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Abstract
The problem of short-term scheduling often involves the satisfaction of variable product demands at specific due
dates within the time horizon under consideration. Ierapetritou and Floudas, [2, 3] presented a novel continuous time
formulation to effectively address the problem of short-term scheduling in batch, continuous and mixed production
facilities where product demands are specified at the end of time horizon. The primary objective of this paper is
to extend the continuous time formulation so as to deal with intermediate due dates. The mathematical model is
developed and the features of the problem are further exploited to result in the most efficient solution of the problem.
Two examples are provided to illustrate the capabilities of the proposed approach.

Introduction
There has been a considerable amount of work in the lit-
erature for the problem of short-term scheduling of both
batch and semi-continuous plants involving intermediate
due dates. Among them are the works of Sahinidis and
Grossmann [8] presenting a multiperiod MILP model for
batch plants; Mockus and Reklaitis [5] proposing a non-
convex Mixed Integer Nonlinear Programming (MINLP)
model and global optimization algorithm for its solution
for the case of batch plants; Pinto and Grossmann [6] with
a MILP formulation for batch plants without resource
constraints; and Karimi and McDonald, [1] proposing
a MILP formulation a single-stage multiproduct semi-
continuous plant.
In this work, the objective is to effectively address the re-
quirement of multiple intermediate due dates in the short-
term scheduling problem for batch plants. Two models are
proposed based on the basic concepts of the approach of
Ierapetritou and Floudas, [2, 3]. The first model facilitates
the solution of the problem where no resource constraints
are considered and the second model considers the overall
short-term scheduling problem of batch plants including
resource constraints.
Basic Concepts of Continuous Time Formulation
The proposed formulation for short-term scheduling of
batch plants with multiple due dates is based on the fol-
lowing novel concepts of the framework presented in Ier-
apetritou and Floudas [2, 3]: (a) it follows acontinu-
ous timerepresentation in which the event points, where
a task starts being processed and/or a unit starts opera-
tion, are unknown and constitute variables to the opti-
mization problem; (b) it uses different binary variables
for task events,wv(i; n), that represent the start of task (i)
at event point (n), and different binary variables forunit
events, yv(j; n), that correspond to the beginning of unit
(j) utilization at event point (n); (c) it allows for variable
processing times with respect to the amount of material
processed by the specific task.
No Resource Constraints
The proposed mathematical formulation for the short-
term scheduling of batch plants with multiple intermedi-
ate due dates has the following characteristics:
Preordering: Orders are put in sequence a priori and

linked to nodes.

Binary Variables: The binary variableswv(i; n) em-
ployed in [2, 3], become parameters since each or-
der (i) is linked to a particular event point (n), for
whichwv(i; n) is set to 1. Thewv(i; n) are set to 0
for all other combinations. Consequently,yv(j; n)
are the only binary variables.

Elimination of Material Balance: The material balances
are eliminated from the proposed formulation, since
no resource constraints are considered.

Elimination of States: The states are superfluous due to
the absence of resource constraints. Tasks are in-
stead directly related to their due dates.

Due dates: Due dates are set to the end of the time inter-
vals, since tasks performed in interval (n) are ready
at the end of this node.

Mathematical Model
Using the aforementioned characteristics the mathemati-
cal formulation involves the following constraints:
Allocation Constraints

P
j2Ji

yv(j; n) = 1; 8i 2 I; n 2 Ni (1)

These constraints express that an order only has to be pro-
cessed once, since only one unit can be assigned to it.
Duration Constraints

T f (i; j; n) = T s(i; j; n) + yv(j; n)(�ij + �j)

8i 2 Ij ; j 2 Ji; n 2 Ni (2)

These constraints ensure that the processing time of an or-
der (i) in a particular machine (j) is the sum of the setup
time characteristic in the unit, (�j), and the processing
time of this order in this particular unit, (�ij).
Sequence Constraints: Different tasks in the same unit

