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Abstract

The problem of short-term scheduling often involves the satisfaction of variable product demands at specific due
dates within the time horizon under consideration. lerapetritou and Floudas, [2, 3] presented a novel continuous time
formulation to effectively address the problem of short-term scheduling in batch, continuous and mixed production

facilities where product demands are specified at the end of time horizon. The primary objective of this paper is

to extend the continuous time formulation so as to deal with intermediate due dates. The mathematical model is
developed and the features of the problem are further exploited to result in the most efficient solution of the problem.
Two examples are provided to illustrate the capabilities of the proposed approach.

Introduction linked to nodes.

There has been a considerable amount of work in the lit-

erature for the problem of short-term scheduling of bofiinary Variables The binary variableswv(i,n) em-
batch and semi-continuous plants involving intermediate ~ Ployed in [2, 3], become parameters since each or-
due dates. Among them are the works of Sahinidis and  der ¢) is linked to a particular event pointJ, for
Grossmann [8] presenting a multiperiod MILP model for ~ Whichwu(i,n) is setto 1. Thevv(i, n) are setto 0
batch plants; Mockus and Reklaitis [5] proposing a non-  for all other combinations. Consequenty(j, n)
convex Mixed Integer Nonlinear Programming (MINLP) ~ are the only binary variables.

model and global optimization algorithm for its solution . . | . .

for the case of batch plants: Pinto and Grossmann [6] Wﬁlqmlnatlon.of.Materlal Balance The material bqlancgs

a MILP formulation for batch plants without resource  are eliminated from the proposed formulation, since
constraints; and Karimi and McDonald, [1] proposing N resource constraints are considered.

a MILP formulation a single-stage multiproduct sem
continuous plant.

In this work, the objective is to effectively address the re-
quirement of multiple intermediate due dates in the short-
term scheduling problem for batch plants. Two models a#ge dates Due dates are set to the end of the time inter-

proposed based on the basic concepts of the approach of vals, since tasks performed in interva) @re ready
lerapetritou and Floudas, [2, 3]. The first model facilitates 4t the end of this node.

the solution of the problem where no resource constraints
are considered and the second model considers the ovgfiahhematical Model

short-term scheduling problem of batch plants includifgsing the aforementioned characteristics the mathemati-

Elimination of States The states are superfluous due to
the absence of resource constraints. Tasks are in-
stead directly related to their due dates.

resource constraints. cal formulation involves the following constraints:
Basic Concepts of Continuous Time Formulation Allocation Constraints

The proposed formulation for short-term scheduling of

batch plants with multiple due dates is based on the fol- S yo(j,n) =1, Viel,neN; (1)
lowing novel concepts of the framework presented in ler- JeT;

apetritou and Floudas [2, 3]: (a) it follows @ntinu-

ous timerepresentation in which the event points, wherd'€S€ constraints express that an order only has to be pro-
a task starts being processed and/or a unit starts op&R£Sed once, since only one unit can be assigned to it.
tion, are unknown and constitute variables to the opt2uration Constraints

mization problem; (b) it uses different binary variables . s .

for task eventawv (i, n), that represent the start of tagk ( (6, 4,n) = T°(i, j,n) + yo(j,n)(ai; + G;)

at event point«), and different binary variables famit Vielj,jeJineN;  (2)
eventsyv(j,n), that correspond to the beginning of unit ) o

(j) utilization at event pointi{); () it allows for variable These constraints ensure that the processing time of an or-

processing times with respect to the amount of materfi@" ¢) in a particular machinejj is the sum of the setup
processed by the specific task. time characteristic in the units(), and the processing

No Resource Constraints time of this order in this particular unitgg;).

The proposed mathematical formulation for the sho@€duence Constraints: Different tasks in the same unit
term scheduling of batch plants with multiple intermedi-

ate due dates has the following characteristics: T(i', ) > TI(i, j,ni)

Preordering Orders are put in sequence a priori and Vi € I;,i' € I;,j € Ji,ny > n;,i # 14’ (3)
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These constraints express the requirement that only dmese constraints ensure that only one taylcén take
order at a time can be processed in a unit; the beginnpigce at unit {) at each event point.

of a later event must follow after the end of all earlie€apacity Constraints

events in the same unit.

Due Dates Constraints I@Ti"wv(i,n) < B(i,j,n) < V{*wo(i,n)
T7(i,5,n;) < due(i) Viel,jeJi,neN (7)
Viel, VjeJ; (4)

These constraints express the minimum and maximum ca-

wheren; corresponds to the assignment of nodet6 or-  papility of unit (j) when processing task)( enforced at
der ). These constraints ensure that the order would 8gery event pointrf).

ready at its due datéue(i). Material Balance
Objective function
MaX|m|-ze . - d(s,n) = Z P Z B(i,j,n — 1)
S wt@) Y [T(,4,n) + yo(i,n)(ai; + B;)] (5) i€l,  jedi
P gedmens o +> 05 Y Bi,jn),
The objective function represents the maximization of the iel,  jeJ;
weighted starting times for orders in all stages, and deter- Vse S,neN (8)
mines the schedule that satisfies the due dates in a most
eff|C|en'F way. According to these constraints the amount of material of
lllustration state §) delivered at event points, d(s,n), is equal to

An example from Pinto and Grossmann,[6], is considergth amount produced between the event poimts 1) and
here in order to illustrate the applicability of the proposedly denoted ag (i, j, n — 1), minus the amount consumed
approach and its advantages compared to the publishgglyeen event pointsjand ¢+ 1) denoted ag(i, , n).

approaches. _ Demand Constraints
The coupling of orders to time slots was performed ac-
cording to the following rules, as suggested by Pinto and d(s,n) = R(s,n), neN,s€S (9)

