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Abstract

A novel approach for enclosing all homogeneous azeotropes in multicomponent mixtures
is presented. The thermodynamic criteria for azeotropy are outlined, and mathemat-
ical equations for each criterion are developed. The global optimization approach is
based on developing convex underestimators which are coupled with a branch and bound
framework in which upper and lower bounds on the solution are refined by successively
partitioning the target region into small disjoint rectangles. The objective of such an
approach is to enclose all global minima since each global minimum corresponds to an
homogeneous azeotrope. Because of the nature of the thermodynamic equations which
describe the behavior of the liquid phase, the constraint equations are highly nonlinear
and nonconvex. The success of this approach depends upon constructing valid convex
lower bounds for each nonconvex function in the constraints. Four different thermo-
dynamic models are studied, the Wilson, NRTL, UNIQUAC, and UNIFAC equations.
Tight convex lower bounding functions are found for the nonconvex terms in each model.
The unique element of the proposed approach is that it offers a theoretical guarantee
of enclosing all homogeneous azeotropes. The effectiveness of the proposed approach is
illustrated in several example problems.
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1 Introduction

The ability to predict whether a given mixture will form one or more azeotropes and to
calculate the conditions and compositions of each azeotrope is essential if one wants to model
separation processes. Similarly, it is necessary to calculate the effects of temperature and
pressure on the composition of an azeotrope for process design applications.

Many thermodynamic models have been proposed which can predict the phase behavior
of nonideal mixtures. Unfortunately, the accuracy of these models is not uniform over a wide
range of mixtures. One useful way of testing the accuracy of a model for a given mixture is to
compare the compositions of the azeotropes predicted by the model with those determined by
experiment. In order to be most useful, a method for calculating the azeotropes of a mixture
must be robust, and must be able to guarantee that all possible azeotropes can be found.

Despite the considerable interest in the area of predicting phase equilibria for chemical
mixtures, relatively few methods for prediction of azeotropes have been reported. This is
because the task of finding the pressure, temperature, and composition of all azeotropes is an
especially difficult one, due to the highly nonlinear form of the equations which constitute the
thermodynamic models.

Most of the previous work reported in the literature has been limited to calculating ho-
mogeneous azeotropes. Aristovich and Stepanova (1970) calculated ternary homogeneous
azeotropes using the Wilson model under isothermal conditions. Teja and Rowlinson (1973)
calculated homogeneous azeotropes of binary mixtures using an equation of state as the ther-
modynamic model. Their approach was to fix temperature and vary composition and volume
until thermodynamic equilibrium conditions were satisfied. Wang and Whiting (1986) also
used an equation of state to calculate homogeneous azeotropes for binary mixtures. Fid-
kowski et al. (1993) have presented an interesting homotopy continuation method for finding
homogeneous azeotropes.

Chapman and Goodwin (1993) presented a search method for finding homogeneous and
heterogeneous azeotropes which uses a Levenberg-Marquardt algorithm to find homogeneous
azeotropes and then checks the stability of each solution with the tangent plane criterion
described by Michelsen (1981). A solution which is found to be unstable is then used as the
starting point for a new search for an heterogeneous azeotrope. This method is limited by the
fact that heterogeneous azeotropes do not necessarily correspond to an unstable homogeneous
azeotrope solution and vice versa. This method cannot find azeotropes for which one or more
components have a vapor phase mole fraction of zero. An excellent review on nonideal distil-
lation, including a discussion on the computation of azeotropes has recently been published
by Widagdo and Seider (1996).

The purpose of this paper is to propose a new method for determining all homogeneous
azeotropes of a non-reacting mixture for several different thermodynamic models. This method
models the vapor phase as an ideal gas at low pressure, and uses activity coefficient models for
the liquid phase. The activity coefficient models examined are: the Wilson equation, the NRTL
equation, the UNIQUAC equation, and the UNIFAC equation. The problem is formulated
as a global optimization problem in which each global minimum solution corresponds to an
homogeneous azeotrope. Examples demonstrating the performance of this method will be
shown for each model.



In the Section 2. the mathematical formulation of the problem will be developed. In
Section 3, the specific activity coefficient models will be examined, and convex lower bounding
functions developed for each nonconvex term. The approach based on global optimization
will be explained in Section 4, and extensive computational results for each activity coefficient
model will be presented in Section 5.

2 Problem Description and Formulation

In this section, the fundamentals of azeotropy will be summarized and the thermodynamic
equations which determine the existence of azeotropes will be presented. Finally, the problem
of enclosing all homogeneous azeotropes will be formulated as a global optimization problem
in which the objective is to enclose all global solutions.

2.1 Azeotropy

In order to develop a method for finding all azeotropes of a mixture, it is essential to first
determine the thermodynamic conditions for azeotropy. Azeotropes occur in a boiling mixture
of one or more liquid phases when the composition of the vapor phase is the same as the overall
composition of the liquid phase(s).

Azeotropes can be classified by two categories: order and type. The order of the azeotrope
describes the number of species that participate in the azeotrope. For example, a mixture of
compounds A, B, and C may have a ternary azeotrope ABC in which all three components
participate, and three binary azeotropes, AB, AC, and BC. The type of azeotrope reflects
the number of phases present at the point of azeotropy. When a vapor phase and only one
liquid phase are present, the azeotrope is termed an homogeneous azeotrope. In the case
of homogeneous azeotropy, application of the condition that the overall composition of the
phases are identical produces the familiar equation:

Ty = Yy \V/ZEN (1)

where x; is the mole fraction of component 7 in the liquid phase, y; is the mole fraction of
component ¢ in the vapor phase, and N is the set of components.

The second type of azeotrope is an heterogeneous azeotrope. Heterogeneous azeotropes
occur when a vapor phase and two or more liquid phases are present at the point of azeotropy.
In this case, the composition of the vapor phase must be equal to the overall composition
of the liquid phases. In general, a mixture of N components and M phases may have both
homogeneous and heterogeneous azeotropes. This paper will not deal with calculation of
heterogeneous azeotropes.

2.2 Thermodynamic Conditions for Azeotropy

There are three thermodynamic conditions which a system must meet in order for an azeotrope
to exist. These conditions are: 1) equilibrium, 2) the composition of vapor phase must be



identical to the overall composition of the liquid phase(s), and 3) the mole fractions of the
components in each phase must sum to unity and must be non-negative.

The equilibrium condition requires that the chemical potential of each component must
be the same in all phases. Since an homogeneous azeotropic system contains a vapor phase
(V), and only one liquid phase (L), this condition can be written:

Wo=pb VieN (2)

where 1Y and pl represent the chemical potential of component 7 in the vapor and liquid
phases. From the definition of the fugacity of component ¢ in a mixture, f;,

fY=fF vien (3)

hence,

vio! P =zl fF (4)
The symbol quv represents the mixture fugacity coefficient of component z in the vapor phase.

For the liquid phase, v¥ is the activity coefficient, and fF is the fugacity of component 7 in
the liquid phase. Rearranging equation (4) gives,

vi _ S
v QYP

VieN (5)

At low pressure, the vapor phase can be modeled as an ideal gas, for which quv =1, and for
the liquid phase the fugacity is equal to f& = ¢39¢P22(PF);. But, for an ideal gas, ¢ = 1,
and (PF); = 1. Therefore

5 L psat
y_ — Vi 4 (6)
P

Now all of the nonidealities of the system are confined to the activity coefficient term.

Ly

For binary homogeneous azeotropes, negative deviations from Raoult’s law (v* < 1) result
in a maximum-boiling azeotrope, also called a minimum-pressure azeotrope. Positive devia-
tions result in a minimum-boiling (maximum-pressure) azeotrope. Ternary and higher order
azeotropes may also occur at saddle points in the temperature (or pressure) vs. composition
surface.

Conversely, an heterogeneous azeotrope only occurs when positive deviations from Raoult’s
law are very large (’yz-LJ > 1) where j represents each liquid phase j € M, and the vapor-liquid
equilibrium surface overlaps the liquid-liquid equilibrium surface.

Note that for an homogeneous azeotrope, the vapor and liquid phases all have the same
composition, unlike the heterogeneous case. The azeotropy condition requires that the com-
position of the vapor phase is identical to the overall composition of the liquid phase(s). In
the case of an homogeneous azeotrope, this condition simplifies to:

Ui = T4 \V/ZEN (7)



The third condition requires that the mole fractions in each phase sum to unity and have
values between 0 and 1.

