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Abstract

Calculation of phase and chemical equilibria is of fundamental importance for the design
and simulation of chemical processes. Methods that minimize the Gibbs free energy
provide equilibrium solutions that are only candidates for the true equilibrium solution.
This is because the number and type of phases must be assumed before the Gibbs energy
minimization problem can be formulated. The tangent plane stability criterion is a
means of determining the stability of a candidate equilibrium solution. The Gibbs energy
minimization problem and the tangent plane stability problem are very challenging due
to the highly nonlinear thermodynamic functions that are used. In this work the goal
is to develop a global optimization approach for the tangent plane stability problem
that (i) provides a theoretical guarantee about the stability of the candidate equilibrium
solution and (ii) is computationally efficient. Cubic equations of state are used in this
approach due to their ability to accurately predict the behavior of nonideal vapor and
liquid phases across a broad range of pressures. The mathematical form of the stability
problem is analyzed and nonlinear functions with special structure are identified. These
special structures are exploited to achieve faster convergence of the algorithm. The
proposed approach has been applied to the SRK, Peng-Robinson, and van der Waals
cubic equations of state and can address a variety of mixing rules. Results for several

example problems, including an eight component problem, are presented.
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1 Introduction

Calculation of phase and chemical equilibria is of fundamental importance for the design and
simulation of chemical processes. The thermodynamic function most widely used is the Gibbs
free energy, since it can be used to determine the equilibrium state at constant temperature and
pressure. The global minimum of the Gibbs free energy corresponds to the true equilibrium
configuration of the system. Optimization methods have received much attention, because
minimization of the Gibbs free energy is a natural course for calculating the equilibrium state
of a system. However, the most commonly used approaches employ local optimization methods
that can provide no theoretical guarantee that the equilibrium solution will be obtained in all
cases.

White et al. (1958) developed the RAND algorithm for minimizing the Gibbs free energy.
A review of the early contributions in this area can be found in Seider et al. (1980). In
addition, Ohanomah and Thompson (1984a), (1984b), (1984c) conducted a computational
evaluation of several algorithms. The three-phase flash problem was addressed by Soares et
al. (1982) using a Newton-Raphson method. Lantagne et al. (1988) developed a mixed-
penalty function method for equilibrium calculations. Paules and Floudas (1989) applied the
Global Optimal Search method of Floudas et al. (1989) for minimization of the Gibbs free
energy. However, all of these methods can converge to local equilibrium solutions, since there
is no guarantee that the true equilibrium solution can be located.

The difficulty of locating the global minimum of the Gibbs free energy is due to two
main points: 1) there is no method to determine a priori the number and type of phases
present in the true equilibrium state, and 2) for nonideal systems the Gibbs energy surface
may contain multiple local minima. A phase combination, such as two liquid phases, must be
postulated before the problem of minimizing the Gibbs free energy can be formulated. If the
true equilibrium state contains a vapor phase, or three liquid phases, then even though the
optimization method may locate the global minimum Gibbs free energy for two liquid phases,
the solution will not correspond to the true equilibrium state. In this case, one or more of the
liquid phases will be unstable. Baker et al. (1982) formalized the concept of phase stability
for a multicomponent mixture, based on the principles first identified by Gibbs (1873). They
proved that a necessary and sufficient condition for the stability of a phase is that the tangent
plane to the Gibbs free energy surface, constructed at the composition of the candidate phase,
lie on or below the Gibbs energy surface for all possible composition values. Therefore, the
stability of a phase can be determined by identifying the global minimum of the tangent plane
distance function, defined as the difference between the Gibbs free energy surface and the
tangent plane. If the global minimum is nonnegative, then the candidate phase is stable,

otherwise the phase is metastable or unstable.



Several methods have been developed recently for implementing the tangent plane stability
test. Michelsen (1982a) (1982b) used a two stage approach in which local solutions of the
stability problem are used as starting points in the search for an equilibrium solution with a
lower value of the Gibbs free energy. Swank and Mullins (1986) reported that these methods
are more reliable than direct minimization of the Gibbs free energy. Nagarajan et al. (1991a)
(1991b) proposed a reformulation of Michelsen’s approach in terms of molar densities in order
to improve its reliability. Gupta et al. (1991) developed an approach that solves the flash
calculation and the stability problem simultaneously. Eubank et al. (1992) developed an area
calculation method for the stability problem. In their approach the Gibbs energy surface
is integrated, searching for endpoints that maximize the area. A homotopy continuation
algorithm was used by Sun and Seider (1995) to locate all of the stationary points of the
tangent plane distance function. The stationary points are then used to search for a lower value
of the Gibbs free energy. These methods for the stability problem are substantial improvements
over the direct minimization of the Gibbs free energy, both in the computational effort and in
reliability. However, none of the methods described above can provide a theoretical guarantee
that the equilibrium solution will be obtained in all cases.

McDonald and Floudas (1995a), (1995b) developed deterministic global optimization meth-
ods for solving the stability problem for systems where the nonideal liquid phases are repre-
sented by activity coefficient equations. These methods guarantee that the global minimum of
the tangent plane distance function can be identified regardless of the starting point chosen.
In addition, they applied the same global optimization approach for the minimization of the
Gibbs free energy (see McDonald and Floudas (1994), (1995¢)). These two contributions have
been combined into the GLOPEQ algorithm that generates equilibrium solutions by mini-
mizing the Gibbs free energy, and verifies the stability of the solution by finding the global
minimum of the tangent plane distance function (see McDonald and Floudas (1997)).

Hua et al., (1996, 1998a, 1998b) proposed an interval Newton method to locate all sta-
tionary points and applied it to the phase stability problem for systems containing two and
three components. It should be pointed out that it is not possible to ezactly locate all finite
stationary points, as it was proven by Hansen et al. (1992) (see also Maranas and Floudas
(1995)). Instead, it is possible to enclose all stationary points, that is, construct tight intervals
around the stationary points. The approach of Hua et al. encloses all stationary points of
the tangent plane distance function within intervals of some tolerance e. An important the-
oretical and computational issue that arises is whether within an interval there exist one or
multiple stationary points, that is, the uniqueness issue. Several key contributions appeared
attempting to address this uniqueness issue and it is instructive to point out the theoreti-
cal and computational issues/results that are currently available. A theoretical condition for



uniqueness that needs to be met in the interval Newton methods is that the interval Jacobian
matrix is a reqular Lipschitz matrix. The fact that the interval matrix is Lipschitz is well
known (see Neumaier (1990), page 175). As a result, the key issue becomes whether it is
possible to (i) state a priori whether the interval Jacobian matrix is regular (i.e., consider
necessary and sufficient conditions for regularity), or (ii) check a posteriori whether within an
interval there exists a unique solution (i.e., consider sufficient conditions for regularity). It is
interesting to note that Poljak and Rohn (1993) proved that checking regularity of interval
matrices is an NP-Hard problem, and hence it is regarded as a very difficult problem (see also
Neumaier (1990), page 76). In regard to (i), necessary and sufficient conditions for regularity
of the interval jacobian matrix are available (see for instance section 6.2, page 223 of Neumaier
(1990)). These conditions exhibit exponential behavior and they are not a part of any of the
existing interval analysis implementations (the recent work of Jansson and Rohn (1999) is
a step in this direction). In regard to (ii), sufficient conditions for regularity of the interval
jacobian matrix are available (see for instance Chapter 4.1 of Neumaier (1990) and the recent
work by Rex and Rohn (1999)). These sufficient conditions are based on the class of strongly
regular interval matrices for which there exist rigorous criteria of testing in order (n®) opera-
tions. If a matrix is not found strongly regular, then the box is split and the test is repeated.
As the diameter of the interval matrix becomes smaller, the likelihood of having a strongly
regular matrix increases except when near singular solutions are approached. In this case, the
verification cannot be done rigorously and the implementations introduce ad hoc heuristics.
The most common test used involves the preconditioning by the midpoint inverse matrix and
the check whether the resulting matrix is an H matrix (see Neumaier (1990), Rex and Rohn
(1999)). If the midpoint matrix is nearly singular, then this test becomes ineffective. Other
tests based on the calculation of eigenvalues and positive definiteness have been proposed, but
these require squaring of the condition number.

As is pointed out by Hua et al. (1998b), in the context of the phase stability test, all
stationary points need not be located if the candidate phase is unstable, since a function
evaluation, interval bounds test, or local minimization of the tangent plane distance function
can be performed during the interval computations. If the result of the evaluation is a negative
tangent plane distance, then the procedure can be terminated. In the more difficult case where
the candidate phase is stable, all stationary points must either be zero or positive. In this
case all stationary points must be located, or it must be verified that no negative stationary
points exist. The method of Hua et al. (1998b) avoids locating all stationary points by setting
an upper bound on the tangent plane distance function of zero. Therefore, only stationary
points that have a zero tangent plane distance must be located when the candidate phase is
stable.



