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Abstract

This paper addresses the design of multiproduct and multipurpose batch plants with
uncertainty in both product demands and in processing parameters. The uncertain de-
mands may be described by any continuous/discrete probability distribution. Uncertain
processing parameters are handled in a scenario-based approach. Through the relaxation
of the feasibility requirement, the design problem with a fixed number of pieces of equip-
ment per stage is formulated as a single large-scale nonconvex optimization problem.
This problem is solved using a branch and bound technique in which a convex relaxation
of the original nonconvex problem is solved to provide a lower bound on the global so-
lution. Several different expressions for the tight convex lower bounding functions are
proposed. Using these expressions, a tight lower bound on the global optimum solution
can be obtained at each iteration. The aBB algorithm (Androulakis et al. (1995)) is
subsequently employed to refine the upper and lower bounds and converge to the global
solution. The tight lower bounds and the efficiency of the proposed approach is demon-
strated in several example problems. These case studies correspond to large-scale global
optimization problems with nonconvex constraints ranging in number from 25 to 3,750,
variables ranging from 30 to 15,636 and nonconvex terms ranging from 50 to 15,000.
It is shown that such large-scale multiproduct and multipurpose batch design problems
can be solved to global optimality with reasonable computational effort.
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1 Introduction

Batch processes are a popular method for manufacturing products in low volume or that
require several complicated steps in the synthesis procedure. The growth in the market for
specialty chemicals has contributed to the demand for efficient batch plants. This paper will
focus on two types of batch plant, multiproduct plants, and multipurpose plants. In the
multiproduct plant, all products follow the same sequence of processing steps. Typically, one
product is produced at a time in what is termed a single-product campaign (SPC). Multipur-
pose batch plants allow products to be processed using different sequences of equipment, and
in some cases products can be produced simultaneously.

An important area of concern in the design of multiproduct and multipurpose batch plants
is their ability to meet production requirements and maximize profits given uncertainties both
in the market demand for the products and in the operation of the process. While significant
progress has been made in the design and scheduling of batch plants, until recently the issues
of flexibility and design under uncertainty have received little attention. Among the early
work on the deterministic design problem, Sparrow et al. (1975) addressed the problem
of multiproduct batch plant design via both a heuristic approach and a branch and bound
formulation. This formulation assumed a single product campaign. Grossmann and Sargent
(1979) presented a mixed-integer nonlinear programming (MINLP) formulation of the problem
presented by Sparrow et al. (1975). Birewar and Grossmann (1989) incorporated the problem
of scheduling in the design of multiproduct batch plants with mixed product campaigns.
Voudouris and Grossmann (1992) showed that by restricting the equipment sizes to discrete
values, the formulations of Grossmann and Sargent (1979) and Birewar and Grossmann (1989)
could be reformulated as a series of mixed-integer linear programs (MILPs) which are more
easily solved.

Among the first to address the problem of batch plant design under uncertainty in a
novel way were Marketos (1975), and Johns et al. (1978). They divided the variables in
the design problem into five categories: structural, design, state, operating, and uncertain.
Structural variables describe the interconnections of the equipment in the plant. Design
variables describe the size of the process equipment and are fixed once the plant is constructed.
State variables are dependent variables and are determined once the design and operating
variables are specified. Operating variables are those whose values can be changed in response
to variations in the uncertain variables. Finally, the uncertain parameters are the quantities
that can have random values which can be described by a probability distribution. Usually
the uncertain parameters have normal distributions and are considered to be independent of
each other. Johns et al. (1978) also introduced the distinction between variations which have
short-term effects and those with long-term effects. Wellons and Reklaitis (1989) extended
this idea, suggesting a distinction between “hard” and “soft” constraints in which the former
must be satisfied for feasible plant operation, but the latter may be violated, subject to a
penalty in the objective function. They considered the time required to produce a product as
uncertain and developed a problem formulation.

Reinhart and Rippin (1986), (1987) addressed the problem of multiproduct batch plant
design with uncertainties in both demand for the products and in technical parameters such
as processing times and size factors. They restricted their designs to one piece of equipment



per stage. Fichtner et al. (1990) presented several variations on the problem of design with
uncertain demands. They used interval methods to develop different solution procedures, in-
cluding a two-stage approach and a penalty function approach. Another type of batch plant
is the multipurpose plant. Shah and Pantelides (1992) proposed a scenario-based approach
for the design of multipurpose batch plants with uncertain production requirements. The
multipurpose approach resulted in a large-scale MILP model for which efficient techniques
for obtaining good upper and lower bounds were proposed. Straub and Grossmann (1992)
developed a model for the multiproduct batch design problem which takes into account uncer-
tainties in the product demands and in equipment availability. They considered the problem
of design feasibility separately from the maximization of profits and presented an approach
for achieving both criteria. Subrahmanyam et al. (1994) addressed the problem of uncertain
demands, and used a scenario-based approach with discrete probability distributions for the
demands. In addition, they considered the scheduling problem as a second stage, following the
design problem. lerapetritou and Pistikopoulos (1995), (1996) considered the multiproduct
batch plant design problem based on a stochastic programming formulation. They developed
a relaxation of the production feasibility requirement and added a penalty term to the ob-
jective function to account for partial feasibility. Through this analysis, the problem can be
reformulated as a single large-scale nonconvex optimization problem.

The scheduling strategy of a multiproduct batch plant can have a significant impact on the
design. The usual single-product campaign assumption can overestimate the time required
to process the products, resulting in a large overdesign of the plant equipment. Birewar and
Grossmann (1989) proposed design problem formulations for both the unlimited intermediate
storage (UIS) and zero-wait (ZW) mixed-product campaign strategies and also incorporated
cleanup time considerations between batches.

In this paper we present a novel approach for solving the batch plant design under uncer-
tainty problem to global optimality with reasonable computational effort. In Section 2, the
SPC formulation is presented and a property that allows tighter bounds on the production
variables is introduced. In Section 3, a key theoretical property is presented that allows the
nonconvex formulation in Section 2 to be reformulated as a convex lower bounding problem
that provides a tight lower bound on the global solution. A branch and bound algorithm for
locating the global solution is developed, which is a modified version of the BB algorithm
of Androulakis et al. (1995). In addition, a novel approach for determining « is presented,
in which « is a function of the variables participating in the nonconvex terms, rather than a
constant. An illustrative example is provided to demonstrate this approach. In Section 4, the
UIS design under uncertainty problem along with the corresponding scheduling problem are
formulated. In Section 5, two multipurpose batch plant formulations are presented, and it 1s
shown that the same techniques used for the multiproduct design problem can be applied to
the multipurpose design problem. Finally, in Section 6, extensive computational studies and
comparisons are reported.



2 Multiproduct Design Problem

The problem considered here is the design of a multiproduct batch plant with uncertain
demands and processing parameters. The formulation of the model is similar to the models
proposed in Sparrow et al. (1975) and Grossmann and Sargent (1979) for the production of
N products in M stages in which each stage has N; identical pieces of equipment for j =
1,2,..., M, with the uncertain product demands given by a known probability distribution.
In this model, production occurs in a single campaign for each product and does not take into
account intermediate storage. lerapetritou and Pistikopoulos (1995), (1996) showed that this
problem can be formulated as the global optimization problem, (1).

2.1 Single-Product Campaign (SPC) Formulation

In this problem the objective is to maximize the profit, given by the expected revenues from
the products less the investment costs of the plant equipment. The number of pieces of
equipment per stage, NN;, are fixed. The equipment sizes, Vj, and the batch sizes, B;, are the
design variables, and the amounts of each product produced, ();, are the operating variables.
N denotes the set of products, N' = {1,..., N}, and M denotes the set of processing steps,
M ={1,..., M}. The other parameters included in the model are, a;; and f3;, the fixed charge
cost coefficients of the equipment at stage j; 6, the coefficient used to annualize the capital
cost; p;, the market price of product z; S;;, the volume of the equipment in stage j needed to
produce one mass unit of product ¢, called the size factors; 4,5, the amount of time needed to
produce product ¢ in one piece of equipment in stage j; Tr;, the amount of time in the stage
which has the longest processing time for product ¢, called the limiting time for product i;
H, the time horizon for the campaign; 6;, the uncertain demand of product z; and VjL and
VjU, the bounds on the equipment sizes available for each stage 5. It should be noted that the
equipment sizes, V;, are considered as continuous variables in this model.

B;
i P %%XEP@]—@% Y
subject to V; > S5;;B; VieN VjieM

N
E %)TLz S
=1 . (1)
Q; = 0; VieN
Ty = max {”} VieN
efgeigegf VieN
VE <V, < VP VjeM

The first set of constraints, V; > 5;;B; are the batch size constraints. The second set

N

of constraints, Y (%) Tr; < H are the production horizon constraints. The third set of
=1 t

constraints are the production feasibility constraints which require that production meet the



market demand, Q); = 6;. Finally, the fourth set of constraints, Tpr; = max {;vi}, define the
1=1,..,, J

cycle time for product ¢ as the maximum time that product ¢ resides in any one stage.
It can be seen that the objective function contains nonconvex terms (NjVjﬂj) as do the

horizon constraints (%) Employing exponential transformations,

Vi = exp(v;) VjeM (2)
B, = exp(b;) VieN (3)
T, = eXp(tLi) VieN (4)

as suggested by Kocis and Grossmann (1988), convexifies the continuous part of the objective
function. Next, an appropriate expression for the expected value of the revenues must be pro-
vided. The calculation of the expected revenues requires the integration over an optimization
problem:

E, [ng}xépi@] - / max {épin} J(0)do (5)

6eR(V;,N;)

where .J(0) is the probability distribution function for the uncertain parameter . The integra-
tion should be performed over the feasible region of the plant, which is unknown at the design
stage. lerapetritou and Pistikopoulos (1995), (1996) showed that the demand constraint can
be relaxed, allowing the integration to be performed in the region where the upper bound for
Q); is the value of the uncertain demand:

In this paper, we consider a different relaxation of the demand constraint which involves
tighter bounds on ();. Note that since 9{-:’ <p; < 9?, we have:

N N
Y67 -exp(ini—bi) < > Qi-explipi—b;) < H (7)
=1 =1

In this case, the production of product 7, @);, is allowed to vary between the lower bound for
the uncertain demand for that product, 8%, and the predicted demand, 6;:

2 )

0F < Qi <0, YieN (8)

When these new bounds for (); are used, along with the exponential transformations, (2), (3),
and (4), the following relaxed design problem is obtained:



max J max{g: piQi} J(0)do — ¢ % a; Njexp (Bv5)
=1 7=1

bia'uj GER(VJ) Q:

N
—’71_;1 Y2 (91' - Qi)

subject to v; > In(S;) + b; VieN VjieM
tLi Zln(;}—;) \V/ZEN \V/JE./M (9)
g: Qz . eXp(tLi bl) < H
i< Q< b VieN
ln(VjL) < wv; < ln(VjU) VieM
mjinln(;%) < b < mjmln(?g) VieN

Note that the objective function is convex with respect to the design variables, but the hori-
zon constraints remain nonconvex. In addition, the demand constraints have been relaxed,
therefore a penalty term is added to the objective function to account for the cost of unfilled
orders. As the penalty parameter, 7, is increased, the production, ();, is driven towards the
upper bound, #;. Due to the production horizon constraint, the batch size must be increased
to accomodate the larger production. Larger batch sizes require larger equipment which in-
creases the cost of the plant. The net result is a decrease in the expected profit. A study of
the effect of the penalty parameter on the equipment and batch sizes and expected profit of
the plant is shown in Example 1 in Section 6.

