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Abstract

The generation of a reservoir development plan with well locations, given a reservoir
property map and a set of infrastructure constraints, represents a very challenging
problem. In this paper, three dimensional information is used and the problem of
selecting the optimal vertical well locations is formulated as a MILP problem where
the binary variables correspond to the decisions of well locations and vertical well
completions. A novel decomposition based solution procedure is proposed to address
real fields characterized by sixty thousand grid points. The approach is based on the
ideas of refining the feasible set of candidate well locations by applying quality cut
constraints. For the solution of the subproblems required at each iteration a model
reformulation is then suggested that enables the efficient determination of the optimal
well locations. Two industrial case studies are considered to illustrate the applicability

of the proposed procedure to realistic large-scale problems.



1 Introduction

The problem of developing an offshore field involves the selection of:

(a) Number and locations of platforms,

(b) Number and locations of wells,

(c) Production system, and

(d) Scheduling of facility and well production.

Although, these decisions are highly dependent on each other, their simultaneous consid-
eration in an optimization problem would result in an intractable problem. A lot of research
work appeared in the literature that deals with drilling technology but much less attention
has been paid in the area of optimization of facility and well location, as well as production
optimization.

Representative research efforts for the location-allocation problem following a mathe-
matical programming approach include those of Devine and Lesso (1972), Dogru (1987),
Grimmet and Startzman (1988), Sullivan (1982). Almost all of the proposed models give
rise to large problems that cannot be solved to optimality. Heuristic solution procedures
were proposed that do not guarantee global optimality. Recently, Garcia-Diaz et al. (1996)
proposed a new methodology based on branch and bound procedure using Lagrangian re-
laxation techniques to generate valid tight lower bounds. They presented an example for an
offshore field development for the solution of which they considered different scenarios which
greatly reduced the size of the problem since each scenario was considered independently

and resulted in MILP problems up to the size of 2760 binary variables and 6329 constraints.



For the production optimization given a set of existing wells, Lasdon et al. (1986) pro-
posed a nonlinear optimization model to determine the optimal flows. The problem of
determining the optimal well locations was addressed by Rosenwald and Green (1973) who
employed a MILP approach to select the well sites that accomplish production targets from
a predetermined subset of locations. They assumed a specified production versus time rela-
tionship for the reservoir considered and a set of possible locations for the new wells. The
algorithm then selected a specified number of wells from the candidate locations and de-
termined the proper sequence of rates from the wells. They demonstrated their approach
through example problems considering a small number of possible well locations.

Seifert et al. (1996) presented a well placement method based on a geostatistical reservoir
model. They performed an exhaustive search for a large number of candidate well trajectories
from platform location, with a preset radius, inclination angle, well length and azimuth.
Then the reservoir quality along each well trajectory was analyzed statistically with respect
to intersected net pay or lithology to find the highest expected value of net pay for a set of
wells. The placement location of candidate wells was not a variable in the analysis, thus the
procedure finds a statistically local maximum rather than a global optimum.

Vasantharajan and Cullick (1997) proposed a MILP formulation for determining the
optimal location of wells considering two-dimensional information about the productivity of
the reservoir and connectivity points. They addressed large-scale problems in reasonable
computational time and they incorporated platform location constraints assuming that the
location of the platform is known.

Iyer et al. (1998) proposed a multiperiod MILP model for the planning and scheduling

of investment and operation in offshore oil field facilities. The objective was to optimize the



net present value for a given planning horizon taking into account the choice of reservoirs to
develop, the well drilling schedule, the capacities of wells and production platforms, and the
fluid production rates from wells for each time period. A sequential decomposition strategy
was followed for the solution of the resulting formulation.

In this paper, three dimensional information about the field is employed that includes
point quality and geo-object and which expresses the productivity and connectivity of the
point. Based on this information, the problem of selecting the optimal location of vertical
wells is formulated as an MILP optimization problem as discussed in detail in section 3, where
three models are suggested based on the field specificity. Section 4 proposes a decomposition
based approach in order to address realistic problems based on the application of quality
cut off constraints. Two industrial case studies are presented in Section 5 to illustrate the

applicability and effectiveness of the proposed approach.

