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Abstract

A novel approach for enclosing all heterogeneous and reactive azeotropes in multi-
component mixtures is presented. The thermodynamic conditions for azeotropy form
a system of nonlinear equations. A deterministic global optimization approach is intro-
duced in which the global optimization problem may contain multiple global minima
and there is a one-to-one correspondence between each global minimum and a potential
azeotrope. An algorithm is presented which provides a theoretical guarantee that all
global minima can be enclosed. This method is general, and can be applied to mul-
ticomponent mixtures that are described by standard thermodynamic models. The
problem formulations for finding all heterogeneous azeotropes and for finding all reac-
tive azeotropes are presented. The effectiveness of the proposed approach is illustrated
through several example problems using the Wilson, NRTL, UNIQUAC, and UNIFAC

activity coeflicient equations.

1 Introduction

An azeotrope is defined as a liquid mixture that boils at a constant temperature where
the composition of the vapor phase is identical to the composition of the boiling liquid.
When the boiling liquid contains a single phase, this phenomenon is called a homogeneous
azeotrope. If the liquid consists of two or more phases it is classified as a heterogeneous
azeotrope. Azeotropes may also occur in systems where one or more chemical reactions are
occurring. These are denoted as reactive azeotropes, and may be classified as homogeneous
reactive azeotropes or heterogeneous reactive azeotropes, depending upon the number of
liquid phases.
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The phenomenon of azeotropy occurs in many industrial applications. Azeotropes restrict
the amount of separation of a multicomponent mixture that can be achieved by distillation.
Therefore, the ability to predict the occurence of azeotropes in multicomponent mixtures is
an essential tool in the design of separation processes. In addition, it is well known that
systems can contain more than one azeotrope, so a method for locating azeotropes must
be able to reliably predict all of the azeotropes in the system. A method for locating all
azeotropes can also be used as a measure of the accuracy of a thermodynamic model based
on how close the azeotropes that it predicts correspond to the experimentally determined
azeotropes.

Several methods have been recently proposed to address the problem of locating all
homogeneous azeotropes. Fidkowski et al.! presented a homotopy continuation approach
which they applied to a number of systems containing up to five components. A determin-
istic global optimization approach was developed by Harding et al.2. This approach can
provide a theoretical guarantee that all homogeneous azeotropes can be enclosed. Maier
et al.® have applied an interval-Newton/generalized-bisection algorithm to compute all ho-
mogeneous azeotropes. A review on nonideal distillation, including a discussion on the
computation of azeotropes was published by Widagdo and Seider?. As an extension of the
problem of locating all azeotropes, Wasylkiewicz and Castillo® have proposed a bifurcation
and arc length continuation method for analyzing the sensitivity of homogeneous azeotropes
with respect to changes in pressure.

There has been less attention given to the problem of finding all heterogeneous and
reactive azeotropes. Chapman and Goodwin® presented a search method for finding ho-
mogeneous and heterogeneous azeotropes which uses a Levenberg-Marquardt algorithm to
find homogeneous azeotropes and then checks the stability of each solution with the tan-
gent plane criterion described by Michelsen”. A solution which is found to be unstable
is then used as the starting point for a new search for an heterogeneous azeotrope. This
method is limited by the fact that heterogeneous azeotropes do not necessarily correspond
to an unstable homogeneous azeotrope solution and vice versa. Eckert and Kubicek® have
extended the homotopy-continuation approach of Fidkowski et al.! for finding all homoge-
neous azeotropes to the problem of finding all heterogeneous azeotropes. They presented
results using the NRTL equation for a four-component system.

Ung and Doherty? derived a necessary and sufficient condition for the existence of reactive
azeotropes. Okasinski and Doherty!® presented a homotopy-continuation approach for the
determination of reactive azeotropes. In addition, they studied the effect of different reaction
equilibrium constants on the existence and composition of reactive azeotropes.

The purpose of this study is to extend the method of Harding et al.? for enclosing
all homogeneous azeotropes to the problems of enclosing all heterogeneous and reactive



azeotropes. In this paper, the vapor phase is modeled as an ideal gas at low pressure,
and activity coefficient models are used for the liquid phases. However, the approach is
general and can be applied to equation of state models as well. The activity coefficient
models examined are: the Wilson equation, the NRTL equation, the UNIQUAC equation,
and the UNIFAC equation. The problem is formulated as a global optimization problem in
which each global minimum solution corresponds to a heterogeneous or a reactive azeotrope.
Computational studies demonstrating the performance of the proposed method are presented
for both formulations.

It is interesting to note that many chemical engineering problems can be formulated as a
system of nonlinear equations. Typically, local solutions are located using iterative methods
or even graphical methods. The framework of the global optimization method for enclosing
all solutions that is presented in this paper could be extended to address such problems
as design and simulation of distillation columns, or determining the multiple steady states
of reactors or distillation columns. The convex lower bounding functions developed in this
paper could be directly applied to the thermodynamic functions that occur in these problems.

2 Problem Description and Formulation

2.1 Heterogeneous Azeotropes

Heterogeneous azeotropes occur in a boiling mixture of two or more liquid phases when the

composition of the vapor phase is the same as the overall composition of the liquid.

2.1.1 Thermodynamic Conditions for Heterogeneous Azeotropy

There are three thermodynamic conditions which a system must meet in order for a het-
erogeneous azeotrope to exist. These conditions are: 1) equilibrium between all phases, 2)
the composition of vapor phase must be identical to the overall composition of the liquid,
and 3) the mole fractions of the components in each phase must sum to unity and must be
non-negative.

The equilibrium condition requires that the chemical potential of each component must
be the same in all phases. This condition can be satisfied by requiring that, for every liquid
phase (L;), the chemical potential of each component in the liquid phase be identical to the

chemical potential of the corresponding component in the vapor phase:

W =p’ VieN VjeP" (1)

where p)” and ,uiL 7 represent the chemical potential of component 7 in the vapor and in liquid

phase j, and P denotes the set of liquid phases. The chemical potential for component 4



can be written,
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where f; represents the fugacity of component ¢ in the mixture. By selecting the same

— GY+RTIn 2)

standard state for all phases, equation (1) can be rewritten as,

fF=f+ vienvjeP? (3)

(3

In this work, we treat the vapor phase as ideal and the liquid phases as nonideal. For the
ideal vapor phase, the fugacity is fV = y;P. For the nonideal liquid phase, the fugacity is
f~L I = x I, JPS‘” Substituting these definitions into equation (3) gives,

2

yP=aliyipst  VieN Vje Pt (4)

Because P and +; are usually given as In P#* and In y,, it is convenient to take the natural

log of the simplified equilibrium constraint, resulting in:

lnP—l—lnyi—lnPf“t—ln’yiLj—lnxfj=0 Vie N VjePr (5)

The heterogeneous azeotropy condition requires that the composition of the vapor phase
is identical to the overall composition of the liquid. If we let m% represent the fraction of
material in the overall liquid that is contained in liquid phase j, then the composition of the

vapor is written as:

= > mbiz  VieN (6)
jePE
The third condition requires that the mole fractions in each phase sum to unity and have

values between 0 and 1.
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2.1.2 Heterogeneous Azeotrope Mathematical Formulation

In order to find all heterogeneous azeotropes, one must find all solutions to the system of
nonlinear equations (4), (6), and (7) listed in the previous section. This paper uses the
approach outlined in Maranas and Floudas'!, which reformulates the problem of enclosing
all solutions of nonlinear systems of constrained equations into a global optimization problem
in which the task is to enclose all global solutions. In this approach, every nonlinear equality
is replaced by two inequalities and a single slack variable is introduced. For the location of
all heterogeneous azeotropes, this corresponds to employing equations (5), (6), and (7) and

reformulating them as the following global optimization problem:

min s
xiyiTis

subject to InP+Iny; —InP —Iny —lnz’ —s < 0 VieN Vje Pt
—InP—Iny;+In P +Inv,” +Inz;? —s < 0 Vie N Vje Pt

yi_.ng%fﬂ'_s <0 VieN
J
_yi+_§3Lij$iLj_S <0 VieN
J
Xy =1
iE]VyZ (8)
Yz =1 Vje PL
tEN
S mbio =1
jepL
s>0
0<y <1 VieN
o<z <1 VieN Vje Pt
0<mli <1 vV je Pr
TL<T<TV

Due to the nonconvex constraints that arise from the phase equilibrium condition and
the heterogeneous azeotrope condition, problem (8) may have multiple global minima. Each
global minimum of Problem (8) (where the solution s* = 0) corresponds to an heterogeneous
azeotrope since when s = 0 the constraints (5), (6), and (7) are satisfied. Note that the first
two sets of constraints of (8) correspond to the nonlinear equations (5) of the equilibrium con-
straint written as two inequalities. In addition, note that the nonlinear terms In P, In fyiL 7,
and Inz.“ appear as both positive and negative terms. The terms mYiz.? and —mLiz? in

the heterogeneous azeotrope conditions are bilinear and therefore also nonconvex. If a local



optimization approach is used to solve Problem (8), some or all of the global solutions may

be missed.

2.2 Reactive Azeotropes

We consider that a reactive azeotrope occurs when a liquid mixture that is undergoing one
or more chemical reactions boils at a constant temperature with no change in liquid and

vapor compositions.

2.2.1 Thermodynamic Conditions for Reactive Azeotropy

Ung and Doherty® derived necessary and sufficient conditions for reactive azeotropes. For
a system of N components with R chemical reactions, these conditions are: 1) equilibrium
between all phases, 2) chemical equilibrium for all reactions, 3) the transformed vapor mole
fraction is equal to the transformed liquid mole fraction for N — R — 2 components, and 4)
the mole fractions sum to unity and are bounded between 0 and 1.

