Li (2,4, A8, uf)| <0 if 2] =2V if K € Kinfeas
Vo Li(2, 9, M u) | 2 0 if 2] = af

Store the solution, if feasible, in pi°" (K, B;) and y*'*" (K, B;).
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(c) Select a new combination of bounds for z, say B; = Bs.

(d) Repeat (b) and (c) until the relaxed dual problem has been solved at each set of bounds of the connected variables
in z, that is, for every B; € CB.

STEP 4- Selecting a new lower bound and yS+!:
From the stored set u}°", select the minimum ;L”B?m (including the solutions from the current iteration). Also,
select the corresponding stored value of y*'*"(k, B;) as y™i", Set MTBD = ;L”B?m, and y¥1! = y™?, Delete ;L”B?m

and y™" from the stored set.

STEP 5- Check for convergence:
Check if MPBP > pUBD _ ¢ IF yes , STOP. Else, set K = K + 1 and return to step 1.

6.2 Automatic Implementation of the GOP algorithm

The GOP algorithm was implemented automatically through the use of the modeling language GAMS (Brooke
et al, 1988). The actual solution of the convex primal and relaxed dual problems was achieved using MINOS 5.2
(Murtagh and Saunders, 1988) on a VAXstation 3200 and on a MIPS RC2030 workstation, with GAMS as an
interface.

In the automatic implementation of the GOP algorithm, one of the steps involves the selection of appropriate
Lagrange functions from previous iterations to be present in the current relazed dual problems. These are selected on
the basis of satisfaction of the corresponding gualifying constraints. It is possible (especially in the case of iterations
for which the primal problems are infeasible) that at some iteration, say the Kth one, the qualifying constraint of a
Lagrange function from a previous iteration (say for the kth iteration) with respect to a particular z; may be strictly
satisfied as an equality. That is,

Vo, L(z,y = T L uk)|xk =0

implying that all the Lagrange functions from the kth iteration with z; set to either its lower or upper bound can
be potentially present in the current relazed dual problems. Thus, even if the qualifying constraints w.r.t the other =
variables are satisfied as inequalities (that is, the gualifying constraints evaluated at y are either strictly less than or
greater than zero), there will be two Lagrange functions from the kth iteration present in the relazed dual problems
of the current (K'th) iteration, along with their qualifying constraints. The gualifying constraints for these Lagrange

functions w.r.t z; are

Ve, L(z, y, A, 1")| .
vij(m,y,)\k“u,kH <0 7’f z

k=

vV

o
&

8

Together, these constraints imply that
Ve, L(z,y, A, u*) =0

This reduces the degrees of freedom for the current relazed dual problems by one, and could potentially lead to some
regions of y being unavailable for the relazed dual problems. This can be avoided if the qualifying constraints are

introduced in a perturbed form as shown below :

vl‘jL(z’iy;)‘k:,u'k) < =6 ’I,f :L',]B:zgj



where § is a very small positive number. This ensures that when these qualifying constraints are checked at a later
iteration, they cannot both be simultaneously satisfied. Hence, only one of the two corresponding Lagrange functions
can be selected. The parameter § can be made sufficiently small so that it does not significantly affect the optimal

solution found by the relazed dual problems.

6.3 GOP versus Global Optimum Search (GOS)

The Global Optimum Search (GOS) technique proposed by Floudas et a/ (1989) is based on the use of the Generalized
Benders Decomposition algorithm (in conjunction with partitioning and transformations to remove nonconvexities)
to solve nonconvex problems through a series of convex primal and master problems. The primal problem is solved
in the same manner as in the GOP algorithm, that is, through projection on a subset of the variables and solution
of the resulting convex subproblem.

