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Abstract

The estimation of parameters in semi-empirical models is essential in numerous
areas of engineering and applied science. In many cases these models are represented
by a set of nonlinear differential-algebraic equations. This introduces difficulties from
both a numerical and an optimization perspective. One such difficulty, which has not
been adequately addressed, is the existence of multiple local minima.

In this paper, two novel global optimization methods will be presented which of-
fer a theoretical guarantee of convergence to the global minimum for a wide range of
problems. The first is based on converting the dynamic system of equations into a
set of algebraic constraints through the use of collocation methods. The reformulated
problem has interesting mathematical properties which allow for the development of a
deterministic branch and bound global optimization approach. The second method is
based on the use of integration to solve the dynamic system of equations. Both meth-
ods will be applied to the problem of estimating parameters in differential-algebraic
models through the error-in-variables approach. The mathematical properties of the
formulation which lead to specialization of the algorithms will be discussed. Then, the
computational aspects of both approaches will be presented and compared through
their application to several problems involving reaction kinetics.

*Author to whom all correspondence should be addressed



1 Introduction

The estimation of parameters in kinetic expressions from time series data is essential for
the design, optimization, and control of many chemical systems. The models that describe
the kinetics take the form of a set of differential-algebraic equations. The statistics and
formulation of this parameter estimation problem are well studied 2, but the important
issue of multiplicity of local solutions has not been well addressed. Stewart et al.? provide
a review of various approaches for multi-response models, including dynamical systems, and
available software implementations. Most of the difficulties in the algorithmic framework
result from the dynamic form of the model used. Several techniques, ranging from numerical
integration, to polynomial approximation in time have been used to handle the differential-
algebraic nature of the models.

In general, there are two different direct approaches to addressing this problem. In each
approach the objective is to minimize a weighted distance measure between the observations
and predictions taken from the model. The first, more traditional approach, involves the use
of integration routines to determine the values of the states for a given set of model parameter
values. This in turn allows for the evaluation of the objective function and its gradients. This
approach is referred to as a sequential algorithm, since the optimization steps and the solution
of the differential system are performed in a sequential manner. Bellman et al.* presented a
method of this type using a quasi-linearization procedure. Hwang and Seinfeld® proposed an
improved algorithm which uses the sensitivities of the predicted states with respect to the
parameters. They also noted that this formulation has the possibility of multiple minima
and derived a method of improving the chance of finding the global minimum by adjusting
the objective function weighting. Bilardello et al.® presented a similar approach using a
Gauss-Newton type step with the inclusion of explicitly derived and efficiently evaluated
sensitivity equations. Kim et al.” presented an approach which uses a generally available
integration method coupled with an available reduced-gradient NLP solver for both off-line
and on-line estimation problems.

Kalogerakis and Luus® recognized the existence of local minima and the poor convergence
regions of the previous approaches®. They presented an algorithm which uses a direct search
method!? to determine good initial guesses for either a quasi-linearization or a Gauss-Newton
type minimization. Park and Froment!! used the same concept, but with a genetic algorithm
as the first step, followed by a Levenberg-Marquardt optimization. Luus'? used a modified
direct search method to solve a problem with a large number of local minima. Maria!?
developed an approach based on a adaptive random search for the solution of various kinetic
problems. Finally, Wolf and Moros'* presented an approach based on a genetic algorithm
for the determination of rate constants in heterogeneous reaction systems.

A second type of direct approach involves the conversion of the dynamic system into a set
of algebraic equations which are included directly in the formulation. Many researchers refer
to this as a simultaneous approach. Villadsen and Michelsen'® offered a wide range of poly-
nomial approximations used to solve differential equations. Van Den Brosch and Hellinckx 6
used collocation techniques combined with a linearization based approach to solve first and
second order kinetic systems. Baden and Villadsen'” studied comparisons between different



collocation methods. Tjoa and Biegler'® presented an approach using orthogonal colloca-
tion on finite elements along with a specially developed sequential quadratic programming
(SQP) algorithm. Finally, Liebman et al.'® used the same discretization method, but ap-
plied a general SQP approach to solve both parameter estimation and data reconciliation
problems.

A common limitation of all the aforementioned approaches is that they can, at best, achieve
convergence to a local minimum. Some approaches attempted to increase the likelihood
of finding the global minimum, but they lack a theoretical guarantee. In this paper two
different approaches, one based on integrating the dynamic system, and one using orthogonal
collocation on finite elements, will be presented for addressing the parameter estimation
problem from the global optimization point of view. Each of these methods is based on the
deterministic branch and bound global optimization algorithm oBB?2%:21:2%23:24 Tp each case,
convergence to the global minimum is theoretically guaranteed for a wide range of problems.
The formulations of the approaches will be presented, and their properties which allow for
the development of the customized global optimization algorithm will be discussed. The
algorithmic aspects will then be presented and each of the two approaches will be used to
solve several kinetic estimation problems. The theoretical and the computational aspects of
the methods, as well as comparisons between the two approaches will be presented.

2 Problem Definition

In this paper, the error-in-variables formulation will be used to estimate the parameters in
a differential-algebraic model of the form:

3 = g(z.0,t) jeJ 1)
0 = h(z0,t)
zj(ty) = 2z9 jE€J
t € [to, ]

where 7 is the set of z state variables, J is the set of states whose derivatives appear
explicitly in the model, P is the set of parameters @ which are to be estimated and z, are
the constant initial conditions of size J. In the error-in-variables approach, the objective is
to minimize the weighted squared error between the observed values and those predicted by
the model. All the measured variables are included in the objective function, as opposed to
just a subset employed in the least squares approach. A derivation can be found in Esposito
and Floudas? and Bard'. Using the definition of the model presented in (1) and assuming
that the variance of the error associated with each measured variable is equal, the resulting
optimization problem can be written as:



meM p=1
s.t.
z; = g(z,0,t) jelJ
0 = h(z0,t)
z;(ty) = 2o jed
t € [to,tf]
—Zym + Zm(ty) =0 meM; pu=1,...,r
f(z,,0) <0

where 2z, is the set M of fitted data variables, z, are the observed values at the y'" data
point (includes a total of r points), and ¢, is the time associated with the u'™ data point.
The functions f(z,,0), are a set of algebraic constraints which may only involve the time
invariant variables (the fitted data variables, z,, and the parameters, 8). It should be noted
that M C Z and also J C Z. The following conditions are imposed:

1. The differential-algebraic system can be at most index one, and therefore the Jacobian
defined by
Oh(z,0,t
Oh=.0,1) o
8ZZ'

must be non-singular in the region z € [zl zV].
2. The second order partial derivatives:

0x2 ’ 0x2

where x = [z, 6] must exist and be continuous in the region defined by z € [z”,z"]

and 0 € [6~,0"].

3. The functions f(2,,0) must be twice-continuously differentiable with respect to the

variables 2, and 6 in the region defined by z, € [2%,2{] and 0 € [6",6"].

3 Collocation Based Approach

Many different collocation based discretizations exist for the solution of differential-algebraic
systems2®. In this section, the method of orthogonal collocation on finite elements will be
used to parameterize the state variables?’?®. This transforms the original problem into a
fully algebraic NLP.



3.1 Formulation

The differential-algebraic part of (2) is defined as:

zj = g(Zaea t) VES J (3)
0 = h(z,0,1)

The state profiles are approximated by piecewise Lagrange polynomials:

K K
. t—t

zicia(t) = )& de(t) with oe(t) = ]] P— (4)

— — cT g

c=0 q=0,q9#c
These polynomials have the feature that at the time point ., the coefficient of the polynomial,
&., is the value of the state profile at that point. Therefore, the coefficients have a physical
meaning which makes it easier to generate bounds for these variables. Substituting (4) into
(3) yields the residual equations:

K
R(t) = Zﬁc ¢C(t) - g(zK+1(t)797t) . (5)
c=0
The discretization of (5) is accomplished using the collocation method?:

ty
R(t) 6(t —tx)dt = 0 k=1,... K . (6)
0

The time variable, ¢, is rescaled as 7 € [0,1]. Using this rescaling, and the property of
Lagrange polynomials stated above, the integral reduces to:

K
Y b bn) — trg€.0t) =0  k=1,... K (7)
c=0

where t;, = t§7; . The values of scaled time at which this equality is imposed, 73, are referred
to as collocation points. The shifted roots of an orthogonal Legendre polynomial of degree
K are used.

In this approach, the polynomial approximation is defined for each finite element (see
Figure 1), e = 1,... ,NE, and for each state variable in the set J. The residual equations
are then written as:
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Figure 1: Finite Element Collocation.

K
D e Peei(m) = Anegi(Eeps 0ter) = 0 (8)
c=0

e=1,...NFE, k=1,... ., K; jelJ

where An, = 1.1 — 1. with 7, being the starting time of element e, and ¢ = 1. + Ane 7%.
Since the state profiles should be continuous between elements, continuity constraints of the
form:

K
fe,O,j — de—l,c,j ¢C(T = 1) =0 e = 2, . ,NE, _] eJ (9)
c=0

are imposed. In addition, the initial conditions are imposed at the start of the first element:

§10j — %0; =0 jeJ . (10)

The algebraic constraints of the differential-algebraic system are simply imposed at the
collocation points:

h(é.40,ter) =0 e=1,...,NE; k=1,... K . (11)

To introduce the point constraints, which determine the fitted values of the data variables,
Zy, it is necessary to determine the values of the states at the times ¢,. This is accomplished
by:

K
Zm(t) =D Lepembe(s) mEM . (12)
c=0



The scaled time, 7, is calculated by

by — Ney,
= — 13
Ty A, (13)

where the element index, e,, is the element in which the constraint is active, defined as
ey = {e:me <t, < Met1}. The constraints are then rewritten as:

K
—Zym + Z@mc,mgbc(m) =0 meM; p=1,...,r . (14)
c=0

Then, the complete formulation is:

iir,l.igl,lo Z Z(éu,m - zu,M)Q (15)

meM p=1
s.t.