The minimization of the tangent plane distance function offers an advantage over an ap-
proach based on enclosing all stationary points. In the minimization approach, the solver
explicitly searches for the lowest possible value of the tangent plane distance function. Since
regions that have the lowest solution of the lower bounding problem are chosen to investigate
first, negative tangent plane distance solutions, if they exist, are usually encountered in the
first few iterations. An approach based on enclosing all stationary points, since it does not
focus exclusively on regions likely to contain minimum values of the tangent plane distance
function is likely to, on average, require more iterations to locate a negative tangent plane
distance.

In this work, a deterministic global optimization method is presented for the solution of
the stability problem by minimization of the tangent plane distance function. This approach
extends the work of McDonald and Floudas (1995a), (1995b), and addresses the problem
using cubic equations of state to model the vapor and liquid phases. Equations of state are
increasingly being used to model the thermodynamic behavior of complex mixtures. The
attractive features of equations of state are that they can be used to model the behavior
of both the vapor and liquid phases, and they are not limited to low pressure systems, like
activity coefficient methods. These advantages come at a cost, however, since equations of
state add a highly nonlinear equality constraint to the formulation of the stability problem.
The Gibbs energy function, the cubic equations of state, and the mixing rules have been
analyzed to identify the special structure of the nonlinear expressions. For bilinear terms
and univariate concave terms the tightest possible convex underestimators are used. The -
underestimation approach, (Adjiman et al. (1998a), (1998b)), is used to generate tight convex
underestimators for terms that do not possess special structure. The proposed method has
been tested through several challenging examples using the Soave-Redlich-Kwong, the Peng-
Robinson, and the van der Waals cubic equations of state. In the next section, the formulation
of the stability problem is presented. Then the structure of the mathematical formulation is
discussed in detail and the solution algorithm is presented. Several computational studies are

discussed, including a very challenging system containing eight components.

2 Problem Statement

The motivation for using the tangent plane stability criterion arises from an assumption that
must be made in order to formulate the Gibbs free energy minimization problem. That is, the
number and type of phases that are present in the true equilibrium state must be specified.
However, for a given number and type of phases, the global minimum of the Gibbs free energy
is not a sufficient condition for the true equilibrium solution. This is because a different



set, of phases may contain a solution that has a lower value for the Gibbs energy. Given a
candidate equilibrium solution, the advantage of the tangent plane criterion is that it provides
an unambiguous means of determining if the proposed solution is stable or unstable.

The tangent plane distance function is defined as the distance between the Gibbs free
energy surface for the new phase and the tangent plane to the Gibbs energy surface constructed

at the point zf". The expression for the tangent plane distance function is:

Fx) = Y @i {ux) = uf (x")} (1)
ieC

Note that the tangent plane distance criterion does not provide candidate equilibrium
solutions, nor does it provide a method for determining where the tangent plane touches the
Gibbs energy surface so that it always lies below it. Therefore, the tangent plane criterion
cannot be used by itself to determine the true equilibrium solution.

Recent developments in global optimization, (see Visweswaran and Floudas (1990), (1993),
Adjiman and Floudas (1996), and Adjiman et al. (1998a)), can provide theoretical guarantees
that an e-global minimum can be obtained for very broad classes of nonlinear functions, such
as twice-differentiable ones. Based on these developments, the global minimization of the
tangent plane distance function is a promising approach. McDonald and Floudas (1995a),
(1995b) proposed the first methods for activity coefficient equations that provide theoretical
guarantees that the global minimum of the tangent plane distance function is obtained.

As part of every iteration in the optimization procedure, a function evaluation or a local
minimization of the tangent plane distance function must be performed. If at any point
the value of the tangent plane distance is negative, then the optimization procedure can be
terminated, since the candidate phase is unstable. Therefore, in cases where the candidate
solution is unstable, the problem need not be solved to global optimality and, as is shown in
the computational studies, Section 7, often the problem can be terminated in the first few

iterations.

2.1 Problem Formulation

The formulation of the tangent plane distance minimization problem begins with the following
assumptions. We are given a system of |C| components at constant temperature, 7', and
pressure, P. In addition, the composition of a candidate phase is provided, x*. When an
equation of state is chosen as the thermodynamic model for the system, we can calculate the
compressibility, zI', and the chemical potential of every component, u!", of the candidate phase.

The objective is to minimize the tangent plane distance function, which is a nonlinear function



of the composition and the compressibility of the new phase. The problem is constrained by
the bounds on the mole fractions, the restriction that the mole fractions must sum to one.
In addition, the equation of state of the new phase must be satisfied. The optimization

formulation for the tangent plane distance minimization problem, (S), is given as:

min F =Y zip(x,2) — ¥ zipl )

X,z ieC i€C

st. EOS(x,2) =0
2  (5)
z>0
x € Rl 2 ¢ R )

where EOS(x, z) represents the equation of state for the new phase, and is a nonlinear function
of composition and compressibility. The objective function has been written as the difference
of two terms. The first term represents the molar Gibbs energy surface and is a nonlinear
function of composition and compressibility. The second term represents the tangent plane
to the Gibbs energy surface and is a linear function of composition. Therefore, formulation
(S) is a nonlinear programming problem (NLP). If a nonnegative global minimum is obtained,
then the postulated phase is stable. However, obtaining the global minimum solution for (S)
is difficult due to the highly nonlinear nature of the equation of state models for y;(x, z) and

EOS(x, z). In this work, the application of cubic equations of state to (S) will be analyzed.

2.2 Application to Cubic Equations of State

The application of equations of state to the phase stability problem results in a more difficult
formulation than when activity coefficient equations are used. This is because the equation
of state is an additional nonlinear equality constraint that must be satisfied. As a result, the
feasible region for the problem is nonconvex.

As an illustration of the complexity of the equation of state, consider the van der Waals

equation, one of the simplest cubic equations of state:

23 _ (Bmzw + 1)22 + Amiwz _ Amszmzz = 0.

The equation is cubic in terms of the compressibility factor, z, and also depends on the values
of the mixing parameters, A™® and B™<. The mixing parameters are not simply fixed values,
but are functions of composition. Many different “mixing rules” have been proposed for every

equation of state. The original Van der Waals mixing rules:



A™MT = N Ay
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are very widely used. The binary interaction parameter, A;;, is obtained from the pure compo-
nent parameters, A;. The parameter, B;, is also a pure component parameter. The equations
used to calculate the pure component parameters are different for each equation of state. In
all of the examples in this work the van der Waals mixing rules have been used. The equation
for A™? is a nonlinear equation that contains a sum of bilinear terms, and the equation for
B™= is linear. The dependence of the mixing parameters on the composition means that the
equation of state is not a simple polynomial, but a much more difficult signomial equation.
By applying Eqn. 2 to (S), we obtain:

min F=X xi“i(XaZ:AmixaBmiw) -2 leu'zF )
ieC

x,2,Amiz gmiz ieC
s.t. EOS(x,z, A™® Bm™r) < ()
—EOS(x, z, A% Bmiz) < (
' ieC
B™* Z le‘z =0 n
ieC (S)
a; — > AZJ.’L']:OVZEC
jec
ieC
z>0

x € Rl 2z ¢ R
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In formulation (S), the mixing parameters, A™% and B™< are treated as variables rather
than substituting their definitions into the expressions for the equation of state and the chem-
ical potential. This simplifies the nonlinear terms at the cost of introducing new constraints
into the problem. Note that the nonlinear equality constraint for FOS has been written as
two inequality constraints. The addition of the substitution variable, a;, reduces the number
of bilinear terms in the problem from |C|? to |C|, at the expense of adding |C| variables and
|C| linear constraints.

The chemical potential, u;, also depends on the equation of state. By using the definitions

of the chemical potential and the fugacity coefficient,
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the tangent plane distance function can be transformed through the following steps:

i (x, ,Amicc, miz f‘j
% :.inu(zRTB )_.inlleT
1eC ; ieC ;
AGY T,Hnew r AG] T;Hca,n idate £
=2 (7’(;{[ ) 4 Inf; —111in> - X T ( i didat ) +In fF —lnfio)
1eC i ieC fe
- T (A}Ej; 4 InzidP —In qﬁiP) -T (Ag;’ 4 InzFPFP —1n ¢,-P>
1€ S

where AG{-c (T, ,e0) is the Gibbs free energy of formation of component 7 which is calculated
at the system temperature in the new phase, II,,.,,, and AG{ (T, Heandidate) is the corresponding
Gibbs free energy of formation for the candidate phase, Il 4n4idate- For notational simplicity,
these symbols are shortened to AG/™ and AG!* respectively. Combining the terms in the
last equation results in the general form of the tangent plane distance function for equations

of state:

f
”T 2"

(AG{ " AGE
1eC

FiF 2
BT BT Inz; ¢; ) +§lenxz+§len¢z. (3)
The terms in the first summation are linear since the quantities inside the parentheses are
constant, the terms in the second summation are convex, and the terms in the third summation
are nonconvex. The fugacity coefficient for component 7 in the mixture, gﬁi, is derived from
the equation of state. For instance, when the equation of state is given in pressure-explicit
form, the mixture fugacity coefficient is derived by

. T[oP RT
RTlnq&i:/[ ——] dV — RTn .
i 8712 %

When the stability of a liquid phase is tested with respect to another liquid phase, the
Gibbs energies of formation will cancel and can be removed from the objective function.