The phase equilibrium expression for reactive azeotropes has the same form as the non-

reactive case, equation (4). For an homogenous system the expression is:

In PP + 1y +Inz; —lny, —InP=0 VieN. 9)

For an heterogeneous system, the expression is written:

]n]3is“t+]n'yfj +lnxiLj —Iny;—-InP=0 VieN VjePL (10)

The second condition for reactive azeotropes is chemical equilibrium. The reaction equi-

librium constant for each reaction r is defined by the following equation:

N
K, =]l a’ (11)
1=1

where, by convention, the stoichiometric coefficients, v, are negative for reactants and posi-
tive for products and zero for inert components. The variable a; is the activity of component
1, defined as a; = x;;. Since the activity coefficient for most equations is defined as In~;,

for convenience we take the logarithm of both sides of equation 11, which results in,

N
In K}, =Y v/(Inz; + Iny). (12)

i=1
Ung and Doherty!? proposed transformed composition variables that can be thought of
as reaction-invariant compositions. The transformed variables describe the composition of

the system as if no reaction was occurring. To define the transformed composition variables,



a set of R reference components are chosen. For the remaining N — R components, the

transformation is defined as:

T TN_l e
X;= (2t ERel ) i1 N-R (13)
V. TNil e
n:(y i f”) i=1,....N—R (14)
1= vrorN"'Yrey

where X is the transformed liquid composition of component 7, X g, is the liquid composition
of the set of R reference components, v is the row vector of stoichiometric coefficients of
component 4 for each reaction, and vt is a row vector where each element corresponds
to a reaction r, and is the sum of the stoichiometric coeffiencents for all components that
participate in reaction . The square matrix N is formed from the stoichiometric coefficients
of the R reference components in the R reactions where the rows correspond to components
and the columns correspond to reactions. Based on this analysis, they showed that one
of the conditions for reactive azeotropy is that the reaction-invariant liquid composition
must be equal to the reaction-invariant vapor composition, (Ung and Doherty?). Using the

transformed composition variables, the third condition for reactive azeotropes is written:

X,=Y, i=1,....N—-R—1 (15)

The final condition requires that the mole fractions in each phase sum to unity and have

values between 0 and 1.

> yi=1
1EN

2.2.2 Reactive Azeotrope Mathematical Formulation

In order to enclose all reactive azeotropes, one must enclose all solutions to the system of
nonlinear equations (9) or (10), and (12), (14), (15), and (16) listed in the previous section.

The definitions of the transformed composition variables (equation 14) are fractional
terms where both the numerator and denominator are linear expressions involving several
variables. In order to simplify the formulation of the problem, the definitions are substituted

into equation 15. This yields,

( T; — ViTN_lxRef ) _ < Yi — ViTN_l}’Ref

i=1,...,N—R. 17
1- V’}:OTNilxRef 1— V%OTleR€f> )



When the expression is multiplied by the denominator of both sides, the following equa-
tion is obtained:

(z; — yi) — VIN"YHXRef — YRes)
+(ViTN71xRef - xi)(V$OTN71YRef) (18)
—(l/iTN_lyRef—yi)(V%OTN_lxRef) =0 +1=1,...,N—R.

Note that the first two terms in equation (18) are a group of linear terms, while the third
and fourth terms are groups of bilinear terms.

In order to enclose all solutions to the system of nonlinear equations (9) or (10), and
(12), (18), (16), we formulate the problem as a global minimization, where the objective
is to minimize a slack variable, s, that corresponds to the violation of the nonlinear con-
straints. For the most general case of heterogeneous reactive azeotropes, that is, a boiling
mixture containing N components undergoing R reactions in P liquid phases, the global

optimization problem is formulated as follows:



min s
x7y7Tis

subject to lnP—i—lnyi—lnPf“t—lnyiLj—lnxiLj—s <0 VieN VjePt
—InP—Iny+InP +In~y" +Inz)’ —s < 0 Vie N Vje Pt

In K7, — Zy(lnx +Iny7)—s <0 VreR VjePt
—1nK’"—|—EZ]:VI/(ln:C +In7%)—s < 0 VreR VjePt
(i — ¥i) — ¥) N"'(XRef — Yrey)
+(¥ N™Xpey — 23) (V7 orN 'Y rey)
—(WINT Yy rer — vi) WForN"Xpges) — s < 0 i=1,...,N—R-1
—(zi — yZ)+V N~ 1(XRef_YRef)
—(V{ N™Xres — 23) (V7 or N 'Y Rey)
+(WI Ny ger — Ui) WForN"'Xges) — s < 0 i=1,....N-R—1
xi—Zmixij—sgo Vie N

jEPL
—zi+ Y mbiz —s <0 VieN

jEPL
Xy =1
iEN
Yol =1 VjePr
iEN
S mbio =1
jEPL
s>0
0<y <1 VieN
0<z <1 Vie N Vje Pt
0<mbi <1 vV je Pl
TELT<TY

(19)

Note that the variable xZL 7 denotes the mole fraction of component 7 in liquid phase j and
the variable z; is the overall fraction of component 7 in the liquid phases.

When there is only one liquid phase present in the system, the above formulation can be
greatly simplified to the following formulation:



min s
x7y!T7s

subject to InP+Iny;—InP —lny; —lnz; —s < 0 VieN
—InP-Iny;+InP*+Iny,+lnz; —s < 0 VieN

InK;, — > vi(lnz; +Iny) —s < 0 VreRr
ieN
—InK, + ¥ y/(Inz; +1Iny) —s < 0 VreR
ieN

(zi — yi) — V] N7 (Xpef — YRey)
(I N~"xpes — xi)(V%OTN_IYRef)
—(WI'Nyger — vi) WrorN 'Xpes) —s < 0 i=1,..., N-R-1 20)
—(z; — yz) + V] N (XRes — Yres) (
—( (
(

VIN "Xpes — i) (VrorN ' Yrey)
)

+WIN"yper — vi)) WForN 'Xges) —5s < 0 i=1,...,N-R—1
Xy =1

S

x;p =1

iEN

s>0

0<y; <1 VieN
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3 Procedure for Locating All Heterogeneous and Re-

active Azeotropes

3.1 Description

The method presented in this paper for enclosing all heterogeneous and reactive azeotropes
azeotropes is based on the work of Maranas and Floudas'! for enclosing all solutions to
systems of nonlinear equations. In this section, the global optimization procedure will be
summarized. The problem is formulated by introducing a slack variable to the equilibrium
constraint of the initial problem. This transforms the initial problem into a global optimiza-
tion problem (8), (19), or (20). Each feasible solution to the original system of equations
corresponds to a zero objective function value and denotes the existence of an azeotrope.
The multiple global minima of formulations (8), (19), and (20) are enclosed based on

a branch and bound procedure. This procedure creates a convex relaxation of the prob-

10



lem by constructing tight convex lower bounding functions for each nonconvex term in the
constraints. Then, the global minimum of the convex relaxed problem within some box
constraints can be found using any commercially available local optimization algorithm.

When the convex relaxed problem is solved, there are two possibilities. If the solution of
the relaxed problem is strictly positive inside some rectangular region, then because it is an
underestimator, the solution of the original problem must also be strictly positive inside the
region. This allows us to fathom (eliminate) parts of the total region which do not contain
any solutions. The second outcome is that the solution is zero. In this case, the original
problem may or may not have a solution in the current region and thus the region cannot be
fathomed. Instead, the current region is partitioned into smaller regions and the procedure
is repeated until all regions are fathomed, or a feasible solution is found.

It is critical to note that as the size of the current region decreases, the maximum separa-
tion between the original constraint functions and the convex relaxed functions also decreases.
Therefore, any feasible point of the relaxed problem can become at least e-feasible for the
original problem by tightening the bounds around the point.

In this work, each region which has a non-positive solution of the convex relaxed problem
is partitioned into two smaller regions by bisecting the longest side of the initial region. At
each iteration in the branch and bound procedure, the lower bound of the original problem
is calculated by finding the infimum over all minima of the relaxed problem in each region
which has not been fathomed. Thus, a simple way of improving the lower bound is to halve
only the subrectangle responsible for the infimum of the minima of the relaxed problem
at each iteration. Convergence is reached when none of the subrectangles inside the total
region have a negative lower bound in which case there are no solutions, or when all of the
remaining subrectangles with negative lower bounds have been refined to a prespecified size

tolerance.

3.2 Novel Approach to Handle Trivial Solutions

In the problem of enclosing all heterogeneous azeotropes, we assume that there are two or
more liquid phases present, and we solve for the compositions of the liquid phases and the
temperature for every heterogeneous azeotrope. However, it is possible to find solutions
that satisfy the conditions for heterogeneous azeotropes where the compositions of the liquid
phases are identical. When this occurs, the solution is called a “trivial” solution. Trivial
solutions frequently correspond to homogeneous azeotropes.

From the constraint that the composition of the vapor phase is identical to the overall

composition of the liquid phase, we have,

11



yi = 3 mbiz (21)
jepPL

Since xfj is the same for every component 7 in each liquid phase j, then the liquid phase
fractions, m% can take any value between 0 and 1, as long as .ZL mbi = 1. Therefore, if
one trivial solution exists, then there are an infinite number ofjtegvia] solutions to (8) and
(19). This poses great difficulty for the branch and bound approach, since every region that
contains a solution to the original system of nonlinear equations must be kept and partitioned
until the size of the region has been reduced to a prespecified tolerance.

The primary difficulty with trivial solutions is that the number of convex lower bounding
problems that must be solved becomes very large, which requires large amounts of computa-
tional effort. Our approach to the problem of trivial solutions greatly reduces the computa-
tional effort, while maintaining the theoretical guarantee that all heterogeneous azeotropes
will be enclosed.