K
Z&e,c,j ¢e,c,j(7_k:) — A?]e gj(fe,k,j,a,te,k) =0 e = 1, - ,NE, k= 1, . ,K; j eJ
c=0

h’(Ee,kaoate,k) =0 ezl,,NE’k:]_,’K

K

v — O Cemtejbe(r=1) =0 e=2,... NE; jeJ
c=0

§05 — 2045 =0 jeJ

K
_2M,m + de#,c,mqsc(Tﬂ) =0 m € M, M= ]_, e, T
c=0

The formulation (15) exhibits the following properties:

1. The size of the optimization domain is greatly increased by the inclusion of the collo-
cation variables, €. For instance, a problem with 3 states, which is approximated using
third order polynomials on 5 elements, adds 45 collocation variables.

2. The choice of the number of elements, the placement of those elements, and the de-
gree of the polynomial used have a significant impact on the error imposed by the
approximation.

3. Even though the number of variables has been increased, the number of degrees of
freedom has not changed. All the additional collocation variables appear in equality
constraints.



4. The forms of the nonlinearities in the problem have not changed through the colloca-
tion, and additional nonlinearities have not been introduced. The polynomials used are
linear in the variables &, and hence the additional constraints introduced for continuity,
and initial conditions are linear. Furthermore, the first term in the residual equations
and the variable terms in the point constraints are also linear. Although this is the
case, the number of nonlinear variables is greatly increased. Using the illustration of
property 1, of the 45 additional collocation variables, 30 could appear in nonlinear
terms depending on the form of the functions g and h.

5. Since the problem is now algebraic, and twice differentiable in nature, reliable and
deterministic methods for the generation of the global minimum exist (e.g., the BB
algorithm2%24).

3.2 Basic Ideas of the BB

The oBB global optimization method 2%21222324 guarantees convergence to the global mini-
mum for general twice continuously differentiable constrained and unconstrained NLPs. This
is accomplished through the generation of a non-decreasing sequence of lower and a non-
increasing sequence of updated upper bounds on the global solution. Finite e-convergence
to the global minimum is achieved through the successive subdivision of the region at each
level in the branch and bound tree. The sequence of upper bounds on the global solution is
obtained by solving, to local optimality, the full nonconvex problem from different starting
points. The lower bounds are generated by solving a convex relaxation which underestimates
the original problem. The key to the success of the BB is its ability to generate an underes-
timating formulation. The formulation needs to be relaxed enough to ensure convexity, but
not too much so as to avoid overly underestimating the original problem. The recent book
by Floudas?® presents the theoretical advances and a variety of computational methods and
applications in the area of global optimization.

3.3 Underestimating Formulation

Since the formulation given by (15) is algebraic in nature, the development of the underes-
timator is straight forward. First, the formulation needs to be reduced to a standard form
in which all the nonlinear terms appear in inequality constraints. This is accomplished by
splitting each equality constraint into a positively and a negatively signed inequality. Then,
all the nonconvex terms in (15) are underestimated separately depending on their form. For
instance, the tightest convex relaxation of a univariate concave term, f(z), from zY to ¥ is
given by the linearization:

L(z) = f(=") + f@?) = J(@7) (x — z%) . (16)




Property 1 The mazximum separation distance between a univariate concave term and its
underestimator occurs at the point Z in the region defined by [zY, z*] where the following
condition is met:

d f@Y) = )

dz 2V — b =0 (17)

and takes the value of:

f(xU) B f(ZL) (A L) ) (18)

T -z
U — oL

f@) = fl=h) -

Proof. The maximum separation distance between the original function and the underesti-
mator is defined by the following problem:

max f(z) — L(z) (19)

T

s.t. a:LngxU.

Since f(x) is concave and £(z) is linear, the above problem is concave over the entire region,
[#L, 2V]. Therefore there exists one unique maximum to the problem. Substituting the

underestimator into (19) results in:

max f(z) - f@") — TSI @ g (20)
s.t. ngacg:EU.

The unique maximum of (20) occurs when the derivative with respect to z is set equal to
Zero:

df(x) _ f@¥) = f@a") _
de U — 2L =0 (21)

Remark 1 The value of the maximum separation and the point at which it occurs is specific
to the term under study.

Remark 2 The maximum separation distance occurs at the point where the tangent to the
original function is parallel to the underestimator.

Illustration. Consider the term —z?. The condition given by (17) results in:



2z + = =0 . (22)

with a value of,

Two types of terms which appear often in kinetic estimation problems are the bilinear
term, zy, and the trilinear term, zyz. The bilinear terms will be relaxed using a method
developed by Al-Khayyal and Falk®® and McCormick?!. The term zy is replaced by an
auxiliary variable w, and the following four linear inequality constraints are added:

oly +yte — aly? —w
ny =+ yU:E — nyU —w
—2V%y —ylo + 2yt +w
—aly —yVz + 2ly¥ +w

(23)

IAIAIA A
oo oo

The first two constraints given in (23) produce an underestimator of the term, while the
second two generate the overestimator. The convex relaxation for a trilinear term is derived
from the cuts for a bilinear term given by (23). Each term xyz is also replaced by an auxiliary
variable w, and the following 16 linear inequality constraints are added:



syl + alysl + abyls — glylzl — glyll —w < 0
oV 2V 4+ 2Vy2 4 aUyUz — gUyU2U — VUl —yy < 0
ayl2l + aly2V + alyVz — alylzl —alyl2V —w < 0
ayV2V + 2Vy2t + 2Vylz — aVyU2Y —2Uylzl —w < 0
oyVzl + oYyl + alylz — alylzl —2VyV2l —w < 0
oyt 2V + aly2V + 2aVyVz — alylzV —aVyU2V —w < 0
ayt2V + alyzl + 2Vyle — byl —aVyl2V —w < 0
ayU2l + 2Vy2V + 2lyVz — alyVzl —2VyV2Y —w < 0
—ayU2V — aly2V — olylz + 2lyl2V + 2lyV2V +w < 0 (24)
—ay¥2V — alyzl — 2fyVz + 2lyV2t + 2lyV2V +w < 0
—aylzl — 2Uy2V — 2Vylz + VgtV + 2Vytel +w < 0
—aylzl — Uyl — aUyVz + UVl + 2Vytel +w < 0
—aylV — aVy2V — alylz + 2lyl2V + 2Vyl2V +w < 0
—aylt — 2Vy2V — aVylz + 2VUylzl + 2yl +w < 0
—ayV2V — alyzl — alyVz + 2lyV2V + 2PyV2k +w < 0
—ayUst — glysl — 2UyUs 4 aUyUsl 4 alyUsl 4y < 0 .

Note that the first eight inequalities in (24) correspond to the underestimator, while the last
eight represent the overestimator. Other special types of underestimators (e.g., for fractional,
signomial, products of univariate terms, etc.) can be found in Esposito and Floudas?®,
Adjiman et al.??, Maranas and Floudas®?, Quesada and Grossmann®?, and Zamora and
Grossmann®!. For general nonconvex terms a novel underestimation scheme was developed
by Maranas and Floudas?®®. For a given general nonconvex term in several variables, NC(x),
the underestimator (with a uniform diagonal shift approach??) is written as:

L(x) = NC(x) + a Y (& — ) (s} — ) (25)

where X is the set of x variables participating in the term NC(x). The value of a needs to
be large enough to generate a convex function, but not too large as to overly underestimate
the function. It is shown that:

o >  max {0, _ % min /\k(x)} (26)

k,x

s.t. xt < x < xV

where Ax(x) are the eigenvalues of the Hessian matrix of NC(x). It is preferable to derive
an analytical expression for the value of « using (26) as an equality. This will provide the
tightest possible convex underestimation of NC(x). In cases where this type of analysis
is not possible, several methods have been developed which provide valid lower bounds on
the eigenvalues of the Hessian matrix?%?%?*, Transforming the equality constraints into

10



two opposite signed inequalities, and substituting the underestimators, the complete lower
bounding problem is then written as:

zinéno Z Z(éu,m - Zu,m)2 (27)

meEM p=1
s.t.

K
> i Pec(Te) + Ante Loy, (EepO,te) < 0

c=0

K
- Z fe,c,j ¢e,c,j(7-k) + Ane Egj (ge,k,ja ea te,k) S 0

c=0
e=1,...NEF,; k=1,...,K; jed

Eh(ﬁe,k,ﬂ,te,k) S 0 621,...,NE; k‘zl,,K
L—h(&e,kaoate,k) S 0 621,---,NE; k:]_,,K

K

v — O Eerejbe(r=1) =0 e=2,...,NE; jelJ
c=0

§i0f — %5 =0 jed

K
_Aa 1sCy - 9 —_ I
Zp,m + Zé.e cmqsc(Tp) =0 m € M; /,L—l r
c=0

L(z,,0) < 0
where Ly, L4, Lp, £L_p, and Ly refer to the underestimating functions of the terms g;, —gj,
h, —h, and f respectively. It should be noted that the relaxation also results in an increase
in the degrees of freedom of the problem. The number of degrees of freedom is no longer equal
to the size of the parameter set, but now includes the number of collocation coefficients which
appear in the residual equations. This is a result of the necessary conversion of the nonlinear
equality constraints into inequalities and the subsequent relaxation of those constraints.