It is in the master problem that the (GOS) differs from the GOP algorithm. While the GOP algorithm solves
the relaxed dual problems for several regions of the y variables (by solving for different combinations of bounds for
z), in the Global Optimum search, the z variables in the Lagrange function are fixed at the solution of the current
primal problem. This is based on the assumption that

min L(z,y, A", ) > (2", 3, 2", u*)
where z* is the solution of the kth primal problem for a fixed value of y = y*. Since there is only one solution to
the primal problem at every iteration, the (GOS) solves only one master problem at every iteration, in contrast to
the GOP algorithm.

It should be noted, however, that fixing the # variables at the values corresponding to the solution in the primal
problem is equivalent to linearization of the Lagrange function in the projected space of the y variables. Thus, there
is an implicit assumption in the (GOS) technique that the optimal solutions of the primal problems for different
values of y = y* are convex in vy, thereby ensuring that the linearization of the Lagrange function underestimates
the optimal solution to the problem for all values of y. In general, however, this cannot be guaranteed. This is the
reason that the (GOS) technique, while often successful, does not have a theoretical guarantee of convergence to the

global solution from any starting point.

7 Finite e-Convergence and e-Global Optimality

This section presents the theoretical proof of finite e-convergence and e-global optimality of the GOP algorithm.

Theorem 1: (Finite e-convergence)
If the following conditions hold:

(a) X and Y are nonempty compact convez sets,
(b) Conditions (A),
(c) f(z,y), g(z,y) and h(z,y) are continuous on X xY, and

(d) The set U(y) of optimal multipliers for the primal problem is nonempty for ally € Y and uniformly bounded in

some neighbourhood of every such point,
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then,

For any given € > 0, the GOP algorithm terminates in a finite number of steps .

Proof: Fix € > 0 arbitrarily. Suppose that the GOP algorithm does not converge in a finite number of iterations.
Let < o¥, pg’“k > be the sequence of optimal solutions to the relaxed dual problem at successive iterations k. By
taking a subsequence, if necessary, we may assume that < y*, u7"* > converges to (Y, pz") such that 7 € Y. At
every iteration, there is an accumulation of constraints from previous iterations. Hence, the solution of any of the
relaxed dual problems at a given iteration is greater than the u7" for the previous iteration. This implies that u7"
is a nondecreasing sequence which is bounded above by the optimal value of the original problem. Also, at every
iteration, y* is in the compact set Y. Similarly, since U(y) is uniformly bounded for all y € Y, we may assume that
the corresponding sequence of multipliers for the primal problems (A, u*) converges to (X, 7). Let the solutions of

the corresponding primal problems converge to (Z, P(y) ). By Lemma 1 (see Appendix B) ,

5 v |lin 5

L(mBj:y: )‘:y‘) T L(E: Y, )‘:ﬁ) fOT‘ any " (23)

Now, at every iteration k, due to accumulation of constraints,

k B; & ko ky|lin
pp > Lz, gt A8 )]
for some combination of bounds z?i. Therefore, by continuity of L(z,y, Ak,y,k)w: and (23), we obtain pp™ >

L(Z,9, A\, ). Then, it only remains to be shown that (X,%) € U(%), (Lemma 2 in Appendix B) for then, by the

strong duality theorem, L(Z, 7, A, ) = P(Y) and consequently, u%™ > P(7); by the lower semicontinuity of P(y) at

min

7 (Lemma 3 in Appendix B), this would imply that up " > P(y*) — € for all k sufficiently large, which contradicts

the assumption that the termination criterion in Step 5 is never met. O

Theorem 2:(Global Optimality)
If the following conditions hold:

(a) X and Y are nonempty compact convez sels,
(b) Conditions (A) are satisfied, and
(c) Finite e-convergence ( Theorem 1),

then,

(i) The solution of the Relaxed Dual (RD) problem in Step (3) will always be a valid underestimator of the solution
of the problem (1).

