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Abstract. The paper presents a decomposition based global optimization approach to bilevel
linear and quadratic programming problems. By replacing the inner problem by its corresponding
KKT optimality conditions, the problem is transformed to a single yet non-convex, due to the
complementarity condition, mathematical program. Based on the primal-dual global optimization
approach of Floudas and Visweswaran (1990, 1993), the problem is decomposed into a series of
primal and relaxed-dual subproblems whose solutions provide lower and upper bounds to the global
optimum. By further exploiting the special structure of the bilevel problem, new properties are
established which enable the efficient implementation of the proposed algorithm. Computational
results are reported for both linear and quadratic example problems.

1. Introduction

Bilevel programming refers to optimization problems in which the constraint region
is implicitly determined by another optimization problem, as follows:

min F(z,y)
s.t.
G(z,y) <0 (P)
min f(z,y)
y

yeq st g(z,y) <0
zeX, yevY

where G(z, y) is the vector valued function X xY — RP, g(z, y) is the vector valued
function X x Y — R™, and X and Y are compact convex sets.

Problem (P) can be interpreted in the following way. At the higher level the
decision maker (leader) has to choose first a vector z € X to minimize his objective
function F; then in light of this decision the lower level decision maker (follower)
has to select the decision vector y € Y that minimizes his own objective f.
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Applications of bilevel programming are diverse, including (i) design optimization
problems of chemical plants where regions of different models should be examined
(as for example in equilibrium calculations where the different regions correspond
to different number and type of phases), (ii) long-range planning problems followed
by short-term scheduling in chemical and other industries, (iii) hierarchical decision
making policy problems in mixed economies, where policy makers at the top level
influence the decisions of private individuals and companies, and (iv) energy con-
sumption of private companies, which is affected by imported resources controlled
by government policy.

Problem (P) has received a lot of attention, especially for the linear case. Broadly,
one can distinguish two major classes of approaches for bilevel linear problems:

(i) Enumeration techniques exploit the fact that an optimal solution to the bilevel
problem is a basic feasible solution of the linear constraints involved at the lower
and upper level and consequently must occur at an extreme point of the feasible
set (e.g. the enumeration method by Candler and Townsley, 1982; “Kth Best
algorithm” by Bialas and Karwan, 1984; B&B algorithm by Bard and Moore,
1990).

(ii) Reformulation techniques based on the transformation of the original problem
to a single optimization problem by employing the optimality KKT conditions
of the lower level problem. For the solution of the resulting formulation the
following algorithms have been developed: B&B techniques (Bard and Falk,
1982); mixed integer programming techniques (Fortuny and McCarl, 1981);
parametric complementarity pivoting (Judice and Faustino, 1992); local opti-
mization approaches for nonlinear programming such as penalty and barrier
function methods (Anandalingam and White, 1990, White and Anandalingam,
1993) and global optimization techniques based on the reformulation of the
complementarity slackness constraint to a separable quadratic reverse convex
inequality constraint (Al-Khayyal et al. 1992) or the restatement of the original
problem as a reverse convex program (Tuy et al. 1993, 1994).

For bilevel nonlinear problems, Bard (1983, 1984) developed a one-dimensional
search algorithm that yields a locally optimal solution. However, it has been proven
by Clark and Westerberg (1988), Ben-Ayed and Blair (1990) and Haurie et al.
(1990) that the optimality conditions used by the previous author are not correct.
Penalty function methods were used by Aiyoshi and Shimizu (1981), which do
not guarantee the global optimal solution because of the non-convex nature of the
problem.

In this paper a new algorithm of class (ii) is proposed for the case of convex outer
level constraints (G(z,y)) and linear inner level constraints (g(z, y)). The approach
takes full advantage of the special problem structure in order to employ the recently
developed global optimization techniques based on primal-relaxed dual decompo-
sition (Floudas and Visweswaran, 1990, 1993). The paper is organized as follows.
In the next section, the bilevel linear problem is formulated followed by a brief
discussion concerning the nature of the problem as well as the solution difficulties.



The new global optimization method is then presented in detail, a small example is
used to demonstrate the main ideas and basic steps of the proposed approach and
computational results for a battery of example problems are given. Finally, section
3 presents the extension of the proposed approach to linear-quadratic as well as
quadratic-quadratic bilevel programming problems.