4 Integration Approach

In this approach, there is no need to change the differential-algebraic system of equations
and new variables are not introduced. The problem remains exactly as it is defined by (2).

4.1 Formulation
First, consider the differential-algebraic system of equations given in the formulation as a

simple input-output map. The input is the values of the parameters, 8, while the output
corresponds to the values of the states along time, z(t).

11



zj = g(Zaoat) .7 eJ
6 — 0 = h(z0,1) —  z(t) (28)
Zj(to) = Zy t € [to,tf]

Pontryagin?3® presented two theorems concerning the continuity and differentiability of this
map with respect to the parameters, 8. The theorems are derived and proven for a system
of ODEs. It is possible to convert the DAE system in (28) into a set of ODEs either by

explicitly solving 0 = h(z, 6,t) for the algebraic variables, z; i ¢ J, and substituting into

g(z,0,1) or through one differentiation of h(z, 0,t) since the system is of order one®’.

Given the system

z=g(z,0,1) , (29)

the assumption that the right hand side of (29), g(z, 0,t), and the partial derivatives,

a% 9(2.0.1) (30)

are defined and are continuous is some domain I' of the space of variables ¢, z, and @, we
have:

Theorem 1 (Pontryagin3®, page 170) If (o, zo, 0y) is an arbitrary point of the domain
T, there exist positive numbers r and p such that for:

60— 6| <p

the solution

z = ¢(t7 0)

of (29) which satisfies the initial condition

¢(t07 0) =12

is defined on the interval |t — to| < r and is a continuous function of all the variables, t and
0, on which it depends.

12



Theorem 2 (Pontryagin®®, page 173) Let the partial derivatives

e(z,0,t) = % g(z,0,t)

exist and be continuous in the domain I'. Let (to, zo, Og) be some point of I'. Then, there
exist positive numbers r' and p' such that for |t —to| < 1', |8 — 0| < p' the solution (¢, 0)
of (29) which satisfies the initial condition:

P(to,0) = 2o ,

has continuous partial derivatives

oY (t,0)

00

Corollary 1 (Pontryagin3®, page 177) If all the partial derivatives of g(z,0,t) with re-
spect to the variables z and 0 up to the m'™ order inclusive exist and are continuous, then
the functions ¥ (t, 0) also have continuous partial derivatives with respect to the parameters,
0, up to the m™ order inclusive.

Given the conditions on the differential-algebraic system presented in section 2, and the
aforementioned theorems, the values of the states, z, at a given time 7, can be defined as a
set, of twice continuously differentiable functions of the parameters, 6:

Z(tu) = T(two) . (31)

Substituting this function into (2) results in:

min > Gum — Zum) (32)

0, % meM p=1

s.t.
2u,m+fm,u(0):0 mEM, ,LL:].,...,T'
f(2,,0) <0

where F,, , is the function which describes the value of state m at time point ¢,. The
derivatives of this function are the values of the sensitivities of state m with respect to the
parameters, 6, at the given time point ¢,. These sensitivities are determined by simultane-
ously integrating a set of linear equations with the initial system37:383%, The set of equations,
for this system, take the form of:

13



Linj O | (02) _ | 52 | (0m + o (33)
Onx; Onxk 00 oh o0 g_z

0z

where 7 is the number of states with explicit derivatives, & are the number of states without
explicit derivatives, and h is size of the vector of equations h. Therefore the derivatives of
the function F,, , with respect to @ are defined as:

OFmu _ 0zZm

A numerical integration routine is used to generate the necessary function and gradient
evaluations for the dynamic system in the course of the optimization algorithm“°.

The formulation (32) has the following properties:

1. There are no additional variables needed to deal with the dynamic nature of the model.
2. The possible error involved in the integration is small for well behaved systems.

3. Each function evaluation requires the integration of a differential-algebraic system of
equations, therefore the computational expense in the determination of a local mini-
mum increases as compared to the collocation approach.

4. There are currently no deterministic optimization methods which can guarantee the
determination of the global minimum of this formulation.

4.2 Underestimating Formulation

In order to generate the underestimating formulation for this problem, the functions F,, ,(0)
are treated as general nonconvex terms. These terms are underestimated by the addition of
a quadratic term in ¢, multiplied by £, , (note the similarity to the uniform diagonal shift
approach for os).

L50,(8) = Fuu(®) + Buyuy (6 —6) (6 —6) (35)
peP
where the § term is calculated in the same manner as the o term in the algebraic case. The

functions f(z,, 0) are underestimated in the same way as for the collocation approach. The
complete lower bounding problem is formulated as:

14



g}g} Z Z(éu,m - zu,m)2 (36)

meM u=1
S.t.
—um + Fmu(0) + 8L (OF —0,) (0] —0,) <0 meM; p=1,... 7
pEP
Zum — Fmu(0) + 5;1#2(91(,]—9,,) (9;}—91,) <0 meM; pu=1,...,r
peP
‘C.f(iwe) <0

where P represents the full set of the variables 8. The values of the ’s are determined from
an expression identical to (26). In this case, the Hessian matrix of the function, F,, (),
is comprised of values for the second-order sensitivities of the state, z,,, with respect to the
parameters, 6, at the given time point, t,:

0?2

Hmw = 502

() - (37)

These sensitivities are determined by adding the set of equations given by (33) to the original
problem, and hence generating a full augmented system. The system is then integrated with
a sensitivity analysis, thus generating the sensitivities of (33) with respect to the parameters
(an alternative method is presented by Vassiliadis et al.4!). The value of the 3 parameters
are determined by:

1 : min
Bui > —3 mem)\u,i (6) (38)

Bu,i 2 0

where )\l’f;” is the minimum eigenvalue of the matrix H,;. The elements of H,; can not
be written as algebraic functions of 8. Therefore, the minimization given in (38) can not
be determined exactly. The elements of the matrix, however, can be calculated through an
integration of the augmented system at fixed values of 8. As a result, three different methods
are used to calculate the § values:

Method 1: Constant values

In this approach, the values which will be used for the § parameters are preselected. The
drawback is that no second order information, which could be made available, is being used
and the validity of the underestimator is not known.

Method 2: Sampling of the Hessian Matrix

The values of the elements of 4 can be calculated at selected values of the parameters, 6.
Therefore, a number of points are selected to evaluate the Hessian matrix and calculate the

15



eigenvalues of these matrices. The minimum of theses eigenvalues is then used to determine
the value of 8. The number of points sampled and the sampling method are both parameters
in this approach. In all cases a uniformly random sample is generated. The number of points
used in the sample has both an effect on the validity of the underestimator and the time
required to generate it. The more points used, the better the approximation becomes, but
the time required increases. The size of the sampled set needs to be large enough to generate
a valid value for §, but not too large so as to require a substantial computational expense.

Method 3: Sampling with Interval Hessian Calculation

In this approach, the values of each element of # are also determined at selected values
of the parameters, but the eigenvalues of these Hessian matrices are not directly evaluated.
Instead, an interval Hessian matrix is generated from the minimum and maximum of every
element over the sampled set. A valid lower bound on the minimum eigenvalue of this matrix
can then by determined using methods presented by Adjiman and Floudas??, and Adjiman
et al.2%24. Tt has been shown that for algebraic problems the value of a calculated using
interval methods, overestimates the value needed for convexity. Therefore, fewer sampled
points can be used to reasonably insure a convex lower bounding problem.

5 Algorithmic Procedure

A step by step presentation of the algorithm as implemented is given below.
Step 1. Initialize the problem

1. Set the absolute, €%, or relative, €™, convergence tolerance.

2. Set the iteration counter, iter, equal to zero.

3. Set reasonably tight bounds on the fitted data variables, z,,, from statistical consider-
ations, or prior knowledge.

4. Set reasonable and loose bounds on the parameters, 8, and the collocation coefficients,

.
Step 2. Tighten initial variable bounds

1. Update the bounds on the parameters, @, and the collocation coefficients, &, by solving
a series of feasibility problems based on the underestimating formulation.

( min / max z;
O,QM,E e,i“,ﬁ
N s. t. £(0,z,,€) <0
7" 2" = o 2k <z, < U (39)
L < 0 < 0#
L U
\ & < ¢ < ¢

where x represents the vector |6, £] and £(6, 2, ) represents the set of all constraints
which appear in the underestimating problem.
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2. Calculate the relative change of all the variable bounds:

new ,u new,l
X, o — o ’

AB = 1 - 2 2 (40)
j : mpld,u o led,l

1€l 1 7

where the superscript old refers to the bounds on the variables before (39) is solved,
and new refers to the bounds afterwards.

3. If Ap < 0.1 or a given number of bounds iterations has been reached, then proceed
to Step 3, otherwise go back to 1. using the new bounds on the variables.

Step 3. Determine Initial Upper and Lower Bounds on the Global Solution

1. Using the bounds on the variables determined in Step 2, solve the convex relaxation
to local optimality to generate a lower bound (LB) on the global solution.

2. Save the solution and all the variable values

obj* — objtt  x* —xbt .

3. Using the lower bounding solution as a starting point, solve the original nonconvex
problem to local optimality to determine an upper bound (UB) on the global solution.

4. Save the solution and all the variable values

obj* - UB x*—=xY8 .

Step 4. Check for convergence
if UB-LB < €% or (UB-LB)/UB < ¢ then terminate with the global solution:

-glo = ob -UB UB

obj i x%° = x
otherwise iter = iter + 1.
Step 5. Update variable bounds
1. Select a given number of collocation variables, &, to have their bounds updated.