The following property will show that the bounds on the uncertain parameter values in
the relaxed formulation (9) coincides with the feasible region of the original formulation with

fixed demand, Q; = 6;.

Property 2.1 For any design, the feasibility of the batch design problem with fixed demands,
0;, is maintained when the demand constraints are relaxed to:

0F < Q; < 6; YieN.

Proof: First the feasibility test problem is formulated as:

min U

N

s.t. __ElQi‘eXP (tos — b)) — H < u (10)
Qi—0; < u VieN
0F —Q; < u VieN

For feasibility we must have that v < 0. The KKT conditions for the feasibility test problem
are written:



Noexp(tpi —b)+pud —pk =0 VieN
N N

At Xl =Y =1
=1 =1

where X is the Lagrange multiplier for the production constraint, and p¥ and p? are the
Lagrange multipliers for the bounding constraints for J;. Since there are N control variables,
();, that can be changed in response to the uncertain parameter values, then the number
of active constraints of (10) is less than or equal to (N 4 1). By examination of the KKT
conditions, it can be seen that the active set for the feasibility test problem must contain the
production constraint and the constraints for the lower bound of the control variables:

N
Y Qi-exp(tpi—b)—H = u

=1

Gf—Qi:u \V/ZEN

From the second set of equations, Q; = 8 — u. Substituting this into the first equation yields
the following expression:

i(@f’—u) cexp(tpi —b) — H = u

=1

Rearranging to group the u terms together yields:

N N
Z@f’ cexp(tpi —b) — H = u <1 + Zexp (ti — bz))

It is obvious that,

N
1—|—Zexp(t[,i— b;) > 0

=1

and from Equation (7) we know that,

N
Zaf'eXp(tLi—bi) § H
=1

otherwise there is no feasible solution to the design problem. Therefore, u is always less than
or equal to zero. a

Applying this analysis to Formulation (9) results in the nonlinear optimization problem
given by Formulation (11). For the purpose of this paper, the uncertain parameters will be



considered to have a normal distribution. The Gaussian quadrature formula is derived in
Appendix A.

The uncertain technical parameters investigated in this work are the size factors, 5;;, and
the processing times, ¢,;. The variations in these parameters are dealt with in a scenario-based
approach. In this method, the uncertain technical parameters are given different discrete
values in a number of scenarios, P, while the uncertain demands retain the same probability
distribution in each scenario. The scenarios are given weight factors, w?. The object is to find
the optimal design over all possible scenarios and the optimal productions in each scenario.

Using the Gaussian quadrature approach for the uncertain demands and the scenario
approach for the uncertain technical parameters results in a nonlinear optimization problem,
written as a minimization for the purposes of the following analysis:

M
min 6 ¥ a;N;jexp (B;v;)
=

. qp
bza'uj an‘

P 1 Q N ap P 1 Q N q N ap
— X oy 2 wije ElpiQi + v Elm Elquq Elpiai - ElpiQi
= 1= p= g= 1= 1=

subject to v; > In(S%) + b VieN VjeM VpeP (1)
N
Y OQF -exp(lf,—b) < H VqeQ VpeP
=1
0F < QF < ¢ VieN VqgeQ VpeP
ln(VjL) < w; < ln(VjU) VjyeM
L U
minln(gg) < b < minln(?p) VieN
3P ij 3P ij
where
1P,
S max{i} VieN VpeP (12)
3 N;

and each 17, is constant because both ¢}; and N; are constant. Q denotes the set of quadrature
points, @ = {1,..., @}, and P denotes the set of scenarios, P = {1,..., P}.

In Formulation (11), v is the penalty coefficient; J¢ and w? are the probability of each
quadrature point, and its weighting factor, respectively, and 6 are the parameter values
associated with each point. The parameter values are calculated by the formula:

1 : :
67 = S [07(1 + oF) + 61 = oF)]  VieN VgeQ (13)

where v¥ is the location of the quadrature point ¢; in the [—1,1] interval, and X, Y are the
lower and upper bounds of 6;.

Formulation (11) can be solved using a standard NLP solver such as MINOS5.4. Hoewever,
these techniques cannot guarantee that the global solution will be found due to the presence
of the nonconvex horizon constraints. This suggests that global optimization techniques must

be developed to solve these problems.



lerapetritou and Pistikopoulos (1995), (1996) applied the GOP algorithm of Floudas and
Visweswaran (1990), (1993) for the case of a fixed number of equipment units per stage with
relaxation constraint (6). In the following section, a very important theoretical property will
be presented which allows very tight bounds on the global solution to be obtained in a small
number of iterations.

3 Lower Bounding Problem Formulations

Note that the objective function in formulation (11) is convex, but the horizon constraints are
nonconvex. In the aBB method (a-based branch and bound) of Androulakis et al. (1995), the
procedure for finding the global solution of nonconvex problems is to construct a converging
sequence of upper and lower bounds on the global solution. This is achieved by developing
a convex relaxation of the original minimization problem by replacing all nonconvex terms
with tight convex lower bounding functions. In particular, convex lower bounding functions
for twice-differentiable nonconvex terms of generic structure are constructed by means of a
separable quadratic term using the a parameter developed by Maranas and Floudas (1994b).
Thus, a general nonconvex term in one variable z, NC(z), would become:

NC(z) > NC(z) + a(;r:U—:n)(:xL—x) (14)

where 2¥, zL are the bounds on the z variable, and « is positive. As can be seen, the magnitude
of the underestimator depends upon both the size of a and on the size of the current region

under investigation. Maranas and Floudas (1994b) showed that:

o > max {O,—lmin)\ x }
T () (15)
st. 2 <z < Y

where A\g(z) are the eigenvalues of NC(z). The parameter @ must be large enough so that
the new term is indeed convex, and as close as possible to its definition, (15). In general,
the problem of finding the minimum eigenvalue is itself a nonconvex optimization problem.
However, in Section 3.1, it will be shown that for the design of multiproduct batch processes
under uncertainty, an exact expression for « can be obtained. Two modifications to the
standard « calculation method explained above will be presented in Sections 3.4 and 3.5.

3.1 Key Theoretical Property: Formulation I

Consider the nonconvex horizon constraints. The first observation is that the horizon con-
straints consist of a sum of separable terms in the form of

z; - exp(yi) (16)

where,

T, = QF and yi = 9. —b; (17)



As a result, a separate a can be calculated for each product z; exp(y;) in the summation. In
order to find an exact expression for a, we have to obtain an exact calculation of the minimum
eigenvalue. This requires the solution of the problem |H — AI| = 0 where H is the Hessian
of each separable nonconvex term and [ is the identity matrix. Considering a general term:

¢ = x-exp(y) (18)
the first derivatives are:
¢z = exp(y) and ¢, = x-exp(y) (19)
and the second derivatives are:
¢zz = 07 ¢a:y = eXp(y) and ¢yy = J:exp(y) (20)
Thus,
|H — M| = X — (zexp(y)) A — (exp(y))® = 0 (21)

This formula yields two real solutions,

\ <;r:—|—\/:1c2—|—4
1= | ——
2

)exp(y) > 0 (22)

\ (:x—\/:xz—l—ll
2 p— _— —
2

)exp(y) <0 (23)

Therefore Ay is the minimum eigenvalue for all values of z and y. In order to satisfy condition
(15), we must find the minimum of Ay over the current domain of x and y. When z is large,
the term = — /22 + 4 is negative and close to zero. The term decreases monotonically as x
decreases. Therefore, Ay is minimized with respect to  when z = 2. Since ), is negative,
it decreases monotonically as y increases, therefore Ay is minimized with respect to y when
y = yY. Substituting for z and v,

L Lgp

v o= Q;
U _ ,4p L
yo =l — b

The resulting expression for the minimum eigenvalue is,

. - (&g

2,min 2

) exp(f; — BF) (24)

Since qup is always positive A\ is always negative, and substituting into Equation (15)
the corresponding « parameter is,

10



o = ¢ (VIQFmp + 4 - QM) expli — ) (25)

Several conclusions can be drawn from this expression. First, if Qf’qp is an order of magni-
tude greater than 4, then the term within the parentheses is a small positive number. Second,
if the term (18, — bF) is negative, then the exponential term is a small positive number. As
will be observed from the computational studies, in the design of multiproduct batch plants
under uncertainty, the aforementioned condltlons are met and hence, af
small positive number.

1 is generally a very

Using the expression for aq, the convex lower bounding function for the production con-
straint is:

QF exp(th, — b;) + % ( (qup)z +4 - qup) exp (tﬁi - bf) '

{(QF% — QF)(QY™ — Q) + (BF — b)(bY — )}

The resulting lower bounding problem, denoted as Formulation I is:

(26)

M
gy © 7 e )

P Q N
- X wr 2 Wi Z P + 7 E w2 qu"{E pib] — Elpz'pr}
p= q= 1,_ : q_ =

1

5+ VieN VjeM VpeP

N qp P N1 Lgp Lgp P L
;Q ~exp(th; — b)) + ZZ (Q )—|—4 Q; exp(th, — b7)-

{(QLqp qu)(Qqu qu) (bL—b)( )}<H VgeQ Vpe?P
L < QP < o¢ VieN VqgeQ Vpe?P

‘“"'d

subject to v; > In(S]

ln(VjL) < v; < In(VY) VyeM

L U
minln(?p) < b < minln(?p) VieN
3P i 3P ij

(27)

where 6] is given by Equation (13). The solution to Formulation I constitutes a lower bound
on the solution of the original problem (11).

3.2 Global Optimization Algorithm - Modified BB

A modified version of the aBB algorithm of Androulakis et al. (1995) is used to solve the
multiproduct batch plant design problems. The goal of this procedure is to locate the global
minimum solution of (11) by constructing a sequence of converging upper and lower bounds.

11



The approach will be described for the design problem (11) that employs the convex under-
estimator (27). A similar approach can be applied for problem (61) as well.

An upper bound on the solution can be obtained by solving (11) using a local nonlinear
solver such as MINOS5.4. A lower bound can be obtained by solving the convexified problem
(27) also using a local solver. Since the maximum separation between the actual nonconvex
terms in (11) and the convex lower bounding terms in (27) is proportional to the size of
the current region [VL, vU bl bY, QF, QU], the bounds on the global solution can be refined
by successively partitioning the original search domain into smaller regions and solving the
lower bounding problem in each region. Therefore, at each iteration the lower bound on the
global solution of (11) is the minimum solution of (27) over all subregions which make up the
initial search domain. This suggests a straightforward way to tighten the lower bound; at each
iteration halve the subregion responsible for the minimum solution of (27). This branching and
bounding procedure generates a nondecreasing sequence for the lower bound. A nonincreasing
sequence for the upper bound can be generated by solving the original nonconvex problem
(11) locally and updating the upper bound if this solution is less than the previous upper
bound. Subregions of the original search domain may be excluded (fathomed) if the solution
to the lower bounding problem (27) in this region is greater than the current upper bound.