2. Bilevel linear programming problem

If all functions are linear, problem (P) gives rise to the following bilevel linear
programming formulation:

min F(z,y) =cjz+djy
s.t.
G(z,y) <0 (P2)
min f(z,y) =clz +dly
ye s.t.yg(z,y):Az—l—By—b <0
z >0

For the sake of simplicity, the constraints G(z,y) will be ignored in the sequel.
However, it is easy to show that the results obtained below hold in the presence
of general convex constraints at the outer level. It should also be noted that any
bounds on y are assumed to be incorporated into the inner level inequality con-
straints.

For the rest of the paper the following terminology will be used:

Follower’s Feastble region
S(z) = {y | 9(z,y) <0}
Follower’s Rational Reaction Set
RR(z) = {y € argminf(z,y) |y € S(z)}

Inducible Region which corresponds to the feasible region of problem (P)

IR ={(z,y) |z >0,y € RR(z)}

The solution of bilevel linear programming problems involves a number of inter-
esting features:

e even for the linear case where the the follower’s feasible region S is convex,
the inducible region (IR) where the leader’s objective should be minimized is a
non-convex region. This is graphically illustrated in Figure 1, where the feasible
region is shown as the shaded region (S), whereas the inducible region (IR) is
the dashed non-convex region.



e Hansen et al (1990), proved that the bilevel linear programming problem is
strongly NP-hard.

e The presence of dual degeneracy at the follower’s problem, while not affecting
the value of follower’s objective function, can have an impact on the leader’s
objective. In this case the follower’s choice among the multiple optima will
be based on his willingness to cooperate with the leader. Two extreme cases
concern the follower’s acceptance of the leader’s preferences regarding y (the
tie cooperative case) and the follower’s adopting the opposite of the leader’s
preferences (the tie non-cooperative case). The approach presented in this paper
can handle both cases, but can be expected to be more efficient for the tie
cooperative case.

, >~  Optimal
\ .
I v Solution

Figure 1. Non-convexity of bilevel linear problem



2.1. Equivalent Formulation

Rather than working with problem (P2) in its hierarchical form the analysis begins
by converting it into a single mathematical program. This can be achieved by
replacing the follower’s optimization problem with the necessary and sufficient KKT
optimality conditions. This results in the following problem:

min c{z + d?y
TY,U
s.t. ds+uTB=0
w;(Az + By —b); =0, i=1,..,m (P2S)
Az + By <b
1520, yZO: u; ZO: = 1:":m

where u; is the Lagrange multiplier of the ' follower’s constraint (Az+By—b);, i =
1,..,m. Note that the optimality conditions assume the existence of a stable point
for the inner optimization problem, and therefore assume the satisfaction of an
appropriate constraint qualification.

Problem (P28S) is a single nonlinear optimization problem, albeit non-convex due
to the presence of bilinear terms in the complementarity conditions. Floudas and
Visweswaran (1990, 1993) demonstrated that this class of problems can be solved
to global optimality through their primal-dual decomposition algorithm (GOP)
which transforms the original problem into a series of primal and relaxed-dual (RD)
subproblems. The GOP algorithm was shown to have finite convergence to an e-
global optimum. Here, by exploiting the special problem structure and introducing
extra 0-1 variables to express the tightness of the follower’s constraints a modified
and more efficient algorithm is developed.

2.2. Mathematical Properties

Consider the following partition of the variables Y = u, X = (z,y) which satisfies
Conditions (A) of the GOP algorithm (Floudas and Visweswaran, 1990, 1993). For
fixed Y = Y*, the primal problem can be written as:

min cfz+dly
Ty
st.  Y'(Az+By-1); =0, i=1,.,m (P2s")
Az + By <b
z>0

Note that the KKT gradient conditions in problem (P2S), which are in the variables
u, can be used directly in the dual problem. The solution to this primal problem, if
feasible, yields the multipliers A* and p* for the equality and inequality constraints
in (P2S’). Note that when uf = 0, the corresponding constraint drops out from
the set of equality constraints, and there will be no multiplier for that constraint,



implying that A¥ = 0 for this case. Conversely, when uf > 0, the corresponding
constraint is active, and therefore the value of ¥ is zero.
The relaxed dual problem corresponding to (P25’) has the following form:

min up

BB,u

RD

s.t. pp > min L(z,y, u, ut Ak) (RD)
@,y

where L(z,y, u, u*, A¥) is the Lagrange function of the primal problem (P2S’) and
is given by

