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Abstract

The estimation of parameters in nonlinear algebraic models through the error-in-
variables method has been widely studied from a computational standpoint. The method
involves the minimization of a weighted sum of squared errors subject to the model
equations. Due to the nonlinear nature of the models used, the resulting formulation
is nonconvex, and may contain several local minima in the region of interest. Current
methods tailored for this formulation, although computationally efficient, can only at-
tain convergence to a local solution. In this paper, a global optimization approach based
on a branch and bound framework and convexification techniques for general twice dif-
ferentiable nonlinear optimization problems is proposed for the parameter estimation of
nonlinear algebraic models. The proposed convexification techniques exploit the math-
ematical properties of the formulation. Classical nonlinear estimation problems were
solved and will be used to illustrate the various theoretical and computational aspects
of the proposed approach.
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1 Introduction

Mathematical models which accurately predict physical phenomena are essential in many
fields of engineering and the sciences. These models frequently contain adjustable parameters
which need to be determined from available experimental data. In the chemical engineering
field, mathematical models form the basis for the design, control, and optimization of process
systems. In the drive for more economically profitable and environmentally safe processes,
the models used have become more complex. Where initially a linear or linearized model
was sufficiently accurate for the goal at hand, a nonlinear model is now used to reach a
more stringent objective. The use of nonlinear models, many of which are implicit in nature,
introduces an added level of complexity into the numerical estimation of the model parameters.

Many different statistical methods exist for the estimation of the parameters in both linear
and nonlinear models, as shown by Bard L 1n particular one method, maximum likelihood, has
been presented extensively in the literature. In the maximum likelihood approach, errors in
all measured variables, rather than just in a set of dependent variables, are accounted for thus
leading to unbiased estimates of the true parameter values. One formulation of this approach
which has become popular, assumes that the error is normally distributed with a zero mean
and known diagonal covariance matrix. The resulting optimization problem is referred to as
the error-in-variables formulation. Two major difficulties arise in addressing this problem.
First, since error is accounted for in all variables, the optimization is performed not only over
the parameters, but also over a fitted set of data variables thus leading to many degrees of
freedom. Secondly, and more importantly, due to the nonlinear nature of the models, the
resulting optimization problem is nonconvex and may contain many local minima in the area
of interest.

Over the years many different methods have been proposed to address this formulation.
Bard and Lapidus2 provided a description of the early work in the area as it relates to the
estimation of kinetic parameters in complex reaction networks. They provided an overview
of the various statistical and numerical methods. An emphasis is placed on gradient based
approaches which are then used to solve for the kinetic constants in different reaction systems.
Southwell 3 presented a method also based on a gradient approach, but through the use of
iterative matrix calculations. The method is directly applicable to models which are linear
in the parameters. In order to solve models which are nonlinear in the parameters, a Taylor
series about the current iteration point is used in the gradient calculations. The models
solved are limited to a two variable single equation explicit form, that is, where one variable
can be written as a function of another. Schwetlick and Tiller? extended this approach to
include models which have more than two variables and are highly nonlinear in nature. They
accomplished this by exploiting the structure of the Jacobian matrix, and developing a different
correction calculation to overcome difficulties in the Gauss-Newton correction for strongly
nonlinear problems. This correction is based on a regularization proposed by Marquardt5
for the least squares problem. Britt and Luecke® derived an algorithm based on the use



of Lagrange multipliers for the model equations which enter into the problem as equality
constraints. Their method involves the use of successive constraint linearization and closely
mimics the Gauss-Newton approach for the least squares problem. Fariss and Law presented
an approach which modifies the form of the error response to allow for the detection of
gross errors in the data. Their numerical method employs gradient based approach, but only
requires analytical first derivatives. Fabries and Renon® developed a method specifically for
thermodynamic models also using a Gauss-Newton approach. They presented a method to
not only estimate the parameters in various thermodynamic models, but also to reduce the
number of parameters needed through the determination of correlation coefficients. Anderson
et al.d provided an extension of this work with incorporates two equation models to fully
describe the system. They used a successive linearization approach in the determination of

the model parameters.

Patino-Leal and Reilly10 also addressed the vapor-liquid equilibrium problem, but used
a very different approach than the previous authors. Through the linearization of the model
equations, and integration over the fitted data sets, they formulated an optimization problem
which contains only the parameters and linearization points. Both exact and approximate
approaches were provided to determine these linearization points. There work can be referred
to as a two step approach, where the optimization problem is decomposed into an inner and
outer problem, in order to reduce the size of the variable set. The outer problem calculates
values for the parameter values using given values for the fitted data variables, while the inner
problem determines the fitted data variables from given values of the parameters. Valko and
Vajda11 presented an almost identical approach with the exception that the outer optimiza-
tion problem is reformulated so that a Gauss-Marquardt method can be directly applied. The
inner problem is only a calculation of the fitted data variables using a linearization of the
model equations. The approach by Rod and Hancil12 is quite different. Instead of using a
linearization of the model equations in calculating the values of the fitted data variables in
the inner problem, an optimization problem is solved.

Another approach to reduce the size of the variable set is via problem decomposition that
allows for the optimization to be performed only in the space of the parameters. Dovi and

Paladino 13

accomplished this through the use of constrained variation in which the change
in one variable can be written as a function of the change in another. This results in a
system of equations which can be solved simultaneously along with the optimization problem.

14 proposed a method based on successive quadratic programming. At each

Tjoa and Biegler
quadratic sub-problem, the optimality conditions in terms of the fitted data variables are

solved analytically and included in the optimization.

Reviews and comparisons of the various methods are given by Ricker15, Stewart et al. 16,
and Kim et al.17.

All the aforementioned approaches address the first of the two difficulties referred to earlier.
They only offer convergence to a local solution of a formulation which may have multiple



minima. The result could be erroneous parameter estimates and inadequate models. There is
currently no method which guarantees convergence to the global minimum and exploits the
structure of the mathematical formulation. Up to this point parameter estimation problems

18 and Csendes

have only been addressed as examples for general approaches. Moore et al.
and Ratz!9 both provide global optimization algorithms based on interval arithmetic. As
illustrations of their techniques, parameter estimation problems, in the form of nonlinear,

unconstrained least squares problems were solved.

In this work, a deterministic global optimization algorithm based on a branch and bound
framework is proposed to address the error-in-variables formulation with no assumptions as
to the mathematical structure of the model other than that they are twice continuously
differentiable. In section 2, the principle of maximuim likelihood will be discussed and the error-
in-variables estimation problem will be derived. Section 3 will provide a detailed description
of the proposed global optimization approach. First, an overview of a recently developed
deterministic algorithm, aBB, will be presented. Secondly, the extensive modifications made
to the algorithm will be discussed. Finally, the detailed algorithmic approach will be presented.
In Section 4, various nonlinear parameter estimation problems taken from different literature
sources will be solved to illustrate the mathematical and computational properties of the
proposed approach.

2 Maximum-Likelihood Estimation

The model takes the form of an implicit algebraic system of equations

f(0,z) = 0 (1)
where 6 is a vector of p unknown parameters, z is a vector of n experimentally measured
variables, and f represents the system of [ algebraic functions.

All experimentally measured variables are affected to some extent by error. The measure-
ments are related to the true values through:

z, = (g +e, p=1..m (2)

where (, is vector of unknown true values of the experimentally measured variables, z,, at
the p data point, and e, is the vector of additive error.