However, when the stability of a liquid phase is tested with respect to a vapor phase, these



terms cannot be discarded. In many cases, the need to locate Gibbs energies of formation for

both liquid and vapor phases can be eliminated by using the following approximation:

AGEHT AGYT psat
2 — 7 1 2 .
RT ~ RT P

The parameters needed to calculate the saturated vapor pressure are more readily available
than Gibbs energies of formation.

In the following sections, the properties of the cubic equations of state and the fugacity
coefficient of a component in the mixture will be examined for three common cubic equations
of state. In sections 3, 4, and 5, the SRK equation, the Peng-Robinson, and the Van der

Waals equation are addressed, respectively.

3 Analysis for the SRK equation

3.1 Formulation of the Phase Stability Problem

Redlich and Kwong (1949) introduced a cubic equation of state that was a substantial improve-
ment over the equations of state used at that time. Soave (1972) modified the temperature
dependence of the a parameter. The polynomial form of the Soave-modified Redlich-Kwong

equation of state for mixtures is:

23 . 2,2 + (Amzcc o Bmix _ Bmsz)Z o Amszmw = 0. (4)

The pressure explicit form of the SRK equation is:

RT amiw
P = — — -
V — pmiz V(V + bmzm)

from which the fugacity coefficient of a component in the mixture can be derived,

In (5, = Bﬁ",-m (z — 1) — In(z — B™=2)

+gmm Bﬁﬁz - Afm J%:C’ Aijij] In (1 + Bz ) .

In the tangent plane distance function, Eqn. 3, the mixture fugacity coefficients participate

in the term:

10
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Some simplifications of this term can be made based on the following properties:

Y2z (z—1) =2z-1
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ieC
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ieC jec

When Eqn. 4 and the simplified mixture fugacity coefficient equation are applied to the

A

tangent plane distance minimization problem (5), the following formulation is obtained:

fin fre ~ \
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ieC
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Note that a new variable, w, has been introduced to remove the possibility that the logarithm
of a negative number will be taken during the solution of the problem. Formulation (S5%K)
contains |C| + 2 variables and seven constraints. The size of the problem is relatively small,
even for systems with a large number of components. However, the number of bilinear terms,

x;z;, in the A-mixing rule grows quickly as the number of components increases.

11



3.2 Classification and Convex Underestimation of Nonconvex Terms

Formulation ($5£5) is a nonlinear optimization problem with nonconvex terms in the objective

function and in the constraints. Due to the presence of nonconvexities, a “local” optimization
technique may converge to a suboptimal solution. The proposed methodology, discussed in
section 6, provides a theoretical guarantee of convergence to the global minimum solution. This
guarantee relies on generating valid convex underestimating functions for every nonconvex

SSRK ). A convex lower bounding problem is formulated by replacing

SvSRK)

term in formulation (
every nonconvex term in ( with a convex underestimating function. At every iteration,
the lower bounding problem can be solved to global optimality since it is a convex NLP. The
speed of convergence can be enhanced by identifying nonconvex terms with special structure.
In many cases, these special structures can be exploited to find the tightest possible convex

underestimating function.

3.2.1 Univariate Concave Terms

Two univariate concave terms occur in the equation of state constraints in formulation (SSEK).

These are the following:

—2% and — 23, with z > 0.

The tightest possible convex underestimator for a univariate concave function is the convex
envelope of the function. This is simply the line segment between the function values at the
boundary of the current domain, f(z*) and f(zV). Therefore, in the lower bounding problem,

every univariate concave term is replaced by the following expression:

f(a¥) = f(z") (x B xL) _

xU — L

fla®) +

3

For example, the term —z° is replaced by:

U\3 L\3
L\3 (27)* = (&%) L
_(Z)_—ZU—ZL (z—z)
3.2.2 Bilinear Terms

§SRK)

Formulation ( also contains several bilinear terms. These are the following:

e In the equation of state constraints:

12
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e In the A-mixing rule constraints:

Z X;0;.

icC

The tightest convex lower bound of a bilinear term, zy, over the domain, [xL, xU] X [yL , yU]

was identified by Al-Khayyal and Falk (1983). For every bilinear term, zy, a new variable is
introduced, sp, which replaces every occurence of xy in the problem. The new variable must

satisfy:

$p = max {xLy + zyl — byl 2Vy + 29V — a:UyU} .

This relationship is included in the lower bounding problem through two linear inequality

constraints,

—sg + iy +zy — 2Pyt <0
—sp + a:Uy + :EyU — nyU <0

which serve as a convex lower bound on the original bilinear term zy. An upper bound on the
substituted variable can also be applied through two additional linear constraints, (McCormick
(1976)),

sp— 2%y —zyt +2Vy* <0
sg—aly —zy¥ + 2"yY <.
Based on this approach, every bilinear term requires the addition of one new variable and four

linear inequality constraints to the lower bounding problem. For the SRK equation, this is

equal to w + 3 variables and 2|C|(|C| — 1) + 12 constraints.

13



3.2.3 General Nonconvex Terms

Certain nonconvex terms do not appear to possess a special structure that can be exploited

in generating a convex underestimating function. In formulation (S$£X) the following terms

are classified as general nonconvex terms:

e In the objective function:

Amim Bmiz
———In |1
Bmzw Il( + z )

e In the equation of state constraints:

For terms of this sort, we use the a-based underestimators developed by Maranas and
Floudas (1994), Adjiman and Floudas (1996), and Adjiman et al. (1998a), (1998b). In this
approach, a C?-continuous real-valued nonconvex function, f(x),z € R" is underestimated

over the domain [XL , XU] by the following function, L,

L(x)=f(x)+ 3 ailzi —2)(z —2) (6)

where the o;’s are positive scalars. All of the terms in the summation are negative, therefore
L is always an underestimator of f. The o parameters must satisfy the following criterion in

order for £ to be a convex function.

« > max {0, —% min erg(iExU i (x)} (7)
The A;’s are the eigenvalues of the Hessian matrix of f(x). The exact solution of the right-
hand side of Eqn. 7 provides the smallest possible value of « that convexifies f(x). However,
the minimization problem in Eqn. 7 is, in general, a nonconvex optimization problem. It
is often much easier to obtain a valid lower bound on « through the use of interval Hessian
methods, (see Adjiman et al. (1998a), 1998b).

In a few cases it is possible to derive an exact expression that satisfies Eqn. 7. For example,

the minimum eigenvalue of the term (B™%)?z is,

14
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Therefore, for the region [Bm“L,Bm“U] X [zL , zU], the exact smallest value of o that con-

vexifies (B™%)?7 is,

_ ZU - 4(Bmsz)2 .
=7 (V)2

For the nonconvex term in the objective function there is no simple expression for the
exact value of o, and hence an interval Hessian method is used to obtain a valid upper bound
on q.

In section 7.2 the phase stability problem for several systems is solved using the SRK cubic
equation of state.

4 Analysis for the Peng-Robinson equation

4.1 Formulation of the Phase Stability Problem

Another cubic equation of state was developed by Peng and Robinson (1976). The Peng-
Robinson equation of state is very similar to the SRK equation, but is able to predict liquid
compressibilities more accurately. The polynomial form of the Peng-Robinson equation of

state for mixtures is:

(8)

The pressure explicit form of the Peng-Robinson equation is:

RT B amiw
V — pmiz 12 + opmiz\/ _ Bmiw2

from which the fugacity coefficient for a component in the mixture can be derived,

pP=

In¢; = B%iw (z — 1) —In(z — B™®)

Amiz B; 2 o Z+(1+ﬂ)Bmiz (9)
+2\/§Bmim Bmiz ~ Amiz ]%:C Aljx]] ln (z+(1,\/§)Bmim) .
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In the tangent plane distance function, Eqn. 3, the mixture fugacity coefficients participate

in the term:

1eC

Some simplifications of this term can be made based on the following properties:

Y aipiz(z—1) =2z-1

it Bmiz . .
> z;ln(z — B™*) =In(z — B™7")
1eC
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When Eqn. 8 and the simplified mixture fugacity coefficient equation are applied to the

A~

tangent plane distance minimization problem (.5), the following formulation is obtained:

fon fic N \
in L = (ARG _AGT o FGF
min 4= = Zg%xz( V7R - — Inx; ¢
+ > z;Inx;
i€C
+z—1—-Inw
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s.t. 23 _ (1 _ Bmzw)ZQ + (Amzz _ 2Bmzz _ 3Bmiz2)z _ Amszmzx + Bm'iw2 + Bmz’z3 S 0
—23 + (1 _ Bmzw)ZQ _ (Amuc _ 2Bmuc _ 3Bmzw2)z + AmmBmuc _ Bmizc2 _ Bmizc3 S 0

Amim o i_i =0 N
3 o 5™
Bmix — 2 Bl.’L'Z =0
1eC
a; — EAU{E]:OVZEC
jec
=1

icC .

w =z — B™%*
0<z;<1VieC
z>0

w >0

7/

A new variable, w, has been introduced to remove the possibility that the logarithm of a
negative number will be taken during the solution of the problem. Formulation (S7%) contains

|C'| + 2 variables and seven constraints.
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4.2 Classification of Nonconvex Terms for Formulation (S$7%)

As explained in section 3.2, the guarantee of convergence to the global minimum solution
depends on the construction of valid convex underestimating functions for every nonconvex
term in (S’PR). In sections 4.2.1, 4.2.2, and 4.2.3, the nonconvex terms present in formulation
(S’P R) are identified. Convex underestimating functions for these terms are generated in the

same manner as described in section 3.2.