(ii) The GOP algorithm will terminate at the global optimum of (1).
Proof:

(i) From Property 7, the solution of the relaxed dual problem in Step(3) (which is simply the solution of the RHS
of (22)) will rigorously underestimate the solution of the relaxed dual problem (5). Since the relaxed dual
problem (5) has fewer constraints than the original problem, it represents a lower bound on the solution of (1).
Hence, the solution of the relaxed dual problem in Step (3) will always be a valid underestimator of the optimal

solution of (1).
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(ii) The primal problem at every iteration represents an upper bound for the original problem (1), while the relaxed
dual problem contains fewer constraints than the original problem and thus represents a valid lower bound on
the solution of (1). Therefore, since the termination of the algorithm is based on the difference between the
lowest upper bound (from the primal problems) and the largest lower bound (from the relaxed dual problems),
the algorithm will terminate when these two bounds are both within € of the solution of (1). From Theorem
1, the algorithm terminates in a finite number of steps. Hence, the GOP algorithm terminates at an e-global

optimum of (1). O

8 Application to the Illustrating Example

This section considers the application of the GOP algorithm to the example problem that was used to illustrate the

mathematical properties in section 5. This problem is given as

min —z — y
z,y

4
4
0<y < 8

s.t. zy
0<z

INIA

This problem has a global solution of -8.5 at (0.5,8), and a local solution of -5 at (4,1). When the nonlinear
programming solver MINOS 5.2 (Murtagh and Saunders, 1988) was used to solve this seemingly simple problem,
the global solution of -8.5 was found from some starting points. However, from a large number of starting points,
MINOS 5.2 failed to determine even a feasible solution.

Consider the starting point of y = 2 for the application of the (GOP) algorithm to the illustrating example.
Iteration 1 of the GOP algorithm

For a fixed value of y' = 2, the primal problem at the first iteration can be written as

min—z — 2
xr

subjectto 2z—4 < 0
0—z < 0
z—4 < 0

The solution of this problem yields z = 2, ul = 0.5, u} = 0, and ul = 0, where ui, ul, ul are the Lagrange multipliers
corresponding to the above three constraints respectively for the first primal problem. The objective function has
a value of -4, and provides an upper bound on the global solution. The Lagrange function formulated from this
problem is
L(z,y,p') = —z—y+pi(ey —4)+uy(0 —z) + ps(z — 4)
= —z—y+0.5(zy — 4)
= 05(y—2)z—y—2

Thus, the gradient of the Lagrange function w.r.t z is

V.L(z,y,pu*) = 0.5(y — 2)
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This is the form of the gualifying constraint to be added along with the Lagrange function to the relazed dual
problem.

At the first iteration, the two relazed dual problems to be solved are shown below:
(i) Fory—2>0,and 2% =zF =0:

min up
Y.hB

subject to up > L(z=0,y,p')=—y—2

y—2 > 0
0<y < 8
The solution of this problem is y = 8, up = —10 .
(ii) Fory —2<0,and z” =2V = 4:
min up
Y. hB
subject to up > L(z=4,y,p')=y—6
y—2 < 0
0<y < 8

The solution of this problem is y = 0, up = —6 .

Thus, after the first iteration, there are two solutions of ( pp,y ) in the stored set. From these, the solution
corresponding to the minimum pp is chosen. In this case, this corresponds to the solution up = —10, y = 8. Hence,
the fixed value of y for the second iteration is 8 .
Ilustration of GOP vs (GOS) :

It is interesting to note the consequence of using the (GOS) technique (Floudas et al, 1989) to solve this problem.

The first primal problem is solved as in the GOP algorithm. However, in the Lagrange function formulated from

this problem, the z variable is fixed at its solution in the primal problem, which is z = 2. This leads to

Lz =2,y,u") = 05(y—2)2—y—2
= —4
From, this, it can be seen that the value of pup for the (GOS) master problem has to be greater than -4. This means

that the (GOS) technique will converge after only one iteration at the suboptimal solution of z = 2, y = 2.

Iteration 2 of the GOP algorithm

For the second iteration, the primal problem is :

min—z — 8
xr

subjectto 8z —4 < 0
0—z < 0
z—4 < 0
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This problem has a solution of z = 0.5, u? = 0.125, u2 = 0, and pZ = 0. The objective function value is -8.5, and
thus provides a tighter upper bound than the solution from the first iteration.