We now define the likelihood function (L) as the probability of the observed errors in
all data points occurring given a set of statistical parameters (1) for the distribution used
to represent those errors. The errors are functions of the chosen values for the parameters
through the model equations

L@ ,4) = p (E@0)[v) (3)



with E = [e] ,el ,...,el]7. As it is frequently assumed, the measurement errors from differ-
ent data points (experiments) are considered as uncorrelated or independent. Then, the joint
probability density shown in (3) can be expressed as a product of the individual probability

densities, and hence the likelihood function becomes:

L0, ¢) = ]I p(eu(0)]¢y) (4)
pu=1
The maximum likelihood estimator seeks to determine values for # and v which maximize

L. For convenience it is much easier to work with (In L). Maximization of (In L) is equivalent
to the maximization of the original function L. This results in:

In L(6 ﬁj 0)|v,) (5)

If we assume that the errors follow a normal distribution with zero mean and covariance
matrix V, we have:

27 /2 1
p(e|V) = N(e,V) = u exp [—— et V1 e] (6)
VI 2
Substituting (6) into (5), we obtain:
mL = 2" mor — len\v ul — Zlegvjeu (7)
p= 2=

Different forms of (7) exist depending on what is known, or assumed about the covariance
matrix. In the sequel, we outline three common cases:

case 1: If the covariance matrix is known completely for each experiment, then only the final
term is variable. Therefore maximization of In L is equivalent to:

min Y e/ V,'e, (8)

u=1

case 2: If the covariance matrix is assumed to be known and to be the same in each experiment,
that is, Vi = V, = ... =V, then (8) reduces to:

min ) e, V'e, 9)

pu=1

case 3: If it is assumed that the errors in each experiment are known, equal, and independent,
that is, the covariance matrix is diagonal with elements v;, then (9) can be written as:



m n
min Z Z eiﬂ- vi_l (10)
p=11i=1
where e,; is the sth component on the vector e,, that is, the error associated with the
1th variable in the uth experiment. This is the particular form of the maximum likelihood
estimator which will be studied in this paper. Defining v; as o2 where o; is the standard
deviation assigned to the ith variable in all experiments, substituting the definition of e, ;
from (2), and subjecting the minimization to the model equations, we have the following
optimization problem, known as the error-in-variables formulation:

i (2/1'1i — le,i) (11)

s.t.

The optimization variables, z,, in (11) are referred to as the fitted data variables. These are
approximations, obtained through the optimization, of the true values of the experimental
data, (,. This formulation has the following mathematical properties:

1. For a known and constant experimental variance the objective function is convex.

2. Since the model equations enter into the formulation as equality constraints, nonlinear
models result in nonconvex optimization problems.

3. Since the minimization is not only over the parameters, but also over the fitted data
variables, z,,, even models linear in the parameters, such as 2o = az; + b, are nonlinear
due to the bilinear term a z;.

4. A group of constraints, corresponding to the model equations, are written for each data
point, 1 = 1...m. This results in the fitted data variables, z,, appearing in one set of
the constraints, while the parameters, €, appear in every set.

5. An unconstrained formulation is sometimes possible through substitution of the model
equations into the objective function.

These mathematical properties form the basis for the development of a global optimization
approach for the error-in-variables formulation.



3 Global Optimization Approach

In order to solve (11) to global optimality, a recently developed deterministic branch and

B20521522;23, was extensively modified and applied to the parameter

bound algorithm, aB
estimation of nonlinear algebraic models. In section 3.1, the basic ideas of the BB algorithm
will be presented as applicable to more general problems. In section 3.2, the modifications
made to tailor the algorithm to the error-in-variables method will be discussed. Finally, in

section 3.3 the detailed algorithmic approach will be presented.

3.1 Basic Ideas of the BB

The aBB global optimization method guarantees convergence to the global minimum for
general twice continuously differentiable constrained and unconstrained NLPs. This is accom-
plished through the generation of a non-decreasing sequence of lower and a non-increasing
sequence of updated upper bounds on the global solution. Finite e-convergence to the global
minimum is achieved through the successive subdivision of the region at each level in the
branch and bound tree. The sequence of upper bounds on the global solution is obtained by
solving, to local optimality, the full nonconvex problem from different starting points. The
lower bounds are generated by solving a convex relaxation of the original problem.

The convex relaxation, or underestimator, is generated by replacing each nonconvex term
in the objective function and the constraints by its convex envelope. There exist different
methods of generating this convex envelope depending on the type of term involved. For a

univariate concave term, f(z), the tightest convex relaxation, £(z), is a linearization from z*
to 2V
f(@%) — f(=")
L) = st + 1) 2T (12)

Linear underestimators for bilinear terms are based on the work of Al-Khayyal and Falk 24, Al-

125

Khayyal“*, and McCormick26. In this case, each bilinear term zy is replaced by an auxiliary

variable, w, and the following four linear inequality constraints are added

gy + ylz — 2yt — w
'y + y'z — 2%y* —w
—r%y — ylr + 2%y + w
—aly — ytr + oly* + w

(13)

IA N IAIA
oo oo

The first two linear cuts represent the convex hull (underestimator) of the term, while the last
two represent the concave hull (overestimator). The original approach presented in Maranas
and Floudas2? only included the underestimator. By also including the overestimator, the



feasible region is greatly reduced which results in a tighter convex relaxation. This relaxation
can easily be extended to trilinear terms, xyz, and general products of univariate terms,

F(@)g(y), 2227,

Terms of a general nonconvex nature are relaxed using an « underestimator developed
by Maranas and Floudas28. For a given nonconvex term in several variables, NC(x), the
underestimator, £(x), would be

L(x) = NC(x) + « z (zV — ) (zF — =) (14)

where X is the set of x variables participating in the term NC(x). The value of « needs to
be large enough to generate a convex function, but not too large as to overly underestimate
the function. It is shown that

1
a > maX{O, ~3 mkin /\k(x)} (15)

where \;(x) are the eigenvalues of the Hessian matrix of NC(x). It is preferable to derive
an analytical expression for the value of a using (15) as an equality. This will provide the
tightest possible convex underestimation of NC(x). As an example, consider the term z exp(y)
which appears in the formulation of a multi-product batch design under uncertainty problem
presented by Harding and Floudas29. The Hessian matrix of the term is written as:

[0 ] o

expy I expy

The eigenvalues of (16) are:

exXpy (17)
For all values of x and y, As is the minimum eigenvalue. The minimum value of Ay over the

range 7' < z < z% and y' < y < y* is found to occur at x', y*. Therefore the value of o
used to underestimate this term would be:

o = 1 (azl — /() + 4) expy” (18)

In cases where this type of analysis is not possible, several methods have been developed which
30;22;23

provide valid lower bounds on the eigenvalues of the Hessian matrix



In formulation (11) the objective function is convex, and therefore does not need to be
underestimated. The equality constraints, however, are by definition nonlinear and therefore
nonconvex. Since the nonlinear models are general in nature, there is no specific mathematical
structure which can be identified. The relaxation will need to be derived for each type of model
studied.

3.2 Important Modifications of «BB

There are three main areas which have a major effect on the convergence rate of the global
optimization algorithm. These are: (i) the problem formulation, (ii) the initial bounds on
the variables, and (iii) the selection of the branching variable. Each of these three areas was
extensively studied so as to develop an efficient algorithm tailored specifically to the parameter
estimation of nonlinear algebraic models.

Problem Formulation: The formulation of the problem has a major effect on the quality
of the convex relaxation. The goal is to produce a formulation in which the nonconvexities are
in as simple form as possible which will allow for the analytically determination of tight convex
relaxations. This is accomplished through the use of variable substitutions and model trans-
formations to allow for the use of as many special terms as possible. Another consideration is
the number of variables which participate in the nonconvex terms. The fewer variables that
are involved in the relaxation, the fewer variables which need to be branched on to achieve
convergence.

As mentioned previously, an unconstrained formulation is possible in most cases. Local
optimization methods are able to solve these formulations with reasonable computational
effort. However, in the framework of this global optimization method these formulations
are more difficult to solve. By substituting the nonlinear model equations into an already
quadratic objective function, the terms generated are much more complex and involve many
variables. This leads to difficulties in obtaining tight convex relaxations for these functions,
resulting in very poor performance of the global optimization algorithm.

The effects of various formulations on the convergence of the algorithm is shown extensively
through the examples presented in section 4.

Variable bounds: Since the variable bounds appear explicitly in the formulation of the
convex underestimators, tighter initial bounds produce tighter initial underestimators, which
in turn lead to faster convergence of the algorithm. The object is to generate tight enough
initial bounds as to obtain convergence to the global solution in a reasonable amount of time,
but not to exclude a physically significant global minimum for the problem. This formulation
contains two distinct classes of variables, the fitted data variables, z,, and the parameter



variables, . Since each type of variable has a different effect on the problem, alternative
methods are used to generate the initial bounds.

Data set variable bounds: Valid bounds on the fitted data variables can be found from

statistical considerations. For a known experimental standard deviation, o, there is a 99.7%
probability that the true value will be within + 30 of the observations. Frequently variables
also have absolute values dictated be physical limitations, for example 0 to 1 for mole fractions.
For some problems these bounds are reasonably tight, but for the majority, they exhibit
poor convergence characteristics. Therefore a method was developed to generate the tightest
possible bounds, while still reasonably ensuring that the global minimum is obtained.

