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Abstract

A global optimization based approach for finding all homogeneous azeotropes in multicompo-
nent mixtures is presented. The global optimization approach is based on a branch and bound
framework in which upper and lower bounds on the solution are refined by successively par-
titioning the target region into small disjoint rectangles. The objective of such an approach
is to locate all global minima since each global minimum corresponds to an homogeneous
azeotrope. The global optimization problem is formulated from the thermodynamic criteria
for azeotropy, which involve highly nonlinear and nonconvex expressions. The success of this
approach depends upon constructing valid convex lower bounds for each nonconvex function
in the constraints. The convex lower bounding procedure is demonstrated with the Wilson
actit\)rlity coefficient equation. The global optimization approach is illustrated in an example
problem.

1 Introduction

The ability to predict whether a given mixture will form one or more azeotropes and to calculate
the conditions and compositions of each azeotrope is essential if one wants to model separation
processes. Similarly, it is necessary to calculate the effects of temperature and pressure on the
composition of an azeotrope for process design applications. In order to be most useful, a method
for calculating the azeotropes of a mixture must be robust, and must be able to guarantee that
all azeotropes predicted by the thermodynamic model of the system can be found.

Despite the considerable interest in the area of predicting phase equilibria for chemical mix-
tures, relatively few methods for prediction of azeotropes have been reported. This is because the
task of finding the pressure, temperature, and composition of all azeotropes is an especially diffi-
cult one, due to the highly nonlinear form of the equations which constitute the thermodynamic
models.

Most of the previous work reported in the literature has been limited to calculating homoge-
neous azeotropes. Aristovich and Stepanova (1970) calculated ternary homogeneous azeotropes
using the Wilson model under isothermal conditions. Teja and Rowlinson (1973) calculated
homogeneous azeotropes of binary mixtures using an equation of state as the thermodynamic
model, as did Wang and Whiting (1986). Fidkowski et al. (1993) presented an interesting homo-
topy continuation method for finding homogeneous azeotropes. Chapman and Goodwin (1993)
presented a search method for finding homogeneous and heterogeneous azeotropes which uses
a Levenberg-Marquardt algorithm to find all possible homogeneous azeotropes and then checks
the stability of each solution with the tangent plane criterion described by Michelsen (1981).
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Finally, an excellent review of nonideal distillation, including a discussion on the computation of
azeotropes has recently been provided by Widagdo and Seider (1995).

The purpose of this paper is to propose a new method for determining all homogeneous
azeotropes of a non-reacting mixture for several different thermodynamic models. The problem is
formulated as a global optimization problem in which each global minimum solution corresponds
to an homogeneous azeotrope. This method models the vapor phase as an ideal gas at low
pressure, and uses activity coefficient models for the liquid phase. The activity coefficient model
examined in this paper is the Wilson equation.

2 Problem Description and Formulation

In order to develop a method for finding all azeotropes of a mixture, it is essential to first
determine the thermodynamic conditions for azeotropy. Azeotropes may occur when a mixture
at equilibrium forms a vapor phase and at least one liquid phase for some range of temperature
and pressure. If the above condition is met, then an homogeneous azeotrope occurs when the
equilibrium composition of the vapor phase is identical to the overall composition of the liquid
phase.

There are three thermodynamic conditions which a system must meet in order for an azeotrope
to exist. These are: 1) equilibrium, 2) azeotropy condition (the composition of vapor phase is
identical to the overall composition of the liquid phase(s)), and 3) the system must be physically
realizable, that is, the mole fractions in each phase must be positive and sum to unity.

The equilibrium condition requires that the chemical potential of each component must be
the same in all phases. Since an homogeneous azeotropic system contains a vapor phase and
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only one liquid phase, this condition can be written | ¥ = ‘Zv—flg Vie N) when the standard
states of all phases are defined to be equal.