2 Problem Definition

This paper addresses the well site selection issues faced by a reservoir management team
during a project development for which the wells are sited to maximize productivity while
satisfying constraints. The reservoir productivity a this stage is a static metric of the reservoir
productivity, such as a net pay, permeability-thickness, or a combination. The focus is on
modeling the spatial location, taking into account inter-well spacing, distance from platforms
and well configurations. Subsequent detailed flow simulation is warranted to validate the
selection and to determine the appropriate production policy from these wells to meet desired

production targets.



In particular, the problem considered can be described in the following way. Given
is a specific field which is discretized considering a set of grid points. Each point in the
grid corresponds to a potential well location. In addition, grid points are considered in
the z direction representing the potential completions if a drill is decided at this point (see
Figure 1).

Each (x,y,z) point is characterized by its quality representing the productivity of this
point (see Vasantharajan and Cullick (1997)) and the geo-object at which this point belongs
representing the connectivity of this point with the other potential well points. The fact that
different grid points belong to the same geo-object poses the restriction of well distance. This

means that potential wells have to be separated from each other by D?,. or D%. if the points

belong to the same or different geo-objects, respectively, where D?, > D2 . .

Given the above information for the considered field, the objective is to determine the
optimal location and/or number of wells so as to maximize the overall quality of production.
In a second stage, the goal is the incorporation of cost data so as to identify the trade-offs
between drilling cost and productivity, and determine the economically optimal well location
that maximize production quality.

In the next section, three different mathematical models are proposed to address the
problem of optimizing the potential well locations so as to maximize quality as a measure
for the productivity. Cost is also studied in an attempt to identify the trade-offs between

quality and cost although the appropriate cost parameters expressing the cost to production

relationship are unknown.



3 Mathematical Formulation

3.1 Model 1

In this model the different possible completions in the z direction are represented by different
variables. This means that this model is suitable for problems where the quality changes
with respect to z even if the points belong to the same geo-object. The mathematical model
involves the following indices, sets, parameters, and variables:

Indices:

i, j potential well location points;

k potential points for well completions in the z direction ;

Sets:

N all potential well locations in x-y plane;

K all potential well completion in z direction;

1., existing well locations ;

Parameters:

Zi,Y; X,y coordinates of point 7 in grid units;

k

z7 z coordinate of point (i,k);



Dy .. denotes the minimum distance required between wells in the same geo-
object;
D¢ . denotes the minimum distance required between wells in different geo-objects;

N_.om denotes the maximum number of completions allowed per well;

¢ quality of point 2¥;

a cost parameter;

Variables:

yv(z;,y;) binary variables expressing the existence of a well at the point (z;, y;);

2v¥(x;,y;) binary variables expressing the completion at point 2% if a well is decided

at point (z;,¥;);

d(i,7) distance between point (z;,v;) and (z;,y;)

W, total number of wells;

@ total quality of wells;

C total cost of wells.

Based on this notation the mathematical model for the optimal vertical well location

problem involves the following constraints:



Minimum distance constraints: Points belonging to the same geo-object

yv(xi:yi) +yv(x]7yj) < 17 VZ:] € N7 d(la.j) <Dy, (1)

min

These constraints express the requirement that potential well locations should be separated
by D;.., if they belong to the same geo-object. The set IV involves all potential well locations
in the field. d(i,7) is the distance between location ¢ and location j represented by either

the euclidean or rectilinear metric as will be discussed later in this section.

Note that an alternative way to impose constraint (1) is the following:

S e+ S ey < Y (1), VieN.

]ENvd(17])<D$r”n ]EN’d(17])<Ds ]ENad(Z’J)<Dfn1n

min

This corresponds to the summation of constraints (1) over (j) such that for given (i) d(i, j) <
Dy ... and the potential well locations belong to the same geo object. Case study 2 discussed
in section (5) illustrates the applicability of these constraints and the effect on the compu-

tational performance of the solution procedure.