The Lagrange function formulated from the second primal problem is
—z —y+0.125(zy — 4)

= (0.125y— )z —y — 0.5
= 0.125(y—8)z —y— 0.5

L(z,y,p*)

Hence, the gradient of the Lagrange function w.r.t. z is
V. L(z,y, p*)= 0.125(y — 8)
Thus, the qualifying constraint for this Lagrange function has the form

(i) For the problem with z? = zV = 4,
y<8

(ii) For the problem with z? =z’ = 0,
y=8

Since the upper bound on y is 8, the second problem is nothing more than a function evaluation, and hence only
the problem corresponding to y < 8 needs to be solved.

In order to determine the Lagrange function from the first iteration to be present in the current relazed dual
problem, the qualifying constraints for the Lagrange functions from the first iteration are checked for satisfaction at
y? = 8. Since y' = 2, the constraint y > y' will be satisfied at y = 8. Hence, the first Lagrange function from the
first iteration (corresponding to z = 0) is selected to be present in the current relaxed dual problem.

The relaxed dual problem for the second iteration is solved by setting = = 4:

min up
Y. uB

subject to up > L(z=0,y,u') = —y—2
y—2 >0
pp > L(z=4,y,u’) = —0.5y—4.5
y—8 <0
0<y < 8
The solution to this problem is up = —8.5, y = 8. Since this is a lower bound on the global solution, and is equal to

the upper bound of -8.5 from the two primal problems, the algorithm stops, having determined the global solution
after two iterations.
The algorithm was similarly applied to this problem from several starting points for y, and converged to the

global solution in two iterations in each case.

25



9 Geometrical Interpretation

The application of the GOP algorithm to this example can be interpreted geometrically. For the starting point of
Yl = 2, the sequence of points generated by the algorithm is graphically illustrated in Figures 2(a)-2(d). Figure 2(a)
shows the nonconvex feasible region, and Figure 2(b) represents f(y), the optimal value of the primal problem for
different fixed values of y.

For the first iteration ( Figure 2(c) ), with an optimal value of -4 for the primal problem, L} and L} are the
Lagrangians evaluated at the two bounds z = 0 and =z = 4 respectively. These Lagrange functions are underestimators
of the objective function for y > 2 and y < 2 respectively, and they intersect at y = 2. It should be noted that these
Lagrange functions intersect at y = 2 since the strong duality theorem is satisfied. The solutions of the two relazed
dual problems are at y = 8, up = —10 and y = 0, up = —6. The point y = 8 is chosen for the next iteration because
it provides the lowest bound on the global solution.

At the second iteration, the fixed value of y is 8, and the primal problem has an objective value of -8.5 . One of
the two relazed dual problems to be solved in this iteration will be for y < 8. For this problem, there is a choice
of two Lagrange functions L} and L} from the first iteration. Since the qualifying constraint for Li is y > 2, this is
satisfied at y = 8. It can be seen from Figure 2(c) that L] underestimates the optimal value of the original problem
for all values of y between y' = 2 and y®> = 8, and therefore can be present in the relazed dual problem for y < 8. In
the case of Li, however, it can be seen that this Lagrange function underestimates the optimal value of the original
problem only for y < 2, and hence cannot be present for this relazed dual problem.

The two relaxed dual problems solved at the second iteration each correspond to the region of y less than or
greater than 8. The solution of the relaxed dual problem for y > 8 yields the solution y = 8, up = —8.5, since the
upper bound for y is 8. The solution of the second relaxed dual problem, solved for y < 8, is also y = 8, up = —8.5.
In this case, however, this happens because both the Lagrange function from the first iteration (L1) and the Lagrange
function from the second iteration for this problem (L?) have the minimum w.r.ty at y = 8 (see Figure 2(d) ). Hence,
the algorithm stops after two iterations, having identified, and converged to, the global solution.

