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Sir: Based on the comments of R. Luus, it is apparent that he has not fully understood what
the paper by Esposito and Floudas! was trying to convey. In Esposito and Floudas?!, two
novel deterministic global optimization methods are introduced for the parameter estimation
of models that involve differential-algebraic systems. Under certain conditions these two new
methods offer a theoretical guarantee of attaining an e-global solution. This is the primary
focus of Esposito and Floudas®, and it represents the first rigorous contribution in the open
literature that addresses such a large class of problems. We then explore the computational
and theoretical aspects of our two proposed deterministic global optimization approaches by
applying them to a series of example problems. R. Luus misinterpreted the context of the
paper, treating the work as a comparison of parameter estimation methods. This is clearly
not the case. Nevertheless, since R. Luus invites such a comparison, we will now take this as
an opportunity to point out all the limitations of the approach by Luus and Jaakola?. The
LJ? approach will be placed in the appropriate context based on (i) theoretical advances,
(ii) algorithmic issues, and (iii) computational performance. Towards this goal we make the
following points:

1. From the theory point of view, the LJ? procedure is not a deterministic global opti-
mization method. As a result, it cannot guarantee convergence to the global minimum
under any circumstances. In fact, convergence to even a local solution cannot be guar-
anteed since no check of first or second order optimality conditions is made. Our
proposed methods! are deterministic in nature and can theoretically guarantee con-
vergence to an e-global minimum. The conditions required for proof of this claim are
clearly presented in the paper. From the algorithmic and computational point of view,
for the LJ? procedure to even come close to such convergence, the approach would
have to be ran from an infinite number of starting points which would require infinite
time. Therefore any comparisons made in terms of computational time are irrelevant.

2. In the application of the LJ? procedure, it was shown that the approach failed more
than 15% of the time. It is stated in the last paragraph of the comment “LJ opti-
mization procedure also avoids most of the numerous local optima that are present in
these two problem.” Our proposed approaches converge! to the global solution every
time, and avoid all of the local minimum. It appears that R. Luus believes the local
minima presented for these problems were determined using our global optimization



approach. In fact, it is clear that these minima were obtained through the application
of a local method from numerous starting points. These minima are simply presented
to illustrate the multiplicity of solutions to the examples.

3. The LJ? procedure is based on a collection of heuristics, which have a large number
of adjustable parameters. These include the number of random points used at each
iteration, the number of iterations in a pass, the number of passes, the size of the initial
variable space, the rate of region reduction, and the starting point. The author himself
states® “Three principle factors affecting the reliability of direct search optimization
procedures are the starting point, the size of the initial search region, and the rate
of search region reduction.” The setting of these various parameters appears to be
problem dependent, quite arbitrary, and done from prior experience with the approach.
R. Luus touts the approach as easy to use, yet for a user unfamiliar with the method,
the selection of these parameters can be quite difficult, and the selection of “wrong”
values can easily lead to a local optimum.

4. It should be emphasized that, due to the nature of our approach (being a branch-and-
bound based method), the global solution to the problem is actually identified as the
upper bound very quickly In the Lotka-Volterra example, using the integration based
method with sampling to determine the needed values of S with 25 points initially, at
least 10 at each iteration, the global solution was identified as the upper bound in 4
iterations and 12.3 CPU sec on a Pentium III/600 (this run corresponds to the results
presented in Table 20, columns 1 and 2 of Esposito and Floudas'). The remaining
computational time is required to prove the global optimality of that solution. This
compares very favorably with the solution time of 362.2 CPU sec (on a Pentium I11/500)
reported by R. Luus in his comment. Hence, our approach requires at least 20-fold less
time to identify the global minimum than the LJ? procedure.

We would like to comment to other statements:

1. While discussing the Lotka-Volterra problem, R. Luus presents what he refers to as
“more interesting results” as he increases the bounds on the parameters used in the
problem. He shows that the global minimum objective function value occurs at regular
intervals in the parameter space. It is quite obvious that these solutions exist as the
result of frequency aliasing due to the cyclic nature of the dynamics. Since the global
solution presented in the paper (0; = 3.2434, 6, = 0.9209) has the least amount of
“activity” between data points it would be chosen for the purposes of system iden-
tification. This is a common occurrence in sampled data systems and there really is
nothing “interesting” about it.

2. Also, while discussing the Lotka-Volterra model, R. Luus refers to his work? in which
the same model was studied with different data. In our work, the data used for the



example was generated by numerically integrating the model with a given set of pa-
rameters and adding random error to the resulting state values. In Luus® the data is
generated in the same way, but used without any error being added. Our goal was to
apply the approach to examples which represent real parameter estimation problems,
and not the simple mathematical exercise of determining parameters with perfect data.
For that reason, the data in Luus* was not used for our example and therefore the
comment is not appropriate for our work. We would also like to point out that in
the reference the additional “local” solutions have objective values of 2.5723 x 10710
and 2.4449 x 1071°. This gives a difference between a “local” and “global” objective
value of less than 1 x 1071, It is difficult to believe the uniqueness of these solutions,
unless strict numerical controls have been implemented in the LJ procedure. There is
no mention of this in the reference.

3. While discussing example 5 in his comments, R. Luus chose to solve the problem
by selecting 10 sets of random values for the parameters in the region [0.1,1.9]. The
bounds on these parameters are set to be [0, 20] in the example in Esposito and Floudas
!, Why was the approach applied using starting points from a region 10% of the size
of the true variable space? In fact, both local minima fall outside of this range with
the region being much closer to the global minimum then the next local minimum.

4. In the end, R. Luus states that “the global optimum of highly nonlinear optimization
problems is very difficult to establish with absolute certainty”. It is apparent that R.
Luus is not familiar with the very significant advances and the large body of literature
on deterministic global optimization methods. These methods can determine an e-
global solution to highly nonlinear problems with theoretical guarantees. The recent
book by Floudas® provides an extensive exposition to rigorous deterministic global
optimization approaches with applications ranging from nonconvex NLPs, to complex
mixed integer problems with hundreds of local minima. Also the books by Sherali
and Adams®, Horst and Tuy’, Horst and Pardalos®, Horst et al.® and Tuy'® describe
theory, methods and applications of global optimization.

In sum, (a) the LJ? approach is not supported by theoretical advances that can result in
guarantees of determining and e-global solution, and hence it represents a heuristically based
local search technique; (b) the computational performance in identifying, but not proving,
the global solution is also inferior (at least a 20-fold increase in time if required for the
Lotka-Volterra example) to the deterministic global optimization approaches of Esposito
and Floudas®.
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