3.2.1 Algorithmic Description

The basic steps of the algorithm are the following (only the formulation for the b variables is
shown):

STEP 0 - Initialization

The relative convergence tolerance, €, is specified and the iteration counter, [ter, is set to
one.

For the first iteration,

STEP 1 - Variable Bound Refinement

The global bounds on the v and b variables are tightened by solving the following problems
(only the formulation for the b variables is shown):

12



L _ .
by = min b

s.t. v > In(SE) + b VieN VjeM VpeP

Q7 - exp(tf; — b;)

7 QP —QF) (7Y - Q)
—|—a‘{§-(bf—bi)(bf-]—bi)}§[{ VgeQ VpeP

0F < QF < 9! VieN VgeQ VpeP

ln(V-L)fvj<ln(V-U) VjeM

M=
/—’H

=1

(28)

- 7

v . vy .
min In( p) < b < minln(g) VieN
3P 3P i

and

bY = max
s.t. > ] VieN VjeM VpeP
qu exp til b;)
(" - QF) (@Y - F)
+a3§-(b£—b¢)(b?—bi)}§ﬂ VgeQ VpeP
0F < Q¥ < 0! VieN VgeQ VpeP

Mz & S
r—’H

(29)

ln(VjL) < wv; < ln(VjU) VjeM
L U

minln(gg) < b < minln(?p) VieN

3P i 3P g

The current variable bounds [ , are then set equal

L, Iter U,Iter ,L,Iter U,Iter L,Iter U,Iter
bl fter pUdter yLilter (Ulter QLilter QU.dter]

to the global bounds [bL, bY vEi vV, QL QU]
STEP 2 - Upper Bound on Global Solution

An initial upper bound (UB) on the global solution is obtained by solving problem (11)
locally. The variable values at the solution are stored: bUB = b* vUB = v* QUE = Q*.

STEP 3 - Lower Bound on Global Solution

An initial lower bound (L.LB) on the global solution is obtained by solving the convexified
problem (27) within the refined variable bounds. The variable values at the solution are

Stored: b:k,]ter7 V*,Iter7 Q*,Iter‘

For all subsequent iterations (/ter > 2),

STEP 4 - Check for Convergence

13



If the relative difference between the upper and lower bound is greater than the convergence
tolerance, (UB — LB) /|UB +1| > ¢, then continue to STEP 5. Otherwise, the global

solution has been found and the solution is:

f* - fUB
b* — bUB
v o VUB (30)
Q* - QUB

STEP 5 - Update Current Region and Lower Bound

The current search region is selected as the region containing the minimum of all stored
lower bound solutions. The lower bound, LB, is updated to be the minimum of all stored
solution. The current variable bounds are updated to be the bounds of the current region,
and the current point is updated to the solution point of the current region.

STEP 6 - Update Upper Bound on Global Solution

The current point is used as a starting point for a local solution to problem (11). If the
solution to this problem is less than the current upper bound, then the upper bound is updated
to the new solution, and the variable values at the new upper bound are stored.

STEP 7 - Select Branching Variable and Partition Current Region

The current region is partitioned into two subregions by bisecting the edge corresponding
to a chosen variable. The criterion for choosing the branching variable is discussed in Section

3.2.2.
STEP 8 - Solve Lower Bounding Problems

The lower bounding problem (27) is solved in both new subregions. If the solution in a
region is greater than the current upper bound, then this region is guaranteed not to contain
the global minimum and it is fathomed. Otherwise, the solution is stored along with the
variable bounds for the region and the variable values at the solution. Return to STEP 4.

3.2.2 Analysis of the Branching Criteria

In the implementation of the aBB algorithm for the example problems discussed in Section
6, it was found that the speed of convergence was greatly affected by the choice of variables
on which the subregions were partitioned (branching variable). In this section, studies on
different branching criteria are presented. First, it was observed that the v variables do not
participate in the objective function or in any nonlinear terms and hence they should not be
considered in the choice of branching variables.

The first branching criterion examined was the most straightforward one. In the current
region, the variable with the longest distance between its upper and lower bounds (¥ — z%),
or the longest relative distance (2(zV — z%)/(2Y + z)) is chosen as the branching variable.
This choice of criterion follows the reasoning that since the size of the approximation, a(z? —

z)(zY — z), depends on the distance between 2 and zY, then by partitioning on the variable

14



with the largest range, we can hopefully achieve the largest improvement in the approximation.
In practice, it was found that this procedure converges to the global solution slowly.

In the second branching criterion, the entire convex lower bounding function was calculated
for each variable at the solution point in the current region.

off - (QF - QF) (Y - QF) (31)

or

off - (bF — ;) (07 — 1) (32)

The variable with the smallest value of the underestimation term (all terms are < 0) is chosen
as the branching variable.

Several observations were made when this criterion was used for the solution of the prob-
lems presented in this paper. First, this approach also converged to the global solution, but
only slightly faster than the first method. Second, branching on the Q variables caused the
largest improvement in the lower bound. Third, it was found that only Q variables were cho-
sen as branching variables until the last iteration before convergence, and then a b variable
was chosen.

Based on these observations, the algorithm was implemented where only branching on
the Q variables was allowed, and then where only branching in the b variables was allowed.
It was found that the algorithm did not converge when only the b variables were used as
the branching variables. Further, it was observed that the algorithm converged in the same
number of iterations when only the Q variables were used as when both the b and Q variables
were used.

A third possible branching criterion is to branch only on the variables that have the largest
multipliers in the objective function. The values of the probability distribution, /9, and the
weighting factors, w?, for the quadrature points vary over several orders of magnitude. As
a result, some of the Q variables have a much larger effect on the objective function than
others. Table 32 shows the product w?.J? for a 5x5 quadrature grid for a plant that produces
two products, like the Illustrative Example and Example 1. As can be seen, the multiplier
corresponding to the QF*? variables is the largest, followed by Q¥*?, Q3*? Q>*P, Q%P

2

Initially, only the Q27

estimation criterion, Equation (31), to select the variable to branch on. An implementation

330 3,2 23p 34 4,3 . . .
where the Q]7F, Q;F, Q;°F, Q;",and Q;°* variables were selected as possible branching

variables was also used. However, it was found that the neither of these implementations

variables were used as the branching variables, using the under-

converged because the convex lower bounding functions corresponding to these variables were
reduced to zero before the desired tolerance was achieved.

Finally, a combination of the second and third strategies was used as the branching cri-
terion. The product of the objective function multiplier, w?.J? and the underestimation,
Equation (31), is calculated for all Q variables. This directly determines the effect of the
convex lower bounding function on the objective function. Thus, the variable with the largest
product is chosen as the branching variable. This procedure was found to converge in fewer
iterations than all other methods discussed above. Note that this corresponds to branching
on all Q variables first and then branching on the b variables next, if needed.
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3.3 Illustrative Example

In order to illustrate that a tight lower bound of the global solution can be obtained immedi-
ately by using the exact expression for a;, consider a small example taken from Grossmann
and Sargent (1979) for the design of a batch plant that must produce two products using
three stages with one piece of equipment per stage. In this example, only the demands are
considered to be uncertain parameters, therefore there is only one scenario (P = 1). The data
for this example are shown in Table 1.

The single-product campaign (SPC) formulation, (27), contains fifty-five variables and
thirty-one constraint equations, not counting the variable bounds. Of the thirty-one con-
straints, twenty-five are nonlinear constraints containing fifty nonlinear terms. The demands
have a normal distribution of N(200,10) and N(100,10) for products 1 and 2, respectively. Five
quadrature points are used for the uncertain demand of each product. The upper and lower
bound on the equipment volumes, V; were 4500 and 500, respectively. A relative tolerance, e,
of 0.003 was used in this example, and the time horizon, H, was 8. The annual cost coefficient,
0, was 0.3.

The optimal design and profit is shown in Table 2, and the progression of the upper and
lower bounds on the global solution for the case where the penalty term is zero is shown in
Table 3. This method provides a very tight lower bound, as the lower bound is within one
percent of the global solution at the first iteration, without any partitioning of the search
domain. The branch and bound algorithm quickly converges to the desired tolerance.

Note that the equipment and batch sizes for the global solution increase as the 7 coefficient
increases. This reflects the penalty associated with not fully meeting the market demand. In
addition, the computational requirements and iterations decrease as the penalty coefficient
increases.

While the lower bounds provided by a; are very tight, it is possible to develop even tighter
convex underestimators. The procedure for deriving a tighter convex lower bounding function
is described in Section 3.4.

3.4 The o as a linear function: Formulation I1

Note that in equation (26) the quadratic terms (Q?qp - Qgp)(qup — Q%) and (b7 —b;)(bF —b;)
are multiplied by the same « parameter. Because these terms can be of different magnitudes, it
is not necessarily desirable to multiply them by the same «. To address this, a straightforward
approach is to introduce a scaling factor, for example:

U L
B Qiqp_Qiqp

= T r (33)

and define a different « for each variable. Thus, the lower bounding function for a generic
nonconvex term of two variables would be:

NC(z,y) + az¥ —z)(z" —z) + B(y" —y) (" — v) (34)

where
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B=n-a (35)
For the production constraints, which have the form NC(z,y) = x exp(y), the lower bound-
ing function, L, can be written:

L = zexp(y)+ %(SL‘U —a)(@" —z)+ay’ —y)y" —y) (36)

First, consider n to be an arbitrary positive constant and attempt to find an expression
for a constant « that maintains the convexity of L. The lower bounding function is convex if
both of the eigenvalues of the Hessian of L are always positive. Both eigenvalues are positive
if the following two conditions are met:

8°L 8°L
1 gL 2L > g

9 8°L 8°L (82L )2 Z 0

© 8z2 8y \Bzdy

We find that « of the form,

o =1 (Vmr - o) exsply?) (37)

guarantees that L is convex for any n > 0. Given this expression, the next step is to find p
that minimizes the size of the approximation term.

max %(:xU —z)(zf —2)+ a(y¥ —y)(y" —y)
n (38)
s.t. n>0

:EU—l—:L‘L yU-I-yL
2

5 ), so for convenience, this point

The approximation is most negative at the point (
will be used. Substituting for & gives,

max 167 ( (x0)% + 4y — J:L) exp(y¥)(2V — 2T)?