In our approach, when the current region is chosen, a quick check is performed to de-
termine if it is possible for the region to contain a trivial solution. The check is as follows:
for every liquid phase, Li, if there is another liquid phase, Ly, where the bounds on the
composition for every component in Ly overlap the bounds on the composition in Lq, then
the region can potentially contain a trivial solution.

xLlLBD’xLIUBD A (2
7 3

If the region may contain a trivial solution, then a lower bounding problem is not solved,

1,LBD [, UBD
! :

T ) #0 VieN (22)

r,Iter

but the region is retained, and the solution s,

is set to zero and the solution point is set
to the center of the region. If the region cannot contain a trivial solution a lower bounding
problem is solved. The rest of the branch and bound procedure remains unchanged.

This approach has two advantages: 1) regions containing a trivial solution are not dis-
carded until they have been reduced below the size tolerance, and 2) lower bounding problems
are not solved until a region is guaranteed not to contain a trivial solution. Advantage 1
maintains the theoretical guarantee for enclosing all azeotropes, while advantage 2 keeps the
problem computationally tractable. In the following section, the basic steps of the algorithm

are outlined.

3.3 Algorithmic Steps for Enclosing All Heterogeneous and Reac-

tive Azeotropes

STEP 0 - Initialization

12



A size tolerance €, and feasibility tolerance €; are selected and the iteration counter is
set to one. In this computational studies in sections 5 and 6 the tolerances have been set to
e =1x10° and ¢, = 1 x 10 . Global bounds are set for temperature T, and composition,
x and y and the local bounds are set equal to the global bounds. In addition, an initial
point is selected.

STEP 1 - Feasibility and Convergence Check

Let the current point be the solution of the lower bounding problem in the current region.
If the solution of the lower bounding problem is s = 0, and the maximum violation of all
nonconvex constraints of the original problem calculated at the current point is less than
the feasibility tolerance ef, then the current point is an es-solution of the original problem.
The current rectangle is fathomed if it has been refined to the point where its diagonal is

less than e,.
STEP 2 - Partitioning of Current Rectangle

The current rectangle is partitioned into two smaller rectangles by bisecting the longest

side in the current rectangle.

STEP 3 - Check for Trivial Solutions

For every pair of liquid phases, check

L, LBD [, UBD

("2t ) N (e

If the above statement is true, then the current region may contain a trivial solution. Set

r,Iter
sol

d.

L,LBD [ UBD
; ;

T, ) #0 VieN (23)
= 0, and set the solution point to the center of the current region. Proceed to STEP

STEP 4 - Solution of Conver Problems Inside Subrectangles

Solve the convexified optimization problem in both subrectangles by using any convex

nonlinear solver (e.g., MINOS 5.4'3). If the solution s72*", where r denotes a rectangle, is

r,Iter

zero, then it is stored along with the value of the variables (x, T") at the solution point. If s},

is strictly positive then the element (r, Iter) is fathomed and the corresponding rectangle
is no longer considered to contain a possible solution. Note that the global solution of the
original nonconvex problem is known to be zero, thus no upper bounding problem needs to

be solved.
STEP 5 - Update Iteration Counter and Lower Bound

The iteration counter is increased by one, and the lower bound of the solution is updated

to be the minimum solution over the stored ones from previous iterations. Furthermore, the

13



solution selected as the new lower bound is erased from the stored set.
STEP 6 - Update Current Point and Current Bounds

The current point is selected to be the solution point of the previously found minimum
solution in STEP 4, and the current rectangle becomes the subrectangle containing the

previously found solution,
STEP 7 - Check for Convergence

If the lower bound of the solution is less than or equal to zero, then return to STEP 1.
Otherwise, terminate.

A proof that this procedure is guaranteed to converge is given in Maranas and Floudas
11 For the problem of finding all homogeneous reactive azeotropes, step 3 can be omitted,

since there is only one liquid phase.

4 Identification of Nonconvex Terms

The formulation of the problem for enclosing all heterogeneous azeotropes, equation (8), and
the formulation of the problem for enclosing all reactive azeotropes, equation (19), contain
several nonconvex functions. If a local optimization approach is used to solve these problems,
it is likely that some of the multiple global minima will be missed, or even that none will be
found. Therefore, in order to guarantee that all global minima are enclosed, it is necessary
to develop a convex relaxation of the problem. In the approach used in this paper, a lower
bound on the solution of (8) and (19) is obtained by replacing each nonconvex constraint
with a tight convex underestimator and then using a commercially available nonlinear solver
such as MINOS5.4. The upper and lower bounds on the solutions are then refined using a
branch and bound approach.

A convex relaxation is developed by partitioning each nonlinear function in the constraint
equations into convex and nonconvex terms. Tight convex lower bounding functions are then
developed and replace each nonconvex term in the constraints.

Note that the formulations for enclosing all reactive azeotropes, (19) and (20), contain
an additional set of nonlinear contraints that the formulation for heterogeneous non-reactive
azeotropes, (8) does not contain. These additional equations are the chemical reaction equi-
librium constraints. However, the nonconvex terms that arise from the additional equations
are identical to the nonconvex terms in the phase equilibrium constraint. The nonconvex
terms correspond to the logarithm of composition, Inx;, and to the activity coefficient equa-
tion, In~y;. Therefore, once convex lower bounding functions have been developed for the
heterogeneous azeotrope case, the same analysis can be applied to the reactive azeotrope

case.

14



For many activity coefficient equations, the binary interaction parameters, such as 7;
and G;; in the NRTL equation, can be considered as functions of temperature. However, for
most systems, the temperature dependence of the Antoine equation for the vapor pressure
outweighs the temperature dependence of the activity coefficient equation. Therefore, in
this analysis, the interaction parameters are considered to be constants, and are calculated
using a reference temperature located between the upper and lower bounds for the system
being modeled. In section 5 the effect of using constant values for the binary interaction

parameters is studied in detail.

4.1 Saturated Vapor Pressure Equation

In this work, the saturated vapor pressure is calculated using the Antoine equation:

bi
T+ C;
where a;, b;, and ¢; are constants. The parameters a; and b; are always positive, while ¢;

In Pf* = q; (24)

may be positive or negative but | ¢; |[< 7. In the problem of enclosing all heterogeneous
azeotropes, Problem (8), and the problem of enclosing all reactive azeotropes, Problem (19)
and (20), this term appears in the constraints as both (—In Pf%) and (+1n P#**). It can be
easily shown that the term:

b;
T+Ci

(25)

is concave in T. As a result, in the first set of constraints of (8) which have (— In P), this
term is convex and no underestimation is needed. In the second set of constraints however,
this term is concave and a convex underestimator is required. A convex underestimator for
this concave term is simply a line segment between the values of the term at each limit.
That is,

b bi
o bi B b; ~TUhg T Tiig
T+CZ’_ TL-f-CZ' TU —TL

where TY, TV are the lower and upper bounds on the temperature in the current region.

(T -T") (26)

4.2 Wilson Equation

Wilson!* developed an equation to model the fluid phase excess Gibbs free energy for vapor-
liquid systems. It is well known that the Wilson equation fails to predict liquid-liquid be-
havior, therefore it is not possible to use the Wilson equation for enclosing all heterogeneous

15



azeotropes. The Wilson equation is often used to model solutions containing polar and non-
polar components and can be useful for examining homogeneous reactive and non-reactive

systems. The Wilson activity coefficient equation is:

e
J
EN

JEN

where A;; is the nonsymmetric binary interaction parameter between components ¢ and j
The Wilson expression for the activity coefficients contains three different nonconvex

terms. The first nonconvex term is (In ) z;A;;). The second and third nonconvex terms
jEN

are:
1 Zj
st = 28
T e (28)
keN
and,
2 Lj
e ____ 9 29
% > N (29)
keN

A convex lower bounding function must be developed for each of these nonconvex terms.
The first nonconvex term is concave in x;, for 2 = 1,2, ..., N. Therefore, this term can be

underestimated by the following expression:

mY

In =

L
In Z xinj Z In mf + ﬁ(z .’E]’Aij — mf) (30)
JEN 1 1 jEN
where,
JEN
s.t. .EEN.’L']' =1 (31)
J
af < <af
and,
sz = Inhax Z .%]AZ]
JEN
st % oy =1 (32)
J

U

L .
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For the second type of nonconvex terms found in the Wilson formulation, 28 and (29), we
follow the method presented in Maranas and Floudas!! for products of univariate functions.

The convex underestimators for these terms are:

i = U U
> TRl m; m;
kEN
z¥ z d
J + e
L L
> xljy - omy om;
kEN
L
7 ED DR TV Ll
2 L kEN J
Cy > max ——7 + T T TR
m; mymy; m;
U
i 2 Tl U
_J + EN _ 7
U LU L
m; m;m; m;

Using the convex underestimating functions, we have developed a method for enclosing

all homogeneous reactive azeotropes with the Wilson activity coefficient equation.