Y= =1

tEN tEN . (8)
Ogyi,:z;igl \V/ZEN

2.3 Mathematical Formulation

In order to find all azeotropes, one must find all solutions to the system of nonlinear equations
(6), (7), and (8) listed in the previous section. This paper uses the approach outlined in
Maranas and Floudas (1995), which reformulates the problem of enclosing all solutions of
nonlinear systems of constrained equations into a global optimization problem in which the
task is to enclose all global solutions. In this approach, each nonlinear equality is replaced by
two inequalities and a single slack variable is introduced. For the location of all homogeneous
azeotropes, this corresponds to employing equations (6), (7), and (8) and reformulating them
as the following global optimization problem:

min $
x,y,T,s
subject to  Py; — Pf*yx; —s < 0 VieN

—Py; + PPy, —s < 0 VieN
Y — T4 = 0 \V/ ? € N
gvy =1 (9)
E T, = 1
1EN
s>0
0<y; < VieN

Problem (9) may have multiple global minima. FEach global minimum of Problem (9)
(where the solution s* = 0) corresponds to an homogeneous azeotrope since when s = 0
the constraints (6), (7), and (8) are satisfied. Note that the first two sets of constraints of
(9) correspond to the nonlinear equations (6) of the equilibrium constraint written as two
inequalities. In addition, note that the nonlinear term P?*~;z; appears as both a positive and
a negative term. Thus, this term must be nonconvex in at least one of the two constraints.
This means that if a local optimization approach is used to solve Problem (9), some or all of
the global solutions may be missed. This problem will be considered in Section 3.

Because z; = y; for every ¢, the system of equations can be simplified by replacing each y;
by ;. Therefore, the equilibrium condition becomes,

vi(P— Py) =0 VieN (10)



In order to satisfy this condition, either z; = 0, or (P — P?*~;) = 0 for each ¢ € N. If we
wish to search only for azeotropes in which all components participate (an N-ary azeotrope),
the condition can be further simplified to (P — P?*~;) = 0 for each i € N.

Because Pf* and ~; are usually given as In P*** and In~;, it is convenient to take the
natural log of the simplified equilibrium constraint, resulting in:

InP—InP* —Iny =0 VieN (11)

Then the formulation becomes:

min s
x,T,s

subject to InP —InP —lny—s < 0 VieN
—InP+InP* 4+lny—s <0 VieN

El’i =1
iEN
0<x<l1
s>0

(12)

Note that the first two sets of constraints in (12) represent the nonlinear equation (10)
for z; # 0,V 7 € N in the form of two inequalities. For azeotropes in which less than N of
the components participate (a k-ary azeotrope where k < N), the case where x; = 0 for one
or more component must be accounted for. This can be done by multiplying the equilibrium
constraints used in (11) by x;. The general search for all k-ary homogeneous azeotropes is
formulated as:

min s
x,T,s

subject to z;(In P —In Pf* —Invy;) —s < 0 VieN
zi(—InP+InP*4+Iny)—s <0 VieN
ory = 1
1EN
0<x<1
s>0

(13)

In the following section, this general formulation will be applied to four different activity
coefficient models: the Wilson equation, the NRTL equation, the UNIQUAC equation, and
the UNIFAC equation. For each model, the nonconvex terms are identified and convex lower
bounding functions are developed.



3 Activity Coefficient Models

The problem formulations, (12), and (13) contain several nonconvex functions. If a local
optimization approach is used to solve these problems, it is likely that some of the multiple
global minima will be missed, or even that none will be found. Therefore, in order to guarantee
that all global minima are enclosed, it is necessary to develop a convex relaxation of the
problem. In the approach used in this paper, a lower bound on the solution of (12) and (13) is
obtained by replacing each nonconvex constraint with a tight convex underestimator and then
using a commercially available nonlinear solver such as MINOS5.4 as described in Maranas
and Floudas (1993) and Maranas and Floudas (1994a). The upper and lower bounds on the
solutions are then refined using a branch and bound approach.

A convex relaxation is developed by partitioning each nonlinear function in the constraint
equations into convex and nonconvex terms. Tight convex lower bounding functions are then
developed and replace each nonconvex term in the constraints.

This section analyzes the equations in the azeotropy problem formulation which contain
nonconvex terms. In each case, the form of the equation is introduced, and the nonconvex
terms are identified. For each nonconvex term, a convex lower bounding function is calculated.
The saturated vapor pressure equation is examined first, then the Wilson equation, the NRTL

equation, the UNIQUAC equation, and the UNIFAC equation will each be discussed.

3.1 Saturated Vapor Pressure Equation

In this work, the saturated vapor pressure is calculated using the Antoine equation:

b
B T + C;
where a;, b;, and ¢; are constants. The parameters a; and b; are always positive, while ¢; may
be positive or negative but | ¢; |[< T'. In the problem of finding all N-ary azeotropes, denoted
as Problem (12), this term appears in the constraints as both (—1In P#**) and (+1n P*). It
can be easily shown that the term:

sat
In P = a;

(14)

b,
T ‘|‘Ci

(15)

is concave in T. As a result, in the first set of constraints of (12) which have (—1In P?**), this
term is convex and no underestimation is needed. In the second set of constraints however,
this term is concave and a convex underestimator is required. A convex underestimator for
this concave term is simply a line segment between the values of the term at each limit. That

18,

b; b;

b; b; T TU4q TLtc; L
— > — : (T —T 16
T—I—Ci_ TL—I-Ci—I_ TU—TL ( ) ( )

where T'L, TV are the lower and upper bounds on the temperature in the current region.




In the formulation for finding all k-ary azeotropes (13), the Antoine equation is multiplied
by the liquid mole fraction, z;. In this case, both the positive and negative terms (—z; In P®)
and (—I—:r:z- In Pz-’“t) are nonconvex. These terms have the form:

1

z;In P2 = f(z;) - o (T

(17)

where f(z;) and ¢(T') are univariate functions. Maranas and Floudas (1995) extended the
work of Al-Khayyal and Falk (1983) on the convex lower bound of the bilinear product zy to
products and quotients of arbitrary univariate functions, i.e., f(z)g(y) and %. For a term

of the form £ where ¥ > 0 and 2V > 0, the convex lower bound is given by:

a(v)’

where [E(z) refers to the minimum of f over the domain ¥ < z < 2V and fY(z) is the
maximum of f. The same notation is true for ¢g(y) also. When applied to the current problem,
the convex lower bound becomes:

b;x; - { bia:f’ N b;x; B bi;z;f’
T+e¢ — T+e¢ TU4e¢ TU+e’
bz”llfj b;x; bz-x?
T+ ¢ TL—I—ci_TL—I—cz}'

(=)

For the case when a convex underestimator for a term of the form o) is needed a different

formula must be used, Maranas and Floudas (1995).

@) L[S M) [

o) = { 207+ e )"
), @) fU(x)}_
9@ (y)  gE(w)e¥(y) 9" (y)

So the convex lower bounding function for the term of this form is:



TL —|— C; (TL —|— Ci)(TU —|— Ci) TU —|— Ci7
bilfji bliL’gj bzl’U

_TU—I-CZ'—I_(TL—I-Q)(TU—I-Q) _TL—I-CZ'}.

3.2 Wilson Equation

Wilson (1964) developed an equation to model the fluid phase excess Gibbs free energy for
vapor-liquid systems. The Wilson equation is often used to model solutions containing polar
and nonpolar components. The Wilson activity coefficient equation is:

7

1 EN 1 EN
J€ J€ keEN

where A;; is the nonsymmetric binary interaction parameter between components ¢ and j with
Ay = 1. When the Wilson equation is used, the problem of finding all N-ary homogeneous
azeotropes is formulated as:

min §
X,s

subject to In < 3 J}inj) + ¥ S}Aﬁ + Tiic, +InP—-a;—-1—-—5 <0 Viec N
JjEN '

JEN

—1n<2 JZJA”)—I- ES?Aji_Tﬁ_ic._lnp‘l‘ai‘l‘l_S S 0 \V/ZEN (19)
JEN JEN ’
Yor; =1

tEN

0<x<1

s> 0

where,
1 Lj
§; = —————— 20
T Y A (20)
kEN
and,
2 Tj
= — 21
% Y ek (21)
kEN



The 5} and 3? equations are used to isolate the nonconvex terms in the complicated sum-
mation expression. The Wilson expression for the activity coefficients contains three different

nonconvex terms. The first nonconvex term is (In 3 z;A;;). The second and third nonconvex
JjEN

terms are 5} and 3?. As was described in the preceding section on the Antoine equation, mul-

tiplication of the equilibrium constraints by z; in the problem of finding all k-ary azeotropes

further complicates the nonconvex expressions. For the k-ary azeotrope problem (13), the

Wilson equation now contains nonconvex terms:

T, hl(z J}inj) — Iy hl(z l’inj) X, Z S}Aﬁ and X, Z S?Aﬁ (22)

jEN jEN jEN jEN

A convex lower bounding function must be developed for each of these nonconvex terms.
The procedure for constructing the underestimating functions for the Wilson equation is pre-
sented in Appendix A. Using the convex underestimating functions, we have developed a
method for finding all homogeneous azeotropes with the Wilson activity coefficient equation.
The algorithm for the method will be presented in Section 4. Example calculations using the
Wilson model are shown in Section 5.