2. Solve (39) for each of the selected variables.
Step 6. Branch the region

1. Determine which variable from the branching set that causes the greatest deviation
between the original problem and the convex relaxation. The branching set may contain
all or some of the parameter variables and the collocation coefficients. The contribution
is calculated by summing a term deviation for a given variable over all the terms that
variable participates in. The term deviation is defined by:
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51’ — ]c(xsol) . Ef(xsol) (41)

where f(x) is the original nonconvex term, L£;(x) is the convex relaxation, and x*°

are the values of variables at the solution to the convex relation in the current region.
As an example, consider an o or § underestimated term. The deviation for a given
variable x; and term 7 is calculated as:

2. Branch the region into two (r = 1, 2) by bisecting on the selected variable.
Step 7. Solve the Upper and Lower Problems in each new region

1. Solve the convex relaxation from a randomly chosen starting point.

2. Save the solution if it is less than the current upper bound (UB)
if obj'"" <UB  then  obj"™*" — obj"""  x* — x""

Otherwise, if the solution is greater than the upper bound, or if there is no feasible
solution, remove the region from consideration and go to Step 8.

3. Solve the upper problem in this region using the solution of the lower problem as a
starting point.

4. If the solution is less than the current upper bound, then update the bound

if 0bj“PP" < UB  then  0bj"?"" - UB x* — xY?
Step 8. Update Lower Bound

1. Select the next region to be explored as the one with the lowest solution to the relaxed
problem.

2. The region is removed from the list of store regions, and the solution becomes the new
lower bound

LB =min objerr

iter,r
3. Return to Step 4.

Differences between Formulations: There are some differences in the algorithm used for the
two different approaches. These are:
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e In the integration approach, no collocation variables are present, so initially only the
bounds on the parameters variables are updated.

e There are no bounds updates performed at each iteration for the integration approach
since no collocation variables exist.

Remark 3 Note that in the collocation based approach the proposed method offers a the-
oretical guarantee of attaining the global solution of the transformed algebraic model, (15).
In the integration based approach, the proposed method offers a theoretical guarantee of
attaining the global solution of the original problem (2) as long as rigorous values of the g
parameters or rigorous bounds on the [ parameters are obtained.

6 Implementation

The algorithmic procedure presented in section 5 has been implemented in an extensive C
program with a intuitive front end parser. All the necessary differentiations and generation
of additional constraints are performed automatically by the parser. A link to the MINOPT
optimization program“’ is used in order to perform the local optimizations and integrations.
MINOPT itself has links to various local solvers, including SNOPT 42, MINOS*? and NPSOL
4 as well as the integration routines DASOLV** and DAESSA*’. MINOS is used for
the local solution of the algebraic problems encountered in the collocation approach, while
SNOPT and DASOLV are used for the integration approach. Figure 2 shows the program

flow among these different parts. A sample input file can be found in Appendix C.

7 Computational Studies

In order to illustrate the theoretical and computational aspects of both proposed approaches,
six example problems dealing with the estimation of kinetic parameters from time series
data are presented. The performance of each approach and comparisons between the two
approaches will be discussed. All example problems were solved on an HP J2240, using
a single processor. The data used in each example can be found in Appendix A, and the
explicit formulations of all the case studies are provided in Floudas et al.*5.

7.1 First-order Irreversible Series Reaction

This model represents a first order irreversible chain reaction as presented by Tjoa and
Biegler'8.

Aty BBy o

Only the concentrations of components A and B were measured, therefore component C
does not appear in the model used for estimation. The differential equation model takes the
form:
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[ Read Input File J
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Figure 2: Program Flow
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le

% = —0121 (43)
dz
d—tz = 9121 — 92,22

zo = [1,0] t € [0,1]

where the state vector, z, is defined as [A, B], and the parameter vector, 6, is defined to
be [k1, ko). The data used in the study was generated with values for the parameters of
0 = [5,1] with no added error.

Collocation Approach
The state profiles are approximated using different orders (K) of polynomials on 5 equal
length finite elements. The complete formulation of this problem is given below.

2 10
min = > Gum — Zum) (44)

iuagyo m=1 le
s.t.

K

D leetGeen(mh) — Ane(—01&ps) =0 e=1,....5 k=1,... K

c=0

K .

Zé-e,c,Zd)e,c,Z(Tk) —_ Ane(ﬁlﬁe,k,l—ezﬁe,k,g) = 0 621,... ,5; ]C:L ,K
c=0

K

Copg = D betej®e(T=1) =0 e=2...,5 j=1,..,2
c=0

§10j — %05 =0 j=1,...2

K
~Zym + Y Eepembe(Ty) =0 m=1,...,2% p=1,...10
c=0

zo = (1,0)  te]0,1]
t,=(0.1,0.2,0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)
An, = (0.2, 0.2, 0.2, 0.2, 0.2)

The nonconvexities in (44) are the bilinear terms, +6; &, and 605 ;o in the residual
equations. These terms are relaxed using the linear cuts defined by (23).

The bounds on the variables were initially set to 8 € [0,10], £ € [0, 1], and 2, € [z, +0.1].
The bounds on the parameters, 8, and the collocation coefficients, &, were initially updated
once. Table 1 shows the global solutions, the number of iterations, time required to reach the
solution, and the number of nonlinear variables in the formulation, for polynomials of order
3, 4, and 5. In these runs, no variable bounds were updated at each iteration, branching was
performed only on the parameters, and a relative convergence tolerance of 1% was used. As
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the order of approximation is increased, the mean squared error decreases and the original
values of the parameters are obtained. At the same time the number of nonlinear variables
also increases. This change not only results in a slight increase in the number of iterations
required, but also, in a large increase in the solution time required. A mere doubling of
the number of collocation coefficients results in a five-fold increase in the computational
effort. This increase is related to the way in which the local solver scales with the number
of nonlinear variables.

Order(K) Variables Iterations CPU sec. 61 6, Obj
3 22 34 2.92 5.0017 0.9995 6.276 x 10°°
4 32 36 5.89 5.0016 1.0001 1.289 x 10~°
) 42 38 10.77  5.0035 1.0000 1.185 x 10~°

Table 1: Solutions for example 1 with different polynomial approximations on 5 finite ele-
ments.

Figure 3 plots the number of iterations and the solution time required for a 5% order
polynomial approximation versus the number of variables whose bounds are updated at
each iteration. The selection of the variables to update is done randomly from the set of
nonlinear & variables. This random selection results in a slight variation in the number
of iterations required from run to run, therefore the results are the average of three runs.
As the number of updated variables increases, the iterations required to solve the problem
decrease, as is expected. At the same time, even though less iterations are required, the
overall solution time increases. Since this is a relatively small problem, the decrease in the
number of iterations, is not large enough to offset the additional time required to solve the
bounds updating problems.

40 . . . : 60
55 |
35 1 50 |
45 +
@ 30 g 40
o n
kS ) 35
5 o
= 25 O 30
. 25
20 o8 1 20
o t oo 1510
15 L L L L 10 L L L L
0 5 10 15 20 0 5 10 15 20
Number of Variables Updated Number of Variables Updated

Figure 3: Solution times using 5 order polynomials versus variable bounds updating for
example 1.

Integration Approach
The formulation for this approach is given below:
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2 10
min ZZ(éu,m — Zu,m)2 (45)

2,0

m=1 pu=1
s.t.
2'51 = —01 Z1
Z9 = 01 21 — 02 29 — fm,u(O)
Z(tO) = (17 0) t e [Oa 1]

2u,m + Fm,p(o) =0 m:1,2, M:L,lo

The integration approach converges to a solution of 1.1858 x 10~% with parameter values
of @ = [5.0035, 1.0000]. The bounds on the parameters and the fitted data variables are
initially set to the same values used in the collocation approach. Initial bounds updating is
performed on the parameter variables until the convergence criteria given by (40) is reached.
A relative convergence tolerance, €, of 1 % is used. Figure 4 shows the number of iterations
and effort required to obtain the global solution using constant 3 values.

300 : . ; 140
250 | ) 120
100
200 +
g 150 r E.)
£ S 60 f
100 r
40
50 R o0 7 20 +
O L L L O L L L
0.0001 0.001 0.01 0.1 1 0.0001 0.001 0.01 0.1 1
Beta Value Beta Value

Figure 4: Solution times using integration versus the value of 5 for Example 1. The same
value is used for all the constraints.

By evaluating the eigenvalues of the Hessian matrices at 5000 randomly generated points
in the parameter space, the values of 5 were found to range from 0 to 0.5 with an average
value of 0.123. The evaluation of the Hessian matrices is expensive, in this rather small case
(2 states, 2 parameters), approximately 70 CPU seconds are required. The problem was
solved using these § values initially and either keeping them constant, or updating them in
each region. In each region, at least 20 sampled points are used to determine the 5 value. In
addition, the initial bounds updating on the parameter values was studied. The bounds were
either updated once (as in the collocation formulation) or until the convergence criteria given
by (40) was reached. The results are shown in Table 2. In all cases, initially updating the
bounds on the parameter variables multiple times, not only reduces the number of iterations
required, but also the computational time.

In this case, unlike in the collocation approach, only two variables are being updated, and
therefore the computational requirement is small compared to the reduction in iterations.
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B Values 0 initial updates iterations CPU sec.

constant once 35 20.05
constant convergence 20 13.30
updated once 27 19.05
updated convergence 14 13.82

Table 2: Results of Integration Formulation for Example 1.

Also, by updating the § values, the number of iterations required is reduced, but the com-
putational expense remains relatively the same. Updating these values requires expensive
additional Hessian evaluations to ensure that at least 20 points are used in each region.