4.3 NRTL Equation

The NRTL equation was derived by Renon and Prausnitz!'® for fluid phase activity coeffi-
cients using the Non-Randomness assumption and Scott’s Two-Liquid theory. The NRTL
formula for the activity coefficient is:

'gNTjiGjixj G kENTijkjﬂflc
Invy,; = s 4 Z ] (135 — £ (33)
Gixs : Grixp Grix
jgN I JeN lgN ki lcgN ki

The NRTL activity coefficient expression contains two types of nonconvex terms that are
fractional in composition.
T
+——— and +—7—-—
E Gjixj 2
jeN > Grizy

JEN

Ty

(34)

Tight convex lower bounding functions for both of the terms shown above have been
derived and are provided in Appendix A. The convex lower bounding functions can be
applied for both the heterogeneous and reactive azeotrope formulations.
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4.4 UNIQUAC Equation

The UNIQUAC equation was originally developed by Abrams and Prausnitz'®. They postu-
lated that the excess Gibbs energy depended on two effects: a combinatorial contribution due
to the differences in the sizes and shapes of the components, and a residual contribution due
to the energetic interactions between the components. The original equation was modified
by Anderson and Prausnitz'? in order to improve predictions for systems containing polar
molecules such as water and alcohols. The activity coefficient for the UNIQUAC equation

is given as:
Iny; = Iy +In (35)
where,
¢ |z 0; o
Iny =In—=+ZgIn—+1L——> L, (36)
2 (oF Ti len
and,
R_ ; 7ij0;
Inv;" = g;(1 - ln(Z Tjiej) - Z 7,) (37)
JEN JEN ]gN 03, Thj

The combinatorial and residual contributions to the activity coefficient are represented
by 7¢ and F respectively. The 7;; are non-symmetric binary interaction parameters, ¢;,
q¢i, and r; are structural parameters of the pure components, and z is a lattice coordination
number. The values [;, ;, 6}, and ¢; are defined in terms of the parameters described above

and are given by:

0, = 4% Vie N (38)




When the definitions of these parameters are substituted into the Iny¢ and In 7 expres-
sions, and these two are added together to form the complete In~; equation some simplifi-

cations can be made. The final expression is:

2 z -ZN i
€

Iny; = (5% —1) ln(Z zjj) - 5%‘ ln(z qjxj) - TzJZT

JEN jJEN i jLj

T..ql'x.
—gIn(Y_ miidir;) + (Y g5ws) — ¢ ) EUT § ’Jx
jeN JEN JEN 2 ki QkTk

< i
+ (ln i + 24 ln(i) + 1+ qi)

2

As is evident, this expression contains many nonconvex terms. The first four nonconvex

terms are log terms:

In (Z rj:cj> ., In (Z qjx]) ., In (Z q;-xj) , and In (Z Tjiq;xj) (39)

JEN JEN jEN jEN

The last four nonconvex term are fractional terms:

— and — (40)
> ora’ > o > TiqT > TiqT
lEN leEN lEN lEN

Note that the binary interaction parameter, 7;;, is considered to be a constant in this analysis,
as described in Section 4.

Tight convex lower bounding functions for all of the nonconvex terms that arise from
the UNIQUAC equation have been derived and are provided in Appendix B. The convex
lower bounding functions can be applied for both the heterogeneous and reactive azeotrope

formulations.

4.5 UNIFAC Equation

In some cases, one would like to predict the azeotropes for a system where there is insuffi-
cient equilibrium data to obtain accurate binary interaction parameter values. As a result,
several solution-of-groups methods have been developed to allow equilibrium predictions in
these systems. Solution-of-groups methods consider the molecules in the chemical system as
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groupings of elements. For example, 1-propanol contains one C'H3 group, one C'Hy group,
and one C'HyOH group. The interactions between the molecules can then be approximated
by determining the interactions between the groups that make up the molecules.

The most widely used solution-of-groups method is the UNIFAC equation, originally de-
veloped by Fredenslund et al.'8, primarily because the group-interaction parameters for many
pairs of groups have been calculated and compiled and are updated periodically, Gmehling
et al.1. As its name indicates, the UNIFAC (UNIQUAC Functional Group Activity Co-
efficients) method is based on the UNIQUAC equation. Like the UNIQUAC equation, the
natural logarithm of the UNIFAC activity coefficient is the sum of a combinatorial contri-

bution and a residual contribution:

Invy; = lnfyz-c + In fyZ-R (41)

The combinatorial part, Iny¢, uses only pure-component data, and therefore no modi-
fications of the UNIQUAC combinatorial part, Equation (36), are needed. However, in the
UNIFAC method, the residual part is calculated as the sum of the energetic interactions of
the groups, rather than the molecules themselves.

First, the pure component parameters, ¢; and r;, are defined as:

g = ng,-Qg and r; = ngiRg (42)

9€G geG
where G' is the set of all groups in the system; vy; is the number of groups g contained in
component %; ), is the group area parameter; and R, is the group volume parameter.
The residual part of the UNIFAC equation is given by the following expression:

Vgm ), QmUm;T;

R __ ) _ JEN
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where the temperature-dependent group-interaction parameter, ¥,,,, is given by

Uym = exp (_%Tm) (44)

and the group-interaction parameter, a4y, is determined from experimental phase equilib-
rium data. Similar to the NRTL and UNIQUAC equations, the group interaction parameters
are treated as constants with respect to temperature in this paper. By introducing a few
substitutions, the residual contribution can be simplified to

ln'yZ-R = — ) Kgln < > a/gj:vj>
JEN

geG

+ > Kgiln ( q;x )
gec O \jen 7 (45)

BgijT;
-y &
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where the constants kg, 0, Bgij, and d; are given by

Rgi = nggi
Qgj = Z Kmj Wmg
meqG
Boij = Z Kmikigi WUmg
meG
Z /fmi\Ijmg
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€

The UNIFAC equation contains several nonconvex terms. As was the case for the UNI-
QUAC equation, these terms fall into two categories: logarithmic terms, and fractional
terms. In addition, since the combinatorial part of the UNIFAC equation is identical to the
UNIQUAC equation, the nonconvex terms that arise from this part are also identical. These
equations are the first two expressions in (39), and the first two expressions in (40). The

nonconvex terms from the residual part are the following:

In (Z agjacj> , and In (Z qj:vj) (46)

jEN JEN

and
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Boij; Cand - Boij; (47)
Y. QgkTk D QgrTk
kEN kEN

Tight convex lower bounding functions for all of the nonconvex terms that arise from
the UNIFAC equation have been derived and are provided in Appendix C. The convex
lower bounding functions can be applied for both the heterogeneous and reactive azeotrope

formulations.

4.6 Bilinear Terms

Bilinear terms appear in the formulations for both the heterogeneous and the reactive
azeotrope problems. In each case, the bilinear term is replaced by a new variable, and

lower bounds and upper bounds on the new variable are introduced using the results of
Al-Khayyal and Falk?® and McCormick?!. This method is described in Appendix D.

5 Computational Studies for Enclosing All Heteroge-

neous Azeotropes

The proposed approach for enclosing all heterogeneous azeotropes in a multicomponent mix-
ture is written in GAMS and was run on a Hewlett Packard J-2240 machine. The solver
MINOS5.412 is used as a subroutine. All times reported are the total cpu time in seconds
needed to enclose all azeotropes in the system. A convergence tolerance of 1-107% was used
for all examples. For each system experimental data reported in Gmehling et al.?? are listed
for all of the known heterogeneous azeotropes.

In comparing the computational results for the examples with the experimental data,
it is noted that in some cases the equations will fail to predict a known azeotrope, or will
predict azeotropes where none exist. This demonstrates the importance of obtaining reliable
estimates of the pure-component and binary-interaction parameters for the system being
studied. In addition, it is well known that no single thermodynamic model provides superior
results for every system. The purpose of the following examples is to demonstrate the
performance of the global optimization based approach for several different activity coefficient
equations. No attempt is made to determine the most accurate model or set of parameters
for the systems presented.

The binary interaction parameters in the NRTL, UNIQUAC and UNIFAC equations are
functions of temperature. In the NRTL equation, the equations for the parameters, 7;; and

Gz'j are:
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RT
Gij = exp — QT4
where g;; and o;; are constant binary interaction parameters. In the UNIQUAC equation,

the equation for the parameter, 7;; is:

Ui — Ujj
RT
where u;; is a constant binary interaction parameter. In the UNIFAC equation, the expres-

Tij = exXp —
sion for the parameter, ¥, is:

Vom = €xp (—ag—m>
where ag,, is a constant binary group-iteraction parameter. For most systems, the tempera-
ture dependence of the Antoine equation for the vapor pressure outweighs the temperature
dependence of the activity coefficient equation. Therefore, in this analysis, the interaction
parameters are considered to be constants, and are calculated using a reference temperature
located between the upper and lower bounds for the system being modeled. In order to
study the effect that this simplification has on the prediction of azeotropes, results have
been obtained using the full temperature dependence of the binary interaction parameters.
Tables are provided which show the difference between solutions obtained with and without
temperature dependence.

An iterative scheme for determining the temperature dependent binary interaction pa-
rameters has been suggested by a reviewer. In this approach, an initial reference temperature,
Ty is specified. The binary interaction parameters are calculated using 7. The global op-
timization procedure for enclosing all azeotropes is applied. Then, for each azeotrope that
is found, the following iterative approach is used. The new reference temperature, 77, is
set to the temperature of the azeotrope from the initial solution. The binary interaction
parameters are recalculated using 77;. Then the global optimization approach is applied
again, where the variable bounds (composition and temperature) are set to tight intervals
around the previous location of the azeotrope. If the new azeotrope temperature is within
some toleracne of the previous temperature, then the procedure is terminated. Otherwise,

the reference temperature is updated again, and another iteration is performed.

5.1 Ethanol/Benzene/Cyclohexane/Water

This quaternary system was used by Eckert and Kubicek® to illustrate their homotopy-
continuation approach for finding all heterogeneous azeotropes. Experimental data show
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that this system contains two binary heterogeneous azeotropes, two ternary heterogeneous,
azeotropes, and one quaternary heterogeneous azeotrope. In addition, the system contains
four binary homogeneous azeotropes and one ternary homogeneous azeotrope. In this ex-
ample, the NRTL, UNIQUAC, and UNIFAC equations are used to model the liquid phase

activity coefficients.