At low pressure, the vapor phase can be modeled as an ideal gas, for which qbZV =1, and for
the liquid phase we have fiL = P Therefore:
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The azeotropy condition requires that the composition of the vapor phase is identical to
the overall composition of the liquid phase(s). In the case of an homogeneous azeotrope, this
condition simplifies to:
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The third condition requires that the mole fractions in each phase sum to unity and are
between 0 and 1.
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2.1 Mathematical Formulation

In order to find all azeotropes then, one must find all solutions to the system of nonlinear
equations (1), (2), and (3) listed above. This paper uses the approach outlined in Maranas and
Floudas (1995), which reformulates the problem of finding all solutions of nonlinear systems of
constrained equations into a global optimization problem in which the aim is to obtain all global
solutions. For the location of all homogeneous azeotropes, this corresponds to reformulating
equations (1), (2), (3) as a global optimization problem. Because z; = y; for every ¢, the
system of equations can be simplified by replacing each y; by z;. Therefore, the equilibrium
constraints become (z;(P — Pf*y;) =0 Vi€ N). In order to satisfy these equations, either
z; = 0 or (P — P?*y;) = 0 for each i € N. If we wish to search only for azeotropes in which
all components participate (i.e., an N-ary azeotrope), the condition can be further simplified to
(P — Prty,)=0foreach i € N.

It is convenient to take the natural log of the simplified equilibrium constraint because P
and v; are usually given as In P?** and ln+;. This results in the following problem:
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Formulation (4) may have several global minima. Each global minimum corresponds to an
homogeneous azeotrope since when s = 0 the constraints (1), (2), and (3) are satisfied. Note that
the first two sets of constraints of (4) correspond to the nonlinear equations (1) of the equilibrium
constraint written as two inequalities. The method of Maranas and Floudas (1995) requires that
convex underestimators are derived for all constraints in order to guarantee that all € - global
minima will be located. Note that the expressions for P*** and +; are generally not convex, and
hence we have to develop valid underestimators for them.

For azeotropes in which less than N of the components participate, the case where z; = 0 for
one or more ¢ must be accounted for. This can be done by multiplying the equilibrium constraints
used in (4) by z;. This is referred to as the problem of finding all k-ary azeotropes, where &k < N.

3 Activity Coefficient Models

The problem formulation, (4), contains several nonconvex functions. If a local optimization
approach is used to solve these problems, it is likely that some of the multiple global minima
will be missed, or even that none will be found. Therefore, in order to guarantee that all global
minima are located, it is necessary to develop a convex relaxation of the problem. In the proposed
approach, a lower bound on the solution of (4) is obtained by replacing each nonconvex constraint
with a tight convex underestimator, resulting in a convex lower bounding problem which is solved
with MINOS5.4. The upper and lower bounds on the solutions are then refined using a branch
and bound approach.

This section analyzes the equations in the azeotropy problem formulation which contain
nonconvex terms. For the Wilson equation, the form of the equation is introduced, and the
nonconvex terms are identified. For each nonconvex term, a convex lower bounding function
must be calculated. While the Wilson equation is the only activity coefficient model examined in
this paper, this approach has also been extended for the NRTL and UNIQUAC activity coefficient
models. The reader is referred to Harding et al. (1996) for the development of the convex lower
bounding functions of the NRTL and UNIQUAC equations.

3.1 Saturated Vapor Pressure Equation
In this work, the saturated vapor pressure is calculated using the Antoine equation :
b;
- 5
T1e (5)

where a;, b;, and ¢; are constants. The parameters a; and b; are always positive, while ¢; may
be positive or negative but | ¢; |< T. In the problem of finding all N-ary azeotropes, denoted

as (4), this term appears in the constraints as both (—InPf*) and (+InPf*). It can be easily
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shown that the term (—Tzfc,) is concave in T. As a result, in the first set of constraints of (4)

which have (— In P#%), this term is convex and no underestimation is needed. In the second set
of constraints however, this term is concave and hence an underestimator is required. A convex
underestimator for this term is simply a line segment between the values of the term at each
limit. That is,
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where TZ, TU are the lower and upper bounds on the temperature in the current region.
In the formulation for finding all k-ary azeotropes, the Antoine equation is multiplied by
the liquid mole fraction, z;. In this case, both the positive and negative terms (—z;InP?**) and