Minimum distance constraints: Points involving different geo-objects

yU($i,yi) +yv($],y]) <1, VZ,] € N’ d(Z:]) < Dd (2)

min
These constraints express the requirement that potential well locations should be separated

by D&, if they involve different geo-objects, where D$ . > Dd



Minimum distance constraints: Existing Wells

yu(xi, vi) +yv(zj,y;) <1, Vi € N, Vj € I, d(i,j) < D; (3)

min
yv(xiayi) + yv(mjayj) S 17 Vi € Na \V/_] € Ieza d(Zvj) < D;jnm
where I, is the set of existing well locations. These constraints express the requirement that

potential well locations should be D? . , D¢

min)d "~ min

from the already existing wells if they belong

to the same and different geo objects, respectively.

Maximum completion constraints

szk(:pia yz) S Ncom Z/U(xi,yz’); V’L,] € N (4)
k

20* (2, y;) < yo(2i,y:), Vi,j €N (5)

These constraints express the requirement that the maximum number of completions per
well is N,om. Moreover, if the well does not exist at the point (z;, ;) then all the zv*(z;, y;)
binary variables that correspond to this point should also take the value of zero. Constraints

(5) are included since they improve the computational performance.

Total number of wells constraints

Zyv(xia yz) = Won VZ S N (6)

10



This constraint restricts the total number of wells.

Total quality of wells constraints

> > Armud =@ (7)

t€N kENcom

This constraint evaluates the quality of the optimal well locations.

Total cost of wells

Z%W(-’Ei, yi) + %Zzzvk(wi,w) =C VieN (8)

i ik
This constraint evaluates the cost of the optimal well locations accounting for the cost of
completions. The parameter a accounts for the trade-off between cost and productivity.
It is determined based o the observed quality data and the cost of drilling from previous
industrial case studies.

Note that the above model can provide the basis for placing deviated wells since the z
dimension is treated explicitly in the formulation. Deviated wells are most commonly used

to increase the field productivity.

3.2 Model 2

In this model, the points in the z direction belonging to the same geo-object are considered
together and are represented by one variable and an average quality. This means that this
model is more suitable for problems where the quality within the same geo-object does not

11



change very much. This formulation has the advantage of involving fewer variables since
the variables in the z direction are equal to the ones corresponding to different geo-objects
which are much less than the different z points. However, this formulation can not address
the problem with deviated wells since only average z values for the different geo-objects are
considered.

In both models 1 and 2 the distance requirement between potential wells is expressed
in terms of Euclidean distance, that is, potential well at position (z;,y;) should be at least

s from a different well (z;,y,) if they both belong to the same geo-object, which means

min

dij = /(@i — 27)2 + (yi — y;)? > D5, and at least D, if they are in different geo-objects,
where DS . > D4 .

The mathematical formulation in this case has the same form except that the variables

2*(z;,v;) correspond to different geo-objects in the z direction and not the different z points.

3.3 Model 3

In this model the distance constraints are written in term of zv variables rather than the yv
variables as it is the case for models 1 and 2.

Minimum distance constraints: Points belonging to the same geo-object
(@i, yi) + 2% (x,y;) <1, Vi, j €N, Vke K d(i,j) < DS, (9)

These constraints express the requirement that potential well completions should be sepa-
rated by D; .. if they belong to the same geo-object. The set /N involves all potential well

locations in the field. d(i, j) is the distance between location i and location j represented by

12



either the euclidean or rectilinear metric as will be discussed later in this section.

An additional set of constraints could also be introduced, that have the following form:

20" (w4, ) + Z 2*(wj,y;) <1, Vie N, Vke K (10)

3ld(6,5)<D3, i, /2

min

These constraints express the requirement that only one of the points in the inner region of
Figure 2 can be selected. As it will be shown in case study 2, the incorporation of this set
of constraints enhance the computational performance of the solution approach.

Note, that expressing the distance constraints in terms of the z variables increases the size
of the mathematical formulation but on the other hand allows for more flexibility on selecting
the optimal well locations and completions and better trade-off between productivity and

cost as it will be shown through the second case study where this model is applied.