The first step is to identify a set of bounds on z, which provide an interior local solution
(z) <2 < ) and then solve the problem to global optimality using these bounds. This
does not ensure that the global solution for the full statistically possible region is identified.
Therefore, after the problem is solved, the bounds on the fitted data variables are expanded
and the problem is re-solved to global optimality using knowledge obtained from the previous
global solution. In the limit as the bounds are expanded to the full statistical region, the
absolute global solution will be identified. This method only needs to be applied to those data
set, variables which participate in nonconvex terms. The other variables are given bounds

corresponding to the full statistical region.

Parameter variable bounds: Bounds on the parameter variables are obtained very differ-

ently. Loose initial bounds are set, for instance, from physical considerations, and prior
knowledge. Upon determination of the bounds on the data variables at each outer iteration,
the bounds on the parameters are then tightened by solving a series of minimization and
maximization problems of the following form:

Ienin /max 6,

zZ, 0z,
Lx jgux _ ) subject to L(0,z,) < 0
/0y = Sblectto L0 7)< 0 (19)
2, < 2z, < 2,
o <0 < 0V

where £(6,2,,) is the convex underestimation of the model equations.

These problems are solved in sequence, 7 = 1...p, where p is the total number of
parameters. Since the bounds derived from (19) are dependent on the bounds of the other
variables, those solved for first are not as tight as those determined last. Due to this, the
sequence is solved repeatedly until the bounds on all the variables do not change significantly.

Branching Method: By looking at the mathematical properties of the formulation, insight
into the best branching strategy can be obtained. In the formulation, the parameter variables
appear in every set of constraints, while the fitted data variables appear only in one. Therefore
by branching initially on the parameters, the underestimation of the problem is improved the



most. At some point though, the fitted data variables will need to be branched on to achieve
final convergence. The proposed approach which accomplishes this most efficiently, looks at
the sum of the deviations caused by each variable in all the nonconvex terms of the problem.
These deviations are defined as follows: For a univariate concave term, fi(z;), the deviation,
67Tk of the i variable is defined as:

fk('rgg - f/;(‘ri) (x;?ol . .’L'l)} (20)

Ty — T

ST = fy(mi) — {mxé) s

where x3° represents the value of the ith variable at the solution to the lower bounding problem
in the current region. For the kth bilinear term, z;z;, the deviation for the ¢th variable, (5,-3 T
includes a weighting by a region reduction measure, and is defined as:

l

¥ — T
u,o'ri%q ;,o'rig (21)

Z; - Z;

2

BT,
52’ Eo— ’U)ZOl _ m{;ola:s_ol

? J

where wi® is the value of the kth auxiliary variable at the solution to the lower problem, and

e : o .
27 and z;°"" are the original lower and upper bounds on the variable z;. For a general

term, T}, the deviation, (5? k of the ¢ variable is defined as:

X

6% = Tu(x7") — L) (22)

where x3% is the value of the vector of participating variables at the solution to the lower

bounding problem, T} (x5%) is the value of the original nonconvex term at this solution, and
L(x5%) is the value of the underestimating function at the solution. The total deviation, d;,
for variable ¢ is defined as:

& = {Z D DR L T P T’“}ncom (23)

keT; k € B; keU;

where B;, U;, and T; are the sets of bilinear, univariate concave, and general terms, that the
1th variable participates in, and ncon; is the number of constraints in the original problem in
which the ith variable appears. The branching variable index ¢* is selected by:

*

i* = argmax 0; (24)

Other possible branching methods are presented in Adjiman et al. 2223,

10



3.3 Proposed Global Optimization Algorithm

The proposed global optimization approach for the parameter estimation of nonlinear algebraic

models consists of the following steps:

Step 1 Initialization

1. Formulate the problem as a constrained minimization using the guidelines discussed in

section 3.2

2. Set the relative € or the absolute €?** convergence tolerance for aBB.

3. Set the outer iteration counter iter®* = 1

4. Set initial bounds on the parameter variables from physical significant, prior knowledge,
gl,orig <h< gu,orig

For fitted data variables which participate in nonconvex terms, set the bounds:
z, —0<2,<1z,+0

where o is the vector of standard deviations, and z, is the observed values of the data
variables. Variables not participating in nonconvex terms have there bounds set at

z, — 30 <2z,<1z,+ 30

Step 2 Determine initial bounds on the data set variables, z,. This is accomplished by
solving the full non-convex problem locally. Three cases are identified:

e The problem is infeasible - Expand the upper and lower bounds on all the variables by
a given amount, 9, and re-solve the problem

AU su
z, = z, + )
Al oal
z, = z, )

e Feasible, but does not have an interior solution - Expand the active bounds by ¢ and

re-solve.
: ~sol __  su ~U _ su )
if 2 = 2 then Zoi = Zu4 T d;
: ~sol 4l 2l _ o )
if 2% = Z,,; then 2, , = Z , 0;

e Has an interior Solution - Stop solving the problem locally.

11



Step 3 Tighten the bounds on the parameter variables.

1. Solve (19) for each parameter variable.

2. Calculate the total amount the bounds have changed

p eﬁew,u _ enew,l
Ap = Z <1 - ;pld,u _ Jald,l)
% %

1=1

where the superscript old refers to the bounds determined at the previous iteration, and
new refers to those determined in this iteration.

3. If Ag < 0.10 then terminate and start the aBB solution.
Otherwise, set gmew:! — gold:l - gnew,u _y gold,u and return to 2

Step 4 Solve the problem to global optimality using the aBB algorithm.

1. Initialize the iteration counter iter®®® = 1.

2. Solve the full nonconvex problem locally to generate an upper bound (UB) on the global
solution and store the variable values.

obj* = UB , z;, —z,%, " —""

*
m

3. Solve the full convex relaxation locally to generate a lower bound (LB) on the global
solution. Store the objective value and values of all variables and the o’s.

1

obj* — objl! | 2; — i}jl =0 wroswh a—al!

4. IfUB — LB < e or YEZLE < ¢ then terminate the aBB solution.

5. If desired, update the bounds on selected variables by solving the following min/max

problems
min /max
2, 0 2,
lx, ux _ ) subject to L£(0,z,) < 0
i [z = : L( W < v (25)
z, <z < z,
r < 6 < oY

where x represents the vector [z, 6] and j € J where J is the set of variables selected
for updating.

6. Select the variable to branch the domain on using the expressions developed in section
3.2.

12



7. Divide the region by bisecting along the selected branching variable.
8. If desired, update the bounds on selected variables in new each region by solving (25).

9. Solve the upper and lower bounding problems to local optimality in each newly created
region (r = 1,2). Update the upper bound if a local solution in one of the new regions
is less than the current upper bound:

if obj“PP" < UB then
obj*P*" - UB , z}, =2, , 0" — 0"
Store the solutions to the lower problems that are less than the current upper bound:
if 0bj'" < UB then

Objlower — ob -iter,r , 75— Zzter,r , 9* — ezter,r , w* — Wzter,r , o — azter,r

10. Select the region with the lowest lower bounding solution. This becomes the new lower
bound:
LB = min obj"""

iter T

Remove this region from the list of stored regions.

11. Increment the iteration counter iter®®B = jter®®B 4+ 1 and return to 4.

Step 5 Check for global convergence:

. . ; out . out __
if iter®"* =1 or sol™™™" # sol"¢" ! then

U __ pU Su 5l U 5l 5u 5l
u_zu+7 (Zu Zu) v Ly =72, =7 (Zu Zu)
U __ u,orig I __ plyorig

g = guoris gl =g

out

iter® = iter®* 4+ 1 and return to step 2

out

where sol*™™" is the global solution determined by aBB in the iter® outer iteration. Oth-

erwise terminate.

The algorithm is presented in a flowsheet form in Figure 1. It should be noted that the
convergence criterion given in step 5 guarantees convergence to the global minimum in the
limit as the parameter -y is increased such that the bounds are expanded to the point in which
the full statistical region is enclosed. For practical purposes a value of 0.1 was used in all the
examples and has resulted in convergence to the global minimum in every case tested, even
in those which the first outer iteration resulted in a local minimum. This algorithm has been
implemented in a C program as an extension to the original «BB, where MINOS 5.431 is used
to perform the needed local optimizations.

13
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Figure 1: Flowsheet representation of proposed global optimization approach
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4 Computational Studies

In order to illustrate the theoretical and computational aspects of the proposed approach,
seven examples problems from various literature sources will be considered. Through these
examples the important issues of (i) problem formulation; (ii) types of underestimators; (iii)
unconstrained vs. constrained optimization; (iv) tightness of different underestimators; and
(v) computational performance and convergence are illustrated. All problems were solved on
a Hewlett Packard C160.