4.2.1 Univariate Concave Terms

Several univariate concave terms occur in the equation of state constraints in formulation
(SPR). These are the following:

—22, =23, with 2 >0
_(Bmiz)2’ _(Bmim)?; with Bmzz 2 0.
4.2.2 Bilinear Terms

Formulation (SP%) also contains several bilinear terms. These are the following:

e In the equation of state constraints:

+ Ay £IB™Ty and + A™E B

e In the A-mixing rule constraints:

ieC
4.2.3 General Nonconvex Terms
In formulation (STR) the following terms are classified as general nonconvex terms:

e In the objective function:

A (2 (1 +V2)B™

e In the equation of state constraints:

+B™*2* and + 3(B™*)%z
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5 Analysis for the van der Waals equation

5.1 Formulation of the Phase Stability Problem

The van der Waals equation 1873 is a two-parameter cubic equation of state. The polynomial
form for mixtures is:
23 . (Bmzw + 1)22 + Amiwz . Amszmm = 0. (10)

The pressure explicit form of the Van der Waals equation is:

RT a™e
P = — —
V(V — pmiz) V2

from which the fugacity coefficient for a component in the mixture can be derived,

2 Z Aijilij

B; ) ;
L _In(z— Bme) - L€ (11)

| Aizi.
ng 2z — Bmz z

In the tangent plane distance function, equation 3, the mixture fugacity coefficients par-

ticipate in the term:

1eC

Some simplifications of this term can be made based on the following properties:

B; Bmim
Zgé’ '/L‘Z' Z,B?mim - z,Bmim
> z;In(z — B™) =In(z — B™)
ieC
2y Aijz; _
1 Am’LK!
Z €T ]EC — 2 .
iec”" ? z

When Eqn. 10 and the simplified mixture fugacity coefficient equation are applied to the

A

tangent plane distance minimization problem (5), the following formulation is obtained:
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ieC
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s.t. 2,3 _ (Bmzw + 1)22 + Amzwz _ Amszmzw S 0
—23 + (Bmzw + 1)22 — Amiz, + Amiz gmiz <0
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B™z — E BZ.’Ez =0
ieC
a; — EAZJ.’EJZOVZEC
jec
Yr=1

ieC

w=z— B™2
0<z;<1VieC
z>0

w >0

/

A new variable, w, has been introduced to remove the possibility that the logarithm of a nega-
tive number or division by zero will take place during the solution of the problem. Formulation

(SYPW) contains |C| + 2 variables and seven constraints.

5.2 Classification of Nonconvex Terms for Formulation (SV°")

As explained in section 3.2, the guarantee of convergence to the global minimum solution

depends on the construction of valid convex underestimating functions for every nonconvex
S‘VDW). In sections 5.2.1, 5.2.2, 5.2.3, and 5.2.4, the nonconvex terms present in
SrVDW)

term in (

formulation ( are identified. Convex underestimating functions for these terms are

generated in the same manner as described in section 3.2.

5.2.1 TUnivariate Concave Terms

The van der Waals equation of state contains two univariate concave terms in the formulation

of the tangent plane distance minimization problem, (SV”%). These are the following:

—2% and — 2%, with z > 0.
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5.2.2 Bilinear Terms

Formulation (SV2"W) also contains several bilinear terms. These are the following:

e In the equation of state constraints:

+A™Ty and 4+ A™FB™,

e In the A-mixing rule constraints:

Z X;0;.

ieC
5.2.3 Fractional Bilinear Terms
S'VDW)

Formulation ( contains the two bilinear fractional terms in the objective function:

Maranas and Floudas (1995) derived a procedure for constructing the convex envelope of
products of arbitrary univariate functions. For a bilinear fractional term, %, this procedure
requires the addition of a new variable, ug. Two constraints are added that provide a lower

bound on the new variable. The new constraints are convex and are written:

+xL+ac :CL<O
—up+—+ 75— <
yvooyY
+xU+x xU<O
—up+—+ -7 —— <
y oyt oyt

. oy . miz
For example, the convex underestimators for the bilinear fractional term BT are:

BmizL Bmzz BmizL
+ _

—up + ", ol <0
BmizU Bmzx BmizU
—Uup + + L 2 S 0.
w w w

5.2.4 General Nonconvex Terms

SVDW) there is only one term that is classified as a general nonconvex term.

In formulation (

This term appears in the equation of state constraints and is +=B™%22,
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6 Computational Approach

A

Problem (S) contains nonconvex terms in both the objective function and in the constraints,
so nonlinear solvers may find a local minimum, or may fail to find a feasible solution. The
so-called “trivial” solution (where x = x" and z = z!") is always a stationary point of the
tangent plane distance function. In many cases, the trivial solution is a local minimum with
a large basin of attraction. When the candidate phase is unstable, the trivial solution often
causes a local approach to miss the negative global solution. In order to guarantee that the
global minimum has not been missed, a convex lower bounding problem, (S”?) based on (3)
is solved. The solution of (SZB) is guaranteed to be less than or equal to the solution of (3)
over the same domain. In addition, since (S’LB) is convex, its global minimum can always be
obtained.

The basic idea is to bracket the global solution by generating a nonincreasing sequence of
upper bounds and a nondecreasing sequence of lower bounds. This procedure is guaranteed
to converge within e of the global minimum solution. Upper bounds are obtained by using a
“local” nonlinear solver to get a solution of (S). Lower bounds are obtained by solving (SZ5).
The generation of the lower bounding problem is discussed in section 6.1. A branch and
bound procedure is used to generate the sequence of upper and lower bounds. The original
search domain is partitioned into smaller and smaller domains. As the size of the domains
decreases, the quality of solution obtained from the lower bounding problem increases. When
the solution of the lower bounding problem in a particular domain is larger than the best
upper bound then the domain can be discarded. When the difference between the best upper
bound and the minimum lower bound becomes less than a small number, ¢, the algorithm

terminates with the best upper bound as the e-global minimum solution.

6.1 Convex Lower Bounding Problem

In order to provide a guarantee of convergence to the global solution, there are several re-
quirements that the lower bounding problem must meet. These requirements are: 1) the
objective function and the feasible domain must be convex, 2) the objective function of the
lower bounding problem must be an underestimator of the objective function of the original
problem, 3) the feasible domain of the lower bounding problem must contain the entire feasi-
ble domain of the original problem, and 4) the lower bounding problem must be a reasonable
approximation of the original problem, and the quality of approximation must improve as
the size of the domain decreases. Requirement 1 guarantees that the global minimum of the
lower bounding problem can always be obtained. Requirements 2 and 3 guarantee that the

solution of the lower bounding problem is, in fact, a lower bound on the solution of the original
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problem. Requirement 4 is necessary so that a nondecreasing sequence of lower bounds can
be generated, and so that the sequence will converge to the global minimum of the original
problem.

The first step is to find a convex underestimator of the objective function, equation 3.
In order to highlight the nonconvex portion of the objective function, the equation can be

written

F mix mix
T =C(x)+ NC(x,z, A™* B™%)

where,

C(x) = sz

(AG{’" AGY*
1€C

_ —InzFoF n 2.
T T Inz; ¢, ) + iezcxz Inz;

NO(x, 2, A™® B™®) = 3" z,1n ¢;
ieC
and C(x) denotes the convex portion of F and NC(x, z, A™® B™) denotes the nonconvex
portion. A convex underestimating function for F can be generated by replacing the nonconvez
terms in NC(x, z, A™* B™%) with conver underestimating terms, which are shown for the
SRK, Peng-Robinson, and van der Waals equation in sections 3, 4, and 5, respectively. This

results in the equation:

F - o F
= C NC Amzz Bmz;c < 2
7 = O + NC(x,2, 4™, B™) < =
where the symbol — denotes the convex underestimating function.
The constraints of problem (5’ ) consist of nonlinear inequalities and linear equalities. In

order to simplify the following analysis, the constraints are grouped:

( EOS <0
g(x, z, A™T BmiT) < () = < —~EOS <0
A™E — 3 3id; =0

\ ieC

( B™i — ¥ B, =0

1eC
h(x, B™?) =0 = ¢ a;— » Ayr; =0Viel
jec
1-— E r; = 0
\ 1€C
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Now, let the set, V), define the feasible region of problem (S’)

y = {{X, Z’Amiw’Bmiw} . g(X’Z’Amiw’Bmiw) S O, h(X, Z’Amiz’ Bmuc) =0
xI <x <xY, ngzgzU}

In general, ) is a nonconvex set. By replacing every nonconvex term in the set of inequality
constraints, g(x, z, A™?® B™?%) with a convex underestimating function, we obtain a convez
relazxation of the feasible region, ). Convex relaxation refers to the fact that the new feasible

region is convex, contains ), and is at least as large as ).