167

+ & (/@) + 4n — a) exp(y?) (v — y*)? (39)
s.t. n>0

Now the stationary point with respect to n is:

2, U L2 (CEU_IL)z L L\2 U L2
e Ry il G (TR Lt R U

Solving for 5 results in the following expression:

(41)

and the desired solution is,
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B (:L‘U _ :EL)2 B ;L,L(xU _ :L‘L)
T Ty (y¥ — y2) (42)

However, this term can become negative, so the definition for  must be modified so that:

(¥ — 2L)? L(Q:U—:L’L)}
= max< 1, -z 43
! { (yY —yt)? (¥ —y") )
When the () and b variables are substituted for x and y, the scaling factor is written:

Uap _ Lapy2 L — Qi
PR A RS ) m

and the o term is:

1

6 = ¢ (V@I + 40 — QI exply; — #1) (45)

Recall that & is a constant, and thus is constrained by the most restrictive point, (zZ, yY),
while at other points in the feasible region it may be sufficient to use a smaller value of a.
The goal is to find an expression for « that is a function of the variables that maintains the
convexity of the lower bounding function.

Consider the simplest function of z and y, that is, a linear function. Now the lower
bounding function has the form:

as(x)

ol (z¥ — 2)(=" = 2) 4+ Baly) - (W7 — ) (" —v) (46)

L = wexp(y)+

where,

ax(r) = & (1 —c- :U__EELL)
Baly) = a(1—d- %=Y%) (47)
0 <e¢d< 1

where ¢ and d are constants. Note that at the point where the minimum eigenvalue as defined
by Equation (24) is minimized, (z¥, yV) the expressions for ay and 3, reduce to:

ap(zh) = & (48)
B(yY) = a (49)
and at any other point, say (l’U, yL),
ag(:I;U) = a(l —¢) < & (50)
Ba(y) = 4(1—d) < & (51)
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The constants, ¢ and d, must be greater than zero or else no improvement in the underestimator
is made. In addition, the constants must be less than or equal to unity or else the term is not
a valid underestimator. The goal is to find the largest values of ¢ and d which maintain the
convexity of the lower bounding function. A procedure for determining the upper bounds on
¢ and d is as follows:

1. Let c=d = %[1—%(\/(;6(])2%—47]—:6[])].

1 _ nexp(2yY)
# Chedee = {1 46‘2($Ue4—l§2w +1+d)]'
Check d < (=520 + 1 - 128047).

If both are satisfied, then Stop.
If one or more is not satisfied, then go to Step 3.

B . 1 . nexp(2yY) 1 . nexp(2y”)
3. C = Imin 3 1 o texp(yU) ? 2 1 ~0 texP(yL) )
4& —a +14d 4& — +1-2d
o . 1 z’ exp(y’) _n exp(2y’) 1 zY exp(y’) _n exp(2y’)
4. d = mm{l, 5 T 14 852(14c) ° 2 + e 8a%(1—2c) J*

5. Return to Step 3 and repeat until ¢ and d converge.

A derivation of this procedure is included in Appendix B. When the ) and b variables are
substituted for z and y, the a parameters are written:

ap ( 9P ~gp w QF-Qi”
f— Y — . 2 2

az,i(Qi ) = o 1 G Qqu_QLqP
2 2

~ b; —bL
9P _ ap qp
2albi) = & (1 —d, 'bff_é.L)

Using the new expression for the lower bounding terms with ay and 3, Formulation II of the
lower bounding problem is:

(52)
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M
min ¢ E a; Nj exp (Bjv;)

b;,v;,Q7"
- fafenfner o £ a Sen{E e - £ aor]
subject to v; > In(S5) + b VieN VjeM VpeP
£ { o etz
e (Vi@ Q) explig — 1)

qu Lagp L U
(1 - cqp qu QLqp) ' (Qgp - Qgp) (Qgp - Qgp)
+ (\/@L‘”’) A — QB exp(is, — )
(- ) (- n) (W —b)} < H VeeQ VpeP
o < Q¥ < o7 VieN VgeQ VpeP

In(V}F) < v; < In(VY) VyeM

L 12
minln(?p) < b < minln(?p) VieN
3P i 3P i

(53)

3.4.1 Illustrative Example Revisited

Table 4 shows the results for the [llustrative Example using Formulation II and Table 5 shows
the progression of the upper and lower bounds on the global solution.

Note in Table 5 that the initial lower bound is —986.777. For the formulation using «;, the
initial lower bound from Table 3 was —987.840. Thus «ay provides a tighter lower bound on
the global solution than «;. This point is further illustrated in Table 4 where the number of
iterations required to achieve the desired tolerance is less for ay than for the lower bounding
functions using oy (Table 2) when v = 0 and v = 8. However, the CPU time required is
slightly greater, most likely due to the more complicated expression for the convex lower
bounding function when ay is used.

The optimal solutions shown in Table 4 are exactly the same for the «; formulation shown
in Table 2, as expected.

3.5 Nonconvex Lower Bounding Function: Formulation ITI

In the derivation of «;, recall that the minimum eigenvalue of the Hessian matrix of the
nonconvex term QF - exp(t7, — b;) was found to be:
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::IP_ 1‘:11’ 2 _|_4
A (Q o )-exm—m (54)

The minimum of this expression over the current search domain is used to calculate the
constant value for a;. We have noted some interesting results if Equation (54) rather than its
minimum is used to calculate the a parameter. In this case, the expression for « is:

oy = ¢ (V@71 -0r) expltt— 1 (59)

Note that az does not strictly satisfy the condition imposed by Equation (15). Therefore,
the lower bounding function constructed using a3 is not necessarily convex. Thus, the lower
bounding problem is still a nonconvex problem and local solvers may converge to a local mini-
mum rather than the global minimum, giving an overestimate of the lower bound. In practice,
however, the algorithm never failed to converge to the correct global minimum solution when
ag was used to construct the lower bounding function. Table 13 shows that multiple local
minima can exist for these problems. For the examples studied in this paper, the local minima
lie very close to the global minimum solution.

3.5.1 Illustrative Example Revisited

The advantage of using aj is that it provides a much tighter lower bound on the global solution
than either a7 or ay. These observations are demonstrated below in the Illustrative Example
and in the other examples in Section 6. The number of iterations and the CPU time required
to converge to the global solution are shown in Table 6. Fewer iterations were required to
achieve the desired tolerance when a3 was used than when a; and a; were used. In addition,
the computational requirements were less when «; was used as the lower bounding function.

Table 7 shows the progressive improvement of the bounds using the proposed approach.
As can be seen, the initial lower bound is very close to the global solution and the algorithm
converges quickly. Recall from Table 3 that the initial lower bound when «; is used was
—987.840. An improved initial lower bound of —986.777 is provided by a,, Table 5. A
much larger improvement is possible when a3 is used, resulting in an initial lower bound of

—982.171.

4 Mixed-Product Campaign Formulation

As stated in Section 2, Formulation (11) corresponds to the multiproduct batch design problem
with single-product campaigns and no intermediate storage. Since this formulation uses the

maximum processing time for each product, t7; = _maXM{#}, it overestimates the time
71=1,..., J

required to process each product. This can result in an overdesign of the equipment sizes.
Figure 1 shows a comparison between a single-product campaign and a mixed-product

campaign. In this case, two cycles of each product are needed to reach the required production

specifications. The mixed-product campaign shown allows for unlimited storage of products
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between processing stages. As can be seen, the mixed-product campaign requires less time to
process the required amount of products.

In order to allow mixed-product campaigns, the horizon constraint in Formulation (11)
must be replaced by an expression that takes into account the processing times in each stage,
rather than the maximum processing time. This can be done in the following manner according
to the analysis of Birewar and Grossmann (1989). Let n; be the number of batches of product
2 over the whole production period:

ng = — (56)

Now the total cycle time for each stage, CT;"t, must be at least as large as the sum over all
products of the processing time for each product ¢ in stage j.

N
CT;Ot Z Znitij \V/j < M (57)
=1

Obviously, the total cycle time in each stage must be less than the horizon time, so:

N
H Z OT;Ot 2 Znitij \V/] € ./M (58)

=1

Substituting for n; results in the following expression for the new horizon constraint:

N Q
Yoty < H  VjeM (59)
=1 "2

Applying the exponential transformation, the Gaussian quadrature, and the scenario analysis
presented in Section 2 gives the final expression for the new constraint:

N
S QF-exp{tf — bi} < H (60)
=1

Therefore, the global optimization problem for the design of multiproduct batch plants under
uncertainty with unlimited intermediate storage and zero cleanup times is the following:

min ¢ E a;Njexp (fv5)

'uj,qu
P Q N
- Y& "J"Epqu”Jr7Ewp2w"ﬂ{2pzl9q EpiQ?”}
p=1 " g=1 p=1 =1
subject to v; > In(SE;) + VieN VjeM VpeP (61)
N
> QF - exp(t; )§H VieM Vqge@ VpeP
=1
enggpgeg VieN VgeQ VpeP

In(V}F) < v; < In(VY) VyeM
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Note that the cost of storage facilities is neglected and the batch sizes for each product are
assumed to be the same at each stage. In addition, there are now M - () - P horizon constraints
as opposed to () - P horizon constraints for Formulation (11). This greatly increases the size
of the problem.

For the convex lower bounding problem, the horizon constraints are replaced by their
convex underestimators:

é QF exp(ti; — bi) + o (QP — QF)(QPY — QF) + BE(F — b;) (WY — b;) (62)

Since each {;; is used rather than the maximum over all stages, iz, the size of the exponential
term in the underestimator will be larger in general than for the single-product campaign
model. Due to the increased size of the UIS problem it is expected that the number of
iterations needed to solve this problem and the CPU time per iteration will increase.

Once the optimal design is found, it remains to determine the schedule corresponding to
the design. This problem has been formulated as a mixed-integer linear program (MILP) by
Birewar and Grossmann (1989).

4.1 Illustrative Example

The results of the UIS design formulation for the Illustrative Example are shown in Table 8.
Compared to the solution for the single-product campaign formulation, the volume of each
of the units is substantially decreased, resulting in an increase in the optimal profit. The
computational effort is also increased with the UIS formulation requiring 3.95 CPU seconds
versus 1.23 CPU seconds for the SPC formulation.

5 Multipurpose Batch Plant Design

In the previous sections, two different formulations for multiproduct batch plants have been
presented. In a multiproduct plant, each product uses the same equipment in a fixed sequence
to perform a defined processing task. However, in many cases it may be possible to eliminate
unnecessary steps in the production of one or more products, or to use some equipment for
different processing tasks. In this case, the plant is called a multipurpose batch plant. Figures
2 and 3 illustrate the differences between a multiproduct batch plant and a multipurpose
batch plant.

The formulation of the multipurpose batch plant design problem under uncertainty requires
few modifications of the multiproduce batch design problem, and does not introduce any new
nonconvex terms. It will be shown that the analysis for the lower bounding terms presented
in Section 3 can be directly applied to the nonconvex terms in the multipurpose batch design
problem.
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5.1 Single Equipment Sequence

In the single equipment sequence model, each product requires a different sequence of pro-
cessing steps, and only one route is possible for each product. A single equipment sequence
multipurpose batch plant is shown in Figure 3.