Grossmann, [6], (a) increasing due dates and (b) decreas-

ing processing times (if ties occur). Based on these Pigiese constraints ensure the satisfaction of product de-
ordering rules, the proposed formulation is applied for the. . 4 at event pointr), R(s,n). Two important fea-
case where 29 orders are considered. The results ofyfligs of the model are the link of demands to event points
proposed approach are presented in Table 1 and compgigghe due date constraints that ensure the satisfaction of
with the results of the formulation proposed by Pinto arﬁﬁioduct demand by the corresponding due date.
Grossmann, [6]. Note that the proposed formulation "Binking Demands to Event Points

sults in.smaller models in' terms of b?nary and contin§emands have to be linked to particular event points,
ous variables and constraints. In particular, the propoggile| on the relative time at which the demand has to
formulation requires 57 binary and 172 continuous vag fijled, the number of stages required to get to the final
ables, in comparison to 441 binary and 875 continuoyg, q,ct, and the number of other tasks that may take place
variables required by the Pinto and Grossmann, [6], 19§ the same unit. An important issue to note is that due to
mulation. In addition, the proposed formulation requirgge natyre of the batch operation mode the amount of state
559 constraints instead of 1791 used by Pinto and Gro, “produced in event poini) cannot be consumed un-
mann, [6]. Moreover, the resulting model is more .easiﬁsthe beginning of event poini(+ 1). Therefore, even
solved requiring the exploitation of only 5 nodes in thfhe most basic problem (one task with a single demand)
branch and bound tree and the need of 0.28 CPU sec/gyjires two event points. In the first event point, a task
ing GAMS/CPLEX on a HP C160 workstation. Figure }roqyces the product, and at the beginning of the second
depicts the gantt chart of the optimal solution. The NUByent point it can meet the demand. Also, since the pro-
bers below the horizontal lines indicate the order nUMBgiction time depends on the number of stages involved
being processed at that time. _ the number of event points should be also stage depen-
Consideration of Resource Constraints _dent which means that if a task occurs in the second or
The overall short-term scheduling problem is con&derg%her stage, then additional event points need to be con-
here including resource constraints. The explicit consiggeareq (e.g., one for stage two, two for stage three).
eration of resource constraints requires that we treat fhga pates C,onstraints ’

wu(i,n) as binary variables and not as parameters. Al§y|iqwing the aforementioned linking of demands to
for the introduction of material balances we need 10 iyent points, the following set of time constraints ensure

troduce the states (s) and their amounts at event point (R} satisfaction of product demand by the corresponding
R(s,n). The mathematical model involves the following o qate:

constraints:

Allocation Constraints T/ (i,j,ns) < due(s), Vs € S,i€ L, j€J;
> wo(i,n) = yu(j,n) Since the demand has to be met at the beginning of a par-
i€l; ticular node, the due date time limitations are incorporated

VjeJneN (6) as upper bounds on the final times of the tasks producing



state ). Finally, duration and sequence constraints agfficient solution of the problem.

incorporated for tasks in the same or different units andAcknowledgments
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lllustration
In this section an example problem is presented to
lustrate the applicability of the proposed formulation.m
The detailed data for the problem could be found at [8];
and [5], batch 2 example. The STN representation of
the plant flowsheet is shown in Figure 2. The resulting
MILP formulation involves 441 constraints, 316 contin-
uous variables and 54 binary variables. The solution
this problem with GAMS/CPLEX requires 0.15 CPU sec
in HP-C160. The optimal objective function corresponds
to 5771 units. The corresponding gantt chart is shown in
Figure 3. Table 2 presents the results of the proposed for-
mulation compared with the results found in the literaturd3]
for this example. Note that the model of the proposed
formulation involves less binary variables, 54 compared
to 80 and 86(465) binary variables required by the other
formulations. Also note that although the proposed for-4
mulation involves more constraints, the integrality ga[; ]
is smaller which results in faster solution times and less
number of nodes in the B&B tree. Note that there is a
difference in the objective function obtained and those
reported in the literature [8, 5]. This is due to the way[s)
in which the storage cost was considered in the objective
function and the different time representation employed.
The proposed formulation uses an exact continuous time
representation while Sahinidis and Grossmann, [8], use
discrete time formulation. 6
6

Conclusions

In this work, a new formulation for the short-term
scheduling of batch plants was proposed. The formula-
tion was tailored to accommodate intermediate due dat
where specific product demands have to be satisfied. The
mathematical model was based on the previous work of
lerapetritou and Floudas, [2, 3] where a new continuous
time formulation was presented to effectively address the
problem of short-term scheduling in batch, continuou$8]
and mixed production facilities where product demands
are specified at the end of time horizon. Further exploita-
tion of the problem special features results in the most
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Pinto and | Proposed
Grossmann Approach

binary vars 441
continuous varg 875

constraints 1791
CPU time 1257.17*
nodes 204

57
172
559
0.280
5

* HP 9000-730 workstation

Table 1: Single Stage Results with Preordering - 29 orders



Unit 4

Unit 3

Unit 2

Unit1

Proposed Sahinidis & | Mockus &
Formulation| Grossmann| Reklaitis
(NUCM) GOA | (UDM) B&B
Constraints 441 366 196 2438
Variables 316 326 218 1351
Binary vars 54 80 86 465
Integer optimum 5771 5593 - -
Relaxation optimum 5861 5943 - -
Integrality Gap 0.015 0.059 - -
No. Nodes 10 2635 96 146
CPU Time (s) 0.15 97* - -
x IBM-3090 using MPSX-MIP/370
Table 2: Results, Batch 2
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Figure 1: Gantt Chart for Preordered Single Stage problem: 29 orders
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Figure 3: Gantt Chart for Batch 2
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