5.1.1 Binary Systems

The results for the binary system Benzene-Water are shown in Table 1. Both the UNIQUAC
and UNIFAC equations predict vapor compositions for the single heterogeneous azeotrope
that are very close to the experimentally reported values. The GAMS implementation re-
quired 21 to 24 seconds for the UNIQUAC and UNIFAC models and 41 seconds for the
NRTL model.

The results for the other binary system, Cyclohexane-Water, are shown in Table 2. For
this system, the UNIQUAC equation did not predict any heterogeneous azeotropes for any
literature values of the binary interaction parameters for Cyclohexane-Water. It is interesting
to note that the UNIFAC equation predicted a heterogeneous azeotrope that is very close to
the experimental values. In general, one expects the UNIQUAC equation to perform better
than the UNIFAC, since UNIQUAC parameters are obtained from experimental data, while
UNIFAC parameters are empirically determined from molecular group contributions. The

computational effort for the three implementations ranges from 10 to 25 seconds.

5.1.2 Ternary Systems

For the first ternary system, Ethanol-Benzene-Water, (see Table 3), the UNIFAC and UNI-
QUAC equations provide predictions that are close to the experimental values, while the
heterogeneous azeotrope predicted by the NRTL equation is far from the experimental val-
ues. The computational effort is increased for this larger system, but remains reasonable,
ranging from 100 to 140 seconds.

The second ternary system is Ethanol-Cyclohexane-Water, and the results are shown in
Table 4. The UNIQUAC and UNIFAC equations provide good predictions while the NRTL
equation is far from the experimental values. It is interesting to note that even though
Cyclohexane-Water is a subset of this ternary system for which the UNIQUAC equation
performed poorly, for the ternary system, the UNIQUAC equation performs well. The CPU
times required for all implementations are less than 100 seconds, ranging from 88 to 96

seconds.
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5.1.3 Quaternary System

The final heterogeneous azeotrope in the system is a quaternary azeotrope between Ethanol-
Benzene-Cyclohexane-Water. The results are shown in Table 5. Following the pattern
of the previous azeotropes in this system, the UNIQUAC and UNIFAC equations provide
predictions of the azeotrope that are much closer to the experimental values than the NRTL
equation. Note that even for this large system, the computational effort for the GAMS
implementation is very reasonable, requiring 221 seconds for the NRTL equation, 242 seconds
for the UNIQUAC equation, and 257 seconds for the UNIFAC equation.

Note that our results with the NRTL equation differ significantly from the results of
Eckert and Kubicek®. This is most likely due to the fact that different binary interaction

parameters were used to obtain the results in this work.

5.1.4 Temperature Dependence of Binary Interaction Terms

Tables 6 through 19 compare the results obtained by solving the problem temperature de-
pendent binary interaction parameters with those obtained using constant parameters. The
results clearly show that using constant values for the binary interaction parameters has
very little effect on the solution obtained. In the majority of cases, the differences for mole
fractions are in the third decimal place, and the differences for the temperatures are in the
fourth significant digit. There were no cases where a new azeotrope was located by using

temperature-dependent binary interaction parameters.

6 Computational Studies for Enclosing All Reactive

Azeotropes

Example 1: Hypothetical Ternary System I
This example was used by Okasinski and Doherty!® in order to study the behavior of

reactive azeotropes. The mixture contains three components undergoing one reaction,

2A<—= B+ C

The system contains only one liquid phase. In this example, the Wilson equation is used
to model the liquid phase activity coefficients, and we have used the Antoine equation and
Wilson equation parameters provided by Okasinski and Doherty'°.
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Table 20 shows the results of the proposed approach for enclosing all reactive azeotropes
for three different values of the equilibrium constant. Okasinski and Doherty ! report that
there is one reactive azeotrope for all values of the equilibrium constant, and this is verified
in our results. As the equilibrium constant is increased, the composition of the reactive
azeotrope moves towards higher B composition, and the temperature of the azeotrope de-
creases slightly. The computational effort ranged from 7 to 15 seconds for this ternary

example.

Example 2: Hypothetical Ternary System II

This is another example of a hypothetical single-reaction system used by Okasinski and

Doherty!?. The mixture contains three components undergoing the reaction:

2A«<— B+ C.

The system contains only one liquid phase. In this example, the Wilson equation is
used to model the liquid phase activity coefficients, and the Antoine equation and Wilson
equation parameters provided by Okasinski and Doherty ! are used.

This is an interesting system because at small values of the equilibrium constant, two
reactive azeotropes exist. When the equilibrium constant is increased beyond 0.027, both
reactive azeotropes disappear. The results are shown in Table 21 for K., = 0.001 and
K.q = 0.025. In both cases, the approach for enclosing all reactive azeotropes located both
reactive azeotropes. The computational effort for this example is substantially larger than
for the ternary system in Example 1, since more than one reactive azeotrope is present. For
K., = 0.001, 423 seconds were required for the GAMS implementation. Interestingly, as the
azeotropes move closer together in composition and temperature space for K., = 0.025, the

computational effort is reduced, to 99 seconds.

Example 3: MTBE System with no inert

The MTBE system has been well-studied in the literature for design of reactive distillation
columns. Methanol and isobutene react to form methyl tert-butyl ether (MTBE).

MeOH + Isobutene «— MTBE

At a pressure of 8 atm, this system contains two homogeneous non-reactive azeotropes. In
this example, the Wilson equation is used to model the liquid phase activity coefficients, and
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the Antoine equation and Wilson equation parameters provided by Okasinski and Doherty
10 are used.

Results for three different values of the equilibrium constant are shown in Table 22. At
a small value of K4, only one reactive azeotrope exists, which contains a high concentration
of the reactant isobutene. Okasinski and Doherty'® report that in the region, 0.145 <
K., < 31.9, no reactive azeotropes exist. At K., = 32.0, our approach shows that two
new reactive azeotropes appear, with low isobutene concentration. The two azeotropes have
similar compositions and temperatures. As the equilibrium constant is increased, the reactive
azeotropes move further apart, as is shown for K., = 49.0. When only one azeotrope exists,
only 30 seconds of CPU time are required. For the cases with two azeotropes, 114 seconds

and 104 seconds are required.

Example 4: MTBE System with n-Butane inert

In this example, an inert has been added to the MTBE system. The Wilson equation is
used to model the liquid phase activity coefficients, and the Antoine equation and Wilson
equation parameters provided by Okasinski and Doherty'? are used.

MeOH + Isobutene <— MTBE

The results for this four-component example are shown in Table 23. For a value of the
equilibrium constant of K., = 27.0, the approach for enclosing all reactive azeotropes finds
two azeotropes. One azeotrope has very low n-butane composition, and corresponds to the
“pseudo”-reactive azeotrope reported by Ung and Doherty®. The second azeotrope has very
high n-butane composition. This corresponds to the saddle reactive azeotrope just inside
the composition triangle, as reported by Ung and Doherty®. The computational effort of

150 seconds is very reasonable, even for this larger, difficult example.

Example 5: Isopropyl Acetate System

Isopropyl acetate is formed through the acid-catalyzed esterification reaction between

isopropanol and acetic acid:

iso—CyoH;OH + CH3;COOH <= (CH3;COOCsH7 + H,0.

A reactive azeotrope was recently discovered for this system, which is the first reactive
azeotrope to be confirmed experimentally, Song et al.?3. The equilibrium constant for this
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reaction is reported to be 8.7 by Lee and Kuo?*. In this work, we have attempted to pre-
dict the reactive azeotrope using the proposed method with the NRTL, UNIQUAC, and
UNIFAC equations. Binary interaction parameters for the NRTL equation were obtained
from Manning?®. Table 24 shows that the NRTL equation predicts a reactive azeotrope for
K., = 8.7 that is very close to the experimental results reported by Song et al.?*. Binary
interaction parameters for the and UNIQUAC equation were obtained from the DECHEMA
vapor-liquid equilibrium data series (Gmehling and Onken?) with the exception of the
isopropanol-isopropyl acetate and isopropyl acetate-water interactions. These were calcu-
lated from the UNIFAC group contribution parameters. Table 24 shows that the UNIQUAC
and UNIFAC activity coefficient equations do not predict a reactive azeotrope for K., = 8.7.
However, when the equilibrium constant is increased above 15.0, a reactive azeotrope appears
for the UNIQUAC equation. The reactive azeotrope predicted by the UNIQUAC equation
for K., = 20.0 is shown in table 24 and is close to the homogeneous non-reactive azeotrope
between isopropyl alcohol and water. The computational requirement for locating the reac-
tive azeotropes was 66 seconds for the NRTL equation and 37 seconds for the UNIQUAC
equation. In the cases where a reactive azeotrope does not exist, the computational effort is
reduced to 22 seconds for the UNIQUAC equation and 29 seconds for the UNIFAC equation.

7 Conclusions

This work has presented a deterministic global optimization method for enclosing all het-
erogeneous azeotropes in non-reacting mixtures containing N components and P liquid
phases. A method based on the same global optimization approach has been developed for
computing all reactive azeotropes in mixtures containing N components undergoing R chem-
ical reactions. The global optimization method is based on a branch and bound algorithm to
iteratively solve a formulation of the original problem in which the nonconvex constraints are
replaced by valid convex underestimating functions. A novel approach has been developed
for avoiding the computational difficulty that arises from “trivial” solutions. The problem
may contain multiple global minima, and there is a one-to-one correspondence between global
minima where the objective value is zero and heterogeneous azeotropes. Nonconvex terms
for the saturated vapor pressure equation In Pf*, the Wilson equation, the NRTL equation,
the UNIQUAC equation, and the UNIFAC equation have been identified and convex un-
derestimating terms derived for each. While only four thermodynamic models were used,
this method can be extended to include the modified Wilson, and ASOG activity coefficient
models, as well as equation of state models.