3.3 NRTL Equation

The NRTL equation was derived by Renon and Prausnitz (1968) for fluid phase activity
coefficients using the Non-Randomness assumption and Scott’s Two-Liquid theory. The NRTL
formula for the activity coefficient is:

_g]:vTjiGjil’j G kZNTijkjl’k
1ni:J7—|— Y Ti-—e 23
7 > Gjix; J%:v > ij$k( ! Y. Grjze ) (23)
JEN keN keN

Substituting this expression into formulation (12) yields:

min s
X,s
. G. G . . .
subject to — ¥ 7; ‘ij—l-zﬁw—J—w—f-l-%—l-lnP—ai—sg() Viec N
jEN Yy JEN Yy Y, Y +c;

ET--G”%—me—]—l—’”—f—L—lnP—l—ai—s§0 YVieN

17 )
jen Y; jen YooY Y T+c;

(24)

10



where x denotes the vector of compositions, and

Yyi = _vajixj
7

w; = Y 7G5 (25)
JEN

The interaction parameters, 7;; and G,;, are functions of temperature. However, for most
systems, the temperature dependence of the Antoine equation for the vapor pressure outweighs
the temperature dependence of the activity coefficient equation. Therefore, in this analysis, the
interaction parameters are considered to be constants, and are calculated using a reference
temperature located between the upper and lower bounds for the system being modeled.
Taking this into account, formulation (24) contains nonconvex terms of the form:

U, =

fi
9
and

IH?
9197

The task of constructing convex underestimators for nonconvex terms of the second form is
a difficult one. In the work of Maranas and Floudas (1995), products of N univariate functions
can be underestimated by successively convex lower bounding pairs of univariate functions
in a recursive manner until no pairs are left. A proof is given that there are A(,;v—]'v): ways of
combining the N univariate function in pairs of two. In Appendix B, the procedure of Maranas
and Floudas (1995) is applied to the above nonconvex terms and convex underestimators are

derived explicitly.

3.4 UNIQUAC Equation
The UNIQUAC equation was originally developed by Abrams and Prausnitz (1975). They

postulated that the excess Gibbs energy depended on two effects: a combinatorial contribution
due to the differences in the sizes and shapes of the components, and a residual contribution
due to the energetic interactions between the components. The original equation was modified
by Anderson and Prausnitz (1978) in order to improve predictions for systems containing polar
molecules such as water and alcohols. The activity coefficient for the UNIQUAC equation 1is
given as:

Iny; = Inyf +InAf (26)

11



where,

% 91’ %
¢,+-§%in—f4—h——%j§:lf%- (27)

Iny’ =In =
xl ¢1, bl 2 JEN

and

I = g1 —In(Y mff) — Y0 =2 (28)

, S 0k,
k'ks
JEN JEN kEN

The combinatorial and residual contributions to the activity coefficient are represented by
7€ and 4 respectively. The 7;; are non-symmetric binary interaction parameters, ¢;, ¢!, and
r; are structural parameters of the pure components, and z is a lattice coordination number.
The values [;, 0;, 0, and ¢, are defined in terms of the parameters described above and are
given by:

lizg(ri—qi)—(ri—l) Vie N

0 = 32— VieN
¥t
JEN/
0 = &= €N 29
P g Ve (29)
JEN
JEN

When the definitions of these parameters are substituted into the In v and In v® expres-
sions, and these two are added together to form the complete In~; equation some simplifica-
tions can be made. The final expression is:

> Lz

JEN

> T

JEN

]
Tijqjl’j

z z
Iny; = (5% = DIn(Y_ rjz;) - 5t (Y g5w;) = s

JEN JEN

—q; ln(z Tjiq;l’j) + ¢ hl(z q;-ivj) — g Z

1
; ; ; E Tkj Tk
jEN JEN JEN KEN

+(mn+g%m€9+h+¢)

12



As is evident, this expression contains many nonconvex terms. The first four nonconvex
terms are log terms:

In (Z rja:j) , In (Z qj;z:j) , In (Z q;-a:j) , and In (Z Tjiq;-:fjj) (30)

JEN JEN JEN JEN

The last four nonconvex term are fractional terms:

! !
2. T 2. T _ 154575 _ 174573
S Lz S Lz Y Tiiqhx Y Tiiqhx
JEN JEN JEN d JEN 31
M) ) . ] M) an . ] ( )
> T PIRAES Y. TG > T QT
IeN IeN IeN IeN

Note that the binary interaction parameter, 7;;, is considered to be a constant in this analysis,
as described in Section 3.3. Convex underestimating functions are derived for each term in
Appendix C. The global optimization problem of finding all N-ary homogeneous azeotropes
using the UNIQUAC model is formulated as follows:

min s
X,s
Z Lz,
subject to  (2¢; — 1) In( ¥, rjz;) — 2¢:In( Y gjzj) — riks
JEN JEN E TjE
JEN
Ti]qézj

—gIn( 5 madies) + glin( 5 qhes) — g B T
q (jeN 79573) + q (jeNqJ i) qjengka]qkmk

—I—(lnri—l—gqiln(z—i)—l—li—l—qi)—I—Tiiq +nP—-a,—-—s5s <0 VieN

B

E lyz;
—(3a = DIn( X rjzs) + 50 In( X g525) + i~ (32)
JEN jEN “ 7

+¢;In Tiqix;) — qiln i)+ q 7T”quf

q (ng 74 J) q (ng 4q; J) q jg:N kg\]ﬂquzk
— (lnri—l—gqiln(z—?)—l—li—l—ql{) — Tl_’;c, —InP+a—s <0 VieN
Yo = 1
1EN
0<x<1
s>0

3.5 UNIFAC Equation

In some cases, one would like to predict the azeotropes for a system where there is insuffi-
cient equilibrium data to obtain accurate binary interaction parameter values. As a result,
several solution-of-groups methods have been developed to allow equilibrium predictions in
these systems. Solution-of-groups methods consider the molecules in the chemical system as

13



groupings of elements. For example, 1-propanol contains one C'Hsz group, one C'Hjy group,
and one C'Hy;OH group. The interactions between the molecules can then be approximated
by determining the interactions between the groups that make up the molecules.

The most widely used solution-of-groups method is the UNIFAC equation, originally de-
veloped by Fredenslund et al. (1975), primarily because the group-interaction parameters
for many pairs of groups have been calculated and compiled and are updated periodically,
Gmehling et al. (1990). As its name indicates, the UNIFAC (UNIQUAC Functional Group
Activity Coefficients) method is based on the UNIQUAC equation. Like the UNIQUAC equa-
tion, the natural logarithm of the UNIFAC activity coefficient is the sum of a combinatorial
contribution and a residual contribution:

Inv; =In ’yic + lnfylR (33)

The combinatorial part, InyS, uses only pure-component data, and therefore no modifi-
cations of the UNIQUAC combinatorial part, Equation (27), are needed. However, in the
UNIFAC method, the residual part is calculated as the sum of the energetic interactions of
the groups, rather than the molecules themselves.

First, the pure component parameters, ¢; and r;, are defined as:

G = szi@g and r, = ngiRg (34)

geG g€eG

where (G is the set of all groups in the system; vg is the number of groups ¢ contained in
component t; (), is the group area parameter; and Ry is the group volume parameter.
The residual part of the UNITFAC equation is given by the following expression:

Tym Y. Qmum;e;
R __ ) - JEN
Inv* = g%:G Qgvgi 2 3 T Y, Quuikzs

meG
leG keEN

—In > qlmg E vamjxj)
JEN

meG

+1n| 3 ijj) (35)

JEN

+1In ( > \I}mngvmi)
meG
—lIng;
‘Ilngm'Umi
+ mEe:G 3 T Qi }
leG

where the temperature-dependent group-interaction parameter, W, , is given by

Vom = exp <_%Tm) (36)

14



and the group-interaction parameter, ag4m, is determined from experimental phase equilibrium
data. Similar to the NRTL and UNIQUAC equations, the group interaction parameters

are treated as constants with respect to temperature in this paper.

substitutions, the residual contribution can be simplified to

In~f

where the constants kg, 0gj, Bgijs

= — 3 Kgln ( > ozgja:J>
eEN

geG

+ 3 Kgiln <_Z qa'l’j)
geG JEN
ﬂg”m]
. JE
g%:G kg\]"‘gk”

+6;

and 6; are given by

= Qgvgi
= Y fmjVmg

meG
= Z Kmikigi Vmg
meG
E /{mi\pmg
_ Z Kgi - In meG
geG g
/{mz
+ 2 kg D
QEG meG E /{lqulm

By introducing a few

(37)

Using the simplified expression for the residual contribution, the N-ary formulation using

the UNIFAC equation is written

15



min §

X,s
E Lz,
subject to  (2¢; — 1) In( X rjz;) — 2¢;In( X gjzj) — riks
jEN jEN D, 79
JEN
E Bgijx;
— Y kgln | X agizi |+ X kgln | X gz ] — X K=
2 W ec ik kgvagkzk