By storing the solutions of each of the relaxed dual problems at the current iteration, it is ensured that the
algorithm can, if necessary, return a value of y from either side of y®. The criterion for selecting the Lagrange
functions from previous iterations results in the creation of an underestimating function that resembles a series
of valleys and peaks, with the valleys representing the stored solutions of the relaxed dual problems at different
iterations.

Finally, if the (GOS) technique were to be used to solve this problem from the same starting point, then the
Lagrange function added to the master problem for the first iteration would be up > —4. From Figure 2(b), this is
seen to be the linearization of the optimal solution of the problem around y = 2. This Lagrange function does not

underestimate the optimal solution in any region of y.

10 Conclusions

In this paper, a new theoretical approach is proposed for the determination of global optima for several classes
of nonconvex nonlinear programming NLP problems. These classes include problems with (a) quadratic objective
function and linear constraints; (b) quadratic objective function and quadratic constraints; (c) polynomial functions;
and (d) polynomial constraints. Theoretical properties have been investigated for the rigorous solution of the relaxed
dual problem, and finite e-convergence and e-global optimality is proved. A global optimization algorithm, GOP,

has been developed based upon these properties.
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The scope for application of the GOP algorithm is not limited to just the classes of problems considered in
this paper. It is possible to envisage the application of such an approach for problems involving integer quadratic
programming, bilevel programming or linear/nonlinear complementarity problems. It can also be possibly used in
conjunction with other approaches for solving problems where the structure can be exploited through decomposition.
For example, most algorithms for solving mixed-integer nonlinear programming MINLP problems proceed through
successive solution of NLP and MILP subproblems. In this context, the GOP algorithm could be used to determine
a global solution of the NLP subproblem while efficient solvers are available for solving the MILP subproblem.

Research work along these directions is currently in progress, and will be reported in future publications.
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Appendix A

Proof of Property 5: The linearization of the Lagrange function in the form given by (19) around the point z* is

lin

= L(z*,y, 2", u")
+( @41 (y, pLE p’“).vqul(z)bk + V¥ (z, PLR p,k)|xk ).(z — zk)

L(z,y, X", u")|

ok

From the KKT gradient conditions of the primal subproblem (2),
Vo L(z", 4" A%, 4") = @1(yF, A%, 4F). Vo0 (2)| s + Vo Ta(z, A, p¥)| = 0.

Hence,
lin

L(:l}, Yy, Ak: y’k)| k — L(mk: Yy, )‘k: y’k) + [(IDI(y: Ak: y'k) - (I)l(yk: )‘k: y’k)]vqul(z”xk (1" - zk) (24)
Then, from (24) and Property 4, the Inner Relaxed Dual (IRD) Problem can be written as

T

L*(z,y,",p") = minL(z,y, 2", u")
> min{L(z", 9,2, u") +
[@1(y, A", 4") — @1(3", 25, ") ] Vo 0 ()] oo (2 — %) }
L(z*,y, 3, ub) +
min {[:(5, 2%, 4) — &1(5, X 1t) ] V.0 (&) (o — 2) )

z€X

v

The last term on the right hand side is linearly separable in ;. Therefore, this term can be written as

min {[<I>1(y,)\k,uk) — <I>1(yk, )\k,,uk) ].Vx\Ill(zk)|xk.(z — zk)}

T€X

z€X

= min{i {1 ®1,(u, M}, ub) — @1, (5%, 2, ub) ].Vxl\Il1(z’“)|xk.(zi - zf)}}

= Z {HEH {[ (I)lz(y: )‘k: y’k) - cI)ll(yk: )\k: y‘k) ]vxqul(zk)|xk(zl - mf)}}

i=1
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From this, it can be seen that if there exists some z; such that ¥;(z) is not a function of z;, then the gradient of
¥, (z) w.r.t that z; will be zero. Therefore, the terms in the summation corresponding to this #; will simply vanish,
and the minimization of the Lagrange function w.r.t. these variables will not have any effect on the solution of the
inner Relaxed Dual problem. Hence, the inner minimization problem, with the Lagrange function replaced by its

linearization about z*, needs to be considered only for those z; that are in the function ¥;(z). D