L(z,y,u,u, A") = el e +dly+) (4 + Au;)(Az + By —b); (1)
=1

where (Az + By — b); refers to the i'* inner constraint. Separating the terms in z
and y, equation (1) can be rewritten as:

m

L(z,y,u, 65 0") = [ef + ) (4 + Aw)Ailz + (2)
i=1
[d] + Z(Mf + Afw)Bily — Z(Mf + Afui)b;
i=1 i=1

where A; and B; are the i'* rows of A and B respectively. The KKT gradient

conditions of the primal problem (P2S’), for fixed Lagrange multipliers Y = Y* =

u*, can be written as:

Vo L(z,y,u*, u* AF) = ¢ + Zqui + ZA?U?AZ' =0 (3)
i=1 i=1

vyL(z:y:“k:F’k:)‘k) :d1+2/‘f3i+z)‘fu’f3i =0 (4)
i=1 i=1

Incorporating (3) and (4) into (2) results in the following transformation:
L(m: Y, u, ,u'k: )‘k) = Z [)‘f(u‘l - 'u‘f:)sl - (:u’f + )‘fu‘f)bl] (5)

=1

where S = Az + By — b are slacks introduced for convenience. The advantage of
the expression in (5) for the Lagrange function is that the following property can
be established which effectively allows problem (RD) to be replaced by a sequence
of subproblems corresponding to combinations of lower and upper bounds of the
constraints.



Property 2.1: Suppose that the minimum value of the Lagrange function L*,
L*(Z,§,u, u*, 2F) = min  L(z, v, u, u*, \¥) occurs at (%, 7); then,
@,y

32 (s — ub)S;7 — ( + Muf)b]
* (= = k ky > 3 i=1
L (z,y,u,,U: VA ) = B?élélB )\f(ui —uf) <0, VSZBJ' — Sz'L
A (u; —ub) >0, VSZBj =5V

where S = (Az + By —b) are slacks (S > 0) introduced for ease in the presentation;
SE,SY are the lower and upper bounds on the constraints (Az + By — b);, respec-
tively; B; corresponds to a combination of lower/upper bounds of constraints; SEBi
is the vector of lower/upper bounds of the constraints corresponding to the bound
combination B;; and CB is the set of all bound combinations.

Proof: Consider the i’ component of the Lagrange function, corresponding to the
i*? inner constraint. The minimum of this constraint corresponds to lies at a bound
of (Az + By — b);, the actual bound being determined by the sign of A¥(u; — u}).
The following two cases can be distinguished:

(a) If u; > uf and AF <0, orif u; < w¥ and X} >0,

m

min L(z,y, u, u”, )\k) > E [)\f(ui — uf)SZ»U — (uf + Afuf)bi]
z,y :
=1

(b) If u; < uf and A¥ > 0, or if u; > wf and A} <0,

m

min L(z,y, u, u”, )\k) > E [)\f(ui — uf)SZ»L — (uf + )\fuf)bi]
T,y :
=1

i From this, it follows that there exists a combination of bounds B; of the constraints
such that:

min L(z,y, u, uk )\k) > E [)\Z»“(ui — u.;-“)SZBj — (,ufc + Afuf)bi] m|
z,y .
2=1

Remark 2.1: The above property preserves the important feature of the GOP
algorithm that the solution of problem (RD) can be equivalently substituted by
a series of optimization subproblems corresponding to different partitions of the
Y-space.

Remark 2.2: It can be seen from equation (5) that the Lagrange function is es-
sentially expressed in terms of the follower’s constraints. This implies that from a



computational point of view, the complexity of the relaxed dual problem is deter-
mined by the number of active inner problem constraints (i.e. those constraints for
which A¥ £ 0). This can be of great significance in problems with large number
of variables but few constraints. For instance, for the case of two z and two y
variables with two constraints, the number of subproblems that would be needed
is reduced from 2* to only 3 (since the combination of the zero upper bounds for
all the constraints results in redundant RD subproblem).