—I—(lnri—|—2qzln( )—I—l+5)—|—T+ +InP—-a,—s <0 Vie N
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Formulation (38) contains several nonconvex terms. As was the case for the UNIQUAC
equation, these terms fall into two categories: logarithmic terms, and fractional terms. In
addition, since the combinatorial part of the UNIFAC equation is identical to the UNIQUAC
equation, the nonconvex terms that arise from this part are also identical. These equations
are the first two expressions in (30), and the first two expressions in (31). The convex lower
bounding functions for these terms are given in Appendix C. The nonconvex terms from the
residual part are the following:

In (Z agjszij) , and In (Z quvj) (39)

JEN JEN
and
i BaiiT; . and . BgiiT; (40)
Y. QgpTk Y. OgrTg
kEN kEN

Note that the second logarithmic nonconvex term is identical to one of the nonconvex terms
from the combinatorial part, for which we have already derived a convex lower bounding
function. Convex underestimators for the remaining terms are derived in Appendix D.
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4 Procedure for Locating All Azeotropes

4.1 Description

The method presented in this paper for locating all homogeneous azeotropes is based on the
work of Maranas and Floudas (1995). In this section, the global optimization procedure will
be summarized. The problem is formulated by introducing a slack variable to the equilibrium
constraint of the initial problem. This transforms the initial problem into a global optimization
problem (9). The problem is simplified by using the homogeneous azeotropy condition to
replace y; by z;. Each feasible solution to the original system of equations corresponds to a
zero objective function value and denotes the existence of an azeotrope.

The multiple global minima of Formulation (9) are enclosed based on a branch and bound
procedure. This procedure creates a convex relaxation of the problem by constructing tight
convex lower bounding functions for each nonconvex term in the constraints. Then, the global
minimum of the convex relaxed problem within some box constraints can be found using any
commercially available local optimization algorithm.

When the convex relaxed problem is solved, there are two possibilities. If the solution of
the relaxed problem is strictly positive inside some rectangular region, then because it is an
underestimator, the solution of the original problem must also be strictly positive inside the
region. This allows us to fathom (eliminate) parts of the total region which do not contain
any solutions. The second outcome is that the solution is zero or negative. In this case, the
original problem may or may not have a solution in the current region and thus the region
cannot be fathomed. Instead, the current region is partitioned into smaller regions and the
procedure is repeated until all regions are fathomed, or a feasible solution is found.

It is critical to note that as the size of the current region decreases, the maximum separation
between the original constraint functions and the convex relaxed functions also decreases.
Therefore, any feasible point of the relaxed problem can become at least e-feasible for the
original problem by tightening the bounds around the point.

In this work, each region which has a non-positive solution of the convex relaxed problem
is partitioned into two smaller regions by bisecting the longest side of the initial region. At
each iteration in the branch and bound procedure, the lower bound of the original problem
is calculated by finding the infimum over all minima of the relaxed problem in each region
which has not been fathomed. Thus, a simple way of improving the lower bound is to halve
only the subrectangle responsible for the infimum of the minima of the relaxed problem at
each iteration. Convergence is reached when none of the subrectangles inside the total region
have a negative lower bound in which case there are no solutions, or when all of the remaining
subrectangles with negative lower bounds have been refined to a prespecified size tolerance.
In the following section, the basic steps of the algorithm are outlined.

4.2 Algorithmic Steps

STEP 0 - Initialization

A size tolerance ¢, and feasibility tolerance €5 are selected and the iteration counter is set

17



to one. Global bounds are set for temperature T, and the local bounds are set equal to the
global bounds. In addition, an initial point is selected.

STEP 1 - Feasibility and Convergence Check

If the maximum violation of all nonconvex constraints of the original problem calculated
at the current point for solution s = 0 is less than the feasibility tolerance €f, then the current
point is an eg-solution of the original problem. The current rectangle is fathomed if it has
been refined to the point where its diagonal is less than e,.

STEP 2 - Partitioning of Current Rectangle

The current rectangle is partitioned into two smaller rectangles by bisecting the longest
side in the current rectangle.

STEP 3 - Solution of Convexr Problems Inside Subrectangles

Solve the convexified optimization problem in both subrectangles by using any convex
nonlinear solver (e.g. MINOS 5.4 (Murtagh and Saunders, 1988)). If the solution s75*",
where r denotes a rectangle, is negative then it is stored along with the value of the variables
(x,T') at the solution point. If 5:;1;” is strictly positive then the element (r, [ter) is fathomed
and the corresponding rectangle is no longer considered to contain a possible solution. Note
that the global solution of the original nonconvex problem is known to be zero, thus no upper

bounding problem needs to be solved.
STEP 4 - Update Iteration Counter and Lower Bound

The iteration counter is increased by one, and the lower bound of the solution is updated
to be the minimum solution over the stored ones from previous iterations. Furthermore, the
solution selected as the new lower bound is erased from the stored set.

STEP 5 - Update Current Point and Current Bounds

The current point is selected to be the solution point of the previously found minimum
solution in STEP 4, and the current rectangle becomes the subrectangle containing the
previously found solution,

STEP 7 - Check for Convergence

If the lower bound of the solution is less than or equal to zero, then return to STEP 1.
Otherwise, terminate.
A proof that this procedure is guaranteed to converge is given in Maranas and Floudas

(1995).

5 Computational Results

The algorithm for finding all homogeneous azeotropes in a multicomponent mixture is written
in GAMS and was run on a Hewlett Packard 9000/730 machine. The solver MINOS5.4 is used
as a subroutine (Murtagh and Saunders, 1988). All times reported are the total cpu time in
seconds needed to obtain all azeotropes in the system. A convergence tolerance of 107° was
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used for all examples.

In Section 5.1, several example problems are solved using both the Wilson and NRTL
equations. In Example 1, both the N-ary and k-ary formulations are used to find the azeotropes
for a ternary system. In the rest of the examples, only the N-ary formulation is used, due
to the large advantage in computational requirements it has over the k-ary formulation. In
Section 5.2, the application for the UNIQUAC equation is demonstrated with three examples.
Finally, in Section 5.3, the UNIFAC equation is used to locate all azeotropes in three systems.

In each example, the N-ary azeotrope formulation was used to locate all azeotropes for
all combinations of the components. To illustrate, in the first example, a ternary system
containing acetone, methyl acetate, and methanol is studied. All N-ary azeotropes for the
binary systems acetone-methyl acetate, acetone-methanol, and methyl acetate-methanol, and
the full ternary system are located. Only the combinations that contained azeotropes are
reported in the tables. For each system experimental data reported in Gmehling et al. (1994)
are listed for all combinations, whether they contained azeotropes or not.

In comparing the computational results for the examples with the experimental data, it is
noted that in some cases the equations will fail to predict a known azeotrope, or will predict
azeotropes where none exist. This demonstrates the importance of obtaining reliable estimates
of the pure-component and binary-interaction parameters for the system being studied. In
addition, it is well known that no single thermodynamic model provides superior results for
every system. The purpose of the following examples is to demonstrate the performance of
the global optimization based approach for several different activity coefficient equations. No
attempt is made to determine the most accurate model or set of parameters for the systems
presented.

The binary interaction parameters used in this work are taken from the DECHEMA Vapor-
Liquid Equilibria Data Collection, Gmehling and Onken (1977). In the examples where the
Wilson equation is used, the liquid molar volumes were calculated by a modified Rackett equa-
tion, Yamada and Gunn (1973). For the UNIFAC equation, the group interaction parameters
were obtained from Gmehling et al. (1982) and Hansen et al. (1991).

5.1 Application to the Wilson and NRTL Models

Example 1: Acetone/Methyl Acetate/Methanol

A common system encountered in the literature of phase equilibria is the Acetone/Methyl
Acetate/Methanol system, Fidkowski et al. (1993). Experimental data show that this system
contains three binary azeotropes and one ternary azeotrope, Table 1. In this example, the
Wilson and NRTL equations are used to model the liquid phase activity coefficients. As can be
seen in Table 2, the Wilson equation predicted all four azeotropes. The Acetone-Methanol and
Methyl Acetate-Methanol binary azeotrope predictions are close to the experimental results.
On the other hand, the prediction for the Acetone-Methyl Acetate azeotrope and the ternary
azeotrope are significantly different than the experimental results. Note, hoewever, that our
results with the Wilson equation are virtually identical to the results of Fidkowski et al. (1993).
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This verifies that the global optimization method will find all homogeneous azeotropes that
can be predicted by a given activity coefficient equation and set of parameters. In general,
the NRTL equation gave better results for the prediction of the binary azeotropes, but the
NRTL equation does not predict a ternary azeotrope.

The computational requirements for calculating the binary azeotropes were under one cpu
second for both activity coefficient models. In Table 2, the column NLP Subs. refers to the
number of nonlinear subproblems that were solved in order to converge to the global solution.
For the binary systems in this example, about forty nonlinear subproblems were solved per
CPU second. In the ternary system, about thirty subproblems were solved per CPU second,
due to the larger size of the problem. For the ternary azeotrope with the Wilson model, the
cpu requirement was 7.39 seconds.