Proof of Property 6: Suppose that Property 6 is not true. Then, there should exist a value of the complicating
variable y* € Y, such that

L(z,y*, 2", u*) < min L(z"7,y*, 2", u*) (25)
BjGCB

For y = y*, L(z,y*, A*, u*) is linear in z, which implies that the minimization of L(z,y*, ¥, u*) over z will result
in a solution that lie at a bound of the compact set X. Thus, (25) cannot hold, and the hypothesis is not valid.
Therefore, Property 6 must be true. O

Proof of Property 7 : From Property 4,

lin

min L(z,y, ¥, u*) > min L(z,y, )\k,uk)| . Vy. (26)
z€X z€X z
By its definition, then, Z must satisfy the following inequality:
_ . i
L*(2,y, A", p*) > min L(z,y, A", 6) [0 vy (27)

Using the definition of L(z, y, A*, ,uk)|;l:, the right hand side of (27) is given by

. lin . >
min L(z,y, A*, p*)| Y = min[L(z*,y, A", p*) + ) Vo, L(z, 4, A, 6h)| (2 — 2f)]

T€X z€X .
=1

z€X

L(zk, y, AF ;Ak) + min Z Ve, L(z,y, pLE uk)|xk.(zi — zf)
i=1
Vie I,

Since the linearization of the Lagrange function is separable in z; for any fixed y = y?, the operators for minimization

and summation can be exchanged. Hence,

min L(z,y, A¥, uk)|:: = L(z",y, \*, u®) + Zn}:in Vo, L(z,y, A, pk)|xk.(zi —zh). (28)

z€X .
=1

Consider the ¢ th component of the second term on the right hand side. It is linear in z;. Hence, the minimum of
this term will lie at a bound of z;, the specific nature of the bound(lower or upper) being determined by the sign of

Vo, L(z, y, A¥, ,uk)|xk. Two cases are possible:
(a) If V., L(z,y, Ak,,uk)|xk > 0, then

minV,, L(z,y, A¥, ,uk)|xk.(zi —z8) > V., L(z,y, M, ,uk)|xk(zZL —zh
(b) If Vle(z,y,)\k,uk)Lk < 0, then
ok

n;invxl L(z,y, )\k,,uk)|xk.(:ci — 2N >V, L(z,v, Ak,uk)| (27 — 2F)
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These two cases can be combined to yield the following result:

minV,, L(z,y, A, u*)| . (2 — =) > Vo, L(z, 5, A, 4¥)| - (2F — 2F)
where (29)

B mzL Vy vsz :y: ,,U,
e Vy:V.L(z,y M, pub)

Combining (27), (28) and (29), we see that

L*(E:y: Ak::u’k) Z L(zk:y: )\kuu’k)"i'zvxl[’(z:y: Ak::u’k)|xk(zzB _zf)
i=1
where (30)

2B = zZL Vy: Vg, L(z,y, Ak,,uk)|xk >0
:l:f = EZU Vy : Vle(m:y: )‘kiy’k)|xk S 0
Viel,

From this, it is evident that for any fixed or discretized y = y?, there exists a combination of bounds B; for the

connected z variables such that

min L(z,y", A, u*) > L(z",y", 2", u") + 3V Lz, y, N 68| (2] — k)

=1
. It
> L(z®,y", 2, uh)|

Tk

Hence, for every discretized y = y?, by fixing the values of the z variables at a combination of bounds B; in the
linearized Lagrange function and taking the minimum over all possible combinations of bounds B; € CB, a lower

bound on the value of L*(z,y?, A*, u*) is obtained. Since this is true for every y = y?, (21) must hold for all y. O
Proof of Property 8 : The gradient of the Lagrange function (in the form given by (19) ) is