2.3. Introduction of 0-1 variables

It is clear that each combination of the u variables corresponds to a vertex of the
followers feasible region. However, different combinations with the same set of
nonzero u; correspond to the same vertex. It is desirable to avoid such nonzero
combinations from being generated more than once. This can be ensured by the
introduction of binary variables, as shown below.

Consider the set of binary variables a;, 2 = 1, ..., m, associated with each one of
the follower’s constraints as follows:

o — 1,if constraint (Az + By — b); is active
* 7 ] 0,otherwise

The following set of big-M constraints are also introduced to establish one-to-one
correspondence between the multiplier u; of constraint i and the corresponding 0-1
variable a;:

(1/M)G,Z' S U; S MG,Z' (6)

Constraint (6) implies that if a; = 0 = 0 < u; < 0 = u; = 0, i.e. the multiplier
is also zero, forcing the corresponding constraint to be tight, whereas if a; = 1 =
(1/M) < u; < M, the associated multiplier has nonzero value implying an inactive
constraint.

The incorporation of constraints (6) along with the 0-1 variables a; into problem
(P2S) results in:

: T T
min cz+djy
z,9,u

s.t. ds+uTB=0
a;(Az+By—15);, =0, i=1,..,m

u < Ma;, 1=1,..,m (P3S)
a; < Mu;, i1=1,..,m
Az + By <b

mZO:yZO:H‘ZO:a’i:{O_l},

By augmenting the Y-vector to include the 0-1 variables, the following primal
problem can be derived for Y = Y* = (u*, a*):



min cfz+dTy
€,y,u

st aj(Az+By—5);=0, i=1,..,m \ (p3g
Az + By <b
z>0,y>0

with a corresponding relaxed dual problem of the following form:

min  up )
HB,U,a

s.t. pp > min  L(z,y,a,u", 2F)
o,y

m 7
L(z,y,a, 4, M) = Ta +dTy + Y (uF + Ara;)(4z + By —b); ( (RD)

=1
u; < Ma;, 1=1,..,m

a; < Mu;, 1=1,..,m )

Using the KKT optimality conditions for the primal problem (P3S’) the Lagrange
function can be written as

m

L(z,y,a,u",3") = Y [M(a; — af)(4z + By — b); — (uf + Afaf)bi] (7)

i=1

Property 2.1 can then be recast as follows:

Y- M (ai — ab)S7 — (wf + Aral)b]
*(m kE yky > i i=1
L (z,y,u,,U: ,A ) = B?élélB )\f(ai —af-“) <0, VSZBJ' — Sz’L
Af-“(a,i —af-“) >0, VSZBj = SZ»U

Consider the i’ term. It is clear that if a¥ = 0, the corresponding constraint
would have been absent from the primal problem (P3S’), leading to A¥ = 0, so
that this term would be absent from the summation. Therefore, only the case
of a¥ = 1 is important. Then, since a; is always less than or equal to af, the
minimum of L(z,y, a, u*, A¥) occurs at the lower (upper) bound of (Az + By — b);
if A¥ < 0(A¥ > 0). Therefore, it is sufficient to set each active constraint in the
summation to the appropriate bound, and the following result is always true:

Only one relazed dual problem is solved at every iteration regardless of the size of

the problem.

Remark 2.4: Another advantage of (PS3) problem formulation is that additional
constraints (integer cuts) in the 0-1 variables, a;, can be used together with the
Lagrangian cut to improve the solution efficiency of the resulting MILP relaxed
dual problem. In particular, as has been showed by Hansen et al. (1990), in any
optimal solution of bilevel programming problem (PS1) the active constraints of
the follower’s problem satisfy the following conditions:



1,()
Y ai>1,ifdi>0,i=1,..

1..(3)
D ai>1,ifdi<0,i=1,..

2
where I,(2), I, () are the sets of constraints in which variable y; appears with pos-
itive and negative sign, respectively. Also, an active set strategy suggests that:

m
Zai <yl
i=1

where |y| is the cardinality of the follower’s decision vector y. It can be seen that
these and other preprocessing steps can be done on the binary variables to eliminate

certain combinations.
In cases where the primal problem is infeasible, the following

Remark 2.5:
relaxed primal problem is formulated and solved

ma mr
. _ + - .
rnu}r B 0_2( sia+s,)+ Z SiT
TY,STHS 458 4 i=1
kT(AAz+BAy—bA)+sA :0
Az + Bry—br—sr <0