In the the second part of this example, the k-ary azeotrope problem defined in formulation
(13) was used with the Wilson activity coefficient equation to locate all binary and ternary
azeotropes in the system. The results for this example are listed in Table 3.

While this method successfully located all of the azeotropes, it was much slower than
the N-ary formulation (278.75 cpu seconds). A total of 272 NLP subproblems were solved in
order to find all of the azeotropes using the N-ary formulation. However, the k-ary formulation
required 1763 subproblems, and only six subproblems per CPU second could be solved. This
is due to the more complicated nonconvex expressions in the k-ary azeotrope problem, see
Appendix A. The convex underestimators in this case are not as tight as for the N-ary
azeotrope problem. As a result, it is more efficient to formulate a series of N-ary azeotrope
problems to find all azeotropes in a multicomponent mixture, rather than solve a single k-ary
azeotrope problem.

Example 2: Methanol/Benzene/i-Propanol/n-Propanol

In this quaternary example, three binary azeotropes have been reported in the literature,
as shown in Table 4. No experimental data was found for the ternary and quaternary systems.

Both the Wilson and NRTL equations predicted only the three reported azeotropes. The
results for the Wilson equation are very close to the reported compositions and temperatures of
the azeotropes. The results for the NRTL equation are also close to the reported values, with
the exception of the Methanol-Benzene azeotrope. As in Example 1, the binary azeotropes
were identified using the N-ary azeotrope problem formulation which required less than one
cpu second to converge. Both the Wilson and NRTL models showed similar cpu times.

Example 3: Benzene/Hexafluorobenzene

This is an interesting example in which there are two azeotropes in a single binary system.
This example demonstrates the ability of the global optimization method to find multiple
azeotropes in a single system. The system examined is benzene/hexafluorobenzene, which
has two binary azeotropes one of which is minimum boiling and benzene rich and the other is
maximum boiling and benzene poor. For this example, only the Wilson equation was used. No
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experimental data were available for a pressure of 0.2 atmospheres. However, by comparison
with the experimentally observed azeotropes at 30° C and at 40° C, in Table 5, it can be seen
that the predicted azeotropes are very close to the actual azeotropes. The cpu requirement
for finding both azeotropes was 2.16 cpu seconds.

Example 4: Ethanol/Methyl Ethyl Ketone/Water

This example is the ternary system of ethanol/methyl ethyl ketone/water. This system
contains three binary azeotropes and a ternary azeotrope. Using the N-ary formulation, both
the Wilson and NRTL models were able to locate all azeotropes, and the results are shown
in Table 6. In this case, the Wilson and NRTL results are very similar, and are reasonable
close to the experimental data. The CPU requirements are similar to those in the previous
examples.

Example 5: Acetone/Chloroform/Methanol

In this example, a ternary system at higher pressure is studied. No experimental data
was found for this system, but Fidkowski et al. (1993) report that the system contains three
binary azeotropes. All of the binary azeotropes were located by both the Wilson and NRTL
models. The higher pressure had no effect on the computational requirements. The results
are shown in Table 7.

Example 6: Acetone/Chloroform/Methanol/Ethanol/Benzene

A quinary system containing a large number of azeotropes is studied in this example. The
experimental data in Table 8 show only the systems for which azeotropes have been reported.
For the remaining ternary systems, it has been reported in Gmehling et al. (1994) that no
azeotropes exist for these systems. With the exception of the single quaternary azeotrope, no
experimental data was found for the other quaternary or for the full quinary system.

The Wilson and NRTL models using the N-ary formulation were both able to locate all
six binary azeotropes, two of the three ternary azeotropes, and the quaternary azeotrope. As
expected, computational requirements increased as the number of components participating
in the azeotrope increased, and the results are reported in Table 9. Note that the Wilson
equation was able to find the quaternary azeotrope in 7.58 seconds, while the NRTL equation
took 35.19 seconds. These CPU times are very reasonable, given the size of the system.

5.2 Application to the UNIQUAC Model

Example 7: Benzene/Ethanol/Water
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In this example, the UNIQUAC formulation is used to find all azeotropes in the ben-
zene/ethanol /water system. This example has been widely examined due to the importance
of the azeotropic distillation process used to separate ethanol and water using benzene as an
entrainer. The N-ary azeotrope method located all three binary azeotropes. The benzene-
ethanol and ethanol-water predictions are close to the experimental values. The benzene-
water binary azeotrope prediction is not as accurate. It has been reported in the experimental
literature that this system contains a ternary heterogeneous azeotropes, but no ternary ho-
mogeneous azeotropes. However, the UNIQUAC equation did predict a ternary homogeneous
azeotrope. The results are included in Table 10. The computational requirements were simi-
lar to the Wilson and NRTL examples. Between thirty and forty NLP subproblems per CPU
second were solved for the binary examples, and around sixteen NLP subproblems per second
for the ternary system. This is slightly slower than Example 1 for the Wilson and NRTL
examples.

Example 8: Ethanol/Methyl-Cyclopentane/Benzene/Hexane

In this example, the UNIQUAC formulation is used to find all N-ary azeotropes in a
quaternary system. For this system, only four binary azeotropes have been reported in the
literature, Table 11. The UNIQUAC equation predicts all of the binary azeotropes fairly well,
as shown in Table 12. The exceptions are the methyl cyclopentane-benzene azeotrope and
the benzene-hexane azeotrope for which the predictions deviate significantly from the exper-
imental results. In addition, the UNIQUAC equation predicts azeotropes in all four ternary
systems and in the quaternary system. For three of these systems, it has been determined
experimentally that no azeotropes exist. The computational requirements were similar to the
previous examples and increased as the number of components in the system increased.

Example 9: Acetone/Methyl Acetate/Ethyl Formate
This ternary system contains a ternary azeotrope, but only one binary azeotrope, as shown
in Table 13. The UNIQUAC equation locates a ternary azeotrope, but the temperature and

composition are quite different from the experimental results. The acetone-methyl acetate
azeotrope is also located along with an additional binary azeotrope, acetone-ethyl formate.

5.3 Application to the UNIFAC Model

Example 10: Ethanol/Methyl-Cyclopentane/Benzene/Hexane
In this example, the same quaternary system as Example 8 is studied, this time using the

UNIFAC equation. The experimental azeotrope data were shown previously in Table 12. Sur-

prisingly, the UNIFAC equation gives better results, shown in Table 14, than the UNIQUAC
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equation. The UNIFAC equation locates all of the binary azeotropes reported in the Gmehling
et al. (1994), and is does not predict the non-existant ternary and quaternary azeotropes that
the UNIQUAC equation did. The CPU times are of the same order of magnitude as the other

thermodynamic models.

Example 11: Acetone/Methyl Acetate/Ethyl Formate

This example is the same ternary system that was discussed in Example 9. The exper-
imental data are shown in Table 13. The UNIFAC predictions, Table 15 are similar to the
UNIQUAC equation. It is interesting to not that the UNIFAC equation also predicts an
acetone-ethyl formate azeotrope at almost the identical position as the UNIQUAC equation,
even though it has been reported that no azeotrope exists for this binary system. In fact, the
UNIFAC equation also predicts a second acetone-ethyl formate azeotrope.

Between twenty and thirty NLP subproblems per CPU second were solved for the binary
systems in this example, slightly slower than the UNIQUAC equation. For the ternary system,
around eight subproblems per second were solved.

Example 12: Acetone/Methyl Ethyl Ketone/Cyclohexane

In the final example, a ternary system containing two binary azeotropes is studied. The
azeotropes are acetone-cyclohexane and methyl ethyl ketone-cyclohexane. For this system, the
UNIFAC equation predicts both binary azeotropes, and did not locate any extra azeotropes,
as shown in Table 16. Again, the CPU times are in the same range as previous examples.

6 Conclusions

This work has presented a deterministic global optimization method for computing all N-ary
and k-ary (k < N) homogeneous azeotropes in mixtures containing N components. This
method is based on a branch and bound algorithm to iteratively solve a formulation of the
original problem in which the nonconvex constraints are replaced by valid convex underes-
timating functions. Nonconvex terms for the saturated vapor pressure equation In P the
Wilson equation, the NRTL equation, the UNIQUAC equation, and the UNIFAC equation
were identified and convex underestimating terms derived for each. While only four thermo-
dynamic models were used, this method can be extended to include the modified Wilson, and
ASOG activity coefficient models.