3/; = {{X, z, Amiw7Bmiz} . \g’(X’Z’Amiw’Bmiw) S 0’ h(X’Z7Amiz’Bmiz) =0
xl <x <xY, ngzgzU}

In the next section, the basic steps of the branch and bound global optimization algorithm

are described. Using the notation introduced above, the upper bounding problem is,

. f'(x’z’Amiz,Bmi:c)
(UB) min e

s.t. {x,z, A™M® BmTY €y

and the lower bounding problem is,

. }'(x,z,Amim’Bmim)
(LB) min -  RrRT

s.t. {x,z, A™® B™iz} ¢ 5/7

6.2 Algorithmic Description

The aBB algorithm, (Androulakis et al. (1995), Adjiman et al. (1998a) (1998b)), is employed
to determine the global solution of (5’) Each iteration of aBB consists of a branching step
and a bounding step. In the bounding step, problems (UB) and (LB) are solved. In the
branching step, the current subdomain is divided into a number of smaller subdomains. The
subdivision of the domains results in increasingly tight lower bounding problems, creating a
nondecreasing sequence of lower bounds on the global solution.

In the BB approach, nonconvex terms with special structure are identified and replaced
with tight convex underestimating functions to formulate (LB). Nonconvex terms that do
not possess special structure are replaced with an a-based underestimator, equation 6. The
value of « required to convexify a term decreases as the bounds on the variables are tightened.

Therefore, in each subdomain, new « values are calculated.
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The basic steps of the algorithm are now described. A detailed description of the aBB
algorithm can be found in Androulakis et al. (1995), and Adjiman et al. (1998b).

STEP O - Initialization

The relative convergence tolerance, €, is specified and the iteration counter, Iter, is set to
one. The current subdomain, [yL’”eT, yU’”er] is set to the global domain, [yLBD yY BD]. Note
that y = {x,2, A™* B™*} The lower and upper bounds, LBD and UBD, on the global

Q c,Iter

minimum of (S) are initialized. An initial current point, y is chosen.

STEP 1 - Update Upper Bound on Global Solution

The current point is used as a starting point for a local solution to problem (UB). If the
solution to this problem is less than UBD, then UBD is updated to the new solution, and
the variable values at the new upper bound are stored.

Important Note: If the solution of (UB) in any iteration is negative, then the global
optimization procedure can be terminated, since the phase is unstable.

STEP 2 - Select Branching Variable and Partition Current Region

The current domain is partitioned into two subdomains, r; and ry by bisecting the edge
corresponding to a chosen variable. The criterion for choosing the branching variable is dis-

cussed in Section 6.3.
STEP 3 - Solution of Bound Update Problems in r; and 7,

The bounds on the variables in a subdomain can be improved by solving a so-called bound
update problem. This problem is formulated by replacing the objective function of (LB) with
the variable whose bound is to be updated. For example, the bounds on the variable x; are

updated by solving the following two problems:

L _ .
zf = min T
stt. {x,z, A™* B™*l ¢y
U . .
z¥ = min —;

s.t. {x,z, AT B™T) ¢ 5

The variables whose bounds are updated by this method and the frequency of bound updates
are discussed in section 6.5.

STEP 4 - Update a’s in r; and ry
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The o parameters are updated inside both subdomains. The method for calculating the

«’s 1s discussed in section 6.4.
STEP 5 - Solve Lower Bounding Problems in r; and ry

The lower bounding problem (LB) is solved in subdomains r; and re. If the solution in
a subdomain is greater than the current upper bound, then this region is guaranteed not to
contain the global minimum and it is fathomed. Otherwise, the solution is stored along with

the variable bounds for the region and the variable values at the solution.

STEP 6 - Update iteration counter and LBD

The iteration counter is increased by one. The lower bound, LBD, is updated to be the
minimum of all stored solutions. The current search region is selected as the subdomain
containing the minimum of all stored lower bound solutions. The current variable bounds,

L,Iter ,Ulter
[yetter, ythter]

y!tr is updated to the solution point of the current region.

are updated to be the bounds of the current region, and the current point

STEP 7 - Convergence Check

If % > € then return to STEP 1.

Otherwise, e-convergence to the global minimum solution has been achieved.

This global optimization algorithm has been extensively tested with a variety of phase
stability problems. While the basic outline of the algorithm is rigid, there is significant
freedom in selecting options such as the criterion used to determine the branching variable,
the method for calculating the a parameters, and how often to solve variable bound update
problems. Through the computational studies, the options that provide the best performance

have been identified. In the next three sections, these options are briefly described.

6.3 Analysis of the Branching Criteria

Formulations (SSFX), (SP®), and (SVPW), each contain the same set of variables, {x, z, A™?,
B™ 4 }. The mole fraction and compressibility variables, x and z, are the only independent
variables in the formulation. The remaining variables, A™% B™?< q are actually functions
of x and z. Therefore, it is natural to select only the x and z variables to branch on, and
calculate the bounds on A™* B™Z and w based on the bounds of x and z. However, A™<
and B™?7 participate in nonconvex terms in both the objective function and in the equation
of state constraints. It was found that convergence is achieved faster when A™<® and B™* are
branched on in addition to x and z.

Many alternatives exist for selecting the branching variable at each iteration. These are
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briefly summarized below:

1. Variable with the least reduced axis.

2. Variable with the least reduced axis in the nonconvex term with the maximum possible

separation.

3. Variable with the least reduced axis in the nonconvex term with the largest difference
between the original nonconvex term and the convex underestimator at the current

point.

4. Variable with largest sum of maximum possible separation over all nonconvex terms it

participates in.
5. Variable with largest sum of differences over all nonconvex terms it participates in.

Least reduced axis refers to the variable whose bounds in the current domain have the largest
separation. Going down the list, each option becomes more sophisticated and requires more
computational effort, but provides “better” choices for branching variables. The computa-
tional studies have shown that option 5 provides the best results. The computational effort
required to select the branching variables is less than one percent of the total computational
effort.

6.4 Analysis of a Calculation Methods

The « parameter plays an important role in the BB algorithm. Using the smallest possible
value of o enhances the convergence of the algorithm. Therefore, when it has been possible
to derive an expression for the exact smallest value of «, this expression has been used.

For some terms, it is not possible to derive a simple expression for «. In these cases some
approximation of a must be used. Adjiman et al. (1998a) have developed a large number of
alternative methods for obtaining tight lower bounds on «. The basic idea of these methods
is to use obtain a lower bound on the minimum eigenvalue of the interval Hessian matrix of
a nonconvex term. The computational studies have shown that a scaled Gerschgorin method
provides the best « values.

We have observed that the general nonconvex terms in formulations (S5%K), (S%), and
(5’ VDW) are usually very close to convex. The « calculation methods, however must be valid
over the entire domain in order to provide the guarantee of global optimality. As a result,
very small o values are usually sufficient to convexify the term over most of the domain, and

a larger value is needed only in a small subdomain. We have solved each of the test problems
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in section 7 using small fixed values of a. In each case, the global solution was obtained, and

the number of iterations needed is drastically reduced.

6.5 Variable Bound Updates

The inclusion of variable bound update problems in the aBB algorithm can provide a signif-
icant reduction in the number of iterations needed to converge to the global solution. There
are two issues to address for the solution of variable bound update problems. The first is
that some or all of the variables may not benefit from the solution of bound update problems.
Through the computational studies we have found that the bounds on the x, z, A™* and B™*
variables can be improved, but not the w substitution variable.

The second issue is that for every variable whose bounds are updated, two additional local
optimization problems must be solved. This implies that, for a two component example where
the x, z, A™% and B™ variables are updated every iteration, 10 additional problems are solved
per iteration. For an eight component system, the number increases to 22 additional problems.
In order to make this additional effort worthwhile the improved variable bounds should result
in at least a corresponding reduction in the number of iterations. In the computational studies
it has been found that for problems with two or three components, it is beneficial to update
all variables at every iteration. However, for problems with four or more components, five
variables are selected at random every iteration, and bound update problems for only those
five variables are solved.

7 Computational Studies

A number of test problems taken from the literature illustrate the proposed global optimization
approach. These problems have been solved using the BB algorithm, which has been written
in C. All computations were performed on a Hewlett-Packard J-2240 workstation. The local
nonlinear solver SNOPT was used for the upper bounding and lower bounding problems and
for the variable bound update problems. Pure component data, such as critical constants and
acentric factors, were obtained from Reid et al. (1987), except when noted.

For each example, the solutions have been obtained using an interval-Hessian a calculation
method, and using small fixed values of . A convergence tolerance of 1 x 107% is used
for determining global optimality. A solution is identified as negative, thus terminating the
procedure, when the objective function becomes less than —1 x 107%. Explicit formulations
of these examples can be found in the handbook of test problems by Floudas et al. (1999).