(P4I)

s.t.
z,Y, Sj, s;;; ST Z 0

where m 4, mr are the number of active and inactive constraints at the current
iteration, respectively; sy, sj, s, are slacks variables that are introduced in order
to minimize the sum of infeasibilities. The Lagrange function of problem (P4I) is:

L( ,y,S[,Sj;,SZ) :9—|—Z{Af[al(Az—|—By—b)+sjA _SA]
i=1
+pf[Az+ By —b—sifli} (8)

which can be transformed by using the optimality conditions to the following form

Z,\’“ YAz + By —b); +8 (9)

’y’
where 6 is the optimal solution of problem (P4I). Based on this, the following

feasibility cut can be introduced in problem (RD)
(10)

—af)(4z + By —b); +6<0

EA’“
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2.4. Modified GOP Algorithm

Based on the above analysis, a modified algorithm for global optimization of bilevel
linear programming programs is now described in the following steps:

Step 0: Initialization of Parameters.

Define the storage parameters p3l°"(K™%),y*!°"(K™) and y*(K™%) over
the maximum expected number of iterations K™%, Define PUPP RIBD a5 the
upper and lower bounds obtained from the primal and relaxed dual problems,
respectively. Set pil°"(K™") = U, PYBP = U, RLBD = L, where U and L are
very large positive and negative numbers, respectively. Select a starting point
Y'!, set the iteration counter equal to 1, and select a tolerance for convergence e.
Find lower and upper bounds on the inner constraints by solving the following
problems:

min =+ (Az + By — b);
st. (Az+By—1b); <0j=1,.,m,j#i ¢ (PB)i=1.,m
z,y >0

Step 1: Primal Problem.
Store the value Y*. Solve problem (P4S), store the Lagrange multipliers )\g
and update the upper bound so that PUPP = min{PYBP Z*} where Z* is
the current primal objective. If the primal is infeasible a relaxed primal is solved
and the Lagrange multipliers are stored.

Step 2: Relazed-Dual Problem.
Formulate the Lagrange function corresponding to the current primal problem
as described in equation (7) and add this as a constraint to the relaxed-dual
problem. For iterations when the primal problem is infeasible use a cut of the

form (10) in the constraints corresponding to that iteration. Solve the resulting
(RD) and store the solution u3°"(k),y**"" (k).

Step 3: Selecting a new lower bound R"BP.

iFrom the stored values p§!°" select the minimum ;L”B?m and set RFBP = pJ”B“m,

Y#+l = Y™i" the corresponding stored value of Y. Delete p2'", Y™i" from the
stored set.

Step 4: Check for convergence.
Check if RIBP > PUBD _ ¢ If yes, stop. Else set k=k+1 and return to Step 1.

2.5. An Illustrating Example

Consider the following two-level linear program (from Bard, 1983):
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min F(z,y)=z+y
T
s.t. —2<0
min f(z,y) = -5z —y
y
st. —z—-0by< -2
—0.25z +y < 2
z+05y<8
z—2y<2
—y<0

Considering the KKT optimality conditions of the inner problem and introducing
the binary variables a;, the bilevel problem becomes:

min
z,Y,u
subject to:

F(z,y)=z+y
—z<0
—z — 0.5y < -2
—0.25z4+y <2 Feasibility
z+ 0.5y <8 Constraints
z—2y<2
-y<0
a1(—z—0.5y+2)=0
a5(~0.252 +y —2) =0 Complementarity
az(z+0.5y—8)=10 .
Constraints
as(z—2y—2)=0

as(—y) =0
—0.5u; + us + 0.5u3 — 2us —us = 1 }
u; < Ma;, 1=1,..,5 } Logical

Stationarity
Constraint

a; < Mu;, i=1,.,5 | Constraints
G,Z'Z{O—].}, 'U'iZO

Before starting the iterations, problem (PB?) is formulated and solved for each
constraint i=1,..,5 which yields the following lower bounds for the constraints:

LBy, =—-6, LB, =-3, LB =—-6, LBy, = —8, LB; = —4

Iteration 1: Consider a starting point of @; = 1,7 = 1, .., 5 which corresponds to
all inner constraints being active. The primal problem can then be written as:
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min F(z,y)=z+y
@,y
subject to:

—z<0

—z — 0.5y = -2
—0.25z+y =2
z+0.5y=28
z—2y=2
—y=0

This problem is infeasible; therefore, the following relaxed primal problem (P4I) is
formulated and solved:

min Z(sj’ +s7)

:c,y,sj',sl_

subject to:

—z<0

—z—0.5y—|—s'1|' — 85 =-2

—0.25z+y—|—s; — 8, =2

z+0.5y+s§' — 55 =8

z—2y—|—s}f — 85, =2

—y+ sg' -5, =0

i=1

The Lagrange cut (14) formulated for this problem has the following form:
6a, + 3as + 6as + 2a4 + 2a5 — 10 < 0
The (RD) subproblem is shown below:
min s

subject to:
60,1+3G,2+6(1,3+2(1,4+2(1,5— 10 S 0

—0.5’!1,1 + us + 0.5’&3 — 2’LL4 — Uy = 1

Uu; S M(J,Z', 1= 1,..,5
a; S MU,Z', 1= 1,..,5

as+az>1
5

D ais!
i=1

p <U

where U is a very large positive number. The solution of this problem is up = U
and a3 = 1 the third constraint active.
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Iteration 2: For a3 = 1, the primal problem is:

min F(z,y)=z+y

zy

subject to:
—z<0
—z — 0.5y < -2
—0.25z4+y <2
z+0.5y=28
z—2y<2
-y<0

The primal is feasible and its solution yields:

t=172, y=16, Z2=2838

The Lagrange function formulated from the second primal problem is:
L(a) = 1.6 + 7.2a3

and the relaxed dual subproblem:

min up
a,u

subject to:
up > 1.6 4+ 7.2a3
6a1—|—3a2—|—6a3+2a4—|—2a5— ].OS 0

—0.5’!1,1 + us + 0.5’!L3 — 2’!1,4 — U5 = 1

Uu; S M(J,Z', 1= 1,...5
a; S MU,Z', 1= 1,...5

az+az>1

5
Zai S 1
i=1

Its solution is:
pp =16, a, =1

Thus, after the second iteration, PP = 8.8, REPP = 1.6 and as = 1.



Iteration 3: The primal problem is solved for a; = 1.

problem gives:

z=0.889, y=2.222, Z3=3.111

The Lagrange function from the third primal problem is:

L(a) = 1.777 + 1.333a>

and the relaxed dual subproblem:

subject to:

Its solution is:

pp = 3.111,

min up
a,u

pup > 1777+ 1.333a,

up > 1.6 4+ 7.2a3
60,1—|—30,2—|—60,3+20,4—|—20,5— ].OS 0
—0.5’!1,1 + us + 0.5’11.3 — 2’!1,4 — U5 = 1

Uu; S MG,Z', 1= 1,...5
a; S MU,Z', 1= 1,...5

as+az>1
5

> ei<1
i=1

up < 3.111
up > 1.6

(1,2:1

15

The solution of this

Thus, after the second iteration, PYBP = 1.6, REBP = 1.6, a3 = 1 and (x,y) =
(0.889,2.222) which corresponds to the global optimum.

The KKT optimality conditions of the inner problem imply that either the second
or the third constraint has to be active leading to the hatched IR shown in Figure 2.
From all these points (feasible region of the RD subproblem) the solution of the
primal problem yields the one that minimize the leader’s objective function (point

A in Figure 2).
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g4

g V first iteration

3.00 second iteration
""" optimal solution
200 | -
1.00_ ..
0.00
0.00
-1.00

Figure 2. Feasible Region of Illustrating Example
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2.6. Computational Experience

The modified GOP algorithm has been coded in C language and tested for a series
of small example problems appeared in the literature. The results are summarized
in Table 1.

Table 1. Results for small linear examples

EXAMPLES | ny mny Outer Inner Iterations CPU
Constraints Constraints time (s)
EX1 2 3 2 6 5 0.59
EX2 1 1 1 7 2 0.11
EX3 1 1 1 6 3 0.29
EX4 6 3 6 10 3 0.75
EX5 1 1 1 5 3 0.29
EX6 1 2 1 4 2 0.16
EX7 1 1 1 4 3 0.23
EX8 1 1 1 4 3 0.22
EX9 1 1 1 5 3 0.29
EX10 1 2 2 4 2 0.16
EX11 2 3 3 6 5 0.82

A number of randomly generated problems with the same characteristics as in
Bard and Moore (1990), and Hansen et al. (1990) with 40% and 33% density, have
also been considered. The results are summarized in Table 2. All computations
are performed using CPLEX for the solution of linear problems using a HP-730.
Performance measures include CPU time and the number of iterations required
to obtain the global solution. The main parameters considered are the number of
the follower’s constraints and the numbers n;,n, of the leader’s and the follower’s
variables. Problems involving 12-17 constraints and 40-50 variables were solved.