3.4 Alternative Distance Metrics

In all the presented models the distance constraints between location ¢ and location j could

be expressed through the euclidean distance constraints, as for example for equation (1) :

dij = \/(ﬂﬁi — ;)% + (4% = ¥7)* < Duin
or the rectilinear distance constraints:

|$i — Zl'j‘ S D?

man

lyi —v;| < D;

min
The euclidean distance assumption is equivalent to the circular shape of the exclusion region

around the considered grid point. The rectilinear distance representation corresponds to the

13



assumption that the “no-flow” boundaries between well sites of similar producing character-
istics will occur at the mid point of the distance between them, which means geometrically
a square-shaped exclusion zone of side grid units around a grid cell (see Figure 3).

Note that the rectilinear distance requirements are more restrictive than the Euclidean
distance requirements excluding more potential well locations namely the points outside the
circle with radius D? ;. and inside the square with half side equals D7 . (see Figure 3). The
consequences of this remark will be illustrated through the case studies considered in the
next sections where the rectilinear constraints lead to more conservative results in terms of
the productivity and overall objective.

All the proposed models are mixed-integer linear programming problems with the bi-

nary variables representing the location of wells y(z;, y;) and the vertical well completions

Zk(xz‘, yz)

4 Proposed Approach

4.1 Decomposition Procedure

A systematic decomposition approach is presented for the prediction of the optimal location
and/or the optimal number of wells in order to maximize the overall quality of the production.
The proposed approach follows a decomposition procedure based on the number of potential
well locations examined and involves the following steps which are also shown graphically in

Figure 4 :

Step 1: Rank all the candidate points in terms of the maximum over z direction qual-
ity. Apply a quality cut-off constraint and consider the remaining points.

14



Step 2:

Step 3:

Step 4:

Step 5:

Step 6:

Step 7:

The overall region under consideration is first decomposed in four different

regions based on the distribution of the potential well locations.

Based on the model considered (i.e., Model 1, 2, or 3) the resulting MILP

optimization problem is solved for each one of these regions (see section 4.2).
The optimal well locations determined are ranked in terms of their quality.

A quality cut-off constraint is then applied and the locations above the
specified quality cut-off were considered fixed. A feasibility problem is solved

(see section 4.3) for the whole region and the remaining feasible points are

S

identified that satisfy the requirement of being at least D; ;. away from the

already fixed locations if they belong at the same geo-object or D¢ . if they
belong at different geo-objects.
Using a quality cut-off for the feasible points, the remaining points are then

considered in the optimization problem and the optimal well locations are

determined for this set of points.
The termination criteria for the algorithm are the following:

(a) The overall number of the obtained wells exceeds the required wells.

(b) There are no additional wells that can be placed. This can be verified
by fixing the determined wells and solving the feasibility problem. If no

points remain it means that there are no potential well locations left.

If one of the above criteria is met then the algorithm stops; Otherwise it

continues iterating from step 5.

15



Remark 1: Note that at step 5, when solving the feasibility test problem all the points
are considered and not only those above the quality considered at step 1. Consequently, as

iterations continue the initial set of points is enlarged.

Remark 2: An alternative to the above presented decomposition approach will be to apply
the cut-off procedure in each subregion separately and then combine the obtained optimal
well locations by solving the feasibility subproblem to eliminate any distance violations due
to decomposition of the problem in step 1. The application of this alternative solution

procedure is illustrated in the second case study in the next section.

4.2 Solution of subproblems

As mentioned earlier, the mathematical models presented in section 3, correspond to MILP
problems that can be solved employing standard solution techniques based on branch and
bound algorithmic procedure implemented in commercially available software packages like
CPLEX, OSL. Note however, that in all the proposed models the resulting formulation
corresponds to a large scale optimization problem involving 430,505 constraints and 2000
binary variables for the case where 2000 well locations and an average over z quality (models
2,3) are considered. The consideration of 10,000 surface points correspond to only 25% of the
potential well locations on the field considered in the first case study of section 5, gives rise to
an intractable size model with 10,000 binary variables for models 2 and 3. The incorporation
of the z direction data points, as in Model 1, results in even larger models. For the case of
2000 potential surface well locations and 65 candidate completion points, model 1 involves

438,889 constraints and 8383 binary variables. Note that not all the 65 different z locations

16



correspond to potential completion candidates but only the ones that belong to different
geo-objects.