7.2 First-order Reversible Series Reaction

This model represents the same series reaction given in example 1, but the reactions are
reversible. The model appears in Tjoa and Biegler'®.

k1 k3
A= B=C
ko ka4

In this case all the components are measured and therefore their concentrations are included
in the model used for estimation. The differential equation model takes the form:

dz

d—tl = —9121 +9222 (46)
d

% = 0121 — (0 + 03) 20 + 0423

dz

d—; = (9222 - 9423

Zy = [1, 0, 0] t € [0, 1]

where the state vector, z, is defined as [A, B, C], and the parameter vector, 8, is defined
to be [k, ko, ks, k4). Two different data sets were generated using the following values of
the parameters, @ = [4, 2, 40, 20]. One set was used without any error being added, and
another with a small amount of random error added.

Collocation Approach

The state profiles are approximated using 5" order polynomials on 6 finite elements with the
element boundaries at t = [0, 0.1, 0.2, 0.3, 0.45, 0.7]. All of the nonlinearities in this for-
mulation are in the form of bilinearities. Using the error free data, the solution obtained has
an objective value of 3.367 x 107 with parameter values of @ = [4.001, 2.001, 39.80, 19.90].
The initial bounds on the variables were set to: 6,5 € [0,10], 834 € [10,50], £ € [0, 1], and
the initial bounds on the fitted data variables were varied. Table 3 shows the results using
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different bounds for these variables. The solutions were obtained by initially updating the
variable bounds three times, branching on the parameters, 8, using an absolute convergence
tolerance of 1 x 10~%, and updating no variables at each iteration.

Bounds on z, Iterations CPU sec.

z, + 0.05 338 549.07
z, £+ 0.03 189 398.66
z, = 0.01 56 272.91

Table 3: Results using collocation approach with error free data for Example 2.

Using the error added data with the same 5% order polynomial approximation on 6 ele-
ments, the algorithm converged to a solution with an objective value of 1.586 x 10~® and
parameter values of § = [4.021, 2.052, 39.45, 19.62]. The same bounds on the parameters
and collocation coefficients were used, and variable bounds update and branching were per-
formed in the same manner. Table 4 shows the results using different bounds on the fitted
data variables, with a relative convergence tolerance of 1%.

Bounds on z, Iterations CPU sec.

z, £ 0.050 1440  1613.33
z, + 0.025 349 568.44

Table 4: Results using collocation approach with error added data for Example 2.

It is interesting to note how much additional effort is required to solve the problem with
error in the data as opposed to error free data. Also, the collocation approach is very sensitive
to the initial bounds chosen for the fitted data variables. Even though these variables do not
directly participate in any nonconvex terms, the bounds chosen have a large indirect effect.
The initial bounds on the collocation coefficients, which do appear in non-convex terms, are
derived from the fitted data variables though the initial bounds updating procedure. Tighter
initial bounds on 2, result in tighter bounds on §.

Integration Approach

The integration approach has one additional property that has not been discussed. Due to
the relaxation used in developing the underestimating formulation, it is possible to violate
the mass balance at the solution of the lower bounding problem. Therefore it is advantageous
to add the algebraic mass balance constraints into the lower bounding problem (similar to
the approach used by Quesada and Grossmann®”). These constraints take the form:

3
By = 1 p=1,...,20 . (47)
1

m=

Since (47) is linear in the fitted data variables, it is not necessary to underestimate this
constraint.
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Using the error free data, the approach converged to a solution with an objective value of
1.890 x 10~7 with parameter values of @ = [4.000, 2.000, 40.01, 20.01]. The problem was
solved using different bounds on the fitted data variables with the mass balance constraint
given by (47) and using a sampling method to calculate the 5 values (25 points used initially
and at least 10 in each region). As in the collocation approach, the initial bounds on the
parameters were set to 6, o € [0, 10], 54 € [10, 50], initial bounds updates were performed on
the parameters until convergence was reached, and branching was on the parameters. The
results appear in Table 5.

Bounds on z, Iterations CPU sec.

z, = 0.05 280 1546.05
z, = 0.03 284 1646.34
z, + 0.01 289 1899.82

Table 5: Results using the integration approach with error free data for Example 2.

Using the error added data, the formulation converged to a solution with an objective
value of 1.587 x 10~ with parameter values of @ = [4.020, 2.052, 39.65, 19.72]. The results
are obtained using the same bounds, updating procedure, and branching as for the error
free data. In this case, a relative tolerance of 1% is used for convergence. The results using
different bounds on the fitted data variables are shown in Table 6. As an illustration of the
difference made by adding the mass balance constraint, using bounds for z, of z, = 0.050
without the mass balance constraint, the solution requires 2561 iterations and 7604.83 CPU
sec. (a 25% increase in computational expense).

Bounds on z, Iterations CPU sec.

z, = 0.050 2105 6017.6
z, + 0.025 2073 6164.3

Table 6: Results using the integration approach with error added data for Example 2.

From the results for both the error free and the error added data, it is clear that the
convergence characteristics of the integration approach are not dependent on the bounds
chosen for the fitted data variables. For this example the integration formulation requires
more iterations and a greater computational effort.

7.3 Catalytic Cracking of Gas Oil

This model represents the catalytic cracking of gas oil (A) to gasoline (@) and other side
products (5).
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Y /Q
Only the concentrations of A and () were measured, therefore the concentration of S does
not appear in the model for estimation. This model was studied by Tjoa and Biegler!8

This reaction scheme involves nonlinear reaction kinetics, rather than the simple first order
kinetics in the previous two examples. The differential equation model takes the form:

dz

—= = —(1+65)7 (48)
dz

d—; = 912’% —0222

zo = [1,0] t € [0,0.95]

where the state vector, z, is defined as [A, @], and the parameter vector, 8, is defined to be
[k1, ko, k3]. The data used in this study was generated using values for the parameters of
0 = [12, 8, 2] with a small amount of random error added.

Collocation Approach

For this example, we consider 6" order polynomials on 3 finite elements with the element
boundaries at ¢ = [0, 0.1, 0.3]. The model defined by (48) is nonlinear in the states. To
generate the convex relaxation, the substitution, b = 2%, is added into the formulation.

le
— = —0,b+05b 49
dt Lo+ (49)
dz
d—t2=01b—0222

0<b— 22

0 < —b+ 2z

In (49) the nonconvexities take the form of bilinear terms and univariate concave terms
(—2?). The underestimating problem then includes the convex hull of each of these terms.
The initial bounds on the variables were set to 8 € [0, 20], z, € [z, £ 0.05], and £ € [0, 1].
The bounds on the substitution variable, b, were calculated from the bounds on £ in each
region. Initial bounds updating was performed on the parameters, 8, and the collocation
coefficients, €. The approach converges to a solution with an objective value of 2.6384 x 103
with parameter values of @ = [12.212, 7.980, 2.222]. Table 7 shows results obtained by
branching on only the parameters while varying the number of & variables whose bounds
are updated at each iteration. Table 8 shows results obtained by branching on both the
parameters and the collocation coefficients.

For this example it is necessary to update a number of variable bounds at each iteration
and branch on the collocation coefficients in addition to the parameter variables to achieve

27



1 % conv. 0.1 % conv. 0.05 % conv.
Bounds Updated Iter CPU sec. Iter CPU sec. Iter CPU sec.

0 - - - - — (1.70%)
2 134 14646 - - - (0.99%)
5 31 10261 - - - (0.27%)
10 28 12912 49 17832 73 233.42
15 26 15835 42  211.25 48  229.46

Table 7: Results using the collocation approach with branching on the parameters only for
Example 3. - does not achieve convergence in 1000 iter, (x%) reaches a relative difference of
x % in 1000 iterations.

1 % conv. 0.1 % conv. 0.05 % conv.
Bounds Updated Iter CPU sec. Iter CPU sec. Iter CPU sec.
0 233 150.97 741 315.24 926 361.71
2 47 96.35 130 15741 157 175.02
5 34 106.92 71 155.89 79 166.34
10 28 129.57 51 182.59 68 221.34
15 24 147.23 47 224.70 51 237.92

Table 8: Results using the collocation approach with branching on the parameters and the
collocation coefficients for Example 3.
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convergence. This is related to the nonconvexities present in this model. Since the parame-
ters do not appear in every nonconvex term, branching only on these variables will not allow
a complete tightening of the relaxation. Therefore it is necessary to either update a large
number of the collocation coefficients, or add these variables to the branching set in order
to achieve a tighter convergence tolerance.

Integration Approach

Using the same initial bounds on the parameters and fitted data variables, the approach
converges to a solution with an objective value of 2.6557 x 10™3 and parameter values of @ =
[12.214, 7.980, 2.222]. The initial bounds on the parameters were updated until convergence,
and branching was performed only on these variables. Table 9 shows the results using the
three different methods for calculating S values. The constant § values were determined
by sampling 5000 points. The sampling 1 method used 25 points initially and at least 10
points in each region, with sampling 2 used 50 points initially and at least 20 points at each
region. The interval 1 method generated interval Hessian matrices using 25 points initially
and at least 10 points in each region, while interval 2 used 50 points initially and at least 20
points in each region. The eigenvalues of the interval Hessian matrices are calculated using
the Gerschgorin method 2324,

1 % conv. 0.1 % conv. 0.05 % conv.
B Calculation Iter CPU sec. Iter CPU sec. Iter CPU sec.

Constant 999 1185 - - - -

Sample 1 40 79.77 56 100.21 60 104.86
Sample 2 46 103.11 65 133.17 70 140.61
Interval 1 60 106.50 81 137.30 87 141.32
Interval 2 58 112.92 74 147.67 80 156.53

Table 9: Results using integration approach for Example 3, (-) did not reach that convergence
level in 1000 iterations.