The novel contribution of this approach is that it offers a theoretical guarantee of enclosing

all heterogeneous and reactive azeotropes, while at the same time the computational effort
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is modest. In addition, the approach is not limited to a small number of components,
reactions, or liquid phases. The effectiveness of this method was demonstrated for several
chemical systems and three different thermodynamic models of the liquid phase activity

coefficients. In all examples, the method found all azeotropes for the systems studied.
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A Convex Underestimating Functions for the NRTL

Equation

In the NRTL equation formulation of the problem of enclosing all heterogeneous and reactive

azeotropes, three different types of nonconvex terms are encountered:
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so z;,y; > 0, but w; can be positive or negative.
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Following the method of Maranas and Floudas!! for fractional terms, the first two types

of nonconvex term can be underestimated by:

L L
w; . w: .
_’L > max Yi y'iL yi L
. - : w:"Y; w; . L
Yi A — fw" <0
vl ylyl + Yl L
U U
¢ . W .
Yo ow W if wZU >0
S L
A I T Y
itw < 0
vr o oyl - v L
L L T
- > max Yi vi Y v
Y — L i — — fw >0
vi U outy? WY L |
U ) wY . ]
D w0 if wZ-U <0
w; w; Y w; . U
— By — ifwy >0
o o : |
where
L .
wy = minTeGrx
J keN RITRITE
L
w; = maxTeGriT
J keN FITTRITR
L .
= min Gz
Y, e kjTk
U
7 = max Gz
Yi keN Ik

and in the second type of nonconvex term, each fractional term in the summation can be

underestimated by:

L L
) U U
y] J y] yJ
2Y oz 2V
, + L
Yj Y; Y;
L L
TS {_ﬁ Ty Ty
. I LU U
Yj j Y5'Yj Y;
U U
I R :c_]}
U ..U L
Yy oYY Y

Therefore, since ) (max z;) = max (Z :cj>, the convex underestimator for the second term
J J
is:
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ot
x
j
ZTUGU__ > max Y TGy + )T z]Gm U = > TGy 7
JEN j jEN i jeN Y5 jen Yj
2V
ZTZ'J' g +ZTZJ ij L ZTU ij L
JEN i jen JEN Yj
ot
aly;
Zj LY
_ZTZJ i— = max ZTZJ ij L+ZTZJ i ZTU ij U’
jen j jEN | jeN ij jEN Yj

U
_ZTZ] ZJyU+ZTZJ Uy]Ly]U ZTU ZJyL}

JEN JEN JEN

The third term is more difficult to underestimate, but a convex underestimator can be

constructed by successively finding the convex lower bounding function for pairs of uni-

variate functions in a recursive manner until no pairs are left. The recursive procedure

for constructing convex underestimators from pairs of univariate functions, as shown by

Maranas and Floudas'!, can be used for the third nonconvex term from the NRTL equation

as illustrated below.
First, the fractional term (z—f) is considered. Since acf and :Uy are both always greater
J

than zero, this term can be underestimated by:

L L
= > /\§ = max {—]+—(J]——?],
Yj Y Y Y

v Tul T
yi oy Yl

and since (7; — z; LY is always positive, )\JZ is always positive. Next, a convex underestimating

2
function is constructed for the term (2—;)

A2 . PP C D

— > \; = max {——+ U U,

Yj Yj Yj Yj
L
yi Yy uf

L v
where (X" = %) and (X} = %),
J J
Finally, convex underestimating functions for the terms (A\jw;) and (A;(—w;)) are con-

structed:
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1,L 1,L
/\le > max {w-L)\l—l—w]/\] —ij/\j’,

w9\ LU _ U ALY
YA+ wi A —wl A
AN(—w;) > max {—w[-])\l- - wj/\;’L + wJU)\}’L,
Ly1 LU L\LU

U

2,L L 2,U
1.L AL Tk 1.U AL T .. .
where (A" = 4 = ) and (A" = ;- = . ). Combining these terms gives a
J Y5 Y5 Y J Yj Y;'Y;
convex underestimating function for the each fractional term in the summation
L L.L
TiWw; w;T; Wi T;
R = = 2
YiVi YiYi oYY
wiry  wla¥
Uyl ] il
wi A; + —
37 L, L L, L
Yi¥i Y5y
L U,.L
Tiwj Uyt WiTy o Wy T
T max § —wWjA; = 7 + 5
YiY; Y5 Yj Y57 Yj
U L..U
e w;T; Wi
3N I, L L, L
Y5i¥i  Y5Y;

and A}, X%, ¥, v, wi, and wf are as defined above. Now, by the same argument as was
given for the second type of nonconvex term, the convex underestimator for the third type

of term is:
LW L1 wijL
ZGZJ 2 ZGWUJ)‘ +ZGZJ UU Gij U U’
jen  YiYj jeN jen Y'Y jen Y Yj
U U,.U
wy s
U1
Zwa}“"ZGU LL_ Gij i:i
JEN jJEN Y5’y jJEN Y59
Zjw; Uyl w;T wy Ty
—- > Gy > max {— ) Gywj\j— ) Gij— Gij =7
jEN YiYj JEN JEN iY  jen  Yi Y
LU

J
vt
J
U
wsaxs
_ G. wL)\l G. G.. -1
Z U Z 1] ]Ly]L . 1] y]Ly]L

B Convex Underestimating Functions for the UNIQUAC

Equation
The problem of enclosing all heterogeneous and reactive azeotropes using the UNIQUAC

equation contains many nonlinear terms. The nonconvex terms can be grouped into two
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basic categories. The first group has the form:

In (Z le‘j)
JEN

The nonconvex terms in this group are:

In (Z zjj) , In (Z qj:rj) , In (Z q;-mj) , and In (Z Tj,-q;-xj>
JEN JEN jEN JEN

These are all concave terms, thus convex underestimating functions can easily be constructed.

When terms of this form appear as (—In }° ¢;jx;) they are convex and do not need under-
JEN
estimators. The convex underestimators for the first three terms above are written:

L , U
T §x3§xj

and,

mY = min ) ¢
JEN
JEN
L , U
x; <z; < T,

The convex underestimator for the fourth term is very similar:

L m; L
“‘(ZC”“’) 2RI Gl ) (Z ) m")

JEN

for ¢;j = 7;q; and where,
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U _ oy
m; = max ) T;(;T;
JEN
JEN

U

L )
z; ngng

and,

L _ i ol
m; = min ) Tjig;%;
JEN
JEN

L ) U
x; ngng

The second group of nonconvex terms are fractional terms of the form:

x-
c- 1 (48)
Y dixy
leN
This group includes the terms:
! !

PIRES PR 2 Tiiq;T; 2 TiiqT;
JEN JEN JEN JEN
7’ - 7’ 7/’ and - 7[
2. Ty 2. Ty > T > TG
leEN lEN leEN leEN

For terms of this type, the sign of the constant in the numerator determines the formula
that is used for the underestimating function. For the UNIQUAC equation, the parameters
4,4}, 7j, and 7;; are always positive, while /; may be either positive or negative. Therefore
the constant ¢ = +7'Z~jq;- will always be positive and ¢ = —Tiqu- will always be negative.
However, the sign of the constant for the first two terms, ¢ = +I; and ¢ = —[; must be
determined before the underestimating function is constructed. When ¢ is positive, the

underestimating function for a linear fractional term is given by:

cz; cxy cr;  cxf
> max { —2 4 L _ I
> djz; Sdi;;, mU mU’
jEN leN
U U
cx! cx;  crj
Sodigp  mE mb

When c is negative, the underestimating function is given by:
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cx; cx €N cx
—J > max ——z Le =
> djz; m mim m
JEN
crl ¥ dixy U
_C.T] lEN i Cx]
mV mimV mL
where,
mY = max Y diz
IEN
S.t. E T = 1
IEN
af <ap <z
and,
mP = min Y diz;
IEN
S.t. Z T = 1
IEN

af <ay <z

C Convex Underestimating Functions for the UNIFAC
Equation

The problem of enclosing all heterogeneous and reactive azeotropes using the UNIFAC equa-
tion contains several nonconvex terms. Most of the terms are identical to the nonconvex
terms from the UNIQUAC equation, as discussed in Section 4.5. Convex lower bounding
functions for these terms are derived in Appendix B. Of the remaining nonconvex terms,

the first term has the same logarithmic form as discussed for the UNIQUAC equation.

In (Z Ckgjﬂij)
JEN

This is a concave term, thus the convex lower bounding function is given by the following

equation:



where

= max ), ;T
JEN
JEN
L , U
T; <z; < z;

and,

e~

= min ) Qg
JEN
s.t. Z T; = 1
JEN
L . u
x; <z; < x;

The last two nonconvex terms for the UNIFAC equation are fractional terms.