Example 1: Linear Fit

14

This example is taken from Tjoa and Biegler ** and represents the fitting of data to a straight

line of the form:

Zo = 91 + 92 21 (26)

Since error is assumed in both 29 and z;, the minimization is performed over these variables
in addition to the parameter set. Therefore the model is nonlinear and nonconvex due to the
bilinear term, 0 z;. In this example both variables have equal variance, that is, 07 = o3,
resulting in an unweighted objective function in a constrained formulation:

. A N\2
min 3 3" (26 — Z0) (27)
s. t.

_2%2 + 01 + 02 27“,12 0

The convex relaxation is generated by underestimating the bilinear term in the constraint
using the added constraints given by (13). The lower bounding problem takes the form:

mm Z Z Zui — Zu,i) (28)

=1 4i=1
s. t.
_ZAN,Z + 91 + Wy, = 0
! 1 92 + 9l2 2#1 1 — 2,2,1 9l2 — Wy, S 0
z 1 02 + 0% 2“71 - ZA’LL,I 03 — Wy,1 S 0
—22,1 02 — Hé 7:'“’1 + 2'3’1 0l2 + Wy, 1 S 0
—2,211 92 — 0;" 2#:1 + ZAL’l 0;" + wu,l S 0

Table 1 provides the formulation statistics.

15



Upper Problem | Lower Problem
Total number of variables 12 22
nonconvex variables 11 -
nonconvex terms 10 -
Total number of constraints 10 50
linear constraints 0 50

Table 1: Formulation Statistics for Example 1.

The initial bounds on the parameters were set at: 6;: [0,10] and 6y: [-2,2]. Two different
approaches were used to generate bounds on the fitted data variables. The first involved simply
fixing the bounds at z, £ 0.5 without performing any updating. The algorithm converged
in 8 iterations and 0.781 CPU sec (a relative tolerance, €™, of 1% was used). The resulting
solution had an objective value of 0.61857 and parameter values of #; = 5.7084 and 6, =
-0.54556.

The second approach used the full algorithm presented in section 3.3. Since 25 does not
participate in any nonconvex terms, its bounds were held fixed at 2, £ 0.5. Initial bounds
on z; were set at z,; £ 0.08, with a delta, d;, of 0.01. The algorithm converged in a total
of 4 oBB iterations (in 2 outer solutions), with a CPU time of 0.641 sec. The solution point
was the same as in the first approach.

In this case, due to the relatively small size of the problem and few nonconvex terms,
the fitted data variable bounds updating method does not offer a significant computational
savings over using fixed values for the bounds. The additional computational time required
to perform two separate global solutions nearly offsets the decrease in the total number of
iterations.

Example 2: Polynomial Fit

This example is also taken from Tjoa and Bieglelr14 and uses the same data set as the previous
example. The model is now a third order polynomial:
Z9 = 01 +02251 + 032? + 942? (29)

This model results in a number of general nonconvex terms. In order to simplify these terms
the following substitutions are introduced:



Bounds on these substitution variables are generated in each region based on these relation-
ships. As in the first example, the variance associated with each variable is assumed equal.
The resulting problem formulation is:

min Z Z Zui— Zui) (32)

p=1 i=1
S. t.
—Zuo + 60 + 022,10 + 03b,1 + 020,20 = 0
by + 2, <0
bu1 — 2271 < 0
by + 2, <0
bu72 — 22,1 < 0

This formulation results in two very close local solutions presented in Table 2. These solutions
were generated by repeatedly solving the upper problem to local optimality from randomly
chosen starting points.

Obj | 6 | 6 03 04
0.485152 | 6.0153 | -0.9998 | 0.15247 | -0.01324
0.488658 | 5.9634 | -0.9521 | 0.14044 | -0.01235

Table 2: Local solutions for Example 2.

The generation of the convex relation is more involved in this case than the first. The
bilinear terms are underestimated by the added constraints given in (13). In addition, the

term —22 | is treated as a univariate concave term, and the terms iéz, , are treated as general

w1
nonconvex terms. The resulting lower problem formulation is:

10 2
. ~ 2
min 3 > (% — Zui) (33)
® p=1 1=
S. t.
—Zuo + 0+ wu + wye + wus = 0
_bu’l + z“,l S O
2 u _ sl 2
sl (zu,l) (zu,l) (A _ 3l )
bu.1 {(Zu,l) T e, Bt T A = 0
53 su 5 5l 5
_bl‘L’2 + Z,LL,]. + a,uul z/.t,l - Zl‘l‘;l z/.t,l - Zl‘l‘;l S O
53 su 5 N 5
b/‘t;2 - Z[L,l + a,UHZ zu,l - Zl‘l‘;l zu,l - Zp,,l S O

Wy,1 — b1 2y
Wy, — b2 by
Wy,3 — B3 b2
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The added constraints for the bilinear terms are included in the formulation, but not shown
above for simplicity. For the general nonconvex terms, analytical values of o were calculated
and can be found in Appendix B. The formulation statistics appear in Table 3.

Upper Problem | Lower Problem
Total number of variables 44 74
nonconvex variables 13 -
nonconvex terms 60 -
Total number of constraints 50 170
linear constraints 0 140

Table 3: Formulation Statistics for Example 2.

Two different approaches for the generation of bounds on the fitted data variables were
used. In both cases, the bounds on %, o were held fixed at z, o £ 0.35, since this variable
only appears in linear and convex terms. Also branching is performed only on the parameters
0y, 05, 64, and bounds updating at each iteration before branching is performed on two
variables randomly chosen from the set {6, 03, 64,2, 1}

The first approach uses fixed bounds on the variables 2, 1. Table 4 shows that even for
relatively tight bounds, the algorithm does not converge in 1000 iterations. In the second, the
full algorithm is used with the following parameters: initial bounds on 2,1 of 2,1 £+ 0.08
and 0; = 0.01. The algorithm converged to the global solution: obj = 0.485152, # = [6.0153,
-0.9998, 0.15247, -0.01324], in a total of 604 aBB iterations and 465.4 CPU sec. This example
involves a much greater number of nonconvex terms, all of which involve the fitted data
variable £, ; either directly or indirectly through the substitution variables. As a result, the
bounds on this set of variables have a pronounced effect on the convergence characteristics
of the algorithm, that is, the computational effort and the iterations required to solve the
problem.

Bounds on £, ; | Iterations | Rel. Convergence ‘ CPU sec
Zy,1 £ 0.2 1000 4.3 % 937.0
Zu,1 £ 0.16 1000 1.9 % 872.1

Present Method' 604+ 1.00 % 465.4

Table 4: Convergence Rate for Example 2 using various bounds on 2, ;. (f) initial bounds of
zu,1 £ 0.08 with 6; = 0.01. () Total aBB iterations for two outer iterations (218 iterations,
158.2 cpu sec and 386 iterations, 307.43 cpu sec).

Figure 2 shows how the parameter bounds change at each iteration of the initial updating
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(step 3 in the proposed method given in section 3.3). These results were obtained from the
first outer iteration of the solution presented above. If the sequence of parameter bounds
problems is solved only once, as opposed to the iterative method presented, before each BB
optimization, then the full solution would require a total of 713 iterations and 527.6 CPU sec
(an approximate 15% increase in computation time).
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Figure 2: Parameter bounds progression for initial updating for Example 2. (6; to 6y, top left
to bottom right)

Example 3: Non-Linear Fit

This example appears in Tjoa and Biegler14 and Rod and Hancil'2. The model equation
takes the form of:

1
1 — Y2

Data sets of 25, 50, 75, and 100 points were generated for this problem using values of #; =
2.00 and 6, = 6.00. The values for z; ranged from 0 to 3.0. Random errors from a uniform
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distribution [-0.025, 0.025] were added to both z; and zs. An example of a data set of 100
points along with the model equation used to generate the set is shown in Figure 3.