The novel contribution of this approach is that it offers a theoretical guarantee of enclosing
all azeotropes, while at the same time the computational effort is modest. The effectiveness
of this method was demonstrated for several chemical systems and three different thermody-
namic models of the liquid phase activity coefficients. In all examples, the method found all
azeotropes for the systems studied.
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A Convex Underestimators for the Wilson Equation

The first nonconvex term in the problem of finding all N-ary azeotropes using the Wilson

formulation that will be examined is Inq > z;A;; ¢, which is concave in z;, for e = 1,2, ..., N.
JEN
Therefore, this term can be underestimated by the following expression:

U
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The second type of nonconvex terms found in the Wilson formulation have the form:
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Following the method presented in Maranas and Floudas (1995) for products of univariate
functions, the convex underestimators for these terms are:
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For the k-ary azeotrope problem (13) the nonconvex terms are:

(;lji ln(z ;EJA”)) 5 (—:pi hl(z :EJA”)) 5 (:Ez Z S}Aﬁ) ,and (—:L‘i Z S}Aﬁ) (44)

JEN JEN JEN JEN

The first nonconvex term above can be considered as the product of two univariate func-
tions, x;u;, where u; is the log term in the equation. The convex underestimator for this

product is, Al-Khayyal and Falk (1983):

T;u; > 1max {mf’uz + xzuf —z

Y
U U u.u
T, u; + Tiu, —;L’l-ui}.

where,
= In(}_ z;Ay)
JjEN
and,
uf = In(min ¥ z;A4)
JEN
st Y oz =
JEN

L _ U
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(45)
u¥ = In(max ¥ )z;A;)
JEN
st Y zi=1
JEN

L _ U
Ty §$J§;L’J

Note that zFu; and z¥u; are nonconvex, so the convex underestimator developed in Equa-
tion (41) should be used in place of u;.

Similarly, the second nonconvex term is of the form z;(—u;). The convex underestimator
for this product is:

UL

—x;u; > max { ] :L’u + z; u;

U
2
L
_':Ez

:L'u + x; uU}

and again, the u; term in nonconvex and must be replaced by the convex underestimator
developed in Equation (41). Consider the third and fourth nonconvex terms in Equation (44)
to be of the form:
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ti = i) uj)

which is a sum of products of univariate functions. As shown by Al-Khayyal and Falk (1983),
each term can be underestimated by:

T;u; > max {a:f’uj + a:zuf — J:fuf,

U U u.u
T Uj A+ T —:L'Z-uj}.

Now when these terms are summed over each j in the set of components N, the following
formula results:

inuj > max {fouJ—l—mZuf—rf’Zuf,

JEN JEN JEN JEN

:U?Zuj—l—a:lz:ugj—x?z:ugj}

JEN jJEN JEN

However, the term u; is nonconvex, so it must be replaced by a valid convex underestimator.
Recall u; = S}Aij and a convex underestimator for this term was constructed at the beginning
of Appendix A.

The upper and lower bounds for the summation terms can be obtained essentially by
minimizing the numerator of each term while maximizing the denominator. Substituting in
for s} gives:

min;
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The term mgj was defined in Section 3 by Equation (43). The term Y. uY is determined in a
JEN
similar manner and is:
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Therefore, the nonconvex term:
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Through a similar analysis, the term:

2 —_— . 1 .
17 = —x; Z SJ-AJZ

JEN

can be underestimated by:

L
tf > max fovj—:z:iZ LZ

jEN jJEN j jEN j
UA A
U U
wg Y vi—w Yy, > -
jEN jEN 7 JEN J
where
E ‘:EkA]k L
Zj T pen T
vj =2 max _—L+ LU 7
m; myim; m;
E xkAJk U
T -I- T pen 3
U L U L
m; myim; m;
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B Convex Underestimating Functions for the NRTL
Equation

In the NRTL equation formulation of the problem of finding all N-ary azeotropes, Equation
(24), three different types of nonconvex terms are encountered:

Wy
+pi = —
Yi
wy
—p = ——
Yi
Ty
+¢ = ZTijGij__
JEN Y;
Ty
—qi = — ) TG
JEN Ys

TiW;5
1%
—-r; = —ZG”
jEN 7Y3
where
Yo = ZGjil‘j
JEN
w; = ZTjiGﬁiL’j
JEN

so z;,y; > 0, but w; can be positive or negative.
Following the method of Maranas and Floudas (1995) for fractional terms, the first two

types of nonconvex term can be underestimated by:

L L
w! ] )
w; L4 5 — 4 if wl >0
t Yi Y, Y *
— 2 max ) wLy wk f I
Yi no_ =  fwr <0
vl oyl T ¥l g
U U
w! W
e if wZU >0
¥ Y, Y o N
w; w, Y. w, U
e fw! <0
v’ yly T y. t
L L T
w! Wl
w; — Tt if wlk < 0
—— > max A S ok
Yi - L — = ifw? > 0
uE Tty b : |
. :
w - w: .
—e -t ifw! <0
o Yy, oy
w; w, Y. w, : U
— — fw? >0
T hT T : |
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where

w][_/ = %’éil{[lTijijk
wl = max Gtk
J ken 7
yL = minGg;2g
J keN 7
yU = max Gg;Tp
J keN 7

and in the second type of nonconvex term, each fractional term in the summation can be

underestimated by:

Tj v m;  1f
— > max {— + — — —5
] U U
y; yJ y] y]
U oy U
] L L
Yj Y; Y5
Ly S Lj i Y3 J
—— > max {——r - —=
L LU U
Y; Y5 Y5Y; Y5
U, . U
R R A B
U LU L
Y; YiY; Y;

Therefore, since Y (maxz;) = max [} z; |, the convex underestimator for the second term
3 3
is:

L
x
J
Z TijGij__ 2> max Z Ti Gl — Z 7ij (i U Z Tij G U7
JEN Yi JEN i jeN i jeN Ys
Y
Z Tij Gu ‘|' Z 7i; g L Z 7iiGis—F
JEN Yi JEN 3 JEN ]
T; Ly, L
J .7 J
_ZTijGij__ 2 max _ZTU i L ‘|'ZTH i LU 27—1; i U’
JEN J jeN Y5 jen i95  jen Y;
Uy U
.7
_ZTU i U"’ZTU LU ZUGUL
jEN J JEN yJ yJ JEN

The third term is more difficult to underestimate, but a convex underestimator can be
constructed by successively finding the convex lower bounding function for pairs of univariate
functions in a recursive manner until no pairs are left. The recursive procedure for constructing
convex underestimators from pairs of univariate functions, as shown by Maranas and Floudas
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(1995), can be used for the third nonconvex term from the NRTL equation as illustrated

below.
First, the fractional term (:—]) is considered. Since :L'f and 1:5’ are both always greater

J
than zero, this term can be underestimated by:

L L

2 > X = max {—J—I——J——J

= _ U U’

Yj Y5 y] y]

U U

2 2

Y5 ;5 Y3

and since (x; — xf) is always positive, )\i is always positive. Next, a convex underestimating

. . A2
function is constructed for the term (y—ﬂ)
J

22 ASL y2 AL
E N = max T
Yj Ys Ys Ys

L L

2,U 2 2,U
)‘j )‘j )‘j
vi o yk oy

zL =U
where (A?’L = y—JU) and (A?’U = y%)

J J
Finally, convex underestimating functions for the terms (Ajw;) and (A}(—wj;)) are con-

structed:
1 L1 1,L L\1,L
)\jwj > max {wj)\j—l—wj)\j —wj)\j ,
Uyl LU UALU
w; )\J- + wj)\j w; )\j }
1 : U1 31,L U\1,L
)\j(—wj) > max { w; )\j wj)\j + w; )\j ,
L1 1,U L\1,U
—wiA; —wiA;T + wyA; }
2,L I 2,U U
1.L A T 1.U A x .. .
where | A" = - = ¢ ) and (A, = 24— = 4. ). Combining these terms gives a
3 3
. y]. ]y]. y] . y] y] . .
convex underestimating function for the each fractional term in the summation.
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i S max dwEA 4 i Yt
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L U are as defined above. Now, by the same argument as was

and )\}, A?, yf, yJU, wy, and w;
given for the second type of nonconvex term, the convex underestimator for the third type of

term 1s:

] L1 wf:z:f’
ZGU 2 EGle)‘—I_ZG’JUU Z “UU
jEN Y5Y; JEN jEN Y5 Y; eN yj Ys

U U..U
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jeN Y5Ys jEN jEN y] y] eN yJ Y;
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= Gijwi A} - ZGzaLL+ZG —
jeN jEN i¥;  jen Y5

C Convex Underestimating Functions for the UNI-
QUAC Equation

The N-ary azeotrope problem using the UNIQUAC equation contains many nonlinear terms.
The nonconvex terms can be grouped into two basic categories. The first group has the form:

n (z %)

JEN

The nonconvex terms in this group are:

In (Z rj;r:j) , In (Z qj:z:j) , In (Z q;-;r:j) , and In (Z Tjiq;xj)
JEN JEN

JEN JEN
These are all concave terms, thus convex underestimating functions can easily be constructed.