This problem can be formulated as the following nonconvex global optimization problem
where the products are produced in . campaigns:

M
min 6 E a;Njexp (B;v;)

ap qp
Uy, nc Q

P Q N N
21%2 "J"EPQ"”+72 Ew"J"{Epﬂ?— EpiQ?”}
p=1 g=1 =1 =1
subject to v; > In(S%;) + b VieN VjeM VpeP
L
QF -exp(tf, — b)) — Y aC¥ <0 VieN VqgeQ VpeP
3 h=1 (63)
YO < H Vge@ VpeP
h=1
0 < Q¥ < 47 VieN VqeQ VpeP
0 < C¥ < H VhelL VgqgeQ VpeP
mm(gj) < b < mm(‘;:) Vie N
3.p 3p S

In(VF) < v; < In(VY) VyeM

where the new variable C is the production time for campaign h for quadrature point ¢
in period p. The parameter ap; determines the possible interactions of the products in each
production campaign. ap; is unity if product ¢ can be produced in campaign h and zero if not.
The horizon constraint is now the sum of the production times for each campaign. Note that
the nonconvex term Q¥ exp(¢5, — b;) has not changed, nor have any new nonconvex terms
been added. Therefore the lower bounding functions from Section 3 can be directly applied
to formulation (63). An example problem for the design of a multipurpose single equipment
sequence batch plant under uncertainty is included in Section 6.

5.2 Multiple Equipment Sequences

In the multiple equipment sequence model, two or more alternative production routes are
possible for each product. This requires defining a set of all possible routes that can be used
ot make product 7, denoted PR;. The multiple equipment sequence problem is formulated as
follows:
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M
min 6y a;N;ex U
vy b0, QY P ng RN p(ﬁj J)

P Q N P Q N N
- Y WY pQf + 1Y o Ew"J"{EPﬂ? - sz’QZ’p}
p=1 g=1 =1 p=1 g=1 =1 =1
subject to wv; > In(S7;) + b, VreR VjeM VpeP
> ¢® = QF VieN VqgeQ VpeP
rePR;
L
q® exp(t? —b) — Y anCF <0 VreR VqgeQ VpeP
h=1
L
YO < H VgeQ VpeP
h=1
0r < Q¥ < o¢ VieN VqeQ Vpe?P
0 < CP®P < H Vhel VgeQ VpeP
0 < ¢ < gl VreR VqgeQ VYpeP
min z{f) < b < min(?:) VreR
e Or 3p - Orj

In(VE) < v; < ln(VjU) VjeM

(64)
where
g7 = 0p,
= mj._axtfj (65)

where F, is the index for the product made in route r. The new variable ¢ represents the
production of route r for quadrature point ¢ in period p. Thus, a new constraint is that the
sum over all possible routes for a product ¢ of ¢ must equal the total production of product
i, Q¥F,

Note that although ¢% has replaced Q7 in the nonconvex term, the form of the term
remains the same as in the multiproduct formulations. Therefore, the same lower bounding
functions can be used for the multiple equipment sequence formulation.

g exp(8, — b;) + o1 {(¢F — ) (a7 — ¢) + (bF — b) (B — b,) } (66)
For example, if the «; formulation is used, the convex lower bounding function is given by
equation (66).
6 Computational Studies
The following example problems illustrate the advantage of using the tight convex lower

bounding functions developed in this work. The global solutions were found in a small num-
ber of iterations, even for very large problems. The algorithm presented in this paper was
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implemented in GAMS and MINOS5.4 was used as a local solver. An IBM RS6000 was used
to run all examples, and CPU times are reported in seconds. For all examples, five quadrature
points for each product were used in the Gaussian Quadrature approximation of the expected
profit integral.

6.1 Multiproduct Batch Plant Design Problems

Example 1

This example is similar to the Illustrative Example, but in this case, the size factors and
processing times are taken to be uncertain parameters. Three scenarios are used to provide a
range of values for the uncertain parameters. The additional scenarios increase the size of the
problem. In the SPC problem formulation there are 155 variables and 93 constraint equations.
These include 75 nonlinear constraints and 150 nonlinear terms. The UIS formulation also has
155 variables, but contains 225 nonlinear constraints with 450 nonlinear terms, and a total of
243 constraints. The weighting factor, wP, was the same for each scenario and had a value
of % A relative tolerance of 0.003 was used in this example and the horizon time, H, was 8.
The data are given in Tables 9 and 10, and the results are shown in Tables 11 and 12.

Table 12 shows that the UIS scheduling solution results in a substantial decrease in equip-
ment and batch sizes. The decrease in equipment sizes causes an increase in the profit.

Comparing the results for Example 1 to the Illustrative Example, an increase in the CPU
time is seen, which is due to the larger size of the problem in Example 1. The CPU time
required for each iteration is higher for the UIS problem than for the SPC problem, but it is
interesting to note that the number of iterations required for the UIS problem is one fewer
than for the SPC problem using as with v+ = 0. Note that using «as gives a tighter initial
lower bound than «;, and requires fewer iterations to converge to the global solution. Further,
as was shown in Section 3.5 with the Illustrative Example, using a3z results in a substantial
improvement in the initial lower bound over «s,.

Table 13 shows the progression of the upper and lower bounds on the global solution for
Formulation I'in the case where v = 0. An upper bounding problem is solved at each iteration,
using the current lower bound solution as a starting point. Note that the upper bound is equal
to the global solution at iteration seven. In addition, the initial lower bound is within two
percent of the initial upper bound.

Example 2

This example requires the design of a batch plant producing four products in six stages
with one unit per stage. As in the Illustrative Example, only the demands are considered as
uncertain parameters. The uncertain demands have the following normal distribution func-
tions, N(150,10), N(150,8), N(180,9), and N(160,10) for products 1, 2, 3, and 4 respectively,
and each are represented by five quadrature points.

The SPC problem has 649 total constraint equations, of which 625 are nonlinear constraints
with 2500 nonlinear terms. The UIS formulation has 3774 total constraints, of which 3750
are nonlinear with 15000 nonlinear terms. There are a total of 2510 variables. The upper and
lower bounds on the equipment volumes, Vj;, were again 4500 and 500. A relative tolerance
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of 0.003 was used and the horizon time was 8, the penalty coefficient, v, was 0. The data are
given in Tables 14 and 15, and the results are shown in Tables 16 and 17.

As in Example 1, the UIS scheduling formulation results in smaller equipment and batch
sizes, which increases the expected profit. A tighter initial lower bound was obtained using a,
than aq, and the algorithm converged in one fewer iteration. Due to the size of this problem,
more computational effort was required to solve the upper and lower bounding problems than
in the first two examples. In addition, notice the large increase in CPU time for the UIS
formulation. When a3 was used to construct the lower bounding functions, the lower bound
on the global solution was within the specified relative tolerance in the first iteration. This
example demonstrates the ability of the method to provide very tight bounds on the global
solution in few iterations.

Example 3

This problem is similar to Example 2, but in this case three scenarios are used to include
a range of values for the uncertain size factors and processing times. The data are shown in
Tables 14 and 18. This example has 7510 variables and the SPC formulation has 1947 con-
straints, including 1875 nonlinear constraints with 7500 nonlinear terms. A relative tolerance
of 0.015 was used. The scenario weighting factors, w?P, were % The results are shown in Tables
19 and 20.

Due to the large size of this problem, the CPU time required per iteration is much larger
than the previous examples. In this case, the problem formulation with «a; took four iterations
and 8640.60 CPU seconds. The a3 solution is slightly better, requiring three iterations, but
had a higher CPU time per iteration. When a3 was used, the initial lower bound was within
the specified tolerance of the upper bound, and the CPU time was substantially smaller.

Example 4

In the final example, the design of a plant which produces five products in six stages with
a different (fixed) number of pieces of equipment per stage is considered. Only the demands
are taken to be uncertain parameters and five quadrature points are used for each uncertain
demand. This results in a large problem with 15,636 variables and 3155 constraints. Of these
constraints, 3125 are nonlinear, containing 15,625 nonconvex terms.

Only the single-product campaign formulation was used for this example. The demands
follow normal distributions with the following forms, N(250,10), N(150,8), N(180,9), N(160,6),
and N(120,3). The bounds on the V variables are 500 and 4500, and a relative tolerance of
0.015 was used. The time horizon was 6 and the penalty coefficient was 0. The processing
parameters, price, and cost data are given in Tables 21 and 22, and the results are shown in
Tables 23 and 24. Again, the initial lower bound provided by a3 is the tightest, followed by
ag. Note that in each case, the initial lower bound is extremely close to the global solution,
and all formulations converged in the first iteration. Note that the CPU time required for the
ay formulation was much higher than the other two a expressions.

6.2 Multipurpose Batch Plant Design Problems
Example 5
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In this example, the task is to design a five-stage multipurpose batch plant which produces
five products, as shown in Figure 3. Note that each product requires a different configuration
of the plant, and only one configuration is possible for each product. Only products one and
two have uncertain demands, while the remaining products have a known, fixed demand. The
processing times and size factors are not considered to be uncertain. This problem has 260
variables, and 175 constraints. Of these constraints, 125 are nonlinear and each nonlinear
constraint contains only one nonconvex term.

As in the illustrative example for the multiproduct design formulations, five quadrature
points per uncertain demand are used to approximate the expected profit, and a cost exponent,
B, of 0.3 and annualization coefficient, ¢, of 0.6 are used. The production horizon, H, is
6.5, and the equipment cost coefficient, «;, is 0.25. The minimum volume of each piece of
equipment, VjU, is 500, and the maximum volume is 2000. Table 25 shows the size factors
and processing times, Table 26 shows the prices and uncertain demands for each product, and
Table 27 gives the values for the campaign interactions, ap;.

The solution for this example is shown in Table 28 and the computational results for the
different lower bounding methods are shown in Table 29. As was the case for the multiproduct
examples, the ay formulation provides an improvement over the a; formulation. Again, the as
formulation gives a very tight initial lower bound, so that the required tolerance was achieved
in the first iteration.

6.3 Comparison to Alternative Underestimating Approaches

A major advantage of the aBB approach in comparison to underestimation schemes that are
based on the methods of Al-Khayyal and Falk (1983), McCormick (1976), as well as products
of univariate functions is that it does not require the addition of any new constraints or
variables. The effect of this advantage becomes quite pronounced as the size of the large-scale
optimization problems presented in this paper increases. For example, an alternate convex
lower bounding scheme is based on representing the nonconvex term as a product of univariate
functions, Maranas and Floudas (1995). The nonconvex term, Q7 exp(¢¥, — b;) is a product
of two univariate functions f(QJ)- g(b;) where f(QF) = Q¥ and g(b;) = exp(t5, — b;). In this
approach, a new variable is substituted for each nonconvex term, and convex lower bounds on
the substituted variable are constructed. In this case,

i = QF exp(ig; — bi)

s® > QP exp(iB, — b)) + QP exp(tt, — V) — QFPexp(i8, — 1Y) (67)

2

2> QU exp(th, — b) + QF exp(th, — BF) — QU exp(iE; — 1)

This approach requires the addition of N - ) - P new variables and 2 - N - ) - P new
constraints.