1.86

1.84 |- .60
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Figure 3: Sample 100 point data set for Example 3 and the true model equation (-)

This example illustrates well the effect of problem formulation on the performance of the
algorithm since three different formulations can be generated. The first formulation simply
has the model equation as a constraint in the optimization and will be referred to as the «
formulation:

m 2
min 3 Z (2 — 2u4)° (35)

p=1 2=1
s. t.
1
_Zu,2+91+ 5,1 — 0y S 0
3 1
ZU52 - 01 2“,,’1 - 02 S O

If the relationship 2} ; < 6, holds (as it does given the data sets generated), then the second
constraint is convex. The term in the first constraint is treated as a general nonconvex term.
The resulting convex relaxation is:

min 3 Y (i - 1) (36)
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S. t.
~Zuo + 0+ = + a{(51 — Zun) (B — Zun)
+ (65 — 65) (6, — 62)}
1

VANVAN

The expression for the value of v, can be found in Appendix B. A second constrained formu-
lation is possible in which all the nonconvexities take the form of bilinear terms.

min i Z (2u,i_zu,i)2 (37)

_éuyléﬂﬂ + 2“,292 + 2#:101 — 9102 =1

The resulting convex relaxation is:

m 2
min > Y- (B — %) (38)
e
s. t.
—Wy,1 + Wy + wyz —ws = 1

Wy, 1 = Zp,1 2,2
Wy,2 = Zy,26:
Wy,3 — Zp,16h

Wy — 01 92

Finally an unconstrained formulation can be generated by substituting the model equation
directly into the objective function. The formulation is:

min Z (2,1 Zu1)” + <01 + 3 ) Zuﬂ) (39)
Zp u=1 Zﬂ’l - 2
Expanding (39) and grouping the terms results in:
. m A~
l’irilgl — “Z::I 2 Z'u,g 01 + 2 Z'u, 1 Z“’ 1
m
+ uz::I ZZaQ + ZIQLJ + lel,l + 0% + (1 1_ 02)2 (40)

m
201 — 22,2
+ MXZ:]- 2!":1 - 02
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In formulation (40) only the last term is nonconvex and treated as a term of general structure.
The resulting convex relaxation is:

m
min — Z 22“ 201 + 22“ 12?'“1
i'ue u:l bl bl 3
in: 2 2 2 02 1
+ Zio + 2y t 2y T+ +
Wy 2 w1 w1 1 5.1 —
=1 (Bu,1 — 02) (41)
TR S kLT R P S N C
(21 Fer = 02 Z b1 B 1) \*p,1 b, 1

+ (07 — 601) (95 - 91) + (63 — 62) (912 - 92)}
Due to the complexity of the a term (see Appendix B), it is not possible to determine where the

maximum value occurs apriori. Therefore, within the BB, a valid bound on « is determined
using interval arithmetic methods3Y%2223 Table 5 contains the statistics for each formulation.

Alpha Bilinear Unconstrained

Upper | Lower || Upper | Lower | Upper | Lower

Total Variables 2m+2 | 2m+2 || 2m+2 | 5m+3 | 2m—+2 | 2m+2
Nonconvex Variables | m+1 - 2m+2 - m-+2 -
Nonconvex Terms m - 3m—+1 - m -
Total Constraints 2m 2m m 13m+4 - -
Linear Constraints 0 0 0 13m+4 - -

Table 5: Formulation Statistics for Example 3. In each case, m refers to the number of data
points used in the estimation.

In each attempted solution, bounds on the variables were set at: 6;: [1:10], f2: [1-3.5:10]
(depending on the size of the data set due to the discontinuity at 6, = 2,1), and 2, ; :
zu,i = 0.05. Bounds on the parameters were initially updated using the iterative method
of step 3 in section 3.3, but bounds on the data set variables were held constant. Table 6
shows the results using the different formulations for one data set of 25 points. The results
show that the « formulation converged quickly, while both the bilinear and unconstrained
formulations did not achieve convergence in 1000 iterations. This result is quite counter-
intuitive from looking at the problem. First, an unconstrained formulation is much easier to
solve from a local optimization standpoint, as is evident from the time per iteration. But in
the framework of the BB the problem is much more difficult due to the increased complexity
of the nonconvexities. Analytical expressions for a were determined, but their form still
required the use of approximations in calculating the numerical values. This resulted in
poor underestimation which is evident in the poor convergence rate. Secondly, the bilinear
formulation possess an underestimator which represents the convex hull of each term in the
constraint. This should lead to better convergence, but in generating this formulation, the
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number of variables in nonconvex terms was doubled and the number of constraints was greatly
increased. Therefore twice as many variables may need to be branched on in order to achieve
convergence. In generating the best possible formulation, not only should the forms of the
nonconvex terms be considered, but also the number of terms and size of the variable set
which participates in those terms.

Formulation | Iterations | Rel. Convergence ‘ CPU sec ‘ sec/iter
Alpha 21 1% 11.2 0.54
Bilinear 1000 4.65% 540.2 0.54

Unconstrained 1000 >100% 282.8 0.28

Table 6: Convergence of different formulations of Example 3 using a 25 point data set.

The size of the data set has also a distinct effect on the convergence of the algorithm.
Table 7 provides the obtained values for the parameters and objective function for each data
set size. As the number of data points increases, the number of iterations required to solve
the problem decreases, while the total solution time increases. The rate of increase in solution
time is a result of the way the local solver, MINOS, scales with the number of variables.
Figure 4 shows this result graphically. Also noteworthy is how the resulting fitted parameters
approach the true values as the number of data sets is increased. This illustrates well the
unbiased estimates produced using maximum likelihood.

Data Points 0, 0, Obj. Value
25 2.022 + 0.048 | 5.70 + 1.38 | 4.68 + 0.24 x 1073
50 2.010 + 0.013 | 5.79 £+ 0.27 | 9.74 £+ 0.16 x 1073
75 2.009 + 0.007 | 5.80 + 0.15 | 1.47 4+ 0.13 x 1072
100 1.999 + 0.003 | 6.05 + 0.07 | 1.98 + 0.11 x 1072

Table 7: Parameter estimates for Example 3 with different sizes of data sets. Results presented
are means and standard deviations using five separate, randomly generated data sets of each
size.

Example 4: Respiratory Mechanical Model
This model appears in Csendes and Ratz19. The model equation takes the form of:

0 0
I

I
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Figure 4: Number of iterations and computational time for Example 3 with different data set
sizes. Results are the average using five separate, randomly generated data sets of each size.

where 7 refers to /=1, and w,, = &5+ In formulating this problem, the real and imaginary
parts of Z, will be handled separately. Let Z represent the real part and Z, the imaginary.
For this problem two separate formulations are possible. First an unconstrained formulation
can be written:

6 2 . 2
min ,; [(z; — 0 — 0w,™) + (2 — wubs + O5w;”) ] (43)

Each of the above square terms are treated as general nonconvex terms and an « underesti-
mator is used. The resulting convex relaxation is :

H}gin il [(2’; - 6 — 02(.«);93)2 + a1 il (9? - 0]) (0; - 9]) + (44)
= i=
(zL — wubs + 0560,:03)2 + ig (0;‘ - aj) (95 - 99’)
j=

Due to the nature of the nonconvexities in (44), analytical values of o were not easily identified.
Therefore either numerical methods or fixed values need to be used in the solution. A second,
constrained formulation can be generated with the use of the substitution b, = w;03. The
resulting formulation is:
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s. t.

2; — wybs + 050, = 0
Z, — 0 — 60, = 0
by, — wlj% < 0

—b, + w;03 < 0

The nonconvexities are either in the form of bilinearities, or univariate concave terms (
—w;‘% is concave, therefore the corresponding positive term is convex). The resulting formu-
lation of the relaxed problem is:

6
rg}‘igl 21 [(2}; — ZL)Q + <2L — ZL)Q] (46)
Py

S. t.
2?; — wH04 + Wy, 1 0
7:’; — 01 — w“’g =0
b, — w;”s < 0
0

IN

9! _61:; _ —6%
—b, + {wu s 4 wjag__;;:_(eg - eg)}
Wy,1 — 05 bu
Wy,2 —* 02 bN

Table 8 provides the problem statistics for each of the two different formulations.

Constrained Unconstrained

Upper | Lower || Upper | Lower
Total Variables 23 35 5 5
Nonconvex Variables 9 - 5 -
Nonconvex Terms 18 - 12 -
Total Constraints 24 72 - -
Linear Constraints 0 48 - -

Table 8: Formulation statistics for Example 4.

The bounds used were [0.0, 1.0] for 6,545 and [1.1, 1.3] for #;. Since the fitted data
variables either do not appear in the problem (unconstrained formulation), or appear only in
linear and convex terms (constrained formulation) their bounds do not have any effect on the
underestimation. The bounds are therefore set at z, ; = (1 + 7) and no updating is performed.

Table 9 shows the results using both formulations. Using numerically calculated values for
«, for the unconstrained formulation, convergence was not achieved in 10,000 iterations. The
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use of constant « values results in convergence to the known global solution, but theoretical
guarantees do not hold since the convexity of the underestimator is not ensured. On the other
hand, the constrained formulation converges quickly with theoretical guarantees. The global
solution found (using the constrained formulation) was 6 = [0.606298, 0.556761, 1.13181,
0.750199, 0.621899], with an objective value of 0.212460. This global solution was obtained
in 1.38 CPU sec.