V:L'L(z: Y, Ak: :u’k)|xk = (I)l(y: Ak:p’k)-vx\yl(z”xk + vx\IJZ(z’: Ak; :u’k)|xk
By using the KKT conditions, this reduces to
v:vL(z: Y, Ak: :u’k)|xk = [(I)l(y: Ak: :u’k) - (ﬁl(yk: Ak: :u’k)] vx‘I’l(z)|xk

By assumption, ®;(y, A*, u¥) is linear in y. Therefore, since ®;(y*, A*, u*) and Vx\Ill(z)|xk are constant terms,
V. L(z,y, M, ,uk)|xk is linear in y. O
Proof of Property 9 :

(a) For iteration 1:

For k = 1, from Property 7,

L(z®,y, A, uh)
min L(z,y, A', u') > min Vle(z,y,)\l,ul)Ll <0 if zfz =zV },Vy.
Vo L(z,y, AL, pt)| . >0 if 2] = 2F
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Since this holds for all y,

L(z®,y, A, ut)
min{minL(z,y,)\l,p,l)} > min<{ min VIIL(z,y,Al,ul)Ll <0 if :cfl =zV

YEY r€X yeEY B;€CB
1,1 . By _ L
Vle(m,y,)\ K )|x1 Z 0 7’f T, =Z;

The operators on the right hand side can be interchanged since L(z®!,y, A, u') depends only on y. Therefore,
L(z®,y, A, u')
min{minL(z,y,)\l,pl)} > min ¢ min VIIL(z,y,Al,ul)bl <0 if Pt =2l
YEY c€X i B
Ve, L(z,y, A ut)| >0 if o) =af

B;€CB yeEY

I
8

Equivalently, this can be written as

min up
min up "5, 2
yey K . st. up > L(mBl;y:)‘lay’l)

ve > min o B
s.t. KB 2 mlnL(z,y,)\l,,ul) BiecB vzlL(m:y:)‘ K )|£1 S 0 7’f Z; f=
z€X

Vo, L(z,y, A pt)| . >0 if 2] = zF

|
o

I
8

Hence, for iteration 1, the property is proved.

(b) For iteration 2:

UL(1, 2) represents the set of Lagrange functions from the first iteration whose qualifying constraints are satisfied
at y?. For the second iteration, the Lagrange functions from the first iteration that belong to U L(1,2) already have
the value of x set to the appropriate bound. Therefore, these Lagrangians are functions only of y.

Thus, we need to show that if

/

min up
vnB
s.t.
B. 1 1 [Fin
EB2 = KB Z L(:E ]:y:)‘ ) M )|1:1 (3]_)

Vo L(z,y, A, pl)|,, <0 if 27 =¥ 3 Vi€ UL(L,2)
Vo L(z,, A, 0Y)] 20 if 7 = af

KUB Z min L(:l}, Y, Az; y’z)
z€X
Then,

min up
NSz

s.t.
KB 2 L(m’Bj:y:)‘l:y'l)LLJ

1,1 e B _ U ;
EBz > Bmiél3< vle(z’y’)‘l,Ml)'xl <0 7’f 1’339; =z Vj e UL(L,2)
1€ Vle(z,y,)\ y )|x1 Z 0 7’f T’i =z

lin

(32)

lin

KB Z L(zBl:y: )\2,,[1,2) 2
Vo L(z,y, A%, )|, <0 if 2"
Vo L(z,y, A%, p?)| , >0 if el =2

I
8
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Since the first set of constraints for this problem are functions of only y, the min operator applies only to the second
B;€CB

set of constraints, i.e., those corresponding to the 2”¢ primal problem. Hence, (32) is equivalent to