The results clearly show that updating the 3 values at each iteration is necessary to
achieve convergence in a reasonable amount of time. The use of the interval based methods
for calculating 8 values required more iterations to converge to the solution. This is due
to the fact that these interval methods can overestimate the value of 8 required to achieve
convexity?2. The difference within each method can be simply explained as a result of a
variation in the values of  from using different randomly sampled sets of points in the
calculation. The integration approach performs better at higher convergence levels than the
collocation approach. This is directly related to the existence of the collocation variables, &,
discussed earlier.

7.4 Bellman’s Problem

This problem describes a reversible homogeneous gas phase reaction of the form:
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2NO 4 Oy = 2NO,

This model appeared first in Bellman et al.*, and was also studied Varah*® and Tjoa and
Biegler'®. The resulting differential equation is the result of many normalizations for the
given experimental data and is nonlinear in the states,

dz
o = pi(cr — 2)(co — 2)? — po2? (50)

=0t e 0390

with ¢ = [126.2, 91.9]. The parameters, p; and po, in (50) are on the order of 1 x 107% and
1 x 107*, while the state, z, varies from 0 to 45. This results in a very difficult problem
to solve, even from a local standpoint. Therefore, an exponential transformation for the
parameters is used:

The reformulated model becomes:

% = e (e, —2)(cy — 2)? — e 0222 (52)

=0t €[0,39.0]
Collocation Approach

The development of an underestimator for the model (52) can be accomplished by two
different approaches. First, the two terms,

e M(c; —2)(c;—2)* and e %22

are underestimated using an « based approach. Analytical expressions for the values of «
were determined using an eigenvalue analysis of the Hessian matrices and can be found in
Appendix B. Therefore, the values used are the least possible to ensure convexity over the
domain of interest. A second approach, is to expand the model and underestimate simpler
terms. This results in:

d
d_i ="+ (a1 +2¢) e - (Cg +2a 02) ez + (01 Cg) e —e %22 (53)
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The nonconvex terms in (53) fall under two different categories. First, the terms 4-e=% 2"
are treated as general nonconvex terms. For each of these terms, analytical expressions for
the value of o were also determined using an eigenvalue analysis of their Hessian matrices.
Secondly, the term —e™%, is treated as a univariate concave term and underestimated with
a line segment.

The state profiles were approximated using 3™ order polynomials on 3 finite elements,
with element boundaries at ¢t = [0, 5, 20]. A solution with an objective function value of
22.5684, and transformed parameter values of 8 = [12.29098, 8.17059] was found. These
values of @ give original parameter values of p; = 4.5930 x 1075, and p, = 2.8285 x 10~
A global run was performed using initial bounds updating on the @ and £ variables until
convergence, and updating on all £ variables at every iteration. Branching was performed
not only on the parameter variables, but also on the collocation coefficients. Each of the two
different underestimation methods was used with different bounds on 8 and the fitted data
variables, Z,. Table 10 shows the results for these runs. Loose initial bounds refers to bounds
of @ € [5,15] and 2, € [z, = 5], while tight initial bounds refers to 6, € [10,14], 6, € [6, 10]
and Z, € [z, £ 1] for most y, but expanded were necessary.

Formulation Initial Bounds Iterations CPU sec. Relative Conv.

original loose 10000 9,708 75.0 %
original tight 9028 7,835 0.1 %
expanded loose 10000 12,222 78.9 %
expanded tight 10000 4,939 9.0 %

Table 10: Global optimization solution times for Bellman’s problem using the collocation
approach. Original formulation given by (52) and the expanded formulation given by (53).

Only the original formulation with very tight initial bounds was able to reach 0.1% con-
vergence in less than 10,000 iterations. The inability to achieve convergence can be linked
to the form and number of nonconvexities in the problem. In each formulation, the values
of o needed ranged in magnitude from 100 to 1 x 10, and were insensitive to region size.
Therefore, even within small regions, the gap between the underestimator and the original
problem is large leading to poor convergence.

Integration Approach

Using the integration approach with expanded bounds on the transformed parameters 8 €
[0.1, 18] and the fitted data variables z € [0, 55], two local minima were observed as shown
in Table 11.

Using no initial bounds updating, no updating at each iteration, and a relative convergence
tolerance of 0.1%, the problem was solved to global optimality. Table 12 shows the results
using different methods of automatically calculating the § values. The Gerschgorin method
2324 was used to determine the eigenvalues of the interval Hessian matrices. It is interesting
to note that no matter how many points with or without interval calculations, that the
solution requires about 50 iterations.

The bounds on 0 and the fitted variables needed to allow convergence in the collocation
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Obj 01 0y P Do Frequency
22.1814 12.29505 &.184225 4.5743 x 10~% 2.7902 x 10~* 81.4 %
264.649  6.64074 0.101005 1.3060 x 10~ 9.0393 x 10! 18.6 %

Table 11: Local solutions for Bellman’s problem using the integration approach. Frequency
refers to the percentage of starting points resulting in the given solution (determined using
1000 random starting points).

8 Method No. of points used Iterations CPU sec.

Sampled 15 48 36.16
Sampled 30 49 52.24
Sample/Interval 15 51 40.04
Sample/Interval 30 51 58.91

Table 12: Global optimization solution times for Bellman’s problem.

formulation were used in the integration formulation. Calculated [ values were used with
30 sampled points, and interval calculations. The global solution (with the same 0.1%
convergence) was obtained in 4 iterations and 19.2 CPU sec. Since the model is nonlinear in
the states, the integration approach outperforms the collocation. This is not only because
the parameters are all that need to be branched on in the integration approach, but also
the calculated 3 values were of order one (with the tight and the expanded initial bounds).
Therefore, the gap between the underestimator and the original problem is very small even
at the root node in the branch and bound tree.

7.5 Methanol-to-Hydrocarbons Process

This model represents the conversion of methanol to various hydrocarbons. The simplified
kinetic model, which appears in Maria '3, is defined as:

A M B
A+B 2 ¢
C+B = p
A o
A Py p
A+B 2 p

where A represents the oxygenates, B = C’HQ, C is the olefins, and P denotes the paraffins,
aromatic, and other products. The reaction model is formulated under the assumption of
simple kinetics and a quasi-steady state for the intermediate B. The resulting differential
equation system is nonlinear in both the states and the parameters, and takes the form:
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le 0122
— = — (26, — 0 + 6 54
dt < T Ot BT 4)Z1 (54)

@ _ 0121(0221 — 22)
dt (02 +05)2 + 29
dzs  O121(22 + 0521)
dat (02 + 05)z1 + 22
2 = [1,0,0] ¢ € [0,1.121]
0.1 < 0y + 05

+ 9321

+ 0421

where the state vector, z, is defined as [A, C, P] and the parameter vector, @ is defined to
be [k, ﬁ—i, ky, ks, :_2] The data used in this study was obtained from Maria and Muntean.
The last algebraic constraint on the parameter values is necessary since when both #, and
05 equal zero, the time derivatives are undefined for the given initial condition.

Collocation Approach

The state profiles were approximated using 4"* order polynomials on 3 finite elements with
element boundaries at ¢ = [0, 0.2, 0.4]. Using bounds on the parameters of @ € [0, 20] and
the fitted data variables z,, € [0, 1], very different local solutions were identified (see Table
13). It should be noted that all the local solutions not only show different parameter values,
but also predict different reaction schemes than the global solution.

Obj Value 0, 0, 0; 04 05 Frequency
0.10652  5.1981 1.2112 0 0 76.3 %

0
0.60110 12.0889 20 0 0 14.1749 2.3 %
0.62634 15.7927 1.1806 0 0  0.1403 0.7 %
0
0

291739 11.6113 0 0 1.1611 10.9 %
10.22539  1.6111 0 20 0.1611 0.2 %

Table 13: Local solutions for the methanol to hydrocarbons process using the collocation
approach. The frequency was determined using 1000 random starting points.

The model given by (54) appears to be very nonlinear in both the states and the parame-
ters, but the problem can be reformulated into a simpler set of equations. The substitution,

01 21

b =
(02 + 95) 21 + Z9

(55)

is introduced. This results in the following differential-algebraic system of equations,
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le

E = —0121 — 9323 — 0421 - 022117 - 05Z1b (56)
dz

d—tQ = 0321 + 0221b —_ Zgb

dz

d—t3 = (9421 + (9521b + ZQb

0 = 0121 - 0221() - 052’1[) — Zgb
0.1 < 0 + 65

All the nonconvex terms in (56) take the form of bilinear and trilinear terms. These are
simply relaxed using the sets of linear cuts given by (23) and (24). A global solution was
attempted using initial bounds updating on all the variables (0, £, and b), branching on the
same set of variables, and updating 10 randomly selected variables at each iteration from
the set [€, b]. Table 14 shows results using different levels of initial variable bounds (note
that the fitted variables are always absolutely bounded between 0 and 1). The results show
that even for tight initial bounds, convergence to the global solution is not achieved in a
reasonable time. In each case though, the upper bound at iteration 1000 was the best local
solution given in Table 13.

Initial Variable Bounds Iterations CPU sec. Rel. conv
z, €10, 1] b € [0, 10] 1000 19,125 93 %
z,€(z,+£02] belo,10] 1000 17,920 54 %
z, €[z, +0.15] bel0, 5 1000 13,624 43 %

Table 14: Global optimization attempts for the methanol to hydrocarbons process using the
collocation approach.