The three BB methods are compared with the univariate functions convex lower bounding
scheme in Table 30 for three examples. The advantage of the BB approach becomes apparent
as the size of the problem increases. For the illustrative example, and Example 1, the aBB
methods provide tighter initial lower bounds than the alternate method. However, since the
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size of the problems are not especially large, the advantage in CPU time is minimal. Example
2 is much larger than the other two examples, and the advantage of the aBB method is
clearly shown. The alternate method took roughly nine times the computational effort of the
oy method.

7 Conclusions

This paper has presented a procedure for finding the globally optimal design of multiproduct
and multipurpose batch plants under uncertainty. The problem with a fixed number of equip-
ment per stage was formulated as a single nonlinear optimization problem. The uncertain
demands are represented by a Gaussian quadrature formulation, and the uncertain processing
parameters are handled through a scenario-based approach. The design problem is formulated
for both single-product campaign and mixed-product campaign with unlimited intermediate
storage scheduling strategies. A key theoretical property has been developed, which is an
analytical expression for the minimum value of a needed to form a convex lower bound of the
nonconvex constraints. This property allows very tight bounds on the global solution to be
generated in a small number of iterations. The aBB algorithm of Androulakis et al. (1995)
with a modified branching criterion was used to converge to the global solution. Several exam-
ple problems were presented, which demonstrate the effectiveness of the proposed approach
to large-scale multiproduct and multipurpose batch design problems under uncertainty.

In addition to unlimited intermediate storage, several other mixed-product scheduling
strategies have been proposed in the literature. Work is in progress to extend the global
optimization method presented in this paper to the zero wait scheduling strategy, and to
include clean-up times for both the unlimited intermediate storage and zero wait problems.

Acknowledgements: The authors would like to acknowledge financial support from the National
Science Foundation. The authors also thank Drs. Epperly, lerapetritou, and Pistikopoulos
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A Gauss-Legendre Quadrature

We wish to estimate the integral:

/bf(:(;)d:v

We approximate the function f(x) with an n-th degree polynomial p,(z):

/b fla)de = /b pa(e)dz + /b Ro(2)da

where Ry (z) is the error term.

Substitute for f(x) using the Lagrange interpolating polynomial, L%(z), for p,(z) with its

related error term:

R ORNR - SN s (3

where,

Lq(;p):ﬁ(w_mj.) g#3 and a<{&<b

q_ g3
j=0 \T7 — T
Now to make the analysis easier, we transform the variable z,

(x—a)+ (x—b)
b—a

v =

SO

ﬂmzﬂwzéﬂ@mm+

where ,(v) is an nth degree polynomial and,

(v — ) .
Jl:[o o vf) q#
Now the integral is given by:

jf(a;)da; _ /1F(v)d /ZLq Vo + /

Z1 9=0

U_v ]Qn( )

Since F'(v?) are fixed values, they can be taken outside the integral:
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1 n 1

J Flv)dv =~ ¥ F(v?) [ L¥v)dv

- o = (76)
~ Y @7 F(v9)
g=0

where @? are weighting factors and depend on the number of points n used in the approxima-
tion. These values can be found from tables.

Finally, we must select the quadrature points v?. The object is to select them in such a way
so that the error term vanishes. The orthogonality property of the Legendre polynomials is
used to establish the v? values, and these can be found in tables. For the five-point quadrature
formula used in this work, the weighting factors, w?, and the roots, v?, are given in Table 31.

Note that the integration limits are -1 and 1, which is required by the Gauss-Legendre
quadrature formula. However, we are interested in integrating between arbitrary numbers a
and b. This can be done simply by transforming the quadrature formula to the desired interval
as follows:

a(l —=v)+b(1 +v)

r = 5 (77)

and the integral becomes,

/bf(:c)d;z; _ b—a/1f<a(1—v)—|—b(1—|—v))dv (78)

2 2
-1

Now using the standard Gauss-Legendre quadrature formula, the right-hand integral can be
approximated by,

/bf(l')dx ~ b_aiaﬂ-f(a(l_vq)+b(1+vq)) (79)

2 o 2
q_
For the formulations discussed in this paper, the following substitution is made:

b—aAq

w (80)

q pumy

w

resulting in the following Gauss-Legendre quadrature formula:

/bf(x)dx ~ 0y (“(1 —ri “q)) 51)

It still remains to calculate the joint probability density function, J, for the uncertain
parameters. For a single continuous random variable, y, the normal density function, f(y) is:

fly) = ! exp{—w} (82)

o\ 2T 20

where p is the mean and ¢ is the standard deviation of the distribution.
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In general, a multivariate normal density function is very complicated to calculate. How-
ever, since we have assumed that all uncertain parameters are independent, the joint proba-
bility density function is simply the product of the individual density functions:

T, Ym) = ﬁ \;ﬂexp{—%} (83)

i=1 T4

and with a quadrature formulation,

! (yf — )’
JayE sy = 1 _ 84
(ylv I ym) f O'i\/% exp { 20_2 ( )

Now, for two uncertain demand parameters represented by five quadrature points each,
the product @?.J? is given by the 5x5 grid shown in Table 32. Note that the terms in the
center of the grid are several orders of magnitude greater than the terms on the edges.
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B Derivation of Upper Bounds for ¢ and d

The task is to find the upper bounds for the constants ¢ and d that maintain the convexity of
the lower bounding function:

L = zexp(y) + %(J?U —z)(at —z) + Ba(y¥ —y)(y* —y)

where,

(4 x — b
ay = & - —
U — oL

U
0 v —y
fr = 5(1 —d'ﬂ)

Recall that L is convex if both of the eigenvalues of the Hessian matrix are positive, which
is equivalent to satisfying the following two conditions:

8%L 8L
1L 8% + 8L >0

8%L 8°L 8%L
2. 8z2 8y> ~ OBzdy Z 0

The second derivatives of L are:

_ B%L _ 2a& 3z—zV -2z~

La:a: - 8z2 T I —c- 20 _zL -
_ 8’L _ 94 (zexp(y) 3y—2y~ —y

Lyy = W—QQ(TJFlJFd'W
_ 8L _

Loy = Bzdy eXp(Qy)

Substituting the second derivatives into the second convexity condition gives the following
expression:

3y — 27 —y*
Ta—" —exp(2y) > 0

(85)

As an initial estimate of the upper bounds on ¢ and d, the observation is made that both

B = + 1+ d-

2 Yy

@ ll . 3:1:—;1;U—2:1;L] [xexp(y)

n U — L

+14d-

2 Yy

3z — 2¥ — 221 zexp(y)
ll—c- I ] and li

3y — 2yY — ot
U_yL

must always be positive, otherwise the second convexity condition will be violated. This
observation gives the following bounds:
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1

2

1 alexp(y?)

d > — — = 7
2 + 4é

c >

(86)

(87)

However, these bounds only guarantee that the first term in the second convexity condition
is always positive, they do not guarantee that the condition is always satisfied. In order to
find tighter upper bounds on ¢ and d, one needs to find the point at which F' is minimized and
then determine the bounds on ¢ and d that guarantee that F' is non-negative at the minimum.

To find the minimum, find all of the stationary points of F.

oF — 4 3 z exP(y ) * m
Bz (a:*,y*,c*,d*) o n [ZU_EL] |: —I_ 1 —I_ d y —y

4562 _ x_ 3zF—=z U_ogl exp(y*)| _

T n [1 ¢ zU—zl ] [ 24& =0

oF 442 ok 3x*—zU 2zl z* exp(y*) B S
Oy |(z*y*,c*d*) 7 [1 ¢ 2V -zl 2a T 2exp(2y”)
B = 487 | 3s'-sT-2a7| =" exp(y’) « By -2yl _
9c |(z* y*c*\d*) 7 [ zV—gl ] [ 25 +1+d o0 —oL =0
oF — 462 [1 c* . 3z* —:x: U_ogl ] [3y*—2yU—yL] — 0
ad (a:*,y*,c*,d*) n —xL yU_yL

where each (z*,y*, ¢*, d*) that satisfies these conditions is a stationary point.
the derivative of F' with respect to d, either

* QyU—I_yL _ xU_l'L
3 Ja* — U — 2L

=0

By examining

It is evident that y* = % otherwise the derivative of F' with respect to y reduces to:

*

0 — 2exp(2y*) =0 — y* = —

By the same argument with the derivative of F' with respect to ¢, either

. U+ 2t \ y? —y¥ " exp(y*)
= —— or d* = — - +1
3 Jy* —2yY — yL 20
and z* = %, otherwise y* = co. Now z* and y* can be substituted into the first two

equations of the stationarity condition in order to solve for ¢* and d*:

o = (55) (22s)

gt = (yU_yL) (r’ex;:(22y*) B m*exp(y*))

&
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Therefore there is only one stationary point of . Now it is necessary to determine the
type of the stationary point. This can be done by evaluating the eigenvalues of the Hessian
matrix of F' at the stationary point. This results in the following fourth-order characteristic
polynomial:

+ (

> [<IU_EL> (e 4 )7 - <yUfyL>2

B (%) (1 . (ex;;(;*))2 myjﬂﬂ)z

-2 (exg(o}j*))g z* e;tg(ly*)_}_l (‘T* - 4nﬂ:ul):| ) )\2

Q)

L

)

(o) () (o) 1) (o _477%5_*1)] A
+ (2) (7%) (=2) (B2 +1) = 0

In order to determine whether the four roots of the polynomial are all positive, all negative,
or a combination of positive and negative, consider a general fourth-order polynomial:

A —a)A—b)A—c)A—d) = 0

when expanded, this equation becomes:

M — (a+b+c+d)X + (ab+ ac+ ad + be + bd + cd)\?
— (abe + abd + acd + bed) A + abed = 0

Note that the constant term in the characteristic polynomial for the Hessian is always positive.
This term corresponds to the (abed) term in the general fourth-order polynomial. Therefore,
the roots of the characteristic polynomial are either all positive, all negative, or two positive
and two negative.

Next, consider the term which multiplies A2, (ab+ ac+ ad + bc+ bd + ¢d). If the roots are
all positive or all negative, then this term must be positive. However, if this term is negative,
then there must be two positive and two negative roots. It can be shown for the characteristic
polynomial that this term is maximized when 2% = 0. When this is substituted, the term
simplifies to:
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2
yU —yL _ zU 2
(3exp(yU_yL) + 1) (yU—yL)

3

2 2
- =) [1-2 —=F= =
3exp(¥ gy ) exp(Z gy ) %-I—l

3exp(LF8)

3
— 92 (exp(y%]gyL)) yU_U;L " ((yU;yL)3 —4 (yU;yL)2 (exp(y%]gyll)))

L
3 exp(%)

This expression allows us to solve for the zU, in terms of yY, y*. where the term changes from

negative to positive, denoted by zU<r,

JUerit _ 4 3ny/n exp(6n) + 2(n + 1) exp(hn) + n(n + 4) exp(4n)
7 (n+exp(n))exp(2n)\ —2n(n® —6)exp(2n) + 12n® exp(n) — 4n
where,
_y7—yr
n =
3
The upper bound on z is always positive, so we are only interested in the positive solution.

