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The problem of short-term scheduling often involves the satisfaction of variable product demands
at specific due dates within the time horizon under consideration. Ierapetritou and Floudas
(Ind. Eng. Chem. Res. 1998, 37, 4341-4359, 4360-4374) presented a new continuous time
formulation to effectively address the problem of short-term scheduling in batch, continuous,
and mixed production facilities where product demands are specified at the end of the time
horizon. The primary objective of this paper is to extend the continuous-time formulation so as
to deal with intermediate due dates. The mathematical model is developed and the operation
mode of the plant (batch or semicontinuous) is further exploited to result in the most efficient
solution strategy. Several examples are provided to illustrate the capabilities of the proposed
continuous-time formulations, and it is demonstrated that a variety of problems presented in
the literature can be addressed efficiently.

1. Introduction

A significant body of research work appeared in the
literature to deal with the problem of short-term
scheduling, especially in batch plants. In this work, we
will refer to those papers that have intermediate due
dates for both batch and semicontinuous plants. For
batch plants, Sahinidis and Grossmann3 proposed a
reformulation of the multiperiod mixed integer linear
programming (MILP) model based on the lot-sizing
substructures to improve the solution efficiency. Their
reformulation performed better than earlier MILP
formulations since it provided a tighter LP relaxation.

Mockus and Reklaitis4 provided a new approach to
solve short-term scheduling problems for batch plants.
The problem is formulated as a nonconvex mixed integer
nonlinear programming (MINLP) problem, and a global
optimization algorithm is used for its solution. Nonlin-
earities occurred in the material balances (products of
binary and continuous variables.) Solutions were re-
ported for the proposed branch and bound method as
well as a heuristic approach. On the basis of the
computational results reported, the algorithmic perfor-
mance is problem-dependent.

Pinto and Grossmann5 proposed a formulation based
on the definition of the binary variables over all units,
orders, time slots, and production stages. In their
formulation, a production stage consists of a set of
similar processes, and all batches have to be processed
exactly once in all of the production stages. A number
of time slots is defined for each unit based on the
number of orders it is able to handle and in the case of
large problems the number of parallel units. They
reported computational results on large-scale problems
involving 29 different orders in which resource con-
straints are not considered.

For semicontinuous plants, Karimi and McDonald6

proposed two mathematical models for the short-term
scheduling problem involving intermediate due dates
that differ on the preassignment of slots to time periods.
The proposed formulation can handle the problem of a
single-stage multiproduct facility with parallel semi-
continuous processors. The model complexity requires
the preassignment of slot to time periods, and problem
decomposition to address medium-to-large-size prob-
lems. The proposed formulation is very much case
dependent and tailored to address the specific problems
presented. The preassignment of slots and the prepos-
tulation of the minimum number of slots are needed for
the solution of the presented examples.

In this paper, a novel continuous-time formulation is
proposed to address the requirement of multiple inter-
mediate due dates. In section 2, a review of the basic
concepts of the approach of Ierapetritou and Floudas1,2

is provided. In section 3, two models are proposed to
address the problem of short-term scheduling of batch
plants with intermediate due dates. The first model
facilitates the solution of the problem where no resource
constraints are considered and the second model consid-
ers the overall short-term scheduling problem of batch
plants including resource constraints. The rationale for
considering two different approaches is based on the
ability to exploit the nature of the problems by avoiding
the introduction of unnecessary variable and con-
straints. Examples are presented to illustrate the ap-
plicability of the proposed approaches and their advan-
tages with the already existing formulations. Section 5
then considers the problem of short-term scheduling
with intermediate due dates in semicontinuous plants.
The proposed approach satisfies all the requirements
suggested in the literature, Karimi and McDonald.6
Computational results on a recently published indus-
trial case study are presented.

2. Basic Concepts of Continuous-Time
Formulation

The proposed formulation for short-term scheduling
of batch and semicontinuous plants with multiple due
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dates is based on the novel concepts of the framework
presented in Ierapetritou and Floudas.1,2 In this section
a brief review of the basic ideas of the continuous-time
formulation is proposed to facilitate the presentation of
the proposed models for multiple intermediate due
dates. More specifically, the proposed approach does the
following:

(a) follows a continuous time representation in which
the event points, where a task starts being processed
or/and a unit starts operation, are unknown and
constitute variables to the optimization problem.

(b) uses different binary variables for task events,
wv(i,n), that represent the start of task (i) at event
point (n), and different binary variables for unit
events, yv(j,n), that correspond to the beginning of unit
(j) utilization at event point (n).

(c) allows for variable processing times with respect to
the amount of material processed by the specific task.

Note that the most important point is the consideration
of two different sets of variables to represent the
assignment of tasks and units to event points which
results in decoupling of tasks from units. This results
in a major reduction of binary variables, but the
modeling of scheduling characteristics given the decou-
pling set of variables needs to be addressed. As is shown
in Ierapetritou and Floudas,1,2 this goal is achieved by
a set of allocation constraints, material balances, capac-
ity and demand constraints, duration constraints, and
time sequence constraints. More specifically, the alloca-
tion constraints offer the desired connection between
units and tasks, whereas the material balances together
with the capacity and demand constraints guarantee the
production/consumption of the correct amount of ma-
terials and demand satisfaction at the end of the time
horizon. Finally, a set of timing constraints involving
duration and sequence constraints enforce the correct
duration and sequence on tasks throughout the time
horizon under consideration. As demonstrated in Iera-
petritou and Floudas,1,2 the proposed formulation re-
sults in much smaller models in terms not only of the
binary variables but also of the continuous variables,
and constraints and the decrease of the integrality gap
that enable the more efficient solution of the short-term
scheduling problems and the consideration of large case
studies. In the next section, a novel formulation is
proposed for the incorporation of multiple due dates
requirements in the short-term scheduling of batch
plants based on the aforementioned basic concepts.

3. Short-Term Scheduling of Batch Plants

3.1. No Resource Constraints. The proposed math-
ematical formulation for the short-term scheduling of
a batch plant with multiple intermediate due dates
involves the following characteristics:

(a) Preordering: Orders are put in sequence a priori and
linked to nodes as proposed by Pinto and Grossmann,5

(b) Binary Variables: The binary variables wv(i,n)
employed in Ierapetritou and Floudas1,2 become pa-
rameters since each order (i) is linked to a particular
event point (n), for which wv(i,n) is set to 1. The
wv(i,n) are set to 0 for all other combinations.
Consequently, yv(j,n) are the only binary variables.

(c) Elimination of Material Balance: The material
balances are eliminated from the proposed formula-
tion,1,2 since no resource constraints are considered.

(d) Elimination of States: The states are also eliminated
from the formulation proposed by Ierapetritou and
Floudas1,2 since they are superfluous due to the
absence of resource constraints. Tasks are instead
directly related to their due dates.

(e) Due Dates: Due dates are set to the end of the time
intervals, since tasks performed in interval (n) are
ready at the end of this node.

3.1.1. Single-Stage Mathematical Model. Using
the aforementioned characteristics that are particular
to the case of no resource constraints, we introduce the
following indices, sets, parameters, and variables:

Notation

Indices

i, i′ ) orders
j ) units
n ) event points
ni, ni′ ) event points assigned to orders (i), (i′), respectively

Sets

I ) orders
Ij ) tasks which can be performed in unit (j)
J ) units
Ji ) units which are suitable for performing task (i)
N ) event points within the time horizon
Ni ) event points assigned to order (i)

Parameters

Rij ) constant term of processing time of task (i) at unit (j)
âj ) constant term of setup time in unit (j)
H ) time horizon
wv(i,n) ) parameters that assign the beginning of task (i)

at event point (n)
due(i) ) due date of order (i)
wt(i) ) relative importance of order (i) in the objective

function

Variables

yv(j,n) ) binary variables that assign the utilization of unit
(j) at event point (n)

T s(i,j,n) ) time that task (i) starts in unit (j) at event point
(n)

T f(i,j,n) ) time that task (i) finishes in unit (j) while it
starts at event point (n)

On the basis of this notation, the mathematical model
for the short-term scheduling of a single-stage batch
plant without considering resource constraints involves
the following constraints.