As expected the CPU time and the number of iterations increases with the size
of the problem. Notice however, that the number of required iterations remains
relatively low. Also, as seen in Table 2, large differences in computation effort are
observed between problems of the same size (for example, for the case of 26 outer
and 14 inner variables, computation times of 867 and 81 sec have been reported for
two different examples).

3. Linear-quadratic and quadratic-quadratic bilevel problems

In this section the solution approach is extended to consider the linear/quadratic
as well as the quadratic/quadratic bilevel programming problems of the following
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Table 2. Computational Results for randomly generated lin-
ear problems

DENSITY n. Ty Inner Iterations CPU
Constraints time (s)
40% 28 12 12 7 8.4
40% 28 12 12 57 121.0
40% 28 12 12 9 8.0
40% 28 12 12 14 6.8
40% 26 14 14 26 81.1
40% 26 14 14 88 867.6
40% 25 15 15 12 42.8
40% 25 15 15 20 52.1
40% 24 17 17 5 34.0
40% 30 15 15 36 129.8
40% 35 15 15 26 282.3
40% 35 15 15 85 455.3
33% 27 13 13 54 249.6
33% 27 13 13 17 52.6
33% 27 13 13 21 98.8
general form:
min F(z,y)
T

s.t.

min f(z,y)
Y /
Y€ sit. Az+ By < b (P')
z>0

where F(z,y) is a convex function of z and y, and f(z,y) = day+z" Q%y+y' Q2y.
For sake of simplicity, it is assumed that F(z,y) = ¢/ z+d! y. It can easily be shown,
however, that the following analysis is valid for any convex form of F(z, y). It is also
assumed that f(z,y) is a convex quadratic function. Then, the KKT conditions
for the inner problem are both necessary and sufficient for inner optimality which
preserves the equivalence of problems (P’) and (PS’) below:

min  F(z,y)=clz+dly

T,Y,u

s.t. Az+ By <b ,
2y Q24+ 2"Q?4+u"By +dy =0 (PS)
wi(Az + By —b); =0, i=1,..,m
zeX,yeY, u>0

Introducing the set of 0-1 variables a; results in following equivalent formulation:
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min  F(z,y)=clz+dly

r,Y,a,u
s.t. Az+ By <b
20"Q3+2" Qi +u By +dy =0
a;(Az+By—15);, =0, i=1,..,m
u; < Ma;, 1=1,..,m
a; < Mu;, 1=1,..,m
zeX,yeY, aq,={0-1}, 4, >0,1=1,..,m

(P3s")

As in the linear case, the variables can be partitioned into ¥ = (a,u), and X =
(z,y). Then, for fixed Y = Y* the primal problem becomes

min F(z,y)=clz+dly
@,y

s.t. Az+ By <b ,
297 Q24+ 2"Q?+u*TBy +dy =0 (P4S’)
af(Az + By —b); =0, i=1,..,m
zeX,yeyY

The Lagrange function of problem (P4S8') is:
L(z,y,a,u,4", ") = clz+d{y+ i[(#f +Mai) - (Az + By — b)i]
i=1
+ Z vi[2yT Q5 + 2" Qf +uT By +dy;
i=1
Separating the terms in x and y, this can be rewritten as:

L(z,y,a,u, 45, M) = [er + ) (uf + Mw)di + ) vfQ] )72
i=1

i=1

i+ (k4 M) By + > 2003 )Ty
i=1

i=1
B ST RSUR S
i=1 i=1

Using the KKT gradient conditions for problem (P4S’), the Lagrange function can
be reduced to

m

L(z,y,a,u, u*, 25, %) = Z)\f(ai—af)(Az—i—By—b)i

+ > vi(ui = w)Bi + (cfz +dy)"
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Then, it is obvious that Property 2.1 holds:

min L(z,y,a,u, u*, A5, %) > E M(a; — 1)(Az + By — b)F
z,y :
=1

+ > vf(ui —uf)B; + (cf z + d )"
=1

and consequently only one relaxed dual subproblem has to be solved per iteration.