In all examples, the initial bounds for the mole fraction variables are 1 x 107% and 1.0. The
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convergence of the procedure is independent of any initial guess, so at every iteration, a random
point can be used to initialize the solution of the upper and lower bounding problems.

It has been suggested that branch and bound algorithms are subject to errors induced by
round-off error, especially in deciding whether to keep or reject a region based on the solution
of the lower bounding problem. Specifically, the NLP solvers used may find a solution to the
lower bounding problem that is only accurate to 1 x 1075, This error may cause the lower
bound solution to be greater than the current best upper bound by some small amount, and
the region will be incorrectly rejected. In our approach, a region is only rejected if the solution
of the lower bounding problem obtained in that region is greater than UB + ¢,. A typical
value of ¢, is 1 x 1077.

7.1 Van der Waals equation
7.1.1 Example 1: Binary Type I Mixture

This is a binary mixture classified by Konynenburg and Scott (1980) as having type I behavior.
This system was studied by Hua et al. (1998b) using interval-Newton methods to enclose all
stationary points. The binary interaction parameters and the composition of the candidate
phase are shown in Table 1. This system contains only one minimum in the Gibbs free energy,
which is the trivial solution. Out of 100 local optimization runs from random starting points,
the minimum was found every time (see Table 2). The candidate phase is stable and the
proposed approach converged to the global solution in about 2 seconds (see Table 3).

7.2 SRK equation

Four examples are solved using the SRK equation of state.
For the first two examples, we have used the original Soave equations to calculate the

pure-component parameters. These are:

2 2
A; = 0.42747 555 [1+ (0.480 + 1.574w; — 0.176w2)(1 — | /75)]
B; = 0.08664 5

For examples 4 and 5, the Graboski-Daubert pure component equations have been used,
as compiled in Walas (1985). These are:

28



2
PTc,i

2
Aj = 0.42747 5% [1+ (0.48508 + 1.55171w; — 0.15613w?) (1 — /7))
B; = 0.086647 %

Aij = (1 - kij)w/AiAj-

7.2.1 Example 2: Hydrogen Sulfide and Methane

The system hydrogen sulfide-methane is a standard benchmark in the phase stability literature.
It was introduced by Michelsen (1982a) to illustrate that the stability problem can be quite
difficult, even in small systems. In this work, the stability of six potential solutions is analyzed
(see Table 4). Multiple local minima are present in all cases (see Table 5). Candidate solution
2 appears to be especially difficult. Out of 100 trials with a local solver, stable (nonnegative)
solutions were found 83 times, but the phase is actually unstable. For the six candidate phases,
the locations of the local minima are identical to those reported in Hua et al. (1998b). The
computational results for the proposed approach are shown in Table 6. The unstable cases,
(2, 4, and 5) are terminated in less than 0.20 seconds. For the stable phases, (1, 3, and 6),
convergence is obtained in 3 to 5 seconds when « is calculated. When a small fixed value of

« is used, the computational effort is reduced by 40 to 50 percent.

7.2.2 Example 3: Water, Carbon Dioxide, Isopropanol, Ethanol

This example is a challenging four component system whose phase behavior of was examined
by Kohse and Heidemann (1992). The candidate solutions in this example were obtained
near the tricritical lines. Table 7 shows the compositions of the candidate phases. All of the
binary interaction parameters were set to zero for this example. For each system, multiple
local minima exist, and the minima with negative tangent plane distances are very hard to
locate for the local solver (see Table 8). For candidate phase 1, the local solver found a stable
(nonnegative) solution 86 out of 100 times. The system is actually unstable, but a negative
minimum was found only 4 out of 100 times. For candidate phase 2, a stable solution was
found 94 out of 100 times. This system is also unstable, but a negative minimum was found
only 6 out of 100 times, and the global solution was not located by the local solver. Candidate
solution 3 is also unstable, but a negative solution was found only 3 times out of 100 local
solutions. Similarly, candidate solution 5 is unstable, but the local solver found a negative
solution only 5 out of 100 times. Candidate phase 7 is stable, but the global minimum solution
was located only 3 out of 100 times.

In examples containing two or three components, it is possible to plot the tangent plane dis-

tance function versus the |C| — 1 independent mole fractions and identify the global minimum
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visually. However in systems with four or more components, it is not possible to determine
the solution graphically. Hence, rigorous global optimization methods, such as the proposed
approach, must be used. The computational results are shown in Table 9. Even though this
is a large, difficult example, the procedure terminated with a negative tangent plane distance
in about 1 second for all six candidate phases. For the stable phase, the procedure converged

to the global minimum solution in around two minutes.

7.2.3 Example 4: Eight Hydrocarbons

This system of eight hydrocarbons was studied by Nagarajan et al. (1991a) and Sun and
Seider (1995). We have used the Peng-Robinson binary interaction parameters reported by
Nagarajan et al. (1991a) in the SRK formulation, due to the similarity of the two equations of
state. The binary interaction parameters and the compositions of the three candidate phases
are shown in Table 10. For the two unstable phases, two local minima were located for each,
and for candidate phase 2, the local solver found the global minimum only five times out
of 100, (see Table 11). This example was chosen to illustrate the application of the global
optimization approach to systems containing a large number of components. For candidate
phase 1, the proposed approach terminated after 23 seconds when a solution with a negative
tangent plane distance was located, shown in Table 12. For candidate phase 2, a negative
solution was found in 25.6 seconds with « caluculated and in 20 seconds when a small fixed
value of a was used. Candidate phase 3 is stable, and the proposed approach required about
7 and a half minutes to converge to the global minimum. When a small value of alpha is used,

the required time drops to just under 7 minutes.

7.3 Peng-Robinson equation

Six examples are solved using the Peng-Robinson equation of state. The original formulas are

used to calculate the pure-component parameters, Peng and Robinson (1976). These are:

A = 0.45724 5%

B; = 0.077807 <

7.3.1 Example 5: Hydrogen Sulfide and Methane

2
[1+ (0.37464 + 1.54226w; — 0.26992w2) (1 — /7))

This is the same hydrogen sulfide-methane system as studied in example 2. The same binary
interaction parameters used for the SRK implementation of this example have been used for

the Peng-Robinson implementation. For the Peng-Robinson equation, the stability of two
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potential solutions is analyzed. The compositions of the candidate solutions and the binary
interaction parameters are shown in Table 13. Multiple local minima are present in each case
(see Table 14). For candidate phase 1, stable solutions were found in 78 out of 100 local
runs, while the negative solution was found only 22 times. Table 15 shows the results of the
global optimization approach. For candidate phase 1, a negative solution was found in 0.10
second. For candidate phase 2, the procedure converged to the global minimum solution in
4.95 seconds when the o parameters were calculated with and interval-Hessian method. Using

a small fixed value of o reduced the CPU time to 3.03 seconds.

7.3.2 Example 6: Nitrogen, Methane and Ethane

The ternary system nitrogen-methane-ethane was studied by Hua et al. (1998b). The binary
interaction parameters and four candidate phase compositions are shown in Table 16. For
candidate phase 1, all of the 100 local runs found a negative solution (see Table 17). Therefore
it is easy for the global optimization approach to determine that this system is unstable in the
first iteration, as shown in Table 18. Candidate phase 2 is a more challenging example for the
local solver, as the negative solution was found 34 out of 100 times. This candidate phase is
also more difficult for the interval-Newton method applied by Hua et al. (1998b), since many
more root-inclusion tests were required for this phase than any other candidate phase. This is
most likely due to the presence of a stationary point in close proximity to the trivial solution.
The global optimization approach quickly locates the negative solution and terminates in 0.24
seconds. These examples illustrate the advantage of using a global optimization approach for
the minimization of the tangent plane distance function. The problem can be terminated at
a very early stage when a negative tangent plane distance is located.

Candidate phases 3 and 4 are both stable, with the trivial solution as the only minimum.
The global optimization approach converged to the solution in 12.8 seconds for phase 3 and 10
seconds for phase 4. Using a small fixed value of « results in a reduction of the computational
effort by 60 to 70 percent for candidate phases 3 and 4.

7.3.3 Example 7: Methane, Hexane and Hydrogen Sulfide

The ternary system methane-hexane-hydrogen sulfide was studied by Kohse and Heidemann
(1992). This system has a complicated phase diagram containing regions where the equilibrium
state consists of three and four phases. The binary interaction parameters and candidate phase
compositions are shown in Table 19. Both candidate solutions in this example are stable (see
Table 20). The computational results for this system are shown in Table 21. For candidate
phase 1, the procedure converges to the global minimum solution in 7.7 seconds when « is

calculated, and in about 7 seconds when a small fixed value of « is used. Similar results are
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seen for candidate phase 2, with CPU times of 8.5 seconds and 7.9 seconds for the a-calculated

and o-fixed runs, respectively.