Employing a Branch and Bound framework for the solution of MILP optimization prob-
lem, the nodes that need to be examined in the worse case scenario are 2V where N are the
binary variables, which suggest that for a problem involving 2000 surface points considering

28383

65 vertical points we need to consider nodes to solve it to optimality.

4.3 Feasibility Test

At this step, the initial set of candidate well locations are examined regarding their feasibil-
ity with respect to the existing wells, as well as the locations of wells selected so far in the
iterative procedure described in section 4.1. This step is applied automatically by checking
the viability of the distance constraints for each one of the candidate well locations. De-
pending on the mathematical model considered, model 1, model 2 or model 3, the distance

constraints have the following form:

Models 1, 2
dij = \/(ﬂfz' = %;)” + (% — 4)* = Dpins
Vie N, jel.,, geo(i,k)=geo(j, k) Vk € K; (11)
dij = \/(ﬂiz' — )% + (% = ¥7)* > Dy,
Vie N, jel.,, geo(i, k) # geo(j, k) Vk € K, (12)
Model 3

17



zi = | 2 Dy V' yi —y;1 2 D,

min min’

Vie N, jel.,, geo(i,k) = geo(j, k) Vk € K, (13)
2 = 5| > Dy V' |yi — Y51 > D
Vie N, jel.,, geo(ik)+# geo(j, k) Vk € K; (14)

where I is the augmented set of existing well locations involving the locations of the wells
selected.

The application of the above constraints requires checking the connectivity of the points
considered which is represented by the corresponding geo-object. Consequently, the feasibil-

ity test consists of the following two step procedure for each candidate location.

Step A: Check the geo-objects of the candidate points with the set of existing and

selected well locations.

Step B: For the points that belong to the same geo-object apply constraints (11) or
(13), based on the model used. For the points that do not belong in the

same geo-object apply constraints (12) or (14), based on the model used.

Step C: If a point does not satisfy the distance constrains in step B, then it is not

considered further as potential well location.
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5 Application of the Proposed Approach

5.1 Case Study 1

The proposed approach is applied to a specific field considering models 1 and 2. For model
2 both euclidean and rectilinear distance constraints are used. The project area for this
field was established as a hyper-rectangular area with dimensions of 48,070 ft x 14,960 ft x
1,105 ft. Within this space a Cartesian grid was defined with cells 110ft x 110ft x 17ft
(see Figure 5). This grid consists of 59432 candidate surface well locations for which 65
possible well completions are allowed based on the grid point connectivity represented by
point geo-object number (see Figure 6).

In this section the details of the application of the proposed approach are presented for
model 1 while only the results for model 2 are provided using both euclidean and rectilinear
distance constraints. The plot of all potential well locations for this field is shown in Figure 7.
Based on the distribution of the points, the field is decomposed into four different regions as
shown in Figure 8. Note that not all the points are considered at this decomposition stage
but the regions with the largest number of points and high quality. The boundaries of each
region and the number of potential well locations are shown in Table 1.

Using model 1 in the step 3 where all the z points are considered explicitly as binary
variables representing potential well completions the resulting optimal well locations that
maximize the production quality are shown in Figure 9. The results are summarized in
Table 2. Note that in order to restrict the size of the resulting model a maximum of 2000
potential surface points are considered at each region. However, the MILP models still cor-

respond to very large optimization problems since for example for region A the MILP model
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involves 8383 binary variables and 438889 constraints.

Note that in the above analysis a maximum of 5 completions is allowed per well. Since
in this phase the objective is the maximization of quality, this results in selecting all the five
completions if this is possible.

The optimal locations of wells for each region are then sorted and an additional quality
cut-off of 1500 is applied. This means that only the locations with maximum over z quality
above 1500 are considered fixed which results in 28 well locations, 9 from area A, 5 from
area B, 2 from region C and 9 from region D plus 3 that already exist.