1. Allocation Constraints.

These constraints express that an order only has to be
processed once, since only one unit can be assigned to
it.

2. Duration Constraints.

These constraints ensure that the processing time of an
order (i) in a particular machine (j) is the sum of the
setup time characteristic in the unit, (âj), and the
processing time of this order in this particular unit, (Rij).

∑
j∈Ji

yv(j,n) ) 1, ∀ i ∈ I, n ∈ Ni (1)

T f(i,j,n) ) T s(i,j,n) + yv(j,n)(Rij + âj),
∀ i ∈ Ij, j ∈ Ji, n ∈ Ni (2)
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3. Sequence Constraints: Different Tasks in the
Same Unit.

These constraints express the requirement that only one
order at a time can be processed in a unit; the beginning
of a later event must follow after the end of all earlier
events in the same unit.

4. Due Dates Constraints.

where ni corresponds to the assignment of node (n) to
order (i). These constraints ensure that the order would
be ready at its due date, due(i).

5. Objective.

The objective function represents the maximization of
the weighted starting times for orders in all stages and
determines the schedule that satisfies the due dates in
a most efficient way.

3.1.2. Illustration. In this section an example from
Pinto and Grossmann5 is considered to illustrate the
potential of the proposed approach. From the data given
in the problem (see Table 1), it can be noted that there
is a very large number of orders that need to be
scheduled on very few units. Units 1 and 4 can handle
many orders, while units 2 and 3 can only process a few.
Preordering can indeed be applied so that orders could
be assigned to nodes, and the combination of the node
and order could be assigned an upper time limit.

The coupling of orders to time slots was performed
according to the following rules, as suggested by Pinto
and Grossmann:5

(1) increasing due dates
(2) decreasing processing times (if ties occur)

Preordering was performed simultaneously for all
units. This is done because the assignment of nodes had
to take place such that, in each unit, an order is coupled
to the same node number. To avoid conflicts, the
processing times of each order should have the same
relative order in each machine. If conflicts do arise, the
unit with the least possible orders should govern the
node assignment decisions because there is a greater
chance that this unit will handle the order.

First, preordering is performed based only on the due
dates of the orders. This gives the results shown in
Table 2. Then, the order in which each unit should
handle orders with the same due date is determined.
The processing times of orders in units are compared,
but only if two orders are processed in the same unit.
For example, orders 1, 6, and 17 can both be processed
in both units 1 and 4. Order 16 takes 1.250 days in unit
1 and 0.783 days in unit 4. Order 17 takes 4.474 days
in unit 1 and 3.036 days in unit 4. Therefore, in both
units order 16 requires more time and should therefore
be processed after order 17.

Note that, in the above preordering procedure, the
following assumption is made. To keep the node assign-
ment consistent, the sequencing of orders has to be the
same in each unit; that is, the processing times must
be of the same relative size in all units. For example, if
order A takes longer to process than order B in unit 1,
one can assume that the processing time in unit 2 is
also going to be longer than the processing time of unit
B in unit 2.

The orders are numbered 1-29, in ascending order,
according to aforementioned sequencing. This number
is then assigned to each order as its node number. The
results are shown in Table 3.

On the basis of the above preordering, the formulation
presented in section 3.1 is applied for the cases where
8 orders and all 29 orders are considered. The results
of the proposed approach are presented in Tables 4 and
5 and compared with the results of the formulation
proposed by Pinto and Grossmann.5 Note that the
proposed formulation results in smaller models in terms

Table 1. Data, Single Stage

processing time (days)

order due date (day) 1 2 3 4

1 15 1.538 1.194
2 30 1.500 0.789
3 22 1.607 0.818
4 25 1.564 2.143
5 20 0.736 1.017
6 30 5.263 3.200
7 21 4.865 3.025 3.214
8 26 1.500 1.440
9 30 1.869 2.459
10 29 1.282
11 30 3.750 3.000
12 21 6.796 7.000 5.600
13 30 11.250 6.716
14 25 2.632 1.527
15 24 5.000 2.985
16 30 1.250 0.783
17 30 4.474 3.036
18 30 1.492
19 13 3.130 2.687
20 19 2.424 1.074 1.600
21 30 7.317 3.614
22 20 0.864
23 12 3.624
24 30 2.667 4.000
25 17 5.952 3.448 4.902
26 20 3.824 1.757
27 11 6.410 3.937
28 30 5.500 3.235
29 25 4.286
transition 0.180 0.175 0.000 0.237

T s(i′,j,ni′) g T f(i,j,ni), ∀ i ∈ Ij, i′ ∈ Ij,
j ∈ Ji, ni′ > ni, i * i′ (3)

T f(i,j,ni) e due(i), ∀ i ∈ I, ∀ j ∈ Ji (4)

Maximize ∑
i

wt(i) ∑
j∈Ji,n∈Ni

[T s(i,j,n) + yv(j,n) ×

(Rij + âj)] (5)

Table 2. Single-Stage Preordering

due date (day) orders due

11 27
12 23
13 19
15 1
17 25
19 20
20 5 22 26
21 7 12
22 3
24 15
25 4 14 29
26 8
29 10
30 2 6 9 11 13 16 17 18 21 24 28

Table 3. Number Assignment

order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
number 4 28 12 15 9 23 11 17 27 18 25 10 19 16 13
order 16 17 18 19 20 21 22 23 24 25 26 27 28 29
number 29 24 26 3 6 20 8 2 21 5 7 1 22 14
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of binary and continuous variables and constraints. In
particular, for the large example involving 29 orders,
the proposed formulation requires 57 and 172 binary
and continuous variables, respectively, in comparison
with 441 and 875 binary and continuous variables
required by Pinto and Grossmann5 formulation. In
addition, the proposed formulation requires 559 con-
straints instead of 1791 used by Pinto and Grossmann.5
Moreover, the resulting model is more easily solved,
requiring the exploitation of only 5 nodes in the branch-
and-bound tree and the need of 0.28 CPU s using
GAMS/CPLEX on a HP C160 workstation.

Figure 1 depicts the Gantt chart of the optimal
solution. The numbers below the horizontal lines indi-
cate the order number being processed at that time.

3.2. Consideration of Resource Constraints. In
this section, the overall short-term scheduling problem
is considered, including resource constraints. In the sets,
indices, and parameters used in section 3.1, the follow-
ing additions are made.

Notation (cont.)

Indices

s ) states
ns ) event points assigned to due dates of state (s)

Sets

S ) states
Is ) tasks which produce/consume state (s)
Ns ) event points assigned to state (s)

Parameters

due(s) ) due date of state (s)

Fsi
p , Fsi

c ) proportion of state (s) produced, consumed from
task (i), respectively

R(s,n) ) amount of state (s) required at event point (n)

Variables

wv(i,n) ) binary variables that assign the beginning of task
(i) at event point (n)

B(i,j,n) ) amount of material undertaking task (i) in unit
(j) at event point (n)

st(s,n) ) amount of state (s) at event point (n)
st0(s,n) ) initial amount of state (s)

Note that the explicit consideration of resource con-
straints requires that we treat the wv(i,n) as binary
variables and not as parameters. Also, for the introduc-
tion of material balances, we need to introduce the
states (s) and their amounts at event point (n), R(s,n).
Following the same notation as in section 3.1, the
mathematical model takes the following form.