Formulation « values | Iterations | CPU sec

Numerical 100007 687.6

Unconstrained 1 908 51.1
0.1 65 3.89

0.01 9 0.661

Constrained | Analytical 11 1.38

Table 9: Convergence Rates for Example 4. An absolute tolerance of 0.01 is used for conver-
gence. (t) Did not converge, absolute difference of 0.0640.

Csendes and Ratz1? obtained a solution with an objective value enclosed by [0.20788313,
0.21756222] using interval methods to solve the unconstrained formulation. Their solution re-
quired about 8 hours on a SUN SPARCSTATION with 222,275 objective function evaluations,
and 618,406 partial derivative evaluations.

Example 5: Kowalik Problem

This problem appeared in Moore et al.18. The model equation is:

Z% + 2202
Z% + 2293 + 94

zZ1 = 01 (47)

In this example, only z; contains error and therefore 2z, is treated as a constant. Two different
formulations are possible. An unconstrained formulation becomes:

2
91 23,2 + 91 92 Zu,2 ] (48)

11
min E Zu1 —
122 2
0 p=1 l 2,2 +Zu,293 + 0,4

Each term in (48) will be treated as a term of general structure. The resulting formulation of
the convex relaxation is:

2
01 ZIZL’Q + 91 02 ZM;Q]

— 49
ol 22,2 +Zu,293 + 94 ( )

11
min z
in 3 [
u=1
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4
+ a, zl (6v — 0;) (6} — 0))
]:

The form of the nonconvex terms in (49) does not allow for the calculation of analytical values
of a.. Therefore in the solution of the lower bounding problem, numerical methods will be used
to determine their value. A simpler constrained formulation can be generated by rewriting
the model equation:

. ~ 2
min > (Z,1 — 2u1) (50)
2,10 —1
Ni
S. t.
A 2 ~ A
Ry 1 Ru, 2 — Glzu,Q + Zu,gzu,lgg + Zu,194 — zu,29291 =0

In (50) all the nonconvexities are in the form of bilinear terms, making the determination of
the convex underestimator much easier. The resulting lower bounding problem is:

11

min 3 (51— 2z1)° (51)
© “:1

s. t.
2%12#:2 — 012272 + Zp,2 Wy, 1 + Wy,2 — Zu,2W3 = 0

Wy1 = 2,103
W2 — 2,104

w3 — 02 01

Table 10 contains the statistics for both of the formulations.

Constrained Unconstrained

Upper | Lower || Upper | Lower
Total Variables 15 38 4 4
Nonconvex Variables 15 - 4 -
Nonconvex Terms 23 - 11 -
Total Constraints 11 103 - -
Linear Constraints 0 103 - -

Table 10: Formulation Statistics for Example 5.

The bounds on all the parameters are set at: [-0.2892,0.2893] and on the data set variable,
Zu,2 of 2,9 = 0.02. Tables 11 and 12 show the local solutions found for the unconstrained and
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the constrained formulations, respectively. The unconstrained formulation, as in the previous
example, did not converge to global optimality in 10,000 iterations. The constrained problem
was solved using initial updating on both the parameters and the data set variables (initial
bounds of z, 5 + 0.01 and J; = 0.005), as well as bounds updating at each iteration before
branching on two randomly chosen candidates from the full set of variables. Convergence
(absolute tolerance of le-8) was achieved in a total of 1905 aBB iterations in 319.5 CPU sec
(two outer iterations).

Objective |  6; 0, 05 0,
0.03075 x 102 | 0.19283 | 0.19088 0.12314 0.13578
0.12250 x 1072 | 0.22347 | —0.289207 | 0.03645 | -0.10512
0.16262 x 1072 | 0.23050 | -0.13221 | 0.25584 | -0.05299
7.54451 x 10~2 | 0.11559 | —0.28920" | —0.28920 | —0.28920f

Table 11: Local solutions for Example 5, unconstrained formulation. (t) Variable is at its
lower bound for the problem.

Objective | 6 05 05 0,
0.03075 x 102 |0.19283 | 0.19088 | 0.12314 | 0.13578
0.12250 x 1072 | 0.22347 | —0.28920" | 0.03645 | -0.10512
0.20697 x 1072 1 | 0.23329 | -0.18019 | 0.15986 | -0.06347
0.21918 x 1072 1 | 0.23266 | -0.13022 | 0.20372 | -0.04461
0.22631 x 1072 1 | 0.23353 | -0.10108 | 0.23365 | -0.03411
0.23198 x 1072 + | 0.23372 | -0.07067 | 0.26351 | -0.02338
0.24601 x 1072 1 | 0.23375 | -0.08323 | 0.25156 | -0.02784

Table 12: Local solutions for Example 5, constrained formulation. (}) Variable is at its lower
bound for the problem, () one or more data set variables were at their bounds.

Moore et al. 18 employed an interval analysis approach and obtained a solution with an ob-
jective value enclosed by [0.00030748585, 0.00030748613] using an unconstrained formulation.
Their solution required 4057.1 CPU sec. on a SPARC station SLC using 545,490 function
evaluations, 492,923 Jacobian evaluations, and 200,627 Hessian evaluations.

Example 6: CSTR Model

This example features a slightly more complicated, multiple equation model. Consider a
model which represents a steady state adiabatic CSTR with an irreversible first order reaction
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(A 4 B) presented by Kim et al.17.

Five different quantities were measured (using simulated data with noise added): inlet
concentration of A, outlet concentrations of A and B, and inlet and outlet temperatures. The
model consists of simple mass and energy balances around the reactor:

%(Ao A — kA =0 (52)
%(BO — B) + kA = 0 (53)
%(To - T) + _pACI:" (ki A) = 0 (54)

where A, and B, are the inlet concentrations of components A and B respectively; A and
B are the outlet concentrations of the two components; 7, and T are the inlet and outlet
temperatures respectively; 7 is the residence time of the reactor (100 s); AH, is the heat of
reaction (-4180 J/mol A); p is the density of the reaction mixture (1.0 g/1); and C,, is the heat
capacity of the reaction mixture (4.18 J/g K). The rate expression for k; takes the form:

—h

RT

ki = ¢ exp (55)

where ¢; and (); are the Arrhenius constants (parameters to be determined). Parameter
transformations were used in the estimation, which results in the following rate expressions:

T,
kl = 01 exp |:—02 <? — 1>:| (56)
with:
1 = ciexp 1_3%1« (57)
Q1
0, RT. (58)

where T, is a reference temperature (800 K). The vector of measured variables, z, is defined
as z = [A, A B T, T]. Also it is assumed that the feed is pure A, therefore B, = 0.
The full nonconvex formulation for the problem is:

min 3 3" Gt = i) (59)
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s.t.

Lon — 5,0 — kuBuo 0
—%ZAH,;), + kyz,o = 0

%2%4 - %2% - ﬁg; (kuéuﬂ) =0
k, — exp [_29:? + 0] =0

In order to aid in the generation of a convex relaxation, various transformations and simplifi-
cations can be made. Three different formulations for the convex relaxation can be generated.
One common simplification in all three formulations involves the use of a substitution variable
to assist in the convexification of the rate expression constraints

—0,T.
by = —L + 6, (60)

2y 5

The rate expression constraints are then simplified into:

k, = 6 exp(b,) (61)

In the first formulation, the term which appears in (61) is treated as a general nonconvex term
with analytically determined « values (found in Appendix B), and the substitution constraints
are multiplied through by 2, 5 to produce terms with are bilinear in nature.

A second formulation can be generated by taking the natural logarithm of the rate expres-
sion constraints. This transforms these constraints into:

Ink, — In6, — b,
—Ink, + In6 + b,

< (62)
< (63)
The nonconvex terms in these constraints are in the form of univariate concave terms (Inz is
concave). These terms are underestimated using a linearization.

A third formulation involves the logarithmic transforms (62) and (63) as well as a fraction
term underestimator. In this formulation the substitution constraint is kept in its original
form given by (60). The statistics of each of these three formulations is found in Table 13.