Uerit increases monotonically with n, and for 2V < zU<, the term

It can be shown that x
which multiplies A? is positive, and for z¥ > 2U° the term is negative. We can scale the
x variables independently of the y variables and force 2V > 2V for all z. In fact, for the
problems examined in this paper U™ = 2.79, while the smallest z¥ is 60.

As a result, the coefficient that multiplies A? is always negative. This means that the
characteristic polynomial for the eigenvalues has two positive roots and two negative roots,
thus the stationary point is a saddle point. Therefore, the second convexity condition, (85),
must be at a minimum somewhere on the boundary of the feasible region. We can now use
this fact to develop upper bounds on the constants, ¢ and d.

The second convexity condition is a parametric function f(z,y; ¢, d) where x, y are variables
and ¢, d are parameters. The goal is to determine where this function is a minimum in order to
obtain upper bounds on ¢ and d. First, we examine each of the "faces” of the feasible region,
(2L y), (2Y, ), (z,y"), (z,yY). We take the gradient of the second convexity condition with
respect to the independent variable on each face of the feasible region and set it equal to zero
to find the stationary points of the surface on the face. Then we take the second derivative
to determine what type of point the stationary point is.

The z = zV Face:
The gradient of F' with respect to y:

oF 442 2 exp(y) 3d
Al I — exp(2
Y | v " [t = 2] 2% yv —yt p(2y)
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So the stationary point with respect to y is:

AU _ AeU 1 — 2 A2
s = I az” [1 — 2] ‘|‘\J (oz:t 1 26]) N 8& 1 — 2] ( U3d L)
2n 21 yo -y

And the second derivative evaluated at y* is:

8°F
oy?

o _ (azU[l—zc] . 4) (&zU[1—2c] +

,,
T -2 (%))

It can be shown that the second derivative is always negative at y*, thus y* is always a
U) face of the feasible region

maximum. This means that the minimum of F on the (z = =
must occur at either the (zY,y%) or (zV,yY) corner.

The z = z%¥ Face:

The gradient of F' with respect to y:

- zosizn

442 L d
= i[l—l-c] [x eXp(y)_l_ Ug_y

@—y oL n 2a Yy

So the stationary point with respect to y is:

axt 1+ ¢ (dajL [1—|—c]>2 842 < 3d )
f = I — LTy + 14+d[———
! 2n 2n Hrdlr—y

And the second derivative evaluated at y* is:

8°F
8y?

e = (808 ) (9

:
() s e () )

It can be shown that the second derivative is always negative at y*, thus y* is always a

maximum. This means that the minimum of F on the (z = z¥) face of the feasible region
must occur at either the (zZ,y%) or (2%, yY) corner.

The y = yY Face:
The gradient of F' with respect to x:
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8_F
ox

4&2[ —3c H:z;exp(yU)

442 3z — 2¥ — 221 exp(yY)
U — 2L 24 b=e

1+d —
++]+77 2V — 2L 20

e n

So the stationary point with respect to z is:

¥ — oL 2V + 2L &

3¢ 6 exp(y

And the second derivative evaluated at z* is:

0*F 12cé exp(yY)

92| . o B n(azV — L)

It 1s easily shown that the second derivative is always negative at z*, thus z* is always a
maximum. This means that the minimum of F on the (y = yY) face of the feasible region
must occur at either the (zZ,yY) or (zV,yY) corner.

The y = y” Face:
The gradient of F' with respect to x:

a_F
ox

4&2[ —3c ] z exp(yF)
o n La¥ —at

442 1 3z — z¥ — 221 exp(yF)
J— c .
— 2&

1—2d —
+ ] + 7 U ol 2a

X

So the stationary point with respect to z is:

v __ L Uy 9,L A
. x x 4 x4+ 2z B « [1 B Qd]
3¢ 6 exp(y¥)

And the second derivative evaluated at z* is:

0*F _ 12ca exp(y¥)
92| . B n(axV — )

It 1s easily shown that the second derivative is always negative at z*, thus z* is always a
maximum. This means that the minimum of F' on the (y = y) face of the feasible region
must occur at either the (zZ,yL) or (zY,y%) corner.

Since the minimum of F' for each face of the feasible region always occurs at one of the
corner points, then the minimum of F' for the whole feasible region must occur at a corner
point. As a result of this analysis, it suffices to examine F' at each of the corner points of the
feasible region in order to determine the bounds on ¢ and d.
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U
(2
F(2¥,y%;c,d) = (1— 2¢) (x e;p +1+4d "eXp Y nexp(2y7) o (88)
«
F(zl,yFre,d) = (1+¢) TrepyT) g g) D) g (89)
e T 24 162 <
nexp(2y”)
PPy e,d) = (1 xPYT) |y 4 ) XD >
i) = 140 (TR L )
U
2
Pl e d) = (1—20) (%p(y)ﬁ_%) _ %W >0 (o)
(8% O[

Equation (88) provides an upper bound on ¢ in terms of d, and this upper bound decreases
as d decreases:

| nexp(2yY)

¢ < Ty G gy

N | —

Equation (89) provides an upper bound on d in terms of ¢, and this upper bound decreases
as ¢ decreases:

L L
(i<}<xem@)

<! N neXp(QyL))

24 162(1 + ¢)

Equation (90) provides no upper bounds for ¢ or d. Finally, Equation (91) gives an upper
bound for both ¢ and d:

I +

U L
1
Q+i%$uy+d_%dg_
(8%

Vexp(y?)  nexp(2y”)
2% 142

[S]

In order for the values for ¢ and d to be valid, they must satisfy the bounds given above.
Using these bounding equations, a procedure can be developed do determine the largest ¢ and
d that satisfy these criteria.

Now we have derived upper bounds on ¢ and d that guarantee that the second convexity
condition is always satisfied. It still remains to show that the first convexity condition is
satisfied. Substituting for the second derivatives, the condition is written:

L

2ca 2a T —x
— (22 —aV —2l) + = (1 —c- =) — 2d& + 24(1 —d) > 0
zexp(y) (¥ — 25) ( rT—x T ) p ( c T :L’L) ( ) >

It can be shown that this expression is minimized at the point (zZ, y%; L, dV). As a worst case

scenario, we use the upper bound for d given by Equation (87), which is the largest possible
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upper bound for d. Substituting in the values for each of the variables and parameters reduces
the first convexity condition to the following expression:

2a
n

This expression is always satisfied, thus the first convexity condition is satisfied when ¢ and d
are chosen within the bounds given by Equations (86) and (87).
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Size Factors Processing Times Investment Cost Coefficients Prices of
Stage Stage Stage «; B Products
Product |1 2 3 || Product | 1T 2 3 1 5 0.6 Product  p;
1 2 3 4 1 8 20 8 2 5 0.6 1 5.5
2 4 6 3 2 16 4 4 3 5 0.6 2 7.0

Table 1: Data for Illustrative Example
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~ value || Profit

Optimal

Optimal Design: a4

Vi [ Va | Va [ BB

Iterations | CPU s
Single-Product Campaign
0 979.186 | 1800 | 2700 | 3600 | 900 | 450 4 1.30
4 937.424 | 1908 | 2861 | 3815 | 954 | 477 4 0.86
8 934.854 | 1972 | 2958 | 3945 | 986 | 493 3 0.59

Table 2: Results for lllustrative Example (SPC)
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aq

‘ [teration H Upper Bound ‘ Lower Bound ‘ Relative Difference ‘

1 -979.180 -987.840 0.00884
2 -979.185 -984.106 0.00502
3 -979.186 -982.404 0.00328
4 -979.186 -981.278 0.00213

Table 3: Progression of Upper and Lower Bounds for Illustrative Example, (v
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~ value || Profit

Optimal

Optimal Design: as

Vi [ Va | Va [ BB

Iterations | CPU s
Single-Product Campaign
0 979.186 | 1800 | 2700 | 3600 | 900 | 450 3 1.47
4 937.424 | 1908 | 2861 | 3815 | 954 | 477 4 1.90
8 934.854 | 1972 | 2958 | 3945 | 986 | 493 2 0.71

Table 4: Results for lllustrative Example (SPC)
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‘ Oéz(Q), 52(6) ‘
‘ [teration H Upper Bound ‘ Lower Bound ‘ Relative Difference ‘

1 -979.180 -986.777 0.00775
2 -979.185 -983.599 0.00451
3 -979.186 -982.093 0.00297

Table 5: Progression of Upper and Lower Bounds for Illustrative Example, (v = 0)
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~ value || Profit

Optimal

Optimal Design: as

Vi [ Va | Va [ Bi] B

Iterations | CPU s
Single-Product Campaign
0 979.186 | 1800 | 2700 | 3600 | 900 | 450 2 0.75
4 937.424 | 1908 | 2861 | 3815 | 954 | 477 2 0.56
8 934.854 | 1972 | 2958 | 3945 | 986 | 493 1 0.18

Table 6: Results for lllustrative Example (SPC)
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a3(Qab)

‘ [teration H Upper Bound ‘ Lower Bound ‘ Relative Difference ‘

1

-979.180

-982.171

0.00305

2

-979.186

-980.880

0.00173

Table 7: Progression of Upper and Lower Bounds for Illustrative Example, (v
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Optimal Optimal Design: as
~ value Profit Vi ‘ Vs ‘ Vi3 ‘Bl ‘ B, || Iterations | CPU s

Mixed Product Campaign with UIS

0 [ 1197.132 | 1200 | 1800 | 2400 | 600 | 300 [ 2 | 2.10

Table 8: Results for [llustrative Example (UIS)
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Investment Cost Coeflicients

Prices of

Stage «; Bj Products
1 5 0.6 Product p;
2 5 0.6 1 5.5
3 5 0.6 2 7.0

Table 9: Cost and Price Data for Example 1
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Size Factors

Processing Times

Stage Stage

Scenario || Product | 1 2 3 || Product | 1 2 3
1 1 2.5 3.5 4.5 1 7T 19 7

2 4.5 6.5 3.5 2 15 3 3

2 1 1.5 2.5 3.5 1 9 21 9

2 3.5 5.5 25 2 17 5 5

3 1 2 3 4 1 8 20 8

2 4 6 3 2 16 4 4

Table 10: Processing Parameter Data for Example 1
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Optimal Optimal Design

~ value Profit Vi ‘ Vs ‘ Vs ‘Bl ‘ By

Single-Product Campaign

0 876.582 | 2159 | 3119 | 3886 | 864 | 480
4 841.932 | 2285 | 3300 | 4112 | 914 | 508
8 827.730 | 2410 | 3481 | 4338 | 964 | 536

Unlimited Intermediate Storage

)