1. Allocation Constraints.

These constraints ensure that only one task (i) can take
place at unit (j) at each event point (n).

2. Capacity Constraints.

These constraints express the minimum and maximum
capability of unit (j) when processing task (i), enforced
at every event point (n).

3. Material Balance.

According to these constraints, the amount of material
of state (s) delivered at event point (n), d(s,n), is equal
to the amount produced between the event points (n -
1) and (n), denoted as B(i,j,n - 1), minus the amount
consumed between event points (n) and (n + 1), denoted
as B(i,j,n).

Figure 1. Gantt chart for a preordered single-stage problem.

Table 4. Single-Stage Results with Preorderings8
Orders

Pinto and Grossmann Proposed Approach

binary vars 51 17
continuous vars 120 52
constraints 267 70
CPU time 2.17a 0.040
nodes 47 3

a HP 9000-730 workstation.

Table 5. Single-Stage Results with Preorderings29
Orders

Pinto and Grossmann proposed approach

binary vars 441 57
continuous vars 875 172
constraints 1791 559
CPU time 1257.17a 0.280
nodes 204 5

a HP 9000-730 workstation.

∑
i∈Ij

wv(i,n) ) yv(j,n), ∀ j ∈ J, n ∈ N (6)

Vij
minwv(i,n) e B(i,j,n) e Vij

maxwv(i,n),
∀ i ∈ I, j ∈ Ji, n ∈ N (7)

d(s,n) ) ∑
i∈Is

Fsi
p ∑

j∈Ji

B(i,j,n-1) + ∑
i∈Is

Fsi
c ∑

j∈Ji

B(i,j,n),

∀ s ∈ S, n ∈ N (8)
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4. Demand Constraints.

These constraints ensure the satisfaction of product
demand at event point (n), R(s,n). Note that although
the above formulation considers the demand as a hard
constraint, partial demand satisfaction can be easily
incorporated as shown for the semicontinuous plants in
section 4.

Linking Demands to Event Points. Demands have to
be linked to particular event points, on the basis of the
relative time at which the demand has to be filled, the
number of stages required to get to the final product,
and the number of other tasks that may take place in
the same unit.

An important issue to note is that because of the
nature of the batch operation mode, the amount of state
(s) produced in event point (n) cannot be consumed until
the beginning of event point (n + 1). Therefore, even
the most basic problem (one task with a single demand)
requires two event points. In the first event point, a task
produces the product, and at the beginning of the second
event point, it can meet the demand.

Also, since the production time depends on the
number of stages involved, the number of event points
should also be stage-dependent, which means that if a
task occurs in the second or higher stage, then ad-
ditional event points need to be considered (one for stage
two, two for stage three, etc).

Due Dates Constraints. Following the aforemen-
tioned linking of demands to event points, the following
set of time constraints ensure the satisfaction of product
demand by the corresponding due date,

where ns ∈ Ns represent the subset of nodes linked to
the due dates of state (s). Since the demand has to be
met at the beginning of a particular node, the due date
time limitations are incorporated as upper bounds on
the starting times of the tasks producing state (s).

Duration Constraints.

where Rij and âij are the constant and variable term of
the processing time of task (i) at unit (j).

Sequence Constraints. Since ordering had to be
performed based on the due dates, intermediate event
points may be left idle. Therefore, to ensure the correct
sequencing, the sequence constraints take the following
form, depending on whether we have the same or
different units:

a. Same Unit.

b. Different Units.

In this way, even unassigned nodes will have to follow
the sequence constraint. If for example, node 2 is not
assigned to a task, then wv(i,n2) ) 0, ∀ i ∈ I and
consequently from duration constraints its starting and
end time will coincide:

Moreover, constraints (11) and (12) for event points 2
and 3 take the forms

and consequently

Thus, event point 3 is constrained to start after the end
of node 1 since node 2 is unassigned.

Sequence Constraints: Completion of Previous
Tasks.

These constraints represent the requirement of a task
(i) to start after the completion of all the tasks per-
formed in past event points at the same unit (j).

Timing Constraints for Storage Tasks. Storage
tasks are treated as additional tasks, which at any event
point can consume or produce the corresponding state
which means that the values of Fsi

c and Fsi
p are set to -1

and 1 for the consumption and production task, respec-
tively. The following constraints are then added for the
timing of the storage tasks.

where τ(i,j,n) is the variable duration of the storage task
(i) in a unit (j), which is a product of the binary variable
wv(i,n), that indicates if the storage unit is used, and
the continuous variable Dur(i,j) which represents the
storage time. The last two sets of constraints correspond
to the Glover transformation constraints7 used to lin-
earize the product of a continuous and a binary variable,
(i.e., wv(i,n)Dur(i,j)).

d(s,n) ) R(s,n), n ∈ N, s ∈ S

T s(i,j,ns) e due(s), ∀ s ∈ S, i ∈ Is, j ∈ Ji (9)

T f(i,j,n) ) T s(i,j,n) + Rijw(i,n) + âijB(i,j,n),
∀ i ∈ Is, j ∈ Ji ∩ Js, n ∈ N (10)

T s(i,j,n+1) g T f(i,j,n), ∀ i ∈ I, j ∈ Ji, n ∈ N (11)

T s(i,j,n+1) g T f(i′,j′,n),
∀ i ∈ Ij, i′ ∈ Ij′, j ∈ J, j′ ∈ J, n ∈ N, i * i′ (12)

T s(i,j,n2) ) T f(i,j,n2), ∀ i ∈ I, j ∈ Ji

T s(i,j,n2) g T f(i,j,n1), ∀ i ∈ I, j ∈ Ji

T s(i,j,n2) g T f(i′,j′,n1), ∀ i, i′ ∈ I, j ∈ Ji, j′ ∈ Ji′

T s(i,j,n3) g T f(i,j,n2), ∀ i ∈ I, j ∈ Ji

T s(i,j,n3) g T f(i′,j′,n2), ∀ i, i′ ∈ I, j ∈ Ji, j′ ∈ Ji′

T s(i,j,n3) g T f(i,j,n1), ∀ i ∈ I, j ∈ ji

T s(i,j,n3) g T f(i′,j′,n1), ∀ i, i′ ∈ I, j ∈ Ji, j′ ∈ Ji′

T s(i,j,n+1) g ∑
n′∈N,n′en

∑
i′∈Ij

(T f(i′,j,n′) - T s(i′,j,n′)),

∀ i ∈ I, j ∈ Ji, n ∈ N, n * N (13)

T f(i,j,n) ) T s(i,j,n) + τ(i,j,n),
∀ i ∈ Is, j ∈ Js ∩ Ji, n ∈ N (14)

Dur(i,j) - H*(1 - wv(i,n)) e τ(i,j,n) e Dur(i,j),
∀ i ∈ Is, j ∈ Js ∩ Ji, n ∈ N (15)

τ(i,j,n) e H*wv(i,n), ∀ i ∈ Is, j ∈ Js ∩ Ji, n ∈ N (16)
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Objective Function. The objective function is the
minimization of the operating cost:

where costvijn is the batch-size-dependent cost of pro-
cessing task (i) in unit (j) at event point (n), costcjn is
the setup cost (batch-size-independent) of unit (j) at
event point (n), and coststsn is the storage cost of state
(s) at event point (n).