T s(i0; j; ni0) � T f (i; j; ni)

8i 2 Ij ; i
0 2 Ij ; j 2 Ji; ni0 > ni; i 6= i0 (3)
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These constraints express the requirement that only one
order at a time can be processed in a unit; the beginning
of a later event must follow after the end of all earlier
events in the same unit.
Due Dates Constraints

T f (i; j; ni) � due(i)

8i 2 I; 8j 2 Ji (4)

whereni corresponds to the assignment of node (n) to or-
der (i). These constraints ensure that the order would be
ready at its due date,due(i).
Objective function
MaximizeX

i

wt(i)
X

j2Ji;n2Ni

[T s(i; j; n) + yv(j; n)(�ij + �j)] (5)

The objective function represents the maximization of the
weighted starting times for orders in all stages, and deter-
mines the schedule that satisfies the due dates in a most
efficient way.
Illustration
An example from Pinto and Grossmann,[6], is considered
here in order to illustrate the applicability of the proposed
approach and its advantages compared to the published
approaches.
The coupling of orders to time slots was performed ac-
cording to the following rules, as suggested by Pinto and
Grossmann, [6], (a) increasing due dates and (b) decreas-
ing processing times (if ties occur). Based on these pre-
ordering rules, the proposed formulation is applied for the
case where 29 orders are considered. The results of the
proposed approach are presented in Table 1 and compared
with the results of the formulation proposed by Pinto and
Grossmann, [6]. Note that the proposed formulation re-
sults in smaller models in terms of binary and continu-
ous variables and constraints. In particular, the proposed
formulation requires 57 binary and 172 continuous vari-
ables, in comparison to 441 binary and 875 continuous
variables required by the Pinto and Grossmann, [6], for-
mulation. In addition, the proposed formulation requires
559 constraints instead of 1791 used by Pinto and Gross-
mann, [6]. Moreover, the resulting model is more easily
solved requiring the exploitation of only 5 nodes in the
branch and bound tree and the need of 0.28 CPU sec us-
ing GAMS/CPLEX on a HP C160 workstation. Figure 1
depicts the gantt chart of the optimal solution. The num-
bers below the horizontal lines indicate the order number
being processed at that time.
Consideration of Resource Constraints
The overall short-term scheduling problem is considered
here including resource constraints. The explicit consid-
eration of resource constraints requires that we treat the
wv(i; n) as binary variables and not as parameters. Also,
for the introduction of material balances we need to in-
troduce the states (s) and their amounts at event point (n),
R(s; n). The mathematical model involves the following
constraints:
Allocation Constraints

X

i2Ij

wv(i; n) = yv(j; n)

8j 2 J; n 2 N (6)

These constraints ensure that only one task (i) can take
place at unit (j) at each event point (n).
Capacity Constraints

V min
ij wv(i; n) � B(i; j; n) � V max

ij wv(i; n)

8i 2 I; j 2 Ji; n 2 N (7)

These constraints express the minimum and maximum ca-
pability of unit (j) when processing task (i), enforced at
every event point (n).
Material Balance

d(s; n) =
X

i2Is

�
p
si

X

j2Ji

B(i; j; n� 1)

+
X

i2Is

�csi

X

j2Ji

B(i; j; n);

8s 2 S; n 2 N (8)

According to these constraints the amount of material of
state (s) delivered at event point (n), d(s; n), is equal to
the amount produced between the event points (n�1) and
(n) denoted asB(i; j; n�1), minus the amount consumed
between event points (n) and (n+1) denoted asB(i; j; n).
Demand Constraints

d(s; n) = R(s; n); n 2 N; s 2 S (9)