(4+z;lnP?*) are nonconvex. The convex underestimating functions for these terms are presented
in Harding et al. (1996).
3.2 Wilson Equation

The Wilson equation is often used to model solutions containing polar and nonpolar components.
The Wilson activity coefficient equation is :
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where A;; is the nonsymmetric binary interaction parameter between components ¢ and 7 with
A;; = 1. When the Wilson equation is used, the problem of finding all N-ary homogeneous
azeotropes contains nonconvex terms of two different types. The first nonconvex termisln ) z;A;;.
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This term is concave, so it can be underestimated by the line segment:
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and mY is the maximum of ¥ subject to the same constraints.
JjeN
The second type of nonconvex terms in the Wilson equation model include s}, and s? where:
1 Zj 2 Zj
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Convex underestimating functions for these terms can be constructed following the method
presented in Maranas and Floudas (1995) for products of univariate functions. The convex
underestimators for these terms are:
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For the k-ary azeotrope problem the nonconvex terms are:



miln(ijAij) , —miln(ijAij) , miZs}Aﬁ ,and —miZS}Aﬁ (11)
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Convex underestimating functions for these terms are developed in Harding et al. (1996).

4 Procedure for Locating All Azeotropes

The method presented in this paper for locating all homogeneous azeotropes is based on the
work of Maranas and Floudas (1995). The problem is formulated by introducing a slack variable
to the equilibrium constraint of the initial problem. This transforms the initial problem into a
global optimization problem (4) in which each feasible solution corresponding to a zero objective
function value denotes the existence of an azeotrope.

The multiple global minima of formulation (4) are localized based on a branch and bound
procedure. This procedure creates a convex relaxation of the problem by constructing tight
convex lower bounding functions for each nonconvex term in the constraints. Then the global
minimum of the convex relaxed problem within some box constraints can be found using any
commercially available local optimization algorithm.

If the solution of the relaxed problem is strictly positive inside some rectangular region, then
because it is an underestimator, the solution of the original problem must also be strictly positive
inside the region. This allows us to fathom (eliminate) parts of the total region which do not
contain any solutions. If the solution to the relaxed problem is zero or negative, then the original
problem may or may not have a solution in the current region and thus the region cannot be
fathomed. Instead, the current region is partitioned into smaller regions and the procedure is
repeated until all regions are fathomed, or a feasible solution is found.

As the size of the current region decreases, the maximum separation between the original
constraint functions and the convex relaxed functions also decreases. Therefore, any feasible
point of the relaxed problem can become at least e-feasible for the original problem by tightening
the bounds around the point. In this work, each region which has a non-positive solution of the
convex relaxed problem is partitioned into two smaller regions by bisecting the longest side of
the initial region. At each iteration in the branch and bound procedure, the lower bound of the
original problem is calculated by finding the infimum over all solutions of the relaxed problem in
each region which has not been fathomed. Thus, a simple way of improving the lower bound is
to halve only the subrectangle responsible for the infimum of the minima of the relaxed problem
at each iteration. Convergence is reached when none of the subrectangles inside the total region
have a negative lower bound, in which case there are no solutions, or when all of the remaining
subrectangles with negative lower bounds have been refined to a prespecified size tolerance. A
proof that this procedure is guaranteed to converge is presented in Maranas and Floudas (1995).

5 Illustrative Example

The example presented here shows the results from locating all N-ary azeotropes in the quinary
system acetone/chloroform/methanol/ethanol/benzene (A/C/M/E/B) at P = 1 atm. The bi-
nary interaction parameters used in this work are taken from the DECHEMA Vapor-Liquid
Equilibria Data Collection, Gmehling and Onken (1977) and are assumed to be independent of
temperature in the narrow range in which the azeotropes are located. Liquid molar volumes for
the pure components were calculated by a modified Rackett equation, Yamada and Gunn (1973).
The Wilson model using the N-ary formulation was able to locate all six binary azeotropes, two
ternary azeotropes, and the quaternary azeotrope reported by Fidkowski et al. (1993). The
compositions and boiling points of each azeotrope that was located are listed in Table 1.
Computational requirements increased as the number of components participating in the
azeotrope increased, and the amount of time needed to compute the quaternary azeotrope was
substantially longer than what was needed for the ternary azeotropes. All times reported are
the total cpu time in seconds needed to obtain all azeotropes in the system. The algorithm for
finding all homogeneous azeotropes in a multicomponent mixture is written in GAMS and was
run on a Hewlett Packard 9000/730 machine. The solver MINOS5.4 is used as a subroutine.