3.2.1. Computational Studies. The proposed for-
mulation was applied to three examples, batch 1, 2, and
4, from Sahinidis and Grossmann3 and Mockus and
Reklaitis.4 To clarify the proposed formulation, batch 1
is presented in detail while only the results for batch 2
and 4 are provided. All examples were solved using
GAMS/CPLEX 4.0.8 on a HP C160 workstation. The
increase of the computational complexity with respect
to the time horizon depend on the specific problem since
the proposed formulation is based on the continuous-
time representation.

1. Example 1: Batch 1. In this example raw mate-
rial, (s1), is transformed into intermediate (s2) in unit
(j1) where task (i1) takes place. Intermediate (s2) can
then be transformed into product A (s3) in unit j2 by task
(i2), or product B (s4) by task (i3) in unit (j3). The state
task network representation for this example is shown
in Figure 2, while the data for the problem is given in
Table 6. For both products A and B, four intermediate
due dates are provided where different product amounts
are required.

The mathematical formulation for this example in-
volves the following sets and constraints:

Allocation Constraints.

Capacity Constraints. The maximum capacities of
units 1, 2, and 3 are 1500, 1000, and 1000, respectively.

Storage Constraints. The raw material and final
products are not limited by storage capacities; only the
intermediate (state 2) has a 5000-unit limit.

Figure 2. State task network for batch 1.

Table 6. Data, Batch 1

Units, Tasks

units size units suitability processing times

unit 1 1500 task 1 1
unit 2 1000 task 2 1
unit 3 1000 task 3 1

states

states capacity limits prices

state 1 (feed) unlimited 5
state 2 (intermediate 5000
state 3 (product A) unlimited 10
state 4 (product B) unlimited 8

demands

time

products 4 6 7 10 11 12

A 200 300 400 100
B 50 150 200 100

cost data

costvijn ) 0.6 costcijn ) 200 coststsn ) 0.18

Minimize

∑
i

∑
j

∑
n

(costvijnb(i,j,n) + ∑
j

∑
n

costcjnyv(j,n)) +

∑
s

∑
n

coststsnst(s,n) + ∑
s

cost(s)st0(s) -

∑
s

∑
n

price(s)d(s,n) (17)

J ) {j1, j2,j3}

I ) {i1,i2,i3,i4}

S ) {s1,s2,s3,s4}

N ) {n1,n2,...,n7}

Unit 1: wv(i1,n) ) yv(j1,n), ∀ n ∈ N

Unit 2: wv(i2,n) ) yv(j2,n), ∀ n ∈ N

Unit 3: wv(i3,n) ) yv(j3,n), ∀ n ∈ N

Unit 1: 0 e B(i1,j1,n) e 1500yv(j1,n), ∀ n ∈ N

Unit 2: 0 e B(i2,j2,n) e 1000yv(j2,n), ∀ n ∈ N

Unit 3: 0 e B(i3,j3,n) e 1000yv(j3,n), ∀ n ∈ N

ST(s2,n) e 5000, ∀ n ∈ N
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Material Balances.

Duration Constraints. For all processes, the fixed
processing time is 1 time unit, while there is no variable
component to the processing time (R ) 1 and â ) 0).

Sequence Constraints: Same Task in the Same Unit.

Sequence Constraints: Different Tasks in Different
Units.

Demand Constraints. The demands of product 1 are
linked to event points n1, n2, n5, and n6 in order of
increasing due date. Similarly, the demands for product
B were linked to event points n2, n3, n5, and n6. The
demand parameters are then set up as

Consequently, the demand constraints for products
A (s3) and B (s4) are

These demands are linked to all units that can
perform the task that produces the state that is de-
manded. Since task (i2) produces state (s3) in unit (j2)
and task (i3) produces state (s4) in unit (j3), the following
bound constraints are incorporated:

Objective.

The objective is the maximization of the profit formu-
lated above as a minimization problem, where the first
term corresponds to the operating cost, the second term
to the cost of purchasing the raw materials, the third
term to the inventory cost, and the last term to the
revenue of product sales.

The proposed formulation involves 24 binary and 213
continuous variables and 148 constraints and requires
0.05 CPU s for its solution within 10-6 integrality
tolerance using GAMS/CPLEX on a HP C160 worksta-

State 1: ST(s1,n) ) ST(s1,n-1) -
B(i1,j1,n-1), ∀ n ∈ N

State 2: ST(s2,n) ) ST(s2,n-1) +
B(i1,j1,n-1) - B(i2,j2,n), ∀ n ∈ N

State 3: ST(s3,n) ) ST(s3,n-1) +
B(i2,j2,n-1) - d(s3,n), ∀ n ∈ N

State 4: ST(s4,n) ) ST(s4,n-1) +
B(i3,j3,n-1) - d(s4,n), ∀ n ∈ N

Unit 1: T f(i1,j1,n) ) T s(i1,j1,n) + yv(j1,n), ∀ n ∈ N

Unit 2: T f(i2,j2,n) ) T s(i2,j2,n) + yv(j2,n), ∀ n ∈ N

Unit 3: T f(i3,j3,n) ) T s(i3,j3,n) + yv(j3,n), ∀ n ∈ N

Unit 1: T s(i1,j1,n+1) g T f(i1,j1,n), ∀ n ∈ N

Unit 2: T s(i2,j2,n+1) g T f(i2,j2,n), ∀ n ∈ N

Unit 3: T s(i3,j3,n+1) g T f(i3,j3,n), ∀ n ∈ N

T s(i2,j2,n+1) g T f(i1,j1,n), ∀ n ∈ N

T s(i3,j3,n+1) g T f(i1,j1,n), ∀ n ∈ N

R(s3,n2) ) 200

R(s3,n3) ) 300

R(s3,n5) ) 400

R(s3,n6) ) 100

R(s4,n2) ) 50

R(s4,n3) ) 150

R(s4,n5) ) 200

R(s4,n6) ) 100

State 3:

d(s3,n2) ) 200

d(s3,n3) ) 300

d(s3,n5) ) 400

d(s3,n6) ) 100

State 4:

d(s4,n2) ) 50

d(s4,n3) ) 150

d(s4,n5) ) 200

d(s4,n6) ) 100

Tup
s (i2,j2,n2) ) 4

Tup
s (i2,j2,n3) ) 7

Tup
s (i2,j2,n5) ) 10

Tup
s (i2,j2,n6) ) 11

Tup
s (i3,j3,n2) ) 4

Tup
s (i3,j3,n3) ) 6

Tup
s (i3,j3,n5) ) 10

Tup
s (i3,j3,n6) ) 12

Minimize

0.6 × ∑
i∈I,j∈Ji,n∈N

b(i,j,n) + 200 × ∑
j∈J,n∈N

y(j,n) +

5 × ∑
n∈N

ST(s1,n) + 0.18 × ∑
s∈Sn∈N

ST(s,n) -

10 × ∑
n∈N

d(s3,n) - 8 × ∑
n∈N

d(s4,n)
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tion. The integrality gap of the proposed formulation is
100 with 3651 being the objective of the LP relaxation
problem. The resulting Gantt chart is shown in Figure
3 and the results are summarized in Table 7.

2. Example 2: Batch 2. The STN representation of
the plant flowsheet is shown in Figure 4. The data for
this example are presented in Table 8.

The resulting MILP formulation involves 441 con-
straints, 316 continuous variables, and 54 binary vari-
ables (Table 9). The solution of this problem with
GAMS/CPLEX requires 0.15 CPU s in HP-C160. The
optimal objective function corresponds to 5771 units.
The corresponding Gantt chart is shown in Figure 5.