Remark 3.1 Since the stationary conditions for are functions of X and Y variables,
they appear to both primal and relaxed-dual subproblems. Moreover, for the case
of quadratic outer objective F(z,y) the primal problem corresponds to a nonlinear
programming problem. However, under the convexity assumptions it can be solved
using a conventional NLP solver.

3.1. Computational Studies

In this section, four examples are presented to highlight the performance of the
proposed approach compared to the existing ones.

FErample 1
This example is taken from Bard (1988).

min  F(z,y) = (z — 5)* + (2y + 1)?
T
st. —2<0
min  f(z,y) = (y — 1)? — 1.5zy
y
st. —3z+y<-3
z—0by<4
z+y<T
-y<0

Non-convexity implies the existence of local optima at (1,0) and (5,2). Global
optimization approach requires 8 iterations to reach the global minimum (1,0);
F =17, f = 1, within 3.3 CPU s in Sparc10 using GAMS/MINOS for the solution

of nonlinear primal subproblem and GAMS/SCICONIC for mixed integer relaxed-
dual subproblem.

Ezample 2
This example is taken from Shimizu and Aiyoshi (1981).
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Figure 3. Non-convexity of bilevel quadratic problem

min  F(z,y) = z° + (y — 10)?
T
s.t. z <15
—z4+y<0
—z<0
min  f(z,y) = (z + 2y — 30)?
y
st. 24y <20
0<y<20

The modified GOP algorithm identified the global solution (x,y) =(10,10); F =
1000, f = 0, in only two iterations within 0.12 CPU s in HP-730 using GAMS/MINOS
for the solution of nonlinear primal and GAMS/CPLEX for the MILP relaxed-dual
subproblems.

Ezample 3
This example is also from Shimizu and Aiyoshi (1981).

min  F(z,y) = (21 — 30)? 4 (22 — 20)? — 20y; + 20y,

s.t. 1 + 2z5 > 30
1+ x5 S 25
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For this example also two iterations were required for the GOP to find the global
solution (z1, Z2, ¥1,¥2)=(20,5,10,5); F = 225, f = 100, in 0.12 CPU s.

For both the previous examples, the reported penalty method of Shimizu and
Aiyoshi (1981) converges to near optimal solution as the penalty coefficient (r) de-
creases. Also, ill-conditioning problems were observed for small values of r.

FEzample 4
This example is taken from Aiyoshi and Shimizu (1984).

min F(z,y) = 221 + 225 — 3y; — 3y2 — 60
T
st. 21+ zo+y; — 2y —40<0
0<z <50
0< zy<50
nzin f(2,9) = (y1 — 21 + 20)? + (y2 — 22 + 20)?
s.t. —z 4+ 2y < -10
—z3 + 2y, < —10
—10<y <20
-10 <y, <20

The implementation of the modified GOP algorithm for this problem leads to the
global minimum solution (z1, 22,1, ¥2)=(0,0,-10,-10), F = 0, f = 200, after 8 iter-
ations within 0.8 CPU s using GAMS/MINOS for the solution of LP primal and
GAMS/CPLEX for the MILP relaxed-dual subproblems. Notice that the penalty
solution method of Aiyoshi and Shimizu fails to identify the global optimum, con-
verging to the local minimum (z1, 2, ¥1, y2)=(25,30,5,10) F=5, f=100.

4. Conclusions

This paper presents a global optimization approach to bilevel linear and quadratic
programming problems. The problem is decomposed into a series of primal and re-
laxed dual problems whose solutions provide lower and upper bounds to the global
optimum. The exploitation of the special structure of the problem results in sim-
plified primal and relaxed dual subproblems. In particular, the primal problem
is a single linear/convex optimization problem (corresponding to an active set of
the follower’s constraints) whereas the relaxed dual problem is solved through one
single subproblem. The simplified primal and relaxed dual problems result in a
modified algorithm that is computationally efficient. The application of the modi-
fied algorithm is shown through an illustrating linear example that details the steps
of the proposed approach. The results on a set of randomly generated examples
highlight the efficiency of the new algorithm.
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