The experimental data sets were generated by added normally distributed random noise
to a set of 10 simulated data points (f; = 0.01717s™! and 6, = 12.58) found in the reference.
The noise added had a standard deviation, o = [0.001 0.001 0.001 1.0 1.0]. Bounds on the
parameters were taken as #;: [0.0001:0.1] and 65: [5:15]. Initial bounds were set on the fitted
data variables Z,» and 2,5 of z, — 0 < 2, < z, + 0 with § = 10;. The other fitted
data variable bounds were set to +3 o since they do not participate in any nonconvex terms.

Initial bounds updating was performed on the parameters, #, and the substitution variables,
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Formulation 1 || Formulation 2 | Formulation 3
Upper | Lower || Upper | Lower | Upper | Lower
Total Variables 72 102 72 102 72 92
Nonconvex Variables 42 - 42 - 32 -
Nonconvex Terms 70 - 70 - 60 -
Total Constraints 60 180 60 180 60 140
Linear Constraints 0 160 0 160 0 100

Table 13: Formulation Statistics for Example 6.

b, until convergence. The bounds on the substitution variables b, were also updated in each
new region after branching. Branching was performed on both the parameters and the fitted
data variables Z, o and 2, 5.

Table 14 shows the results for each of the three different formulations. In each case the
same data set was used. The optimization resulted in parameter values of #; = 0.0168 and 6,
= 12.4332 with an objective function value of 29.04731.

Formulation | Iterations’ | Rel. Convergence ‘ CPU sec
1 1000 18.5 % 1253.2
2 174 1% 309.0
3 43 1% 282.2

Table 14: Convergence of different formulations for Example 6. (1) Total aBB iterations for
all required outer iterations to reach convergence.

Formulation 1 does not even converge in the first outer iteration. It was found that the «
values varied little with the size of the region, thus leading to loose convex relaxations even in
small regions. Formulations 2 and 3 both converged in two outer iterations with similar CPU
times, but greatly different iteration counts. Formulation 2 required three times the iterations,
but with only a 10% increase in CPU time. The increase in iterations can be explained from
the difference in the number of nonconvex variables and terms (formulation 3 having 10 less
in each category). On the other hand formulation 3 has twice as many nonlinear constraints
in the relaxed problem, thus the time required to solve each sub-problem is higher, nearly
enough to offset the decrease in the number of iterations.
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Example 7: Liquid-Vapor Equilibrium Model

This example appeared in Kim et al.17. A two parameter Van Laar equation was used to
model binary Vapor-Liquid Equilibrium data which consists of four measured variables (P, T,
X, y). The parameters were estimated for the system methanol (1) and 1,2-dichloroethane (2)

132

using five experimental data points found in Reid et al.®#. First the equilibrium conditions

are written:

nimpl(T) — yP = 0 (64)
Yo (1 — z)p5(T) — (1 —yp)P = 0 (65)

where p?(T) and p$(T') are the pure component vapor pressures at the system temperature
T; P is the system pressure; x; and y; are the liquid and vapor fractions respectively of
methanol; and v; and 7, are the activity coefficients of the components. The pure component
vapor pressures are defined using an Antoine equation:
Cip
pi(T) = exp lci,l - . ]

T — Ci,g (66)

where p? is in mmHg and T is in K. The constants used for each component can be found in
Table 15. The activity coefficients are defined using a two parameter Van Laar equation:

M = exp [i (1 + == )_21 (67)

Y2 = €Xp lﬁ (1 + A o (68)

Cia Ciz | Cig
Methanol (i = 1) 18.5875 | 3626.55 | 34.29
1,2-dichloroethane (i = 2) | 16.1764 | 2927.17 | 50.22

Table 15: Antoine Coefficients used in Example 7.

The parameters as well as the system temperature are scaled by a reference temperature, 7T,
equal to 323.15 K. The parameter set is then defined as:

9_[A B]
~ LRT, RT.
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and the data set as:
T
z = [1101 Y1 i P]

Using these definitions and taking the natural logarithm of the equilibrium expressions, the
model results in the following 6 equations

In(y1) + In(z1) + In(p) — In(ze) — In(P) = 0 (69)
In(y2) + In(1 — 2z1) + In(p§) — In(1 — 2z2) — In(P) = 0 (70)
1 M - i i72 = 1
) = Cua + g = 0 ()
01 01 Z1 -
| - — |1 — =0 72
) = 2 (14 32 (72
02 92 1 — Z1 -
1 242 -
n(vys) % < + 0 o > 0 (73)
Substitution of equations (71)-(73) into (69) and (70) results in the following two equation
model:
0 R C
1 12 1,2
Dl 1 _ 12 y(z) — In(P) = 4
Blregrnty) e - S <) - () =0 (7
02 02 1 — 21 - C'22
— 1+ = In(1 — - ——— — In(1 - — In(P) =
z3< + 01 ) ) + Il( Zl) + 0271 Trz3 — 02,3 Il( Z2) Il( ) 0 (75)

The standard deviations were chosen similar to the reference17

o = [0.005 0.015 3.09 x 1074 0.75]

In order to aid in the underestimation of various terms in the constraint set, the following
substitutions are made:

0\’
b1 = 1+ —b3 (76)
02
0\ "
by = [1+ by (77)
6
21
he —
3 1-— 21 (78)
1-— 21
by —
4 - (79)



The resulting optimization problem becomes:

5 4 o 2
min > 3 M (80)

Z. 0 p=1i=1 o+
s. t.
01by,1 5 Ci,2 ~ ~
02%, + In(2,1) + Cia Tzu,cz;;—Cm —In(Z,2) — In(2,4) < 0
10,1 5 _ 1,2 A ~
- Bns In( u,l) Ci cTré a0, T ln(zu 2) + In( u,4) < 0
290u,2 _ 2,2 . DS . R
e + In(1 Z, 1) Ca Toins—Cos In(1 Zu 2) In( u,4) <0
92b 2 02,2 A A
" In(1—2,1) — Coq + 73 i G T In(1—2,2) +1In(2,4) < 0
1 016, 3
_ + s < 1
b,u,l 02 -
1 _ Oibys
\/b,u,,l 02 S 1
-+ et <
w, 2
1 02b/‘4,4
bH,Z 01 S 1
— _&2 ’1
bll/a'?’ 1i2/"!1 S 0
— 2,1
bu,3 + 1— 2,1 < 0
1-2,
b,u'a4 - 211151 S 0
1—2
—by,4 + Tﬁl < 0

This formulation contains quite a few univariate concave terms. All of the positive natural
logarithms as well as the following terms fall under this class and will be underestimated using
a linearization:

—012 —022 -1 -1 _Z[L,l —(1 - Z“,l)
T2, — Cig Tpzu3 — Cag b, 1 -2z, Zu1

Also the terms with opposite signs of the ones listed above are convex and therefore do
not need to be underestimated. The terms of the form *¥ were underestimated using an «
underestimator. The expressions used can be found in Appendix B.

Another formulation is possible by underestimating the fractional terms using linear cuts
derived in a similar fashion as for bilinear terms. This is accomplished by first substituting
an auxiliary variable for the term:

w =22 (81)

This constraint can then be rewritten by multiplied through by z:
zw = Ty (82)
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Now a single bilinear variable is introduced for these two terms in order to enforce (82). The
four additional linear cuts are added with bounds on w taken as:

T w” = (83)

For this formulation the added variables and the terms they relate to are:

Wy 5 — Wy 1 2/‘1 3 = 01 bu, 1
Wy, 6 — Wy 2 éu’g = (92 bu,z
Wy 7 — Wy 3 02 = 01 bli73
Wy 8 — Wy 4 01 = 02 bu’4

The statistics for each formulation can be found in Table 16.

« Formulation || Bilinear Formulation
Upper | Lower || Upper Lower
Total Variables 42 42 42 82
Nonconvex Variables 42 - 42 -
Nonconvex Terms 95 - 95 -
Total Constraints 60 60 100 92
Linear Constraints 0 10 0 42

Table 16: Formulation Statistics for Example 7.

Bounds on the parameters were set at [1:2], while initial bounds on the data variables were
set at z, + %o, with §; = 0.10;. Initial bounds updating was performed on the parameters,
¢, and the substitutions variables b,. Branching was performed on the variable set consisting
of the parameters, 0, and the fitted data variables, z,. Bounds updating at each region was
performed on the substitution variables, b,, as well as 6 randomly chosen variables from
Z,1-3. A relative convergence, €', of 5% was used. Table 17 compares the performance of
each formulation. Both formulations converged in two outer iterations to an objective function
of 3.32185, with parameter values, §; = 1.9117 and 6, = 1.6082.