3. Example 3: Batch 4. The STN representation and
data for batch 4 are shown in Figure 6 and Table 10,
respectively. The proposed formulation gives rise to an
MILP problem with 833 constraints, 798 continuous
variables, and 64 binary variables. The solution of this
problem with GAMS/CPLEX requires 0.27 CPU s in a
HP-C160 workstation. The optimal objective function
corresponds to 60297 units (Table 11). The correspond-
ing Gantt chart is shown in Figure 7.

4. Short-Term Scheduling of Semicontinuous
Plants

In this section, a new mathematical formulation is
proposed for the short term scheduling of semi-continu-
ous plants. This is based on the ideas presented in
Ierapetritou and Floudas2 and reviewed in section 2,
which exploit further the nature of the semi-continuous
processes involved in the plant.

4.1. Mathematical Model. The notation used in
section 3 is also adopted here to describe the problem
of short-term scheduling on semicontinuous plants
considering multiple due dates. In addition, the follow-
ing set of parameters and variables are introduced.

Figure 3. Gantt chart for batch 1.

Figure 4. State task network for batch 2.

Figure 5. Gantt chart for batch 2.

Table 7. Results for Batch 1

proposed formulation

constraints 148
variables 213
binary vars 24
integer optimum 3551
relaxation optimum 3651
integrality gap 0.025
no. nodes 0
CPU time (s) 0.05
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Notation (cont.)

Sets

IMj ) set of maintenance tasks needed for unit (j)
IOj ) set of test tasks needed for unit (j)

Indices

Nnd ) subset of event point set N that are connected with
the given due dates

im ) maintenance tasks
io ) test tasks

Parameters

DD(nd) ) due dates
Lm(im,j) ) duration of maintenance task (im) at unit (j)
Lo(io,j) ) duration of test task (io) at unit (j)

Variables

sh(s,n) ) part of the demand of state (s) that cannot be
met at event point (n)

wvm(im,n) ) binary variables that assign the beginning
of the maintenance task (im) at event point (n)

wvo(io,n) ) binary variables that assign the beginning of
the test task (io) at event point (n)

Tm
s (im,j,n) ) starting time of maintenance task (im) at
event point (n) at unit (j)

To
s(io,j,n) ) starting time of test task (io) at event point (n)
at unit (j)

On the basis of the aforementioned notation, the
mathematical model takes the following form:

1. Allocation Constraints.

These constraints ensure that only one task (i) can be
performed at each unit (j) at each event point (n).

2. Capacity Constraints.

Since the processes involved operate in a continuous
mode, the maximum and minimum amount of material
being produced at each event point (n) at unit (j),
denoted as B(i,j,n), are expressed in terms of the
maximum and minimum production rates for this unit
when the particular task is performed, Rij

max and Rij
min,

and the duration of this task in this unit at the
particular event point (n).

Figure 6. State task network for batch 4.

Figure 7. Gantt chart for batch 4.

∑
i∈Ij

wv(i,n) ) yv(j,n), ∀ j ∈ J, n ∈ N (18)

Rij
min[T f(i,j,n) - T s(i,j,n)] e B(i,j,n) e

Rij
max[T f(i,j,n) - T s(i,j,n)], ∀ i ∈ I, j ∈ Ji, n ∈ N (19)
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3. Material Balances.

where ST0(s) is the initial amount of material (s) and
Fsi

p g 0 represent the proportion of state (s) produced
from task (i). To facilitate the incorporation of due dates
as it will be discussed later in this section, the material
balances are written so as the amount of material that
has been produced at event point (n-1), B(i,j,n-1), is
used for demand satisfaction, d(s,n), at event point (n).

4. Demand Constraints.

where R(s,n) correspond to the amount of material
required at event point (n). Note that demand con-
straints allow the partial satisfaction of required de-
mand, since sh(s,n) represent the part of the demand

that cannot be met. Also, shortage in material avail-
ability SH(s,n) at point (n) is transferred at the next
event point (n+1).

5. Duration Constraints.

These constraints ensure that the duration of task (i)
performed at unit (j) at event point (n), represented by
the difference T f(i,j,n) - T s(i,j,n) is within the consid-
ered time horizon (H). An artificial lower bound of (L)
is introduced to ensure that the duration becomes zero
whenever this task does not take place.

6. Sequence Constraints.

As mentioned in section 3.2.4, these constraints main-
tain the correct sequencing of the tasks, accounting for
the fact that some nodes may remain idle.

7. Due Dates. Products are demanded in specific time
periods during operation. This can be accommodated in
the above formulation by connecting the event points
to due dates in a similar way to that done in section

Table 8. Data for Batch 2

units, tasks

units size units suitability processing times

heater 100 heating 1
reactor 1 50 reactions 1,2,3 2,2,1
reactor 2 80 reactions 1,2,3 2,2,1
still 200 separation 1 (product 2)

2 (intermediate AB)

states

states capacity limits prices

feeds A,B,C unlimited 0
hot A 100
intermediate AB 200
intermediate BC 150
intermediate E 200
product 1 unlimited 60
product 2 unlimited 45

demands

time

products 5 6 8 9 10

1 20 10 20 12
2 32.5 32.5

cost data

costcijn )
20

costv11n )
0.1

costv23n )
0.25

costv33n )
0.25

coststsn )
0.18

costv43n )
0.15

costv22n )
0.16

costv32n )
0.35

costv42n )
0.1

Table 9. Results for Batch 2

proposed formulation

constraints 441
variables 316
binary vars 54
integer optimum 5771
relaxation optimum 5861
integrality gap 0.015
no. nodes 10
CPU time (s) 0.15

Table 10. Data for Batch 4

units, tasks

units size units suitability processing times

unit 1 1000 task 1 1
unit 2 2500 tasks 3,7 1
unit 3 3500 task 4 1
unit 4 1500 task 2 1
unit 5 1000 task 6 1
unit 6 4000 task 5,8 1

states

states capacity limits prices

feeds 1,2,3 unlimited 0
intermediate 4 1000
intermediate 5 1000
intermediate 6 1500
intermediate 7 2000
intermediate 8 0
intermediate 9 3000
products 1,2,3,4 unlimited 18,19,20,21

demands

time

products 3 4 5 6 7 8

1 110 110 133.3 100 33.3 33.3
2 233.1 260 360 360
3 116.6 56.6 116.6
4 333.3 333.3 685.8

cost data

costvijn ) 0.55 costcijn ) 20 coststsn ) 0.1

Table 11. Results for Batch 4

proposed formulation

constraints 833
variables 798
binary vars 64
integer optimum 60297
relaxation optimum 60356
integrality gap 0.001
no. nodes 34
CPU time (s) 0.27

Lwv(i,n) e T f(i,j,n) - T s(i,j,n) e Hwv(i,n),
∀ i ∈ I, j ∈ Ji, n ∈ N (24)

T s(i,j,n+1) g T f(i′,j,n) ∀ j ∈ J, i ∈ Ij, i′ ∈ Ij, n ∈ N
(25)

ST(s,n) ) ST(s,n-1) - d(s,n) + ∑
i∈Is

Fsi
p ∑

j∈Ji

B(i,j,n-1)

∀ s ∈ S, n ∈ N (20)

ST(s,n) ) ST0(s) (21)

sh(s,n) ) sh(s,n-1) - d(s,n) + R(s,n) ∀ s ∈ S,
∀ n ∈ N (22)

sh(s,n0) ) R(s,n0), ∀ s ∈ S (23)
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3.2. Considering Nnd due dates, DD(nd), and their
demands, the following constraints should be incorpo-
rated in the model:

where Nnd is the subset of event points N that are
connected with the given due dates. Note that although
the units operate in a semicontinuous mode, the starting
times of the tasks are connected to due dates of products
because of the way the material balances are written.