6 Conclusions

This work has presented a deterministic global optimization method for computing all homo-
geneous azeotropes in multicomponent mixtures This method is based on a branch and bound



| Solution for Acetone (1) — Chloroform (2) — Methanol (3) — Ethanol (4) — Benzene (5) |

| Azeotrope | =1 [ zo | =3 | z4 | zH | T I CPU |

AC 0.3714 | 0.6286 64.6561 0.78

AM 0.8018 | —— [ 0.1982 | —— —— | 55.4567 0.48

CM —— [ 0.6306 | 0.3694 | —— —— | 3.0703 0.81

CE —— [ 0.8415 | —— | 0.1685 | —— | 59.2503 0.95

MB  — —— [ 0.6235 | —— | 0.3765 | b8.0149 0.43

EB 0.4544 | 0.5456 | 67.7000 0.84
ACM 0.3754 | 0.1888 | 0.4358 | —— —— | b7.2184 2.03
ACE 0.3735 | 04380 | —— | 0.1885 | —— | 63.1801 2.11
ACMB 0.2954 | 0.1475 | 0.4630 | —— | 0.0941 | b7.1536 7.58

Table 1: Solutions for Illustrative Example

algorithm to iteratively solve a formulation of the original problem in which the nonconvex
constraints are replaced by valid convex underestimating functions. While only one thermody-
namic model was presented, this method has also been applied for the NRTL and UNIQUAC
equations and can be extended to include the modified Wilson, UNIFAC, and ASOG activity
coefficient models. The effectiveness of this method was demonstrated for a system containing
five components.

Acknowledgements: Financial support from the National Science Foundation, the Exxon Foun-
dation, and Mobil Corporation is gratefully acknowledged.

References

V. Y. Aristovich and E. I. Stepanova. Determination of the Existence and Composition of
Multicomponent Azeotropes by Calculation from Data for Binary Systems. Zh. Prikl. Khim.
(Leningrad), 43:2192-2200, 1970.

R. G. Chapman and S. P. Goodwin. A General Algorithm for the Calculation of Azeotropes in
Fluid Mixtures. Fluid Phase FEquilibria, 85:55—-69, 1993.

Z. T. Fidkowski, M. F. Malone, and M. F. Doherty. Computing Azeotropes in Multicomponent
Mixtures. Comp. Chem. FEngng., 17(12):1141-1155, 1993.

J. Gmehling and U. Onken. Vapor-liquid equilibrium data collection, volume I, Part 1 of Chem-
istry Data Series. DECHEMA, 1977.

S. T. Harding, C. D. Maranas, C. M. McDonald, and C. A. Floudas. Computing All Homoge-
neous Azeotropes. In preparation, 1996.

C. D. Maranas and C. A. Floudas. Finding All Solutions of Nonlinearly Constrained Systems
of Equations. Journal of Global Optimization, 7(2):153-182, 1995.

M. L. Michelsen. The Isothermal Flash Problem: Part I. Stability. Fluid Phase Fquilibria,
9:1-19, 1981.

A.S. Teja and J. S. Rowlinson. The Prediction of the Thermodynamic Properties of Fluids and
Fluid Mixtures - IV. Critical and Azeotropic States. Chemical Fngineering Science, 28:529-538,
1973.

S. Wang and W. B. Whiting. New Algorithm for Calculation of Azeotropes from Equations of
State. Ind. Eng. Chem. Proc. Des. Dev., 25:547-551, 1986.

S. Widagdo and W. D. Seider. Azeotropic Distillation - A Review. Submitted for publication,
1995.

T. Yamada and R.D. Gunn. J. Chem. Fng. Data, 18:234, 1973.