Integration Approach

Using the same bounds on the parameters and the fitted data variables as in the collocation
approach, and the reformulation given by (56), two different local solutions were found
(see Table 15). Each of the local minima predict a different reaction scheme than the global
solution. The second local solution (obj = 2.05476) is not unique in #, and 65, and also is not
physically possible. Reaction 1 (6;) needs to occur since this is the only source of component
B. This solution is made possible through the pseudo-steady state approximation which
results in the initial concentration of B being allowed to vary and take on a non-zero value.

Using initial variable bounds updating and branching on the parameters, with the bounds
on the variables specified above, the problem was solved to global optimality. The values
of 8 were calculated using the sampling method with interval analysis, and the Gerschgorin
method?¥2* was used to determine the minimum eigenvalues of the interval Hessian matrices.
Table 16 provides the results using different numbers of sampled points. The average and
deviation of three runs is given. There is a significant difference between runs using the
same number of sampled points, but this decreases with larger sample sizes. As the number
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Obj Value 0, 0, 03 0, 05 Frequency
0.10693 5.2406 1.2176 0 0 0 91.3 %
2.05476 0 8.6927 1.8477 1.6713 17.6135 8.7 %

Table 15: Local solutions for methanol to hydrocarbons process using the integration ap-
proach. The solution frequency was determined using 1000 random starting points.

of points doubles, the variation is reduced by almost a factor of three. Since this problem
contains five parameters, the use of additional sampled points is needed to give consistent
results. In every case, the global solution was obtained even using a very small sample size
(10 points, or only 2 per dimension).

# sampled points Iterations CPU sec.

50/10 606 + 151 1798.0 + 436.2
100/20 639 £ 65 2610.1 £ 264.7

Table 16: Global optimization solution times for the methanol to hydrocarbons process using
the integration approach. The number of sampled points refers to the number used initially
and the minimum number used in each subsequent region.

For this problem which is nonlinear in the states, the integration approach outperforms
the collocation approach by converging to the global solution with reasonable computation
effort. Even though the nonlinearities in the states take the form of bilinear terms (i.e., 21 29),
this suffices for the collocation approach to fail to achieve convergence. Another interesting
observation is that the collocation approach has introduced new local solutions which do not
appear using the integration approach.

7.6 Lotka-Voltera Problem

This problem has been studied by Luus'?. This model is a representation of the predator-
prey model used in ecology. The system is described by two differential equations:

dz

d—tl = 01 Z1 (1 — ZQ) (57)
dz

d—tZ = 9222(2’1 — 1)

7o = [1.2,1.1]  te 0, 10]

where z; represents the population of the prey, and z; the population of the predator. The
solutions to these equations are cyclic in nature and out of phase with each other. The data
used in the study was generated using values for the parameters @ = [3, 1] with a small
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amount of normally distributed random error with ¢ = 0.01 and zero mean added to the
observations.

Collocation Approach

The state profiles were approximated by 5" order polynomials on 5 equally spaced finite
elements. Using bounds on the parameters of 8 € [0.1, 10] and z,, £ € [0.5, 1.5] a number
of local solutions were obtained as shown in Table 17. The most prevalent local solution
found (nearly half of the time) was not the global solution, but one of the worst suboptimal
solutions.

Objective 0, 0, Frequency
1.3194 x 10~3 3.2521 0.9183 74 %
4.6369 x 10! 10 2.9247 84 %
6.2618 x 1071 8.2756 7.1832 3.5 %
6.4865 x 1071 6.9116 2.1888 7.0 %
6.6071 x 10" 1.7534 5.5731 5.6 %
7.0987 x 10" 3.5204 1.8164 4.9 %
7.8925 x 10" 1.3122 0.6552 4.1 %
8.2521 x 10~1 0.7438 0.2636 4.8 %
8.4591 x 10~1 0.3023 0.1 49.9 %
9.3085 x 1071 6.4652 3.0438 2.4 %

Table 17: Local solutions for the Lotka-Voltera problem using the collocation approach. The
frequency was determined using 1000 random starting points.

In order to underestimate the model given by (57) it is necessary to rewrite it in the
following form:

le

E = 01 21 — 01 Z1 %9 (58)
dz
d—; = 02 2921 — 02 Z9

The nonconvexities in the above equation take the form of either bilinear or trilinear terms.
These are relaxed using a series of linear cuts that, in the case of the bilinear terms, represent
the convex hull. Even though the underestimation is the tightest possible, convergence to
the global solution was not obtained in a reasonable amount of time. The best run involved
the use of tighter bounds on the fitted data variables of 2, € [z, +0.1], updating all variables
initially, and 20 randomly chosen & variables at each iteration, and branching on the @
variables. After 1000 iterations the lower bound on the global solution was 2.36886 x 10~*.
The current upper bound was the best known local solution given in Table 17. This run
took over 100,000 CPU sec.

Integration Approach
Using the same bounds as for the collocation approach, more than 20 different local solutions
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were determined. Table 18 shows those solutions that were found more than 2% of the time.
The most prevalent local solution found is not the global solution, but the third best solution.
As an illustration of just how many local solutions exist, Figure 5 shows slices through the
objective function surface at the parameter values of the two best solutions.

Objective 0, 0y Frequency
1.2493 x 1072 3.2434 0.9209 11.1 %
1.9201 x 1072 10 6.4962 6.0 %
5.1010 x 10! 8.7871 2.1191 14.3 %
7.0951 x 107! 6.2412 2.1148 7.8 %

7.1156 x 10~'  9.7073 1.0804 5.1 %
7.3607 x 107" 3.4852 1.8187 8.3 %
7.4925 x 1071 10 7.7757 2.8 %

7.8923 x 107! 1.3123 0.6551 3.8%
7.8941 x 1071 10 5.2323 5.0 %
8.2520 x 10~1 0.7438 0.2636 2.5 %
8.3022 x 101 10 4.5547 5.2 %
8.4384 x 1071 1.9292 5.0161 4.3 %
8.9296 x 10! 7.0100 4.0108 9.8 %
9.1397 x 10~' 7.5827 4.7761 4.4 %
0.2118 x 10~' 7.8125 4.1773 3.5 %

Table 18: Local Solutions for the Lotka-Voltera problem using the integration approach.
The frequency was determined using 1000 random starting points.

The problem was solved to global optimality in a reasonable amount of time. No initial
bounds updating was performed and an absolute tolerance of 1 x 10~ was used for every
run. Table 19 shows results with different constant values of 5. Smaller values converged
to the global solution quicker, but a value of 0.1 caused the algorithm to fail. The results
presented, for the smaller values, are the average of three different runs. Since the values of
[ used may not be totally valid, the lower bounding problem may still have multiple minima.
As a result, the number of iterations required may vary depending on whether the global
minimum of the lower bounding function is identified in each region. The values determined
by sampling the space ranged in magnitude from 1 x 107! to 1 x 108.

The problem was also solved using the 8 updating methods. These results, the average and
standard deviation of three runs, are presented in Table 20. It is apparent that updating
the [ values has a pronounced effect of the convergence rate for this problem. As the
number of points used in the calculation is increased, there is a slight difference in the
required number of iterations. This shows that even with a small sample size, it is possible
to generate reasonably valid [ values. Also, the larger the number of sampled points is, the
less variation between runs exists.

This is another example in which the states appear nonlinearly and it cannot be solved
to global optimality using the collocation approach. The combination of the number of
variables required to achieve a reasonable approximation, with the number of local minima
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Figure 5: Cuts through the objective surface for the Lotka-Voltera Problem.

B Iters CPU sec.

Sampled 9007 9689.67
10.0 2515 6225.69
5.0 1312 2856.45
1.0 336 769.07
0.5 161 367.26
0.1 failed -

Table 19: Results for the Lotka-Voltera Problem using the integration approach with con-
stant 3 values. Sampled values were determined using 1000 integration points.
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Sampled Sampled/Interval

No. of points  Inter. CPU sec. Inter. CPU sec.
25/10 123 + 14 331.04 £ 56.54 168 +4 396.25 4+ 20.00
50/25 145+ 6 540.04 +41.50 195+ 3 699.73 + 13.24

100/50 152 £ 3 884.14 £49.50 199 £ 2 1119.38 + 10.16

Table 20: Results for the Lotka-Voltera problem using the integration approach with updated
[ values.

present were the primary reasons for its failure. On the other hand, the integration approach
with automatic 3 calculation performed flawlessly. In every case, even with a small sample
size and despite the huge number of local minima, the approach was able to converge to the
global minima in a very reasonable time.

8 Comparisons between Methods

From the experience gained through the solution of the presented example problems, the
following comparisons between the methods can be made:

e Since the formulation used in the collocation approach is strictly algebraic in nature,
each local solution requires much less time than the integration approach. The inte-
gration method requires that a dynamic system be integrated with sensitivity analysis
for each constraint evaluation required by the local solver. Also, the calculation of the
B values requires integrations with second order sensitivity evaluations. Therefore, the
integration method must be able to converge in fewer iterations to achieve the same
computational effort.

e The choice of polynomial orders and the number and size of the elements can be rather
arbitrary in the collocation approach. The choice of these parameters directly influ-
ences the error involved in the approximation of the state profiles. The greater the
polynomial order and the number of elements there are, the better the approximation
becomes, but the number of nonlinear and nonconvex variables increases. In the pa-
rameter estimation problem presented in this paper, the observations can be used to
make informed choices for these parameters, but in the general case this is not possible.
Methods exist that attempt to control the approximation error®®, but these approaches
further complicate an already large formulation. The integration approach does not
suffer from these drawbacks since error control is handled directly in the integration
routine.

e How the states enter into the dynamic system has a direct impact on the effort required
by the collocation approach. For systems which are linear in the states the collocation
approach performs well, even better than the integration method. For problems which
are nonlinear in the states, the collocation approach performs poorly, even failing to
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achieve convergence. In the linear case, the bounds on the collocation variables, &,
appear in the underestimating formulation, but do not have a separate or distinct
effect. The bounds on the parameters control the quality of the underestimation, and
thus branching on these variables is only required. In the nonlinear case, the bounds
on the £ variables has a distinct effect and thus need to be included in the branching
set. This greatly increases the size of the set and adversely affects the convergence
rate. The integration approach does not depend on how the state variables appear
in the system. In all cases only the bounds on the parameters affect the quality of
the underestimator, and only these variables need to be branched on. As a result, the
integration approach achieved convergence for all the problems tested.