8. Transition Constraints. To model the transition
from one task to another, we need to model properly
the transition cost in the objective function and intro-
duce the following set of constraints:

where x(i,i′,n) are the transition variables representing
the transition from task (i) to task (i′) at event point
(n). Note that the above constraints can handle the
possibility of a node to remain idle in the following way.
Constraints in (27) ensure that if task (i) does not take
place at event point (n), then x(i,i′,n) ) 0, ∀ i′ ∈ I since
no transition exists from task (i) at event point (n). From
constraints in (28), x(i,i′,n) ) 0 if task (i′) does not take
place at event point (n + 1). Note, however, that these
constraints are relaxed in the case where no task is
performed at event point (n + 1), in which case yv-
(j,n+1)) 0 and constraints in (28) take the form x(i,i′,n)-
e 1. Constraints in (29) are written in the same way,
but for tasks that take place at event point (n + 2) so
that if event point (n + 1) is idle, the transition will be
defined on the basis of the task that takes place on event
point (n + 2). Constraints in (30) ensure that if task (i)
takes place at event point (n) and task (i′) at event point
(n + 1), then x(i,i′,n) g 1, and consequently since from
constraints in (27) and (28), x(i,i′,n) e 1, x(i,i′,n) ) 1. In
the case where no task is performed at event point (n
+ 1), then constraints in (30) are relaxed and x(i,i′,n)
are defined from constraints in (31) based on the task
that take place at event point (n + 2).

9. Minimum Run Length. The production require-
ment of a minimum run length for every operation can
be incorporated in the above formulation by enforcing
the continuation of the same task until the end of the
required run length. This is case-dependent and differs
with respect to the relative duration of required due
date intervals and minimum run lengths. For example,
in the problems presented in section 4.2 where the due
date intervals are 168 h and the minimum run length
240 h, only two event points suffice to maintain the

same task to accommodate the minimum run length.
This is enforced by the following constraints:

where L is the minimum required run length. The first
set of the above constraints ensures that the same task
(i) is performed in two consecutive event points (n - 1)
and (n), whereas the second set enforces the require-
ment for the overall duration of those two consecutive
tasks, represented by the summation of duration of task
(i) at event point (n - 1) and the duration of task (i) at
event point (n) to be greater than the minimum run
length L. Note that constraint (41) is relaxed if task (i)
does not take place at event point (n - 1) and conse-
quently, from constraint (40), at event point (n).

10. Test and Maintenance Tasks Constraints.
Maintenance and test tasks that need to be performed
during the time horizon of operation in unit (j) are
considered as additional tasks in the formulation, im ∈
IMj and io ∈ IOj, respectively. These tasks take place
at event point n, if wvm(im,n) ) 1 and wvo(io,n) ) 1 or
they do not take place if wvm(im,n) ) 0 and wvo(io,n)
) 0. The required lengths of these tasks are ensured
by the following set of constraints:

Duration Constraints.

These constraints express the requirement that the
duration of test and maintenance tasks represented by
the differences between the final and the starting times,
(To

f (io,j,n) - To
s(io,j,n)) and (Tm

f (im,j,n) - Tm
s (im,j,n)),

respectively, should be equal to the required duration
denoted as Lo(io,j) and Lm(im,j), respectively.

Sequence Constraints.

These constraints express the requirement that the
production tasks should follow the completion of both
test and maintenance tasks.

Required Starting Time.

where Tostart(io,j,n) and Tmstart(im,j,n) are the required
starting times for the test and maintenance tasks.

T s(i,j,n) ) DD(nd), ∀ i ∈ I, j ∈ J, n ∈ Nnd (26)

x(i,i′,n) e wv(i,n), ∀ i ∈ I, i′ ∈ I, |i| * |i′|, n ∈ N
(27)

x(i,i′,n) e wv(i′,n+1) + (1 - ∑
j∈Ji

yv(j,n+1)),

∀ i ∈ I, i′ ∈ I, |i| * |i′|, n ∈ N (28)

x(i,i′,n) e wv(i′,n+2) + (1 - ∑
j∈Ji

yv(j,n+2)),

∀ i ∈ I, i′ ∈ I, |i| * |i′|, n ∈ N (29)

x(i,i′,n) g wv(i,n) + wv(i′,n+1) - 1,
∀ i ∈ I, i′ ∈ I, |i| * |i′|, n ∈ N (30)

x(i,i′,n) g wv(i,n) + wv(i′,n+2) - 1 - ∑
j∈Ji

yv(j,n+1),

∀ i ∈ I, i′ ∈ I, |i| * |i′|, n ∈ N (31)

wv(i,n) ) wv(i,n-1), ∀ i ∈ I, n ∈ N (32)

(T f(i,j,n) - T s(i,j,n)) + (T f(i,j,n-1) - T s(i,j,n-1)) g

L - H(2 - wv(i,n) - wv(i,n-1)),
∀ j ∈ J, i ∈ Ij, n ∈ N (33)

To
f (io,j,n) - To

s(io,j,n) ) Lo(io,j)wvo(io,n),
∀ j ∈ J, io ∈ IOj, n ∈ N (34)

Tm
f (im,j,n) - Tm

s (im,j,n) ) Lm(im,j)wvm(im,n),
∀ j ∈ J, io ∈ IMj, n ∈ N (35)

T s(i,j,n+1) g To
f (io,j,n),

∀ j ∈ J, i ∈ Ij, io ∈ IOj, n ∈ N (36)

To
s(io,j,n) g Tostart(io,j,n)wvo(io,n),

∀ j ∈ J, i ∈ Ij, io ∈ IOj, n ∈ N (37)

Tm
s (im,j,n) g Tmstart(im,j,n)wvm(im,n),

∀ j ∈ J, i ∈ Ij, io ∈ IMj, n ∈ N (38)
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Required End Time.

where Toend(io,j,n) and Tmend(im,j,n), are the required
end times for the test and maintenance tasks. Con-
straints (35) and (36) ensure that the test and mainte-
nance tasks start after the required starting times,
while constraints (37) and (38) ensure that they are
completed within the prespecified time windows. Note
also that the allocation constraints need to be modified
to accommodate the additional test and maintenance
tasks at each event point (n) in the following way:

When these constraints are followed if a maintenance
or a test task is performed in unit (j) at event point (n),
no other production task can be performed.

11. Objective Function: Cost Minimization. Cost
of Not Meeting the Demand.

where csupply(s) is the penalty of not meeting the
demand of product (s).

Cost of Not Meeting the Minimum Stock.

where cstock(s,n) is the penalty of not meeting the
required levels of safety stock for product (s) at event
point (n); sth is defined from sth(s,n) g safety stock -
st(s,n).

Cost of Transition.

where ctrans(i,i′) is the transition cost from task (i) to
task (i′), ctrmi(im,i) is the cost of restarting the opera-
tion after a maintenance task (im), and ctroi(io,i) is the
cost of restarting the operation after a test task (io).

Inventory Cost.

where chold(s,n) is the inventory cost for the unit of
product (s). On the basis of the assumption that the
amount of product (s), ∑i∈Is Fsi

p B(i,j,n-1), is produced
uniformly between event points (n - 1) and (n) (Karimi
and McDonald6), the holding cost for this amount of
product (s) is given by 1/2∑i∈Is Fsi

p B(i,j,n-1).

The overall mathematical model corresponds to a
MILP problem where wv(i,n) and yv(j,n) are the binary
variables.