[ 1097.265 | 1509 [ 2113 [ 2716 | 604 | 325

Table 11: Solution for Example 1
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Using o Using as Using a3

Initial | No. of Initial | No. of Initial | No. of
o LB Iters. | CPU s LB Iters. | CPU s LB Iters. | CPU s

Single-Product Campaign
0 || -892.825 13 27.57 || -890.861 5 14.55 || -882.530 4 11.65
4 1| -860.249 14 22.30 || -857.797 6 13.55 || -848.045 5 11.39
8 || -843.390 11 18.30 || -840.534 4 7.83 -831.612 2 4.48
Unlimited Intermediate Storage

0-1103856 | 5 [ 40.73 |[-1103.196 | 4 | 29.41 | -1100.653 | 2 18.22

Table 12: Computational Results for Example 1
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[teration H Upper Bound ‘ Lower Bound ‘ Relative Difference ‘

1 -876.5781766 | -892.8253296 0.01851
2 -876.5795104 | -887.0662490 0.01195
3 -876.5818400 | -887.0645756 0.01194
4 -876.5818403 | -886.9900931 0.01186
) -876.5818403 | -885.8041489 0.01050
6 -876.5818403 | -882.0419320 0.00622
7 -876.5818419 | -880.8482292 0.00486
3 -876.5818419 | -880.8463604 0.00485
9 -876.5818419 | -879.8040916 0.00367
10 -876.5818419 | -879.8022239 0.00366
11 -876.5818419 | -879.6526083 0.00349
12 -876.5818419 | -879.6408780 0.00348
13 -876.5818419 | -879.0291303 0.00278

Table 13: Progression of Upper and Lower Bounds for Example 1, (a1;y = 0)

99




Investment Cost Coeflicients

Stage «; Bj Prices of
1 10 0.6 Products
2 10 0.6 Product p;
3 10 0.6 1 3.5
4 10 0.6 2 4.0
5 10 0.6 3 3.0
6 10 0.6 4 2.0

Table 14: Cost and Price Data for Examples 2 and 3
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Size Factors

Processing Times

Stage Stage
Product | 1 2 3 4 5 6 || Product | 1 2 3 4 5 6
1 8.0 20 52 49 6.1 4.1 1 7.0 83 6.0 7.0 6.5 8.0
2 0.7 0.8 09 38 21 25 2 6.8 5.0 6.0 48 55 5.8
3 0.7 26 16 34 32 29 3 4.0 59 50 6.0 55 4.5
4 4.7 23 1.6 2.7 1.2 25 4 24 3.0 35 25 3.0 28

Table 15: Processing Parameter Data for Example 2
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Optimal Optimal Design

Profit | Vi [ Va [ Va | Va | Vs | Vo | Bi | B2 | Ba | Ba

Single-Product Campaign

750.184 || 2875 [ 1407 | 1869 | 2385 [ 2192 | 1569 | 359 | 628 | 541 | 612

Unlimited Intermediate Storage

830.338 || 2703 | 1323 | 1757 | 2045 | 2061 | 1475 | 338 | 538 | 509 | 575

Table 16: Solution of Example 2 for v = 0
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Using oy Using as Using a3

Initial | No. of Initial | No. of Initial | No. of
I.B Tters. | CPU s I.B Iters. | CPU s LB Tters. | CPU s

Single-Product Campaign

757247 6 | 551.56 [[-756.238 | 5 | 471.74 [[-751.566 | 1 | 35.65

Unlimited Intermediate Storage

-836.851 | 5 [2942.32 |[-835.903 | 4 |4325.90 | -831.717 | 1 | 398.18

Table 17: Computational Results for Example 2

59




Size Factors

Processing Times

Stage Stage

Scenario || Product | 1 2 3 4 5 6 || Product | 1 2 3 4 5 6
1 1 8.0 2.0 52 49 6.1 4.1 1 70 83 6.0 7.0 6.5 8.0
2 0.7 0.8 09 3.8 21 25 2 6.8 5.0 6.0 48 55 5.8

3 0.7 26 16 34 32 29 3 4.0 59 50 6.0 55 4.5

4 4.7 23 16 2.7 12 25 4 24 3.0 35 25 3.0 28

2 1 85 2.5 57 54 66 4.6 1 6.0 7.3 50 6.0 55 7.0
2 1.2 1.3 14 43 2.6 3.0 2 58 4.0 5.0 3.8 45 4.8

3 1.2 3.1 21 39 3.7 34 3 3.0 49 40 50 45 3.5

4 52 2.8 2.1 3.2 1.7 3.0 4 1.4 2.0 25 15 2.0 1.8

3 1 75 1.5 47 44 56 3.6 1 80 93 7.0 80 75 9.0
2 0.2 03 04 33 1.6 2.0 2 7.8 6.0 7.0 58 6.5 6.8

3 0.3 2.1 1.1 29 2.7 24 3 50 6.9 6.0 7.0 6.5 5.5

4 42 1.8 1.1 22 0.7 2.0 4 3.4 40 45 35 40 3.8

Table 18: Processing Parameter Data for Example 3
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Optimal Optimal Design
Profit || Vi [ Vo [ Va [ Va | Vs | Ve | Bi[Bs]| Bs| Bs
| 552.665 || 3036 | 1726 | 2036 | 2714 | 2357 | 1894 | 357 | 631 | 557 | 584 |

Table 19: Solution of Example 3 for v =0
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Using oy Using as Using a3
Initial | No. of Initial | No. of Initial | No. of
LB Iters. | CPU s LB Iters. | CPU s LB Iters. | CPU s
|-562.382 | 3 [ 8640.60 [ -561.391 [ 2 [ 5469.87 | -554.386 | 1 | 1211.85 |

Table 20: Computational Results for Example 3
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Investment Cost Coeflicients Prices of

Stage o B N; Products
1 0.25 0.6 3 Product p;
2 0.25 0.6 2 1 3.5
3 0.25 0.6 3 2 4.0
4 0.25 0.6 2 3 3.0
5 0.25 0.6 1 4 2.0
6 0.25 0.6 2 5 4.5

Table 21: Cost and Price Data for Example 4
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Size Factors

Processing Times

Stage

Stage

Product | 1 2 3 4 ) 6 | Product | 1 2 3 4 5 6
1 79 2.0 52 49 6.1 4.2 1 6.4 4.7 83 39 21 1.2
2 0.7 0.8 09 34 21 25 2 6.8 6.4 6.5 44 2.3 3.2
3 0.7 26 16 3.6 3.2 29 3 1.0 6.3 54 11.9 5.7 6.2
4 4.7 23 16 2.7 1.2 2.5 4 32 30 35 33 28 34
5 1.2 3.6 24 45 1.6 2.1 5 2.1 25 42 36 3.7 22

Table 22: Processing Parameter Data for Example 4
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Optimal Optimal Design
Profit ‘/1“/2“/3“/4“/5“/G‘BI‘B2‘B3‘B4‘B5
| 3731.079 || 2789 | 1901 | 1836 | 2460 | 2187 | 1982 | 353 | 724 | 683 | 593 | 528 |

Table 23: Solution of Example 4 for v = 0
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Using oy Using as Using a3
Initial | No. of Initial | No. of Initial | No. of
LB Iters. | CPU s LB Iters. | CPU s LB Iters. | CPU s
|-3731.406 | 1 [1232.75 [ -3731.251 | 1 | 7051.85 || -3731.132 [ 1 | 2089.49 |

Table 24: Computational Results for Example 4
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Size Factors

Processing Times

Stage Stage
Product | 1 2 3 4 5 || Product | 1 2 3 4 5
1 32 25 — — — 1 90 60 — — —
2 — — 1.0 15 — 2 — — 39 62 —
3 — 27T — — 23 3 — 55 — — 35
4 3., — 11 — — 4 7hHh — 45 — —
5 — — — 1.7 28 5 — — — 71 4.0

Table 25: Processing Parameter Data for Example 5
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Product | Mean | Std. Dev. | Price
1 200 10 55
2 150 10 70
3 150 0 60
4 150 0 65
5 150 0 70

Table 26: Product Demand and Price Data for Example 5
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Product
Campaign |1 2 3 4 5
1 1 1.0 0 0
2 01 1 0 0
3 00 1 1 0
4 00 0 1 1
5 1 00 0 1

Table 27: Campaign Interactions for Example 5
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Optimal
Profit

Multipurpose Batch Plant: Optimal Design

Vi

Va

Vi

Va

Vs

By

By

Bs

By

33.725

1481

1157

526

632

1071

463

454

429

478

383

Table 28: Solution of Example 5 for v = 0
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Using oy Using as Using as
Initial | No. of Initial | No. of Initial | No. of
LB Iters. | CPU s LB Iters. | CPU s LB Iters. | CPU s
Single-Equipment Sequence
38.991 | 6 | 1447 [[35127| 3 | 5.02 [[33807| 1 | 1.32

Table 29: Computational Results for Example 5
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Lower Bounding Initial | Number of Number of | Number of
Approach LB Iterations | CPU s Variables | Constraints
[Mustrative Example:  ~ =10
Q1 -987.840 4 1.30 55 31
Qg -986.777 3 1.47 55 31
Q3 -982.180 2 0.75 55 31
Univariate Functions || -990.076 10 2.01 105 131
Example 1: =0
Q1 -892.825 13 27.57 155 93
Qg -890.861 5 14.55 155 93
Qs -882.530 4 11.65 155 93
Univariate Functions || -900.901 10 14.38 305 393
Example 2
Q1 -T57.247 6 551.56 2510 649
Qg -756.238 5 471.74 2510 649
Qs -751.566 1 35.65 2510 649
Univariate Functions || -796.887 8 4825.96 5010 5649

Table 30: Comparison of Lower Bounding Strategies
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71 R
1] -0.9061798459 | 0.23692885
-0.5384693101 | 0.4786286705
0 0.56888889
0.5384693101 | 0.4786286705
0.9061798459 | 0.23692885

Y | | DN

Table 31: Five-Point Gaussian Quadrature Parameters
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©2J%-10%: 5x5 Quadrature

7/ | 1 | 2 3 4 5

1 0.00000018 | 0.00002489 | 0.00030092 | 0.00002489 | 0.00000018
2 0.00002489 | 0.00352407 | 0.04260490 | 0.00352407 | 0.00002489
3 0.00030092 | 0.04260490 | 0.51508041 | 0.04260490 | 0.00030092
4 0.00002489 | 0.00352407 | 0.04260490 | 0.00352407 | 0.00002489
5 0.00000018 | 0.00002489 | 0.00030092 | 0.00002489 | 0.00000018

Table 32: Objective Function Multipliers
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I

Single-Product Campaign

64

Mixed-Product Campaign with Unlimited | ntermediate Storage

L 1 Product A ] Product B

Figure 1: Comparison of campaign strategies
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Figure 2: A multiproduct batch plant

76

Y

E3

P1



P3 »
E2 - ES5
P1 / P1
El
P4 \ P4
E3 _ E4
P2
P5

Figure 3: A multipurpose batch plant: single equipment sequence (Example 5)
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