ByijT; and  — ByijT;
)
Y. QgpTk D QgpTy
keN kEN

For the UNIFAC equation, the parameter 3, is always positive. Therefore, for the positive

fractional term, the underestimating function is given by:

L L
Bogwj o o) P Beigti  Pois®
iy )
> gy EZN Ogpzk My myg
U U
/Bgijxj BgijT; B ,Bgijﬂfj
3 kT mb mi
ken g g

For the negative fractional term, the underestimating function is given by:

L
BgijTi © > QgrTy L
e o 9ij 9 -
Boij; > Bois; ! ken Bois;
- 2 max {(—— .+ T~ - =,
Y. QgpTk my mgmyg mg
kEN
Boijal ¥ ogpx
Baoii T 913§ gk B
_ Mgijrj keN M9y
U LU L
myg mym/ my

where,
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U _
mg, = max D QgpTy
kEN
s.t. E T = 1
kEN

and,

L _ .
m, = min Y. QgpTg
kEN
kEN

rp <y <z

D Convexification of Bilinear Terms

Bilinear terms appear in the formulations for both the heterogeneous and the reactive
azeotrope problems. For example, the constraint that the composition of the vapor phase is
equal to the overall composition of the liquid phase given by equation (6) contains bilinear

terms of the form,

mbigl (49)

In order to convexify the constraint, every bilinear term is replaced by one new variable,
and lower bounds and upper bounds on the new variable are introduced using the results of
Al-Khayyal and Falk?® and McCormick?'. Using this approach, equation (6) becomes,

Yi — Z whi =0 (50)

jepL

L;,.Lj

where w’’ has replaced the bilinear term m”z;7. The upper and lower bounds on the new

variable are provided by four constraints,

wh > (") a4 mb ()PP — (mb)EEP () (51)
wki > (ij)UBDxiLj + mbi (xfj)UBD _ (ij)UBD(xZLj)UBD (52)
wli < (ij)UBDxiLj + mkLi (xiLj)LBD o (ij)UBD(xiLj)LBD (53)
whi < (ij)LBDIZL;’ + mkLi (xiLj)UBD _ (ij)LBD(xiLJ—)UBD (54)

Note that equation (50) is a linear equality constraint, and the four new constraints are

linear inequalities.
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Heterogeneous azeotropes: Benzene — Water system
GAMS Implementation; P = 1.0 atm

Azeotrope | z™! zl? y
NRTL Equation
B 0.0046 | 0.7669 | 0.6421 || T'= 346.79 K
W 0.9954 | 0.2331 | 0.3579 || CPU = 41.38
UNIQUAC Equation
B 0.0032 | 0.9991 | 0.7043 || T"= 342.31 K
W 0.9968 | 0.0009 | 0.2957 || CPU = 21.18
UNIFAC Equation
B 0.0006 | 0.9951 | 0.7028 || T'= 342.36 K
W 0.9994 | 0.0049 | 0.2972 || CPU = 23.95
Experimental Data
B —— | —— | 0704 | T =342.45 K
W — | — | 0.296
Table 1: Results for Example 1; Benzene-Water
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Heterogeneous azeotropes: Cyclohexane — Water system
GAMS Implementation; P = 1.0 atm

Azeotrope |zt zl? Y
NRTL Equation
C 0.8621 | 0.6834 | 0.6892 T =343.37TK
W 0.1379 | 0.3166 | 0.3108 CPU =18.91
UNIQUAC Equation
No azeotrope predicted CPU =10.83
UNIFAC Equation
C 0.0030 | 0.6676 | 0.6121 T = 348.67 K
W 0.9970 | 0.3324 | 0.2973 CPU = 25.26
Experimental Data
C — | — | 0.701 T = 342.55 K
W — | —— | 0.299

Table 2: Results for Example 1; Cyclohexane-Water
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Heterogeneous azeotropes: Ethanol — Benzene — Water system
GAMS Implementation; P = 1.0 atm

Azeotrope |z xl? Y
NRTL Equation

E 0.1156 | 0.0927 | 0.0939 T =34484 K
B 0.0224 | 0.6252 | 0.5927 CPU =101.55
W 0.8620 | 0.2821 | 0.3134

UNIQUAC Equation
E 0.1111 | 0.1842 | 0.1673 T =339.70 K
B 0.0011 | 0.7683 | 0.5912 CPU =126.99
W 0.8878 | 0.0475 | 0.2414

UNIFAC Equation

E 0.3783 | 0.1008 | 0.1968 T =339.50 K
B 0.0651 | 0.8806 | 0.5986 CPU = 140.10
W 0.5566 | 0.0186 | 0.2046

Experimental Data
E — | — | 0.228 T =338.00 K
B — | —— | 0.539
W — | — | 0.233

Table 3: Results for Example 1; Ethanol-Benzene-Water
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Heterogeneous azeotropes: Ethanol — Cyclohexane — Water system
GAMS Implementation; P = 1.0 atm

Azeotrope ||z 2 y
NRTL Equation

E 0.0002 | 0.0003 | 0.0010 T =343.29 K
C 0.0070 | 0.8741 | 0.6912 CPU = 88.34
W 0.9928 | 0.1257 | 0.3078

UNIQUAC Equation
E 0.5471 | 0.2112 | 0.3207 T =337.05 K
C 0.0435 | 0.7539 | 0.5223 CPU = 96.23
W 0.4093 | 0.0349 | 0.1570

UNIFAC Equation

E 0.0004 | 0.0005 | 0.0010 T = 348.65 K
C 0.0030 | 0.6662 | 0.6114 CPU = 92.28
W 0.9966 | 0.3333 | 0.3876

Experimental Data
E — | — | 0.302 T =335.7 K
C — | — | 0.522
W — | — | 0.176

Table 4: Results for Example 1; Ethanol-Cyclohexane-Water
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Heterogeneous azeotropes: Ethanol — Benzene — Cyclohexane — Water system
GAMS Implementation; P = 1.0 atm

Azeotrope

L1

xLQ

Y

NRTL

Equation

0.1619

0.0517

0.0801

T =344.76 K

0.3678

0.6452

0.5716

CPU = 220.84

0.0044

0.0061

0.0043

=1Noll=-Ilicy

0.4659

0.2970

0.3439

UNIQUAC Equation

0.3735

0.1785

0.2232

T =334.60 K

0.0368

0.4161

0.3293

CPU = 241.63

0.0107

0.3631

0.2824

=1Nol i+l

0.5790

0.0422

0.1651

UNIFAC Equation

0.1576

0.1039

0.1116

T=33741 K

0.0080

0.5739

0.4932

CPU = 256.62

0.0131

0.2071

0.1794

=lQ|lw| o

0.8212

0.1151

0.2158

Experimental Data

0.224

T = not provided

0.163

0.380

=lNoll--Ilics

0.233

Table 5: Results for Example 1; Ethanol-Benzene-Cyclohexane-Water
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Benzene — Water
NRTL
Trer = 330 K | Temp Dependent BIP’s
L, Ly Ly L,

21 | 0.0046 | 0.7669 || 0.0060 0.7677

o | 0.9954 | 0.2331 || 0.9940 0.2323

Y1 0.6421 0.6438

Yo 0.3579 0.3562

T 346.79 K 346.71 K

Table 6: Analysis of Temperature Dependence of NRTL Binary Interaction Parameters;
Benzene — Water system
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Benzene — Water
UNIQUAC
Trey = 333.15 K || Temp Dependent BIP’s
Ly Ly Ly L,
z1 | 0.0032 | 0.9991 | 0.0033 0.9989
Zo | 0.9968 | 0.0009 || 0.9967 0.0011
Y1 0.7043 0.7043
Yo 0.2957 0.2957
T 34231 K 342.31 K

Table 7: Analysis of Temperature Dependence of UNIQUAC Binary Interaction Parameters;
Benzene — Water system
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Benzene — Water
UNIFAC
Trey = 333.15 K || Temp Dependent BIP’s
Ly Ly Ly L,
z1 | 0.0006 | 0.9951 | 0.0006 0.9945
xo | 0.9994 | 0.0049 | 0.9994 0.0055
Y1 0.7028 0.7027
Yo 0.2972 0.2973
T 342.36 K 342.38 K

Table 8: Analysis of Temperature Dependence of UNIFAC Binary Interaction Parameters;
Benzene — Water system
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Cyclohexane — Water
NRTL
Trer = 330 K | Temp Dependent BIP’s
Ly L, Ly L,

z1 | 0.8621 | 0.6834 || 0.8610 0.6843

o | 0.1379 | 0.3166 || 0.1390 0.3157

Y1 0.6892 0.6870

Y2 0.3108 0.3130

T 343.37T K 343.53 K

Table 9: Analysis of Temperature Dependence of NRTL Binary Interaction Parameters;
Cyclohexane — Water system
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Cyclohexane — Water
UNIFAC
Trey = 333.15 K || Temp Dependent BIP’s
Ly L, Ly Lo

z1 | 0.0030 | 0.6676 | 0.0035 0.6572

xo | 0.9970 | 0.3324 | 0.9965 0.3428

Y1 0.6121 0.6091

Yo 0.3879 0.3909

T 348.67 K 348.87 K

Table 10: Analysis of Temperature Dependence of UNIFAC Binary Interaction Parameters;
Cyclohexane — Water system
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Ethanol — Benzene — Water
NRTL
Trer = 330 K | Temp Dependent BIP’s
Ly L, Ly L,

21 | 0.1156 | 0.0927 || 0.1205 0.0936
o | 0.0224 | 0.6252 || 0.0275 0.6237
x3 | 0.8620 | 0.2821 || 0.8520 0.2826
Y1 0.0939 0.0950
Yo 0.5927 0.5938
Y3 0.3134 0.3112
T 344.84 K 344.77 K

Table 11: Analysis of Temperature Dependence of NRTL Binary Interaction Parameters;
Ethanol — Benzene — Water system
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Ethanol — Benzene — Water
UNIQUAC
Trey = 333.15 K || Temp Dependent BIP’s
Ly Ly Ly L,

21 | 0.1111 | 0.1842 | 0.1174 0.1877
xo | 0.0011 | 0.7683 | 0.0013 0.7631
x3 | 0.8878 | 0.0475 | 0.8813 0.0492
Y1 0.1673 0.1716
Yo 0.5912 0.5885
Y3 0.2414 0.2399
T 339.70 K 339.65 K