When terms of this form appear as (—In ¥ ¢;jz;) they are convex and do not need underes-
jEN

timators. The convex underestimators for the first three terms above are written:

In (Z cj;z:j) > Inm% + hl{ } (Z cjT; — m)

JEN

for ¢; = rj,q;, or ¢; and where,
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m?Y = max 3 cjTj

jEN
st >oa; =1
jEN

and,

L _ .
mY = min Y ¢
jEN
st Xoa; =1
jEN
L _ U
r; < x; < z;

The convex underestimator for the fourth term is very similar:

ln{:’L}
In Zcijajj > lnmf + ﬁ Zcij:z:j

jEN (my —my) \ ;e
for ¢;; = 75q; and where,
v _ 1
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and,
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L _ U
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The second group of nonconvex terms are fractional terms of
T
P
> diy
leN
This group includes the terms:
!
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For terms of this type, the sign of the constant in the numerator determines the formula
that is used for the underestimating function. For the UNIQUAC equation, the parameters
3, 3, 75, and 75 are always positive, while /; may be either positive or negative. Therefore the
constant ¢ = +7;;¢; will always be positive and ¢ = —7;¢; will always be negative. However,
the sign of the constant for the first two terms, ¢ = +[; and ¢ = —[; must be determined
before the underestimating function is constructed. When ¢ is positive, the underestimating
function for a linear fractional term is given by:

CTy > CJ?f n cx; cz:f
—_ max —_— = —=
E djfl}j - Z dll'l mU 'ITLU7
JEN leN
U U
o diz;p o mE mb
leN

When ¢ is negative, the underestimating function is given by:

L
crs - diz
;2 dim cxt

cx; cT;
7 7 leN
—7 > max {——2L+ -
> djx; mL mimU mU’
JEN
U
cx? Y dixg U
ez ! ien G
mY mimV mL
where,
m? = max Y djzy
leN
st. Yo =1
leN
af <z <af
and

mP = min ¥ dixy
leN
st. Yoo =1

leN
af <ap<a¥

D Convex Underestimating Functions for the UNI-
FAC Equation

The N-ary azeotrope problem using the UNIFAC equation contains several nonconvex terms.
Most of the terms are identical to the nonconvex terms from the UNIQUAC equation, as
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discussed in Section 5.3. Convex lower bounding functions for these terms are derived in
Appendix C. Of the remaining nonconvex terms, the first term has the same logarithmic form

as discussed for the UNIQUAC equation.

o (z )

JEN

This is a concave term, thus the convex lower bounding function is given by the following

equation:
U
L ™y L
In Zagjrz:j > lnmg + VAT Zagja:j — my
JEN (mg _mg) jEN
where
U _ .
mg = Mmax Y Qg;T;
jEN
st >oxy; =1
jEN
L _ U
T; <uz; < z;
and,
mY = min 3 agiz;
g : 971
jeN
st Xoa; =1
jEN

L _ U
Ty §x1§;zjj

The last two nonconvex terms for the UNIFAC equation are fractional terms.

_I_ /397'.7 7 , and o /397'.7 7
Y. OgkTk > QgrTk
kEN kEN

For the UNIFAC equation, the parameter f3,; is always positive. Therefore, for the positive
fractional term, the underestimating function is given by:

3 ..l L
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> max T TR
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h U a U
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For the negative fractional term, the underestimating function is given by:

3 L Y kT L
T ew ? B ﬁgijxj

- Bgii; > max _5911 74 7

> gk mL mimY mY
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kEN
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Experimental Data for Acetone (1) — Methyl Acetate (2) — Methanol (3)
P =1.0 atm
‘ Azeotrope H T1 ‘ T ‘ T3 ‘ T (deg C)
Data from Gmehling et al. (1994)
1-2 0.610 | 0.390 | — 56.10
1-3 0.785 | — ] 0.215 55.20
2-3 — 1 0.680 | 0.320 54.00
1-2-3 1 0.048 | 0.620 | 0.332 55.10

T : This azeotrope was reported at a pressure of 1.05 atm.

Table 1: Experimental Data for Example 1
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Results for Acetone (1) — Methyl Acetate (2) — Methanol (3)

Find all N-ary Azeotropes: P = 1.0 atm

‘ Azeotrope H 1 ‘ Ty ‘ T3 ‘ T (deg C) H CPU (sec) ‘ NLP Subs. ‘
Wilson Equation
1-2 0.532 | 0.468 — 55.675 0.47 21
1-3 0.747 — 0.253 54.505 0.37 17
2-3 — 0.677 | 0.323 54.356 0.43 17
1-2-3 0.272 | 0.465 | 0.253 54.254 7.39 217
NRTL Equation
1-2 0.655 | 0.345 — 55.557 0.94 29
1-3 0.777 — 0.223 55.117 0.57 19
2-3 — 0.663 | 0.337 53.545 0.52 19
1-2-3 No ternary azeotrope was found using the NRTL Equation
Wilson Equation solution from Fidkowski et al. (1993)
AMa 0.5396 | 0.4606 | —— 55.66
AM 0.7480 | —— | 0.2520 54.48
MaM — 1 0.6764 | 0.3236 54.36
AMaM 0.2852 | 0.4538 | 0.2610 54.25

Table 2: N-ary Solutions for Example 1
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Solution for Acetone (1) — Methyl Acetate (2) — Methanol (3)
Find all k-ary Azeotropes: Wilson Equation
P =1.0 atm
CPU = 278.75 sec
NLP Subproblems Solved = 1763

‘ Azeotropes H T1 ‘ T ‘ T3 ‘ T (deg C)
1-2 0.532 | 0.468 | — 55.675
1-3 0.747 | — | 0.253 54.505
2-3 — 1 0.677 | 0.323 54.356
1-2-3 0.272 | 0.465 | 0.263 54.254

Table 3: k-ary Solutions for Example 1
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Solution for Methanol (1) — Benzene (2) — i-Propanol (3) — n-Propanol (4)
Find all N-ary Azeotropes: P = 1.0 atm
‘ Azeotrope H z1 ‘ Ty ‘ T3 ‘ T4 ‘ T (deg C) H CPU (sec)
Experimental Data from Gmehling et al. (1994)

1-2 0.605 0395 — | — | 58.08

1-3 No Azeotrope

1-4 No Azeotrope

2-3 — 1 0.600 | 0.400 | — 71.80

2-4 — 10791 | — | 0.209 77.10

3-4 No Azeotrope
Wilson Equation

1-2 0.624 | 0.376 | — | — 58.129 0.72

2-3 — 1 0.586 | 0.414 | — 71.951 0.62

2-4 — 1 0.780 | — ] 0.220 76.946 0.63
NRTL Equation

1-2 0.063 | 0.937 | — | — 80.166 0.99

2-3 — 1 0.588 ] 0.412 | — 71.832 0.68

2-4 — 10776 | — |0.224 77.131 0.80

Table 4: Solutions for Example 2
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Solution for Benzene (1) — Hexafluorobenzene (2)
Find all N-ary Azeotropes

‘ Azeotrope H z1 ‘ Ty ‘ T (deg C) ‘ P (atm)

Experimental Data from Gmehling et al. (1994)

1-2 0.150 | 0.850 30.00 0.14
1-2 0.950 | 0.050 30.00 0.16
1-2 0.160 | 0.840 40.00 0.22
1-2 0.930 | 0.070 40.00 0.24
Wilson Equation
CPU = 2.16
1-2 0.051 | 0.949 37.650 0.2
1-2 0.956 | 0.044 35.508 0.2

Table 5: Solutions for Example 3
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Solution for Ethanol (1) — Methyl Ethyl Ketone (2) — Water (3)
Find all N-ary Azeotropes: P = 1.0 atm
‘ Azeotrope H T1 ‘ Ty ‘ T3 ‘ T (deg C) H CPU (sec)
Experimental Data from Gmehling et al. (1994)
1-2 0.501 | 0.499 | — 74.00
1-3 0.895 | — | 0.105 78.10
2-3 —— 1 0.661 | 0.339 73.50
1-2-3 0.126 | 0.580 | 0.294 73.30
Wilson Equation
1-2 0.489 | 0.511 | — 74.059 0.62
1-3 0.924 | — | 0.076 | 78.211 0.62
2-3 —— 1 0.682 | 0.318 | 74.035 2.52
1-2-3 0.253 | 0.536 | 0.211 73.006 3.22
NRTL Equation
1-2 0.486 | 0.514 | — 74.076 0.51
1-3 0.952 | — |0.048 | 78.275 0.70
2-3 —— | 0.657 | 0.343 | 73.388 0.85
1-2-3 0.187 | 0.560 | 0.253 | 72.957 7.19

Table 6: Solutions for Example 4
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Solution for Acetone (1) — Chloroform (2) — Methanol (3)
Find all N-ary Azeotropes: P = 15.8 atm

‘ Azeotrope H 1 ‘ Ty ‘ T3 ‘ T (deg C) H CPU (sec)