The initial bounds selected for the fitted data variables has a dramatic effect on the
collocation approach. The bounds on these variables, which do not appear in any
nonconvex terms, determine the bounds on the collocation coefficients though the
bounds updating problems. There is a direct relationship, that is, the tighter the
initial bounds on the fitted variables are, the tighter the calculated bounds on the
collocation coefficients become. For one problem, even though it is linear in the states,
doubling the initial range of the fitted variables, resulted in a three fold increase in
the computational expense required. The integration approach is not affected by the
choice of initial bounds on the fitted variables. These bounds do not appear, either
directly or indirectly, in the formulation of the underestimator.

The underestimation schemes, as implemented, for the collocation approach, are con-
vex and therefore the approach is guaranteed to converge to the global solution of the
algebraically converted problem. The underestimation scheme for the integration ap-
proach is theoretically convex if the values used for the 5 parameters are large enough,
as shown by (38). We can theoretically prove the validity of the 5 values for cases in
which the elements of the Hessian matrices can be determined analytically. This is not
possible for all problems. Even so, the sampling methods with interval analysis offer
reasonably accurate approximations. Using these approaches the algorithm has always
converged to the global solution.

Conclusions

In this paper, two different global optimization approaches were developed for the estimation
of parameters in differential-algebraic models from time series data. Both approaches are
based on a branch and bound framework. The first uses orthogonal collocation on finite
elements to convert the dynamical system into a set of algebraic equations. The formulation
is then solved to global optimality using a modification of the aBB?%2* for general twice-
differentiable NLLPs. The second approach uses an integration routine for the calculation
of the state profiles. A theoretically convex underestimator was developed for this type of
formulation, as well as methods of practical implementation. Various example problems were
solved to illustrate the theoretical and computational aspects of both approaches.
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A Data for Example Problems

tmu 21 2

0.1 0.606 0.373
0.2 0.368 0.564
0.3 0.223 0.647
0.4 0.135 0.669
0.5 0.082 0.656
0.6 0.050 0.624
0.7 0.030 0.583
0.8 0.018 0.539
0.9 0.011 0.494
1.0 0.007 0.451

S 000 ok W T

Table 21: Data for Example 1.
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0.40
0.45
0.50
0.55
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

0.8241
0.6852
0.5747
0.4867
0.4166
0.3608
0.3164
0.2810
0.2529
0.2304
0.2126
0.1984
0.1870
0.1780
0.1709
0.1651
0.1606
0.1570
0.1541
0.1518

0.0937
0.1345
0.1654
0.1899
0.2094
0.2249
0.2373
0.2472
0.2550
0.2613
0.2662
0.2702
0.2733
0.2759
0.2779
0.2794
0.2807
0.2817
0.2825
0.2832

0.0821
0.1802
0.2598
0.3233
0.3738
0.4141
0.4461
0.4717
0.4920
0.5082
0.5210
0.5313
0.5395
0.5460
0.5511
0.5553
0.5585
0.5612
0.5632
0.5649

0.8261
0.6782
0.5721
0.4817
0.4226
0.3698
0.3114
0.2710
0.2499
0.2354
0.2216
0.1974
0.1890
0.1780
0.1729
0.1701
0.1606
0.1490
0.1531
0.1568

0.0917
0.1335
0.1644
0.1939
0.2111
0.2229
0.2313
0.2398
0.2510
0.2703
0.2602
0.2732
0.2733
0.2769
0.2709
0.2754
0.2797
0.2817
0.2825
0.2792

0.0826
0.1772
0.2628
0.3213
0.3598
0.4201
0.4511
0.4797
0.4990
0.5122
0.5200
0.5281
0.5305
0.5500
0.5601
0.5533
0.5485
0.5612
0.5632
0.5599

Table 22: Data for Example 2.
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t, Z Z
0.025 0.7307 0.1954
0.050 0.5982 0.2808
0.075 0.4678 0.3175
0.100 0.4267 0.3047
0.125 0.3436 0.2991
0.150 0.3126 0.2619
0.175 0.2808 0.2391
0.200 0.2692 0.2210
0.225 0.2210 0.1898
0.250 0.2122 0.1801
0.300 0.1903 0.1503
0.350 0.1735 0.1030
0.400 0.1615 0.0964
0.450 0.1240 0.0581
0.500 0.1190 0.0471
0.550 0.1109 0.0413
0.650 0.0890 0.0367
0.750 0.0820 0.0219
0.850 0.0745 0.0124
0.950 0.0639 0.0089

0 ©00 o U wN T
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Table 23: Data for Example 3.

i ty z

1 1.0 14
2 20 6.3
3 3.0 104
4 4.0 14.2
5) 5.0 17.6
6 6.0 21.4
7 7.0 23.0
8 9.0 27.0
9 11.0 30.5
10 14.0 34.4
11 19.0 38.8
12 24.0 41.6
13 29.0 43.5
14 39.0 45.3

Table 24: Data for Example 4.
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ly

2z

Z Z3

0.050
0.065
0.080
0.123
0.233
0.273
0.354
0.397
0.418
10 0.502
11 0.553
12 0.681
13 0.750
14 0.916
15 0.937
16 1.122

© 00 ~J O ULk W N (T

0.461 0.114 0.018
0.426 0.135 0.035
0.383 0.157 0.045
0.305 0.194 0.047
0.195 0.231 0.084
0.170 0.234 0.095
0.139 0.228 0.111
0.112 0.228 0.134
0.112 0.226 0.168
0.090 0.220 0.148
0.082 0.214 0.157
0.066 0.178 0.206
0.053 0.188 0.206
0.043 0.183 0.214
0.041 0.184 0.213
0.029 0.166 0.230

Table 25: Data for Example 5.

by

Z1

)

1
1 1.0
2 20
3 3.0
4 4.0
5 5.0
6 6.0
7 7.0
8 8.0
9 9.0
10 10.0

0.7990
0.8731
1.2487
1.0362
0.7483
1.0024
1.2816
0.8944
0.7852
1.1527

1.0758
0.8711
0.9393
1.1468
1.0027
0.8577
1.0274
1.1369
0.9325
0.9074

Table 26: Data for Example 6.
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B o Expressions for Bellman’s Problem

The terms and the expressions used for « for the model in its original form are:

1

1
2

1

2

1

{

{— (V)2 +1- %\/(zU)‘l 12 (V) + 4} o

(V)2 -1~ %\/(ZU)4 +12(2V)2 + 4} e

1
—3 ("2 +A(Y)?-B+C

(216 —D (L) + BE(2)3 — F (L) + G (1)2 + Hz + 1} e’

1
2

Lo 1ys Ly2 L
{5(2) —A(z")*+Bz -C

(288 =D (2F)P + E (M) = F (") + G (V)2 + Hz + I} e’

where the constants A through I are defined to be:
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~ T QMU QW
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The terms and the expressions used for « for the expanded model are:
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C Sample Input File

# Lotka-Volterra Predator-Prey model taken from Luus 1998,
# using the integration based approach.
# Example 7.6

Data

nxvar 22
nzvar 2

nfun 1

ndyncon 42
nbterm 0

ncterm 1

nnterm 0

nuterm 0

ninter 0

Name declaration

set mu(1:10),m(1:2),p(1:2)

xvar k(p),zhat(mu,m)

zvar z(m)

fun f

cterm obj

dyncon dael,dae2,errl(m) [mu],err2(m) [mul
param zbar(mu,m) = { 0.7990, 1.0758,\

0.8731, 0.8711,\
1.2487, 0.9393,\
1.0362, 1.1468,\
0.7483, 1.0027,\
1.0024, 0.8577,\
1.2816, 1.0274,\
0.8944, 1.1369,\
0.7852, 0.9325,\
1.1527, 0.9074}

branch k(p)

Options

bcalc standard

epsr le-3

epsa le-5

epsf le-6

epso le-6

beta initial points 100
beta points 50

o1



Solver Options
nlpsolver SNOPT
daesolver DASOLV

Terms

obj = << mu| << m| (zhat(mu,m) - zbar(mu,m))"2 >> >>

Dynamic constraints
timep = {0,1,2,3,4,5,6,7,8,9,10}
initial conditions z(m)

1]
_

z(1) stp
z(2) stp

= N

dael .. z’(1) - k(D*z(1)*(1 - z(2)) =0
dae2 .. z’(2) - k(2)*xz(2)*(z(1) - 1) =

|
o

erri(m)[mu] .. zhat(mu,) - z(m) <=0
err2(m) [mu] .. -zhat(mu,) + z(m) <= 0

Functions
f .. obj

Bounds

# Parameter Bounds
k(1) 1bd = 0

k(1) ubd = 10

k(2) 1bd = 0

k(2) ubd = 10

# Fitted variable bounds

zhat(mu,m) 1lbd = 0.5
zhat(mu,m) ubd = 1.5
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