Table 12: Analysis of Temperature Dependence of UNIQUAC Binary Interaction Parame-
ters; Ethanol — Benzene — Water system
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Ethanol — Benzene — Water
UNIFAC
Trey = 333.15 K || Temp Dependent BIP’s
Ly Ly Ly L,

x1 | 0.3783 | 0.1008 | 0.3732 0.1043
xo | 0.0651 | 0.8806 | 0.0632 0.8757
x3 | 0.5566 | 0.0186 | 0.5636 0.0200
Y1 0.1968 0.1962
Yo 0.5986 0.5979
Y3 0.2046 0.2059
T 339.50 K 339.55 K

Table 13: Analysis of Temperature Dependence of UNIFAC Binary Interaction Parameters;
Ethanol — Benzene — Water system
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Ethanol — Cyclohexane — Water
NRTL
Trer = 330 K | Temp Dependent BIP’s

Ly L, Ly L,
21 | 0.0002 | 0.0003 || 0.0002 0.0003
o | 0.0070 | 0.8741 || 0.0084 0.8743
x3 | 0.9928 | 0.1257 || 0.9913 0.1254
Y1 0.0010 0.0010
Y2 0.6912 0.6882
Y3 0.3078 0.3108
T 343.29 K 343.54 K

Table 14: Analysis of Temperature Dependence of NRTL Binary Interaction Parameters;
Ethanol — Cyclohexane — Water system
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Ethanol — Cyclohexane — Water
UNIQUAC
Trey = 333.15 K || Temp Dependent BIP’s

Ly Ly Ly Ly
1 | 0.5471 | 0.2112 || 0.5458 0.2129
x9 | 0.0435 | 0.7539 || 0.0432 0.7515
x3 | 0.4093 | 0.0349 || 0.4109 0.0355
1 0.3207 0.3209
Yo 0.5223 0.5217
Y3 0.1570 0.1573
T 337.05 K 337.10 K

Table 15: Analysis of Temperature Dependence of UNIQUAC Binary Interaction Parame-
ters; Ethanol — Cyclohexane — Water system
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Ethanol — Cyclohexane — Water
UNIFAC
T,ey = 343.15 K || Temp Dependent BIP’s

Ly L, Ly Lo
z1 | 0.0004 | 0.0005 | 0.0004 0.0005
xo | 0.0030 | 0.6662 | 0.0035 0.6557
x3 | 0.9966 | 0.3333 | 0.9961 0.3438
Y1 0.0010 0.0010
Yo 0.6114 0.6084
Y3 0.3876 0.3906
T 348.65 K 348.85 K

Table 16: Analysis of Temperature Dependence of UNIFAC Binary Interaction Parameters;
Ethanol — Cyclohexane — Water system
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Ethanol — Benzene — Cyclohexane — Water
NRTL

Trer = 330 K | Temp Dependent BIP’s

Ly L, Ly L,

21 | 0.1619 | 0.0517 || 0.1023 0.0413

o | 0.3678 | 0.6452 || 0.4874 0.6365

x3 | 0.0044 | 0.0061 || 0.0037 0.0049

x4 | 0.4659 | 0.2970 || 0.4067 0.3173

Y1 0.0801 0.0710

Yo 0.5716 0.5612

Y3 0.0043 0.0051

Y4 0.3439 0.3627

T 344.76 K 344.64 K

Table 17: Analysis of Temperature Dependence of NRTL Binary Interaction Parameters;
Ethanol — Benzene — Cyclohexane — Water system
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Ethanol — Benzene — Cyclohexane — Water
UNIQUAC
Trey = 333.15 K || Temp Dependent BIP’s
Ly L, Ly Lo

x1 | 0.3735 | 0.1785 | 0.3728 0.1776
xo | 0.0368 | 0.4161 | 0.0368 0.4165
x3 | 0.0107 | 0.3631 || 0.0106 0.3642
x4 | 0.5791 | 0.0422 || 0.5798 0.0417
Y1 0.2232 0.2222

Yo 0.3293 0.3297

Y3 0.2824 0.2834

Ya 0.1651 0.1647

T 334.60 K 334.50 K

Table 18: Analysis of Temperature Dependence of UNIQUAC Binary Interaction Parame-
ters; Ethanol — Benzene — Cyclohexane — Water system
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Ethanol — Benzene — Cyclohexane — Water
UNIFAC
T,ey = 343.15 K || Temp Dependent BIP’s
Ly Ly Ly L,

x1 | 0.1576 | 0.1039 | 0.1569 0.1043
o | 0.0080 | 0.5739 | 0.0081 0.5750
x3 | 0.0131 | 0.2071 | 0.0132 0.2054
x4 | 0.8212 | 0.1151 || 0.8218 0.1152
Y1 0.1116 0.1119

Yo 0.4932 0.4936

Y3 0.1794 0.1778

Ya 0.2158 0.2167

T 337.41 K 337.50 K

Table 19: Analysis of Temperature Dependence of UNIFAC Binary Interaction Parameters;
Ethanol — Benzene — Cyclohexane — Water system
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Reactive azeotropes: Hypothetical 3-Component Example I
Wilson Equation; P = 1.0 atm

K., =0.100
Azeotrope T Yi
A 0.1495 | 0.1491 T = 456.42 K
B 0.8504 | 0.8488 Iter = 216
C 0.0001 | 0.0021 CPU = 10.85 sec
K., =1.000
Azeotrope T Yi
A 0.1057 | 0.0916 T = 456.11 K
B 0.8939 | 0.9010 Iter = 291
C 0.0004 | 0.0074 CPU = 14.64 sec
K., =1000.0
Azeotrope x; Yi
A 0.0026 | 0.0015 T = 455.00 K
B 0.9973 | 0.9966 Iter = 139
C 0.0001 | 0.0019 CPU = 7.62 sec

Table 20: Results for Reactive Example 1
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Reactive azeotropes: Hypothetical 3-Component Example 11
Wilson Equation; P = 1.0 atm

K., =0.001
Azeotrope 1 T; Yi
A 0.9659 | 0.9353 T = 354.66 K
B 0.0211 | 0.0364
C 0.0130 | 0.0283
Azeotrope 2 T; Yi
A 0.6723 | 0.6704 T =3528K
B 0.3270 | 0.3279 Tter = 1237
C 0.0007 | 0.0016 CPU = 423.54
K. =0.025
Azeotrope 1 T; Yi
A 0.7507 | 0.6895 T = 456.11 K
B 0.2233 | 0.2539
C 0.0260 | 0.0566
Azeotrope 2 T; Yi
A 0.7994 | 0.7188 T =456.11 K
B 0.1646 | 0.2049 Iter = 1597
C 0.0360 | 0.0763 CPU = 98.63 sec

Table 21: Results for Reactive Example 2
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Reactive azeotropes: MTBE system with no inert
Wilson Equation; P = 1.0 atm
GAMS Implementation

K., =0.050
Azeotrope 1 T Yi
I 0.9373 | 0.9385 T=33426 K
M 0.0400 | 0.0577 Iter = 610
MTBE 0.0226 | 0.0038 CPU = 30.74
K. =320
Azeotrope 1 T; Yi
I 0.0385 | 0.1606 | T = 389.5946 K
M 0.2243 | 0.3229
MTBE 0.7372 | 0.5165
Azeotrope 2 T; Yi
I 0.0326 | 0.1442 | T = 389.5915 K
M 0.2669 | 0.3514 Iter = 1895
MTBE 0.7003 | 0.5044 | CPU = 113.88 sec
K. =49.0
Azeotrope 1 T; Yi
I 0.0327 | 0.1336 T=391.90 K
M 0.1703 | 0.2955
MTBE 0.7970 | 0.5709
Azeotrope 2 T; Yi
I 0.0159 | 0.0812 | T = 389.5915 K
M 0.3599 | 0.4185 Iter = 1791
MTBE 0.6242 | 0.5003 | CPU = 103.73 sec
Table 22: Results for Reactive Example 3
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Reactive azeotropes: MTBE with Inert
Wilson Equation; P = 1.0 atm

GAMS Implementation

K., =27.00
Azeotrope 1 T Yi
I 0.0346 | 0.1462 T =398.47 K
M 0.2976 | 0.3787
MTBE 0.6676 | 0.4748
N 0.0002 | 0.0003
Azeotrope 2 T; Yi
I 0.0065 | 0.0082 T = 355.887 K
M 0.0007 | 0.0024 Iter = 1654
MTBE 0.0022 | 0.0005 | CPU = 150.28 sec
N 0.9906 | 0.9889

Table 23: Results for Reactive Example 4
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Reactive azeotropes: Isopropyl Acetate System
P =1.0 atm; GAMS Implementation

NRTL Equation: K., = 8.7

Azeotrope T; Yi
IpOH 0.5398 | 0.4954 | T =352.71 K
AA 0.0540 | 0.0096 Iter = 2031
IpAc 0.1989 | 0.2433 | CPU = 66.50
W 0.2072 | 0.2516
UNIQUAC Equation; K., = 8.7
No Azeotrope CPU = 2217

UNIFAC Equation; K., = 8.7

No Azeotrope CPU = 28.88
UNIQUAC Equation; K., = 20.0
Azeotrope T; Yi
IpOH 0.5498 | 0.5357 | T = 350.06 K
AA 0.0154 | 0.0010 Tter = 924
IpAc 0.0225 | 0.0364 | CPU = 36.92
W 0.4123 | 0.4269

Experimental Results
From Song et al.?*; K., = 8.7

Azeotrope T Yi
IpOH 0.565 | 0.491 T =351.75 K
AA 0.054 | 0.00
IpAc 0.214 | 0.270
A% 0.167 | 0.239

Table 24: Results for Reactive Example 5

63