These constraints ensure the satisfaction of product de-
mand at event point (n), R(s; n). Two important fea-
tures of the model are the link of demands to event points
and the due date constraints that ensure the satisfaction of
product demand by the corresponding due date.
Linking Demands to Event Points
Demands have to be linked to particular event points,
based on the relative time at which the demand has to
be filled, the number of stages required to get to the final
product, and the number of other tasks that may take place
in the same unit. An important issue to note is that due to
the nature of the batch operation mode the amount of state
(s) produced in event point (n) cannot be consumed un-
til the beginning of event point (n + 1). Therefore, even
the most basic problem (one task with a single demand)
requires two event points. In the first event point, a task
produces the product, and at the beginning of the second
event point it can meet the demand. Also, since the pro-
duction time depends on the number of stages involved,
the number of event points should be also stage depen-
dent which means that if a task occurs in the second or
higher stage, then additional event points need to be con-
sidered (e.g., one for stage two, two for stage three).
Due Dates Constraints
Following the aforementioned linking of demands to
event points, the following set of time constraints ensure
the satisfaction of product demand by the corresponding
due date:

T f (i; j; ns) � due(s); 8s 2 S; i 2 Is; j 2 Ji

Since the demand has to be met at the beginning of a par-
ticular node, the due date time limitations are incorporated
as upper bounds on the final times of the tasks producing



state (s). Finally, duration and sequence constraints are
incorporated for tasks in the same or different units and in
addition timing constraints for storage tasks, [2], [4]. The
objective function corresponds to the minimization of the
operating cost consisting of production cost, cost of raw
materials and storage cost.

Illustration
In this section an example problem is presented to il-
lustrate the applicability of the proposed formulation.
The detailed data for the problem could be found at [8],
and [5], batch 2 example. The STN representation of
the plant flowsheet is shown in Figure 2. The resulting
MILP formulation involves 441 constraints, 316 contin-
uous variables and 54 binary variables. The solution of
this problem with GAMS/CPLEX requires 0.15 CPU sec
in HP-C160. The optimal objective function corresponds
to 5771 units. The corresponding gantt chart is shown in
Figure 3. Table 2 presents the results of the proposed for-
mulation compared with the results found in the literature
for this example. Note that the model of the proposed
formulation involves less binary variables, 54 compared
to 80 and 86(465) binary variables required by the other
formulations. Also note that although the proposed for-
mulation involves more constraints, the integrality gap
is smaller which results in faster solution times and less
number of nodes in the B&B tree. Note that there is a
difference in the objective function obtained and those
reported in the literature [8, 5]. This is due to the way
in which the storage cost was considered in the objective
function and the different time representation employed.
The proposed formulation uses an exact continuous time
representation while Sahinidis and Grossmann, [8], use
discrete time formulation.

Conclusions
In this work, a new formulation for the short-term
scheduling of batch plants was proposed. The formula-
tion was tailored to accommodate intermediate due dates
where specific product demands have to be satisfied. The
mathematical model was based on the previous work of
Ierapetritou and Floudas, [2, 3] where a new continuous
time formulation was presented to effectively address the
problem of short-term scheduling in batch, continuous
and mixed production facilities where product demands
are specified at the end of time horizon. Further exploita-
tion of the problem special features results in the most

efficient solution of the problem.
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Pinto and Proposed
Grossmann Approach

binary vars 441 57
continuous vars 875 172
constraints 1791 559
CPU time 1257:17� 0.280
nodes 204 5
* HP 9000-730 workstation

Table 1: Single Stage Results with Preordering - 29 orders



Proposed Sahinidis & Mockus &
Formulation Grossmann Reklaitis

(NUCM) GOA (UDM) B&B

Constraints 441 366 196 2438
Variables 316 326 218 1351
Binary vars 54 80 86 465
Integer optimum 5771 5593 - -
Relaxation optimum 5861 5943 - -
Integrality Gap 0.015 0.059 - -
No. Nodes 10 2635 96 146
CPU Time (s) 0.15 97� - -
� IBM-3090 using MPSX-MIP/370

Table 2: Results, Batch 2
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Figure 1: Gantt Chart for Preordered Single Stage problem: 29 orders
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Figure 3: Gantt Chart for Batch 2