4.2. Computational Studies. In this section the
examples presented by Karimi and McDonald6 are
considered. The 5 examples correspond to the 5 sub-
plants of the multiproduct plant involving 7 machines
and producing 14 products. Orders are placed at the end
of the first 4 weeks and then at the end of the second
and third month. The minimum run length required is
10 days. Problem data involving product demands,
initial inventory levels, safety stock targets, machine
suitability, and production rate and cost data can be
found in Karimi and McDonald.6 Example 1 that cor-
responds to the subplant involving machines J1 and the
production of products I3, I6, and I11 is presented in
detail, and only the results for examples 2-5 are
presented. Also, example 3 is used to demonstrate the
capability of the formulation to accommodate the pro-
duction of the same product in different units and the
consideration of maintenance and test tasks.

4.2.1. Example 1. The subplant considered here
involves the production of three products I3, I6, and I11
in unit J1. To accommodate the minimum run length
of 240 h and the due dates that are specified at the end
of the first 4 weeks (168 h) and at the end of the second
and third month that correspond to 1392 and 2112 h,
respectively, 15 event points are considered, including
event point n0. The due dates are connected to nodes
n2, n6, n8, n11, and n14 as shown in Figure 8.

The sets considered in the mathematical model are

The following constraints are then utilized in the
description of the problem.

1. Allocation Constraints.

2. Capacity Constraints.

where Ri3,j1
min ) 61.6, Ri6,j1

min ) 75.2, and Ri11,j1
min ) 66.3 are

the minimum production rates for machine J1, depend-
ing on the product that is being produced. The maxi-
mum production rates are Ri3,j1

max ) 123.3, Ri6,j1
max ) 150.3,

and Ri11,j1
max ) 132.5.

3. Material Balances.

In this example there is an one-to-one correspondence
between task and product. Consequently, only Fs6i6

p )
1, Fs3i3

p ) 1, and Fs11i11
p ) 1 and the rest of the param-

eters Fsi
p ) 0.

J ) {J1}, Ij1 ) {I3,I6,I11}, S ) {S3,S6,S11},
N ) {n0,n1,...,n14}

∑
i∈Ij

wv(i,n) ) yv(j,n), ∀ j ∈ J, n ∈ N

Rij
min[T f(i,j,n) - T s(i,j,n)] e B(i,j,n) e

Rij
max[T f(i,j,n) - T s(i,j,n)], ∀ i ∈ I, j ∈ J, n ∈ N

ST(s,n) ) ST(s,n-1) - d(s,n) + ∑
i∈Is

Fsi
p ∑

j∈Ji

B(i,j,n-1)

∀ s ∈ S, n ∈ N

ST(s,n0) ) ST0(s)

To
s(io,j,n) e (Toend(io,j,n) - Lo(io,j)) + H(1 -

wvo(io,n)), ∀ j ∈ J, i ∈ Ij, io ∈ IOj, n ∈ N (39)

Tm
s (im,j,n) e (Tmend(im,j,n) - Lm(im,j)) +

H(1 - wvm(im,n)),
∀ j ∈ J, i ∈ Ij, io ∈ IMj, n ∈ N (40)

∑
i∈Ij

wv(i,n) + ∑
io∈IOj

wvo(io,n) + ∑
im∈IMj

wvm(im,n) )

yv(j,n), ∀ j ∈ J, n ∈ N (41)

∑
s,n

csupply(s)sh(s,n)

∑
s,n

cstock(s,n)sth(s,n)

∑
i∈Ij,i′∈Ij,j∈J,n∈N

ctrans(i,i′)x(i,i′,n) +

∑
im∈IMj,i∈Ij,j∈J,n∈N

ctrmi(im,i)xm(im,i,n) +

∑
io∈IOj,i∈Ij,j∈J,n∈N

ctroi(io,i)xo(io,i,n)

∑
s∈S,n∈N

chold(s,n)[st(s,n-1) +
1

2
∑
i∈Is

Fsi
p B(i,j,n-1)]
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4. Demand Constraints.

Since products are only required at event points n2, n4,
n6, n8, n11, and n14, then R(s,n) at these points cor-
respond to the amount of material s required at due
dates.

5. Duration Constraints.

where l ) 1, introduced to ensure a minimum task
duration if this task takes place at event point n.

6. Sequence Constraints.

7. Minimum Run Length Constraints.

where L ) 240 h is the required minimum production
time length. Note that to allow the continuation of a
task in two consecutive event points so as to ensure
minimum run length, the above constraints are altered
so as to become inactive if the task continues in more
than two event points.

and the following constraints need to be incorporated:

8. Objective: Cost Minimization.

4.2.2. Results. The above mathematical model is a
MILP problem involving 44 binary variables, 428 con-
tinuous variables, and 750 constraints. The problem is
solved using GAMS/CPLEX in a HP-C160 workstation
requiring 0.72 CPU s and the exploitation of 80 nodes
to find the optimal solution of cost $125,602 within 10-6

of the best integer solution. The optimal schedule for
this machine is shown in Figure 9. Note that the
proposed formulation requires fewer binary and con-
tinuous variables, 44 and 428, compared to 70 and 467
required by the formulation proposed by Karimi and
McDonald6 as illustrated in Table 13. Their formulation
also requires the exploitation of more nodes, 178, solved
in 5.0 CPU s in a IBM RS-6000 workstation compared
to 80 nodes needed for the solution of the proposed
model that takes 0.72 CPU s in a HP-C160 workstation.
For the solution of all the examples, priorities are
assigned for binary variables wv(i,n) for branching in
the branch-and-bound method based on the value of
event point (n). In particular, higher priority is given
for lower values of (n) since decisions taken at earlier
times would affect the decisions at later event points.
Also, it was found that the use of an artificial term ∑i,n-
term wv(i,n), does not affect the quality of the solution,
but it results in great computational savings since it
helps reduce the integrality gap.

The rest of the examples considered correspond to the
subplants of the multiproduct plant presented by Ka-
rimi and McDonald6 as shown in Table 12.

Examples 3 and 4 involve the production of the same
products in different machines. Also, examples 3-5
require the execution of a maintenance or a test task
during the time horizon of 3 months. The exact con-
straints for the incorporation of these features follow
for example 3.

1. Same TaskssDifferent Machines. To maintain
the main features of the proposed formulation as
mentioned in Ierapetritou and Floudas,1 the consider-
ation of the same tasks in different units is achieved
by representing these tasks as different tasks, depend-
ing on the machine where they take place. For example
3, machine J3 performs tasks I1, I2, I7, and I14 to
produce products S1, S2, S7, and S14, whereas machine
J4 produces products S2, S7, and S14 by performing
tasks I2a, I7a, and I14a. When the different tasks are
modeled in this way, no modifications are needed in the
mathematical model.