The results show that the two different formulations converge in almost exactly the same
number of iterations and CPU time. The similar number of iterations is expected since both
formulations have the same number of nonconvex variables and terms. The similar CPU
times are also expected. Even though the bilinear formulation does have more variables, these
additional variables appear only in linear constraints, and both formulations contain the same
number of nonlinear constraints.
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Formulation Iterations! | CPU sec

o Formulation 278 1625.47
Bilinear Formulation 260 1693.26

Table 17: Convergence of different formulations for Example 7. (1) Total BB iterations for
all required outer iterations to reach convergence.

5 Conclusion

The work presented in this paper represents the first global optimization approach tailored
to the error-in-variables parameter estimation problem for nonlinear algebraic models. The
approach is based upon a deterministic branch and bound global optimization algorithm.
Three distinct areas: variable bounds, branching method, and problem formulation, were
extensive studied and their effect on the performance of the proposed algorithm was illustrated
through a series of computation studies on problems taken from the literature.

The problem formulation has a great impact on the performance of the algorithm. It was
found that even though local solution methods perform well on an unconstrained formulation,
the branch and bound global optimization approach does not converge in a reasonable amount
of time. This is attributed to the increased complexity of the nonconvex terms present through
the substitution of the nonlinear models into a quadratic objective function. This results in the
inability to develop analytical convex underestimators, and even in the case that this is possible
the underestimation is not tight. Constrained formulations, on the other hand, offered the
ability, in general, to produce tight analytical underestimators and reasonable convergence
to the global minimum. FEven between similar constrained formulations, differences in the
convergence rate have been shown to occur as a result of differences in the generation of the
underestimating functions.

Both the branching methods and the variable bounds calculations are influenced by the
by the inherent structure of the problem. Two distinct classes of variables are present, the
parameters and the fitted data variables. As a result, each class is treated differently in the
respective methods. In the generation of tight initial variable bounds, the fitted data variable
bounds are found using a series of local optimizations, variable bound expansions, and global
optimizations. The parameter bounds, on the other hand, are determined by solving a series
of feasibility problems. In each case these iterative approaches have shown to offer great
improvements over single pass methods. In the determination of a branching candidate at
each iteration in the global optimization, the effect the variables have on the problem is taken
into account. Since each parameter variable appears in every set of constraints, they are
branched on first. This allows for a rapid initial improvement in the lower bound. At some
point, though, the fitted data variables are branched on to allow for final convergence.
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The computational results obtained on a variety of the test problems demonstrate the effec-
tiveness, while comparisons with interval analysis methods indicate the favorable performance
of the proposed deterministic global optimization approach.
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Appendix A: Data and Fitted Variable Values

Data Example 1 Example 2

Zu,1 | 2p,2 2[1,, 1 73% 2 ?3“, 1 gu, 2
0.0 | 5.9 || -0.049 | 5.81 || 0.057 | 5.95
09 | 54 0.86 | 5.32 || 0.82 | 5.29
1.8 | 44 1.97 | 4.71 || 1.90 | 4.58
2.6 | 4.6 2.50 |4.42 | 2.45 | 4.29
3.3 | 3.5 3.50 | 3.87 | 3.44 | 3.84
44 | 3.7 427 | 3.46 | 4.31 | 3.48
5.2 | 2.8 5.26 | 2.91 | 5.31 | 3.02
6.1 | 2.8 5.96 | 2.53 || 6.00 | 2.64
6.5 | 24 6.43 | 2.27 || 6.46 | 2.35
74 | 1.5 7.50 | 1.69 || 7.45 | 1.55

Table 18: Data and fitted values for Examples 1 and 2.

Data H Fitted Values
5—5y 5.13 — 4.93y
3—29 2.67—2.07y
2 1.91 — 1.105
1.5—-0.57 || 1.54—0.58y
1.2-0.25 || 1.34-0.23y
1.1—0.17 | 1.20 + 0.04y

Table 19: Data and fitted values for Example 4.
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Data Fitted Values
Zp, 1 ‘ 1/24,2 Zu,1
0.1957 | 0.25 0.1944
0.1947 | 0.5 0.1928
0.1735 1 0.1824
0.1600 2 0.1489
0.0844 4 0.0928
0.0627 6 0.0624
0.0456 8 0.0456
0.0342 10 0.0355
0.0323 12 0.0288
0.0235 14 0.0241
0.0246 16 0.0207

Table 20: Data and fitted values for Example 5.

21

22

23

24

z5

data

fitted

data

fitted

data

fitted

data

fitted

data

fitted

0.9871

0.9985

0.8906

0.8826

0.1157

0.1159

047.47

547.84

663.48

663.78

1.0003

0.9878

0.8350

0.8437

0.1380

0.1441

531.77

531.49

676.04

675.63

1.0039

1.0011

0.8255

0.8282

0.1850

0.1729

512.21

512.06

684.81

684.95

0.9760

0.9920

0.8020

0.7874

0.2005

0.2046

490.59

490.84

695.47

695.44

1.0129

1.0058

0.7520

0.7660

0.2420

0.2398

464.67

464.80

703.69

704.62

1.0083

1.0005

0.7193

0.7242

0.2739

0.2763

438.47

438.34

714.90

714.62

1.0075

0.9995

0.6861

0.6822

0.3215

0.3173

408.04

407.66

726.09

724.94

0.9994

0.9997

0.6388

0.6377

0.3741

0.3600

375.56

375.35

735.44

735.32

1.0007

1.0013

0.5970

0.5962

0.3926

0.4052

340.26

340.39

745.70

745.55

0.9973

1.0071

0.5580

0.5587

0.4703

0.4484

306.55

306.56

753.94

754.96

Table 21: Data and fitted values for Example 6.
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<1 Z2) <3 <4
data | fitted | data | fitted | data | fitted | data | fitted
0.30 | 0.299 || 0.591 | 0.596 || 1.00 | 1.00 | 483.80 | 483.99
0.40 | 0.400 || 0.602 | 0.612 || 1.00 | 1.00 | 493.20 | 493.28
0.50 | 0.500 || 0.612 | 0.624 || 1.00 | 1.00 || 499.90 | 499.67
0.70 | 0.699 || 0.657 | 0.667 || 1.00 | 1.00 | 501.40 | 501.29
0.90 | 0.901 || 0.814 | 0.810 || 1.00 | 1.00 || 469.70 | 469.71

Table 22: Data and fitted values for Example 7.
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Appendix B: o Calculations for the Examples

Example 2
23 _ ol
Zy1 — o1 = maX(O, —32“71)
—22,1 — e = max(0,32}j,1)
Example 3
o formulation:
1 N 2
= o, = ~
Zu1 — 05 g (95 - Zﬁ,1)3
unconstrained formulation:
201—22 2 Z,u2_01__2\/(2,u1_02)2+2(01_zu2)2
ks o, =2 max g 2 - < ’
Z/_L,l - 02 24,101 62 (Z/.L,l — 02)
Example 6
Orbur —07 b5, + \/(9?)2(19,’:,1)2 + (205)207)% + (273)" + (273)2(by0)?
2;&,3 2('2,5’,3)3
Oby o7 b + \/(9{’)2(5,({,1)2 + (223)2(07)% + (203)" + (203)2(b)1)?
éu,?) 2(25,3)3
A =05 b 5 + \/(05)2(b)2)% + (273)2(05)2 + (203)* + (255)2(b) 2)?
Y20u2 =
2”,3 2(2[6/,3)3
09 b, 5 0505 5 + J(05)2(b2)? + (273)%(05)% + (273)* + (253)2(b]2)?
_ =72 — =
73,11,,3 2(2/%,3)3
01 b,,3 —07 bl 5 + \/(9?)2(65,3)2 + (05)2(67)% + (02)* + (63)%(b]; 3)?
—=° — o =max = ,
92 2(02)3
—0V BT 5 + J(O7)2(675)> + (05)2(07)* + (0)* + (65)(bY5)°
2(6%)3
01 0,5 07 b 5 + \/(9?)2(1)3,3)2 + (67)%(67)% + (63)* + (05)%(b] 5)?
b 5 o=
0, 2(6%)3
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01 by, 4 —05 bf 4 + \J(05)2(05 1)2 + (0F)2(08)% + (0F)* + (01)2(b% 4)?

— (O = 1Inax

0, 2(07)3
—0V BT 5 + /(05267 1)> + (0F)2(65)* + (0F)* + (6F)2(b7 )
2(6F)?
Oy b, 4 0500, + \J(05)° (7 )? + (01)2(69)* + (61)* + (0F)°(b] )
—— 0 — a =
0, 2(0%)3
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