7.3.4 Example 8: Eight Hydrocarbons

This is the same 8-hydrocarbon example addressed in example 4 for the SRK equation. In this
case, the Peng-Robinson equation is used, as was done by Nagarajan et al. (1991a) and Sun
and Seider (1995). The binary interaction parameters and candidate phase composition are
provided in Table 22. We have used the compositions of the global minimum solution reported
by Sun and Seider (1995) and shown in Table 22 as the candidate phases. However, as Table
23 shows, we found both phases to be unstable, with small negative solutions for the tangent
plane distance. This is most likely due to the fact that different binary interaction parameters
were used. For both candidate phases, the proposed procedure was able to terminate quickly
when a negative tangent plane distance was found (see Table 24). Despite the large number of
components in this system, the computational effort was around 12 seconds. We also generated
a stable candidate phase to test the computational effort for solving such a large problem to
global optimality. Candidate phase 3 required 8.5 minutes for a-calculated underestimators,
and about 8 minutes for small, fixed values of .. This effort is very reasonable, given the size
of the problem.

8 Conclusions

It has been shown that the phase stability problem can be formulated as an optimization
problem using equations of state to model both liquid and vapor phase behavior. The opti-
mization approach has the benefit that it can be terminated at a very early stage if a negative
tangent plane distance value is found. This work presents a global optimization approach
that provides a theoretical guarantee that the global minimum tangent plane distance can be
determined. Three cubic equations of state, SRK, Peng-Robinson, and van der Waals, have
been studied in this work. It should be noted that the proposed method can be applied to any
equation of state, and to any mixing rule. Special structures that arise from using these three
equations of state have been identified and exploited in the global optimization approach.
The solution of several test problems involving up to eight components has shown that this

method is computationally efficient and can handle large problems.

Acknowledgements: The authors gratefully acknowledge the support from the National Science
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Example 1: T"=608.40 K; P = 239.112 bar

ki 1 2
1 0.0 -0.212463
2 -0.212463 0.0
Trial xt: 2F
1 (0.40,0.60); 0.320336

Table 1: Data for Example 1
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Postulated
Phase

Solutions

Solution (x) z

TPD

Times Located out of
100 Local Optimization Trials

1

(0.40,0.60) 0.32034

0.0

100

Table 2: Local and global minima for Example 1
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Postulated Global Solution a-Calculated | =0.001
Phase Solution (x) z TPD CPU CPU
1 (0.40,0.60) 0.32034 | 0.0 2.31 1.91

Table 3: Computational results for Example 1
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Example 2: T' =190 K; P = 40.53 bar

ki | 1 2
1 0.0 0.08
2 0.08 0.0

Trial x 2
1 (0.0115,0.9885); 0.545951
2 (0.0187,0.9813); 0.53198
3 (0.0700,0.9300); 0.167687
4 (0.5000,0.5000); 0.10601
) (0.8880,0.1120); 0.0937813
6 (0.8900,0.1100); 0.0937415

Table 4: Data for Example 2
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Postulated

Solutions

Times Located out of

Phase Solution (x) z TPD 100 Local Optimization Trials
1 (0.02369,0.97631) 0.25088 | 0.013753 40
(0.03257,0.96743) 0.20024 | 0.013061 25
(0.01150,0.98850) 0.54595 0.0 35
2 (0.88477,0.11523) 0.09385 | 0.01098 4
(0.03133,0.96867) 0.29605 | 0.00795 15
(0.01870,0.98130) 0.53198 0.0 65
(0.07668,0.92332) 0.16382 | -0.00393 16
3 (0.87426,0.12574) 0.09406 | 0.05128 6
(0.03043,0.96957) 0.29176 | 0.00997 30
(0.01784,0.98216) 0.53375 | 0.00145 36
(0.07000,0.93000) 0.16769 0.0 28
4 (0.88186,0.11814) 0.09390 | -0.05689 4
(0.03107,0.96893) 0.29478 | -0.07122 16
(0.01844,0.98156) 0.53251 | -0.07934 67
(0.07462,0.92538) 0.16536 | -0.08252 13
) (0.03165,0.96835) 0.29754 | 0.01016 15
(0.01901,0.98099) 0.53135 | 0.00240 66
(0.88800,0.11200) 0.09378 0.0 5
(0.07918,0.92082) 0.16323 | -0.00244 14
6 (0.03185,0.96815) 0.29851 | 0.01871 30
(0.01921,0.98079) 0.53093 | 0.01108 40
(0.08087,0.91913) 0.16247 | 0.00563 24
(0.89000,0.11000) 0.09374 0.0 6

Table 5: Local and global minima for Example 2
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Postulated Global Solution a-Calculated | «=0.001
Phase Solution (x) z TPD CPU CPU
1 (0.01150,0.98850) 0.54595 0.0 2.84 1.65
2 (0.07668,0.92332) 0.16382 | -0.00393 0.18 0.08
3 (0.07000,0.93000) 0.16769 0.0 4.69 1.87
4 (0.07462,0.92538) 0.16536 | -0.08252 0.15 0.04
5 (0.07918,0.92082) 0.16323 | -0.00244 0.15 0.04
6 (0.89000,0.11000) 0.09374 0.0 5.00 2.95
Table 6: Computational results for Example 2
Example 3: T'= 350.0 K; P = 22.5 bar
kij =0V (4, )
Trial x 2

1 (0.58223,0.07232,0.18797,0.15748); 0.0372065

(0.03154,0.93280,0.02311,0.01255); 0.919594

(0.04647,0.95071,0.00167,0.00115); 0.92743

(0.61462,0.00105,0.21065,0.17368); 0.03789

(0.02981,0.96694,0.00152,0.00173); 0.92969

(0.99758,0.00003,0.00013,0.00226); 0.019238

N ||| | W N

(0.17170,0.14230,0.37430,0.31170); 0.05531

Table 7: Data for Example 3
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Postulated

Solutions

Times Located out of

Phase Solution (x) z TPD || 100 Local Optimization Trials
1 (0.07332,0.67750,0.17818,0.07100) 0.12412 | 0.63328 3
(0.03153,0.93280,0.02312,0.01255) 0.91959 0.0 83
(0.31949,0.12415,0.35670,0.19966) 0.04955 | -0.02291 3
(0.99808,0.00107,0.00007,0.00078) 0.01919 | -0.45086 1
2 (0.07334,0.67750,0.17814,0.07102) 0.12411 | 0.63333 3
(0.03154,0.93280,0.02311,0.01255) 0.91959 0.0 91
(0.31966,0.12411,0.35651,0.19972) 0.04954 | -0.02903 6
(0.99808,0.00106,0.00007,0.00079) 0.01919 | -0.45103 0
3 (0.22541,0.72309,0.03479,0.01671) 0.06817 | 0.91915 4
(0.04647,0.95071,0.00167,0.00115) 0.92743 0.0 93
(0.99923,0.00072,0.00000,0.00005) 0.01915 | -0.84346 3
4 (0.37575,0.24684,0.24280,0.13461) 0.47843 | 2.34180 2
(0.33650,0.00185,0.43011,0.23154) 0.05240 | -0.02837 20
(0.99898,0.00002,0.00008,0.00092) 0.01918 | -0.44128 78
d (0.18941,0.73400,0.04167,0.03392) 0.06085 | 0.99176 4
(0.02981,0.96694,0.00152,0.00173) 0.92969 0.0 91
(0.99874,0.00114,0.00000,0.00012) 0.01916 | -0.40150 3
6 (0.25572,0.30249,0.23283,0.20896) 0.47648 | 2.39401 39
(0.99758,0.00003,0.00013,0.00227) 0.01924 0.0 1
(0.18498,0.00238,0.45438,0.35825) 0.05853 | -0.01286 60
7 (0.04668,0.67967,0.16562,0.10803) 0.12748 | 0.64643 2
(0.02057,0.93736,0.02231,0.01976) 0.91947 | 0.02509 95
(0.17170,0.14230,0.37430,0.31170) 0.05531 0.0 3

Table 8: Local and global minima for Example 3

43




Postulated Global Solution a-Calculated | «=0.001
Phase Solution (x) z TPD CPU CPU
1 (0.99808,0.00107,0.00007,0.00078) 0.01919 | -0.45086 0.94 0.13
2 (0.99808,0.00106,0.00007,0.00079) 0.01919 | -0.45103 0.87 0.64
3 (0.99923,0.00072,0.00000,0.00005) 0.01915 | -0.84346 0.83 0.66
4 (0.99898,0.00002,0.00008,0.00092) 0.01918 | -0.44128 0.78 0.70
) (0.99874,0.00114,0.00000,0.00012) 0.01916 | -0.40150 0.84 0.25
6 (0.18498,0.00238,0.45438,0.35825) 0.05853 | -0.01286 1.00 0.67
7 (0.17170,0.14230,0.37430,0.31170) 0.05531 0.0 129.1 72.2