Figure 8. Location of the event points.

sh(s,n) ) sh(s,n-1) - d(s,n) + R(s,n), ∀ s ∈ S,
∀ n ∈ N

sh(s,n0) ) R(s,n0), ∀ s ∈ S

T f(i,j,n) - T s(i,j,n) e Hwv(i,n),
∀ i ∈ I, j ∈ Ji, n ∈ N

T f(i,j,n) - T s(i,j,n) g lwv(i,n), ∀ i ∈ I, j ∈ Ji, n ∈ N

T s(i,j,n+1) g T f(i′,j,n), ∀ j ∈ J, i ∈ Ij, i′ ∈ Ij, n ∈ N

wv(i,n2) ) wv(i,n1) ∀ i ∈ Ij

wv(i,n4) ) wv(i,n3) ∀ i ∈ Ij

wv(i,n6) ) wv(i,n5) ∀ i ∈ Ij

wv(i,n8) ) wv(i,n7) ∀ i ∈ Ij

wv(i,n11) ) wv(i,n10) ∀ i ∈ Ij

(T f(i,j,n) - T s(i,j,n)) + (T f(i,j,n-1) - T s(i,j,n-1)) g

L - H(2 - wv(i,n) - wv(i,n-1)),
∀ j ∈ J, i ∈ Ij, n ) n2, n4, n6, n8, n11, n14

(T f(i,j,n) - T s(i,j,n)) + (T f(i,j,n-1) - T s(i,j,n-1)) g

L - H(2 - wv(i,n) - wv(i,n-1)) - H((wv(i,n-2) +
wv(i,n-3)), ∀ j ∈ J, i ∈ Ij, n ) n4, n6, n8, n11, n14

∑
ns)n-3

ns)n

(T f(i,j,ns) - T s(i,j,ns)) g L -

H(4 - ∑
ns)n-3

ns)n

wv(i,ns)), ∀ j ∈ J, i ∈ Ij, n ) n4, n6, n8

∑
s,n

csupply(s)sh(s,n) + ∑
s,n

cstock(s,n)sth(s,n) +

∑
i∈Ij,i′∈Ij,j∈J,n∈N

ctrans(i,i′)x(i,i′,n) +

∑
im∈IMj,i∈Ij,j∈J,n∈N

ctrmi(im,i)xm(im,i,n)) +

∑
s,n

cholds∈S,n∈N(st(s,n-1) + (1/2)Fsi
p b(i,j,n-1))

3458 Ind. Eng. Chem. Res., Vol. 38, No. 9, 1999



2. Test Tasks. To incorporate the test tasks that need
to be performed in unit J3 during operation and in
particular between [15,30] and [30,60] day, respectively,
the following constraints need to be incorporated.

Allocation Constraints.

where IOJ3) {I15,I16} and IOJ4 ) { }.
Duration Constraints.

Sequence Constraints.

Required Starting Time.

where Tostart(I15,J3,n) ) 360 h and Tostart(I16,J3,n) )
720 h are the required starting times for test tasks I15
and I16.

Required End Time.

where Toend(I15,J3,n) ) 720 h and Toend(I16,J3,n) ) 1440
h are the required end times for the test tasks.

The results for examples 1-5 are given in Table 13
and the optimal schedules obtained are illustrated in
Figure 10. The results are compared with the results
obtained by the second model of Karimi and McDonald,6
which proved to outperform model 1. The CPU times
they report for all the examples correspond to a IBM

RS-6000 workstation. Note that in their formulation to
improve model performance, additional constraints are
added. For instance, for the first model, they proposed
constraints that enforce the idle slots to stack up at the
last slots in a schedule, constraints that eliminate the
schedules where the demands are not satisfied at a
given period but there is some free time available, and
constraints that eliminate schedules where two con-
secutive slots are assigned to the same task. The
presence of such constraints, however, restrict the
feasible space of the scheduling problem, leading to the
most expected solution for these particular examples but
are not necessarily applicable to different scheduling.

In particular, for example 2, the proposed formulation
requires fewer binary and continuous variables, 30 and

Figure 9. Schedule for example 1.

Table 12. Subplants

example machines products test(t)/maintenance(m)

1 J1 I3, I6, I11
2 J2 I4, I10
3 J3 I1, I2, I7, I14 I15, I16 (t1,t2)

J4 I2, I7, I14
4 J5 I5, I12 I18(m)

J6 I5, I12
5 J7 I8, I9, I13 I17 (t3)

∑
i∈Ij

wv(i,n) + ∑
io∈IOj

wvo(io,n) ) yv(j,n), ∀ j ∈ J, n ∈ N

To
f (io,j,n) - To

s(io,j,n) g Lo(io,j)wvo(io,n),
∀ j ∈ J, io ∈ IOj, n ∈ N

T s(i,j,n+1) g To
f (io,j,n)

∀ j ∈ J, i ∈ Ij, io ∈ IOj, n ∈ N

To
s(io,j,n) g Tostart(io,j,n)wvo(io,n)

∀ j ∈ J, i ∈ Ij, io ∈ IOj, n, ∈ N

To
s(io,j,n) e (Toend(io,j,n) - Lo(io,j)) +

H(1 - wvo(io,n)) ∀ j ∈ J, i ∈ Ij, io ∈ IOj, n ∈ N

Table 13. Results for Examples 1-5

proposed approach Karimi and McDonald

Example 1
binary vars 44 70
continuous vars 428 467
constraints 750 620
CPU time 0.72a 5.0b

nodes 80 178
cost 125602.6 125602.6
LP relaxation 3652.46 4292

Example 2
binary vars 30 48
continuous vars 287 314
constraints 534 449
CPU time 0.31a 2.0b

nodes 41 113
cost 16137.7 16137.7
LP relaxation 1287.05 3044

Example 3
binary vars 140 152
continuous vars 1277 1378
constraints 5927 1417
CPU time 35.6a 320b

nodes 802 2563
cost 350216.2 350257
LP relaxation 259368.5 302934

Example 4
binary vars 96 107
continuous vars 570 682
constraints 1751 893
CPU time 13.76a 22b

nodes 861 475
cost 794385.7 794385.7
LP relaxation 541037.3 791271

Example 5
binary vars 49 67
continuous vars 538 572
constraints 1042 627
CPU time 9.92a 15b

nodes 792 660
cost 42072.2 42072.2
LP relaxation 1776.87 14233

a HP-C160 workstation. b IBM RS-6000 workstation.
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287 compared to 48 and 314 used by the formulation
proposed by Karimi and McDonald.6 Note that although
it exhibits a larger integrality gap, it requires fewer
branch-and-bound nodes, 41 compared to 113 needed
by Karimi and McDonald.6 For example 3, a better
solution is obtained which also corresponds to a smaller
makespan for unit J4 as illustrated in Figure 10. For
this example a more efficient solution is achieved on the
basis of the fact that the two machines are not compet-
ing for different tasks since the rate range for unit J3
is much lower than the rate range for unit J4 and
product I1 can only be produced in unit J3. Note also
that since two test tasks are required for unit J3, its
remaining operation time is not sufficient to meet the
demand, even of product I1. The above features suggest

a further decomposition of this example into unit J3
where only product I1 is produced and unit J4 that
produces products I2, I7, and I14. For example 4, the
proposed approach requires fewer binary and continu-
ous variables, 96 and 570 compared to 107 and 682
required by Karimi and McDonald.6 However, since both
units have the same rates, the problem is more difficult
to solve than that of example 3. Finally, for example 5,
fewer binary and continuous variables are needed by
the proposed approach than by the Karimi and Mc-
Donald formulation, namely, 49 and 538 compared to
67 and 572, respectively. However, in the last two
examples, the proposed formulation explores more
branch-and-bound nodes to find the optimal solution.
It is important to point out that in these examples the

Figure 10. Schedule for examples 2-5.
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restriction of minimum length requirement of 10 days
does not allow the full exploitation of continuous time-
scheduling formulation advantages since intermediate
time constraints in addition to the ones that correspond
to due dates have to be introduced.

5. Conclusions

In this paper, a novel formulation for the short-term
scheduling of batch and semicontinuous plants is pro-
posed. The formulation is tailored to accommodate
intermediate due dates where specific product demands
have to be satisfied. The mathematical model was based
on the previous work of Ierapetritou and Floudas1,2

where a new continuous time formulation was presented
to effectively address the problem of short-term schedul-
ing in batch, continuous, and mixed production facilities
where product demands are specified at the end of the
time horizon. Further exploitation of the plant operation
mode results in the most efficient solution of the
problem. Several examples are provided to illustrate the
capabilities of the proposed continuous-time formula-
tions, and it was demonstrated that a variety of prob-
lems presented in the literature can be addressed
efficiently.
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