Experimental Data

No experimental data was found for this system

Wilson Equation

1-2 0.312 | 0.688 | — 184.914 0.53

1-3 0.239 | — |0.761 | 154.379 0.28

2-3 —— 1 0.358 | 0.642 | 150.268 0.67
NRTL Equation

1-2 0.289 | 0.711 | — 184.627 0.79

1-3 0.266 | —— | 0.734 | 154.267 0.61

2-3 —— 1 0.349 | 0.651 | 152.401 0.65

Table 7: Solutions for Example 5
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Experimental Data for
Acetone (1) — Chloroform (2) — Methanol (3) — Ethanol (4) — Benzene (5)
P =1.0 atm
‘ Azeotrope H 1 ‘ Ty ‘ T3 ‘ T4 ‘ Ts ‘ T (deg C)
Data from Gmehling et al. (1994)
1-2 0.360 | 0.640 | — | — | — 64.50
1-3 0.800 | — |0.200 | — | — 55.70
2-3 — | 0.653 | 0.347 | — | — 53.35
2-4 — | 0.840 | — | 0.160 | — 59.30
3-5 — | — 10.610 | — ] 0.390 58.15
4-5 — | — | — |0.431 | 0.569 64.80
1-2-3 0.318 | 0.241 | 0.441 | — — 57.67
1-2-4 0.350 | 0.460 | —— | 0.190 | — 63.20
2-3-5 No composition given 60.90
1-2-3-5 [ 0.182 [ 0.120 [ 0.500 | — [ 0.198 57.90

Table 8: Experimental Data for Example 6
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Solution for Acetone (1) — Chloroform (2) — Methanol (3) — Ethanol (4) — Benzene (5)
Find all N-ary Azeotropes: P = 1.0 atm

‘ Azeotrope H T1 ‘ Ty ‘ T3 ‘ T4 ‘ T ‘ T (deg C) H CPU (sec)
Wilson Equation
1-2 0371 | 0629 | — | — | — 64.656 0.78
1-3 0802 | — [0.198 | — | — 55.457 0.48
2-3 — 106310369 | — | — 53.070 0.81
2-4 — 10842 | — ]0.158 | — 59.250 0.95
3-5 — | — 10.624 | — | 0.376 58.015 0.43
4-5 — | — | —— 10.454 | 0.546 67.700 0.84
1-2-3 0.375 1 0.189 | 0.436 | — | —— 57.218 2.03
1-2-4 0.374 | 0.438 | — | 0.188 | — 63.180 2.11
1-2-3-5 0.295 | 0.148 | 0.463 | —— | 0.094 57.154 7.58
NRTL Equation
1-2 0.351 | 0649 | — | — | — 65.109 0.83
1-3 0777 | — 10223 | — | — 55.117 0.55
2-3 — 10661 {0339 | — | — 53.675 1.07
2-4 — | 0.846 | — ] 0.154 | — 59.344 0.69
3-5 — | — 10.618 | — |0.382 58.013 0.64
4-5 — | — | —— 10.447 | 0.553 67.795 0.98
1-2-3 0.329 | 0.237 | 0.434 | — | — 57.205 3.88
1-2-4 0.352 | 0.454 | — ] 0.194 | — 63.498 3.93
1-2-3-5 0.313 | 0.222 | 0.440 | — | 0.025 57.201 35.19

Table 9: Solutions for Example 6
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Solution for Benzene (1) — Ethanol (2) — Water (3)
Find all N-ary Azeotropes: P = 1.0 atm
‘ Azeotrope H 1 ‘ Ty ‘ T3 ‘ T (deg C) H CPU (sec) ‘ NLP Subs. ‘
Experimental Data from Gmehling et al. (1994)
1-2 0.570 | 0.430 | —— 64.80
1-3 0.704 | —— ] 0.296 69.30
2-3 —— 10.895 | 0.105 78.10
1-2-3 No Homogeneous Azeotropes
UNIQUAC Equation
1-2 0.572 | 0.428 | —— 67.331 0.94 31
1-3 0.608 | — ] 0.392 61.317 0.84 31
2-3 —— 1 0.88 | 0.114 78.153 0.84 29
1-2-3 0.604 | 0.013 | 0.383 61.583 6.48 107

Table 10: Solutions for Example 7
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Experimental Data for Ethanol (1) — Methyl-Cyclopentane (2) — Benzene (3) — Hexane (4)

P =1.0 atm
‘ Azeotrope H T ‘ T ‘ x3 ‘ T4 ‘ T
Data from Gmehling et al. (1994)

1-2 0.378 | 0.622 | — | — 60.30
1-3 0.440 | — | 0.560 | — 64.70
1-4 0332 | — | — | 0.668 58.70
2-3 — 1 0.875 ] 0.125 | — 71.65
2-4 No Azeotrope
3-4 — | — [0.052]0.948 | 68.50
1-2-3 No Azeotrope

1-2-4 No Experimental Data

1-3-4 No Azeotrope

2-3-4 No Azeotrope

1-2-3-4 No Experimental Data

Table 11: Experimental Data for Example 8
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Solution for Ethanol (1) — Methyl-Cyclopentane (2) — Benzene (3) — Hexane (4)
Find all N-ary Azeotropes: P = 1.0 atm
‘ Azeotrope H 1 ‘ T ‘ x3 ‘ T4 ‘ T H CPU
UNIQUAC Equation

1-2 0.316 | 0.684 | — | — | 63.489 1.56
1-3 0.441 | — | 0.559 | — | 67.292 0.94
1-4 0.334 | — | — ] 0.666 | 61.265 1.37
2-3 — 1 0.738 1 0.262 | — | 70.367 0.77
2-4 — 1 0.654 | — ] 0.346 | 72.892 0.78
3-4 — | — 10.307 | 0.693 | 66.919 1.04
1-2-3 0.301 | 0.545 | 0.154 | — | 63.029 3.49
1-2-4 0.344 | 0.418 | —— | 0.238 | 64.401 7.94
1-3-4 0.300 | — ] 0.172 | 0.528 | 60.669 6.86
2-3-4 —— 1 0.458 1 0.333 | 0.209 | 71.235 5.53
1-2-3-4 0.322 | 0.322 | 0.222 | 0.133 | 63.558 27.31

Table 12: Solutions for Example 8
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Solution for Acetone (1) — Methyl Acetate (2) — Ethyl Formate (3)

Find all N-ary Azeotropes: P = 1.0 atm

‘ Azeotrope H z1 ‘ Ty ‘ T3 ‘ T (deg C) H CPU (sec) ‘
Experimental Data from Gmehling et al. (1994)
1-2 0.610 [ 0.390 [ — | 56.10
1-3 No Azeotrope
2-3 No Azeotrope
1-2-3 0.548 [ 0.407 | 0.045 | 55.61
UNIQUAC Equation
1-2 0.774 | 0.226 | — 55.877 0.78
1-3 0.684 | — |0.316 | 56.860 1.08
1-2-3 0.359 | 0.456 | 0.185 | 56.299 12.28

Table 13: Solutions for Example 9
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Solution for Ethanol (1) — Methyl-Cyclopentane (2) — Benzene (3) — Hexane (4)
Find all N-ary Azeotropes: P = 1.0 atm
‘ Azeotrope H z1 ‘ Ty ‘ T3 ‘ T4 ‘ T (deg C) H CPU (sec)
UNIFAC Equation
1-2 0.371 { 0.629 | — | — 60.632 1.86
1-3 0.450 | — [ 0.550 | — 67.841 1.16
1-4 0357 | — | — ]0.643 | 59.054 2.04
2-3 — 1 0.865 | 0.135 | — 71.651 1.60
3-4 —— | —— [0.065 | 0.935 | 68.900 1.48

Table 14: Solutions for Example 10
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Solution for Acetone (1) — Methyl Acetate (2) — Ethyl Formate (3)
Find all N-ary Azeotropes: P = 1.0 atm
‘ Azeotrope H 1 ‘ Ty ‘ T3 ‘ T (deg C) H CPU (sec) ‘ NLP Subs. ‘
UNIFAC Equation

1-2 0.443 | 0.557 | — 55.490 1.82 47
1-3 0.683 | — | 0.317 | 54.658 1.62 53
1-3 0.443 | —— | 0.557 | 54.718 4.32 89

1-2-3 0.605 | 0.354 | 0.041 | 55.596 18.28 141

Table 15: Solutions for Example 11
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Solution for Acetone (1) — Methyl Ethyl Ketone (2) — Cyclohexane (3)
Find all N-ary Azeotropes: P = 1.0 atm
‘ Azeotrope H z1 ‘ Ty ‘ T3 ‘ T (deg C) H CPU (sec)
Experimental Data from Gmehling et al. (1994)

1-2 No Azeotrope

1-3 0.750 | —— | 0.250 53.10

2-3 —— 1 0.500 | 0.500 71.00

1-2-3 No Azeotrope

UNIFAC Equation

1-3 0.878 | — |0.122 | 55.726 1.60
2-3 — 1 0.424 | 0.576 71.822 1.56

Table 16: Solutions for Example 12
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