Table 9: Computational results for Example 3
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Example 4: T'= 353.0 K; P = 385.0 bar

ky | L ] 2 ] 3] 4 | 5] 6 |7 8
1 0.0 | 0.002 | 0.017 | 0.015 | 0.02 | 0.039 | 0.05 0.09
2 0.002 | 0.0 0.0 [0.025]0.01 | 0.056 | 0.04 0.055
3 0.017{ 0.0 0.0 0.0 0.0 0.0 |0.01 0.01
4 0.015 | 0.025| 0.0 0.0 0.0 0.0 0.0 0.0
) 0.02 | 0.01 0.0 0.0 0.0 0.0 0.0 0.0
6 0.039 | 0.056 | 0.0 0.0 0.0 0.0 0.0 0.0
7 0.05 | 0.04 | 0.01 0.0 0.0 0.0 0.0 0.0
8 0.09 | 0.055 | 0.01 0.0 0.0 0.0 0.0 0.0
Trial x 2
1 (0.7212,0.09205,0.04455,0.03123,0.01273,0.01361,0.07215,0.01248); 1.13452
2 (0.6598,0.09084,0.04726,0.03509,0.01492,0.01657,0.1047,0.03082); 1.24278
3 (0.5854,0.1951,0.0488,0.0488,0.0244,0.02435,0.0488,0.02435); 1.055057

Table 10: Data for Example 4
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Postulated

Solutions

Times Located out of

Phase Solution (x) z TPD 100 Local Optimization Trials
1 (0.74890,0.09158,0.04253,0.02884,
0.01144,0.01185,0.05768,0.00718) 1.10392 | -0.00005 4
(0.59569,0.08715,0.04848,0.03772,
0.01658,0.01953,0.13415,0.06070) 1.41401 | -0.00260 95
2 (0.64343,0.09010,0.04770,0.03588,
0.01539,0.01730,0.11285,0.03735) 1.28096 | -0.000008 95
(0.76967,0.09070,0.04055,0.02668,
0.01030,0.01022,0.04753,0.00435) 1.08800 | -0.00165 )
3 (0.5854,0.1951,0.0488,0.0488,
0.0244,0.02435,0.0488,0.02435) 1.055057 0.0 90

Table 11: Local and global minima for Example 4
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Postulated Global Solution a-Calculated | «=0.001
Phase Solution (x) z TPD CPU CPU
1 (0.59569,0.08715,0.04848,0.03772,
0.01658,0.01953,0.13415,0.06070) 1.41401 | -0.00260 10.01 9.44
2 (0.76967,0.09070,0.04055,0.02668,
0.01030,0.01022,0.04753,0.00435) 1.08800 | -0.00165 9.64 9.29
3 (0.5854,0.1951,0.0488,0.0488,
0.0244,0.02435,0.0488,0.02435) 1.055057 0.0 455.2 403.6

Table 12: Computational results for Example 4
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Example 5: T = 190.0 K; P = 40.53 bar

ky | 1 2
1 0.0 0.08
2 0.08 0.0
Trial x: 2F
1 (0.0384,0.9616); 0.45055
2 (0.8802,0.1198); 0.08339

Table 13: Data for Example 5
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Postulated Solutions Times Located out of
Phase Solution (x) z TPD | 100 Local Optimization Trials
1 (0.04573,0.95427) 0.36089 | 0.00048 3
(0.03840,0.96160) 0.45055 0.0 75
(0.94563,0.05437) 0.08233 | -0.49698 22
2 (0.03335,0.06665) 0.28442 | 0.02775 3
(0.02102,0.97898) 0.49948 | 0.02139 79
(0.09275,0.90725) 0.14048 | 0.01072 10
(0.88021,0.11979) 0.08339 0.0 8

Table 14: Local and global minima for Example 5
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Postulated Global Solution a-Calculated | «=0.001
Phase Solution (x) z TPD CPU CPU
1 (0.94563,0.05437) 0.08233 | -0.49698 0.11 0.05
2 (0.88021,0.11979) 0.08339 0.0 4.95 3.03

Table 15: Computational results for Example 5
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Example 6: T"= 270.0 K; P = 76.0 bar

ky | 1 2 3

1 0.0 |0.038 0.08

2 0.038 | 0.0 0.021

3 0.08 | 0.021 0.0

Trial x 2

1 (0.30, 0.10, 0.60); 0.496366
2 (0.15, 0.30, 0.55); 0.448135
3 (0.08, 0.38, 0.54); 0.405804
1 (0.05, 0.05, 0.90); 0.235641

Table 16: Data for Example 6

51




Postulated Solutions Times Located out of
Phase Solution (x) z TPD | 100 Local Optimization Trials

1 (0.31158,0.10161,0.58681) 0.51850 | -0.00001 53

(0.13306,0.06780,0.79914) 0.26222 | -0.01481 47
2 (0.15000,0.30000,0.55000) 0.44813 0.0 65

(0.09681,0.24513,0.65806) 0.30553 | -0.00117 34
3 (0.08000,0.38000,0.54000) 0.40580 0.0 99
4 (0.05000,0.05000,0.90000) 0.23564 0.0 99

Table 17: Local and global minima for Example 6
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Postulated Global Solution a-Calculated | a=0.001
Phase Solution (x) z TPD CPU CPU
1 (0.13306,0.06780,0.79914) 0.26222 | -0.01481 0.31 0.28
2 (0.09681,0.24513,0.65806) 0.30553 | -0.00117 0.24 0.20
3 (0.08000,0.38000,0.54000) 0.40580 0.0 12.80 4.11
4 (0.05000,0.05000,0.90000) 0.23564 0.0 10.41 4.06

Table 18: Computational results for Example 6
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Example 7: T'=180.0 K; P = 80.0 bar

kg | 1] 2 3
1 0.0 | 0.0 0.08
2 0.0 | 0.0 0.0
3 0.08 | 0.0 0.0
Trial xt: 2F
1 (0.7440,0.0379,0.2181); 0.22477
2 (0.1591,0.0173,0.8236); 0.18066

Table 19: Data for Example 7

54




Postulated

Solutions

Times Located out of

Phase Solution (x) z TPD | 100 Local Optimization Trials
1 (0.37876,0.05317,0.56807) 0.20647 | 0.00581 1
(0.74402,0.03793,0.21805) 0.22477 0.0 99
2 (0.15913,0.01732,0.82355) 0.10866 0.0 100

Table 20: Local and global minima for Example 7
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Postulated Global Solution a-Calculated | @=0.001
Phase Solution (x) z TPD CPU CPU
1 (0.74402,0.03793,0.21805) 0.22477 | 0.0 7.70 6.94
2 (0.15913,0.01732,0.82355) 0.10866 | 0.0 8.54 7.95

Table 21: Computational results for Example 7
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Example 8: T = 353.0 K; P = 385.0 bar

ky | L ] 2 ] 3] 4 | 5] 6 |7 8
1 0.0 | 0.002 | 0.017 | 0.015 | 0.02 | 0.039 | 0.05 0.09
2 0.002 | 0.0 0.0 [0.025]0.01 | 0.056 | 0.04 0.055
3 0.017 | 0.0 0.0 0.0 0.0 0.0 |0.01 0.01
4 0.015 | 0.025 | 0.0 0.0 0.0 0.0 0.0 0.0
) 0.02 | 0.01 0.0 0.0 0.0 0.0 0.0 0.0
6 0.039 | 0.056 | 0.0 0.0 0.0 0.0 0.0 0.0
7 0.05 | 0.04 | 0.01 0.0 0.0 0.0 0.0 0.0
8 0.09 | 0.055 | 0.01 0.0 0.0 0.0 0.0 0.0
Trial xt 2
1 (0.7212,0.09205,0.04455,0.03123,0.01273,0.01361,0.07215,0.01248); 1.02995
2 (0.6598,0.09084,0.04726,0.03509,0.01492,0.01657,0.1047,0.03082); 1.12486
3 (0.7112,0.0985,0.0474,0.0461,0.0225,0.0218,0.0398,0.0127); 1.019531

Table 22: Data for Example 8
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Postulated

Solutions

Times Located out of

Phase Solution (x) z TPD 100 Local Optimization Trials

1 (0.75799,0.09130,0.04173,0.02794,
0.01096,0.01122,0.05294,0.00592) 1.00311 | -0.00065 99

2 (0.65972,0.09084,0.04726,0.03509,
0.01492,0.01657,0.10473,0.03087) 1.12500 | 0.000001 1

(0.6598,0.09084,0.04726,0.03509,
0.01492,0.01657,0.1047,0.03082) 1.12486 0.0 63

(0.74039,0.09196,0.04304,0.02947,
0.01176,0.01210,0.06250,0.00878) 1.01589 | -0.00026 34

3 (0.60583,0.09513,0.05233,0.05617,
0.02951,0.03143,0.07307,0.05651) 1.20773 0.0 80

(0.71078, 0.09851,0.04743,0.04616,
0.02254,0.02185,0.03994,0.01281) 1.01990 | 0.0 20

Table 23: Local and global minima for Example 8
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Postulated

Global Solution

a-Calculated | =0.001
Phase Solution (x) z TPD CPU CPU
1 (0.75799,0.09130,0.04173,0.02794,
0.01096,0.01122,0.05294,0.00592) 1.00311 | -0.00065 11.17 10.58
2 (0.74039,0.09196,0.04304,0.02947,
0.01176,0.01210,0.06250,0.00878) 1.01589 | -0.00026 12.93 9.05
3 (0.60583,0.09513,0.05233,0.05617,
0.02951,0.03143,0.07307,0.05651) 1.20773 0.0 021.1 496.0

Table 24: Computational results for Example 8
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