( min up
NSz
s.t.
v li
KB Z L(T’B]:y:)‘lap’l)uf
.. B; .
gg? > ¢ Vx,L(z,y,)\l,'ul)Ll <0 ifz’ =z »VjeUL(L,2) (33)
z .. B;
vx,L(z;y;)‘lap’l)|x1 Z 0 7’f z,; = zZL
li
L(z",y, 2%, 4?2
up > min Vx,L( z,y, A%, p%)| , <0 if &) ==z
.. B
vx,L(z:y: Azalu’2)|x2 Z 0 7’f zi f= SL‘.{J )
The use of Property 7 for the second iteration gives the following result:
L(=z B’,y,r\z,uz)
min I(z,y,*, 4°) > min V., L(z,3, 3% p?)| if 2] = o (34)
z€X B, €ECB

<0
>0

Ve, L(z,y, A%, p? if z7' =z}

| .’[7

Hence, from (33) and (34), the second set of constraints on the RHS of (32) is simply a relaxed form of the second
set of constraints of the RHS of (31). Hence, for k = 2, the property holds. Similarly, by induction, the property can
be proved for any k. O

Appendix B

Lemma 1: If the sequence of solutions < y* > of the relaxed dual problem converges to 3 , and the corresponding

Lagrange multipliers for the primal problem (P) converge to (X, &), then
L™, 9.1, = L(Z,5,\E) for any 2

Proof: As y* — 7, we may assume that z* — Z, A* — X and p* — %. Now, the linearization of the Lagrangian as

given by (24) and evaluated at 7/ is

lin
L(zP,y, A% u")| 0 = L(z", 9, A", u)
+[(I>1(y: Ak: :u’k) - (IDI(yk: Ak: p’k)]vx‘l’l(z)|xk(sz - zk)
VB]' €CB

The Lagrange function is a weighted sum of f(z,y), g(z,y) and h(z,y), all of which are continuous over X x Y.
Therefore, L(z,y, A*, u*) is also continuous over X x Y and consequently, L(z*,y, A¥, u*) is continuous over Y. This

implies that it is also lower semicontinuous at every y, and therefore at y. Therefore,

s yf -7, L(z",y, 2", u*)|,_; — L(z,9, )\, ) (35)
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The function ®,(y, \*, u*), is a linear function of y, and hence it is continuous over y. Therefore, it is lower

semicontinuous at y, which implies that
As yk _>y: (I:‘l(y: Akuu’k)|y:yk i (I:‘l(y: X: E) (36)

But as y* — 7, ®1(v*, A*, u*) — ®,(7, A, #). From this, and (35) and (36) we obtain the desired result. O

Lemma 2: For a fixed y = y* for the primal problem, let U(y*) be the set of optimal multipliers for the primal
problem. If y* — 7 and \* — X, u* — [, then (X, &) € U(%).

Proof: The proof for this Lemma comes from showing that U(y) is an upper semicontinuous mapping at 3. To do
this, we employ the characterization of U(y) as the set of optimal solutions of the dual of the primal problem; that
is ,

U(y) ={p>0,A: L*(Z,y,A, p) = max L*(Z,y,A',u'")}

pl>ont
Now, L*(Z,y, A, p) is a continuous function, since it is a sum of linear continuous functions of y. Then, application
of Theorem 1.5 of Meyer (1970) proves the desired result. O

Lemma 3: Let P(y) be the set of optimal solutions of the primal problem for fixed values of y; then, if y* — 7,
P(y) is lower semicontinuous at .

Proof: P(y) is the solution of the primal problem for a fixed value of y; therefore, since the strong duality theorem
can be applied for every primal problem, it is also equal to the optimal value of the corresponding dual problem.
Since the set U(y) is assumed to be nonempty for all y, this implies that

P(y) = max L*(Z,y,\, u) YyevY
1202

Since Y is a compact set, the local uniform boundedness of U(y) implies the uniform boundedness of U(y) on all of
Y. Therefore, there exists a compact set U* such that U(y) C U* for all y in Y. The constraint (A, u) € U* can
then be added without disturbing the equality, and this allows the direct application of Lemma 1.2 of Meyer (1970)

in order to obtain the desired lower semicontinuity of P(y). O
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