Then the feasibility step is applied fixing the 28 well locations obtained so far. This means
that the points with d(i, j) < Dg . around those points if they belong in the same geo-object
and the points with d(i,j) < D¢, if they belong to different geo-objects. The remaining
potential well locations are then sorted and a cut-off quality of 1000 based on maximum over
z quality is applied. The remaining 1047 points are shown in Figure 10. Considering these
points as the potential well locations in the optimization model the additional optimal well
locations are determined. The optimal well locations that feature a maximum quality above
1400 are the locations shown in Table 3. There are five new wells identified and hence we
have a total of 33 wells. The feasibility step is then applied fixing all the 33 optimal well
locations. The remaining feasible points are obtained, sorted and a quality cut-off of 700 in
terms of maximum over z quality is applied. The remaining 1658 potential well location are
shown in Figure 11.

These points are then considered in the optimization problem that results after a quality

cut-off of 1000 is applied in the optimal wells, in the following 10 optimal well locations as
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shown in Table 4.

In the final step all the locations determined so far are further checked for feasibility
especially the wells at the areas near the region boundaries. For the selected points it is
found that in three cases the distance requirement is violated as illustrated in Figure 12.
The points represented by squares have distance 14.422, and belong to geo-object 1, the
points represented by cross have a distance of 15.133 and belong to geo-object 1 and the
points indicated with an “x” have a distance of 11.402 and belong to geo-object 3.

For these three cases, only the location with the maximum overall quality is considered
fixed whereas the other two are rejected. After this additional step we end up with 40
selected well locations. The feasibility test is then performed and the feasible points are
determined and considered in the optimization framework in order to determine 30 more
required well locations. The optimal 30 well locations are shown in Table 5.

In conclusion the optimal well location obtained are shown in Figure 13.

Following the same steps, but considering model 2 using euclidean and rectilinear distance
constraints, respectively, the optimal well locations shown in Figures 14, 15 are obtained.
Due to strict feasibility constraints, the utilization of the rectilinear distance constraints
results in the selection of 62 instead of 70 well locations.

The production qualities of the optimal wells determined from the solution of Model 1,
2 and 3 are shown in Table 6. Note that in terms of the overall average quality model 2
outperforms in comparison with model 1. This happens due to the different objective of
model 1 that targets on maximizing the summation of all the optimal wells considering all
well completions. This means that model 1 would select a point with larger overall quality

compared to a point with smaller overall quality but higher average quality. Moreover, note
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that model 2 with the use of the rectilinear distance constraints results in smaller average
quality due to tighter feasibility requirements (see section 2).

Finally, note that all optimization models result in higher average quality than the pro-
posed ones as shown in Tables 6 and 7. Figures 16, 17, and 18 illustrate the proposed well
location in comparison with the optimal wells suggested by Models 1, 2 and 3, respectively.
The proposed wells shown in Figures 16, 17, and 18, correspond to the locations selected by
the industrial team based on the observation of geophysical data which was the realistic well
selection procedure prior to this study.

Note that although in step 3 of the proposed decomposition approach the sorting of
the proposed optimal well locations is based on the maximum quality of the point in the z
direction, an average quality, the overall summation of qualities can also be considered.

The feasibility stage of step 4 can also be applied to identify the feasible points in the case
where different well locations are fixed for example in the case that there are already existing
wells avoiding in this way the incorporation of additional constraints in the optimization

problem (constraints (3) in the formulation).

5.2 Case Study 2

For this case study the decomposition method is applied to a field where the simultane-
ous consideration for all points is also possible within the optimization framework so as to

compare and evaluate the results of the proposed approach.
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5.2.1 Decomposition Approach

Original Distance Constraints: The grid considered for this case study consists of 6,206
candidate surface well locations for which 75 possible well completions are allowed based on
the grid point connectivity represented by point geo-object number (Figure 19).

Based on the distribution of the points, the field is decomposed into three different
regions as shown in Figure 20. The boundaries of each region and the number of potential
well locations are shown in Table 8.

The alternative solution procedure discussed in section 4.1 utilizing rectilinear distance
constraints is applied here where the cut-off procedure is applied to each subregion separately.
Model 3 is considered since the incorporation of the clique constraints leads to the reduction
of the integrality gap of the MILP models and thus enables the determination of better
solutions. A minimum distance requirement of 18 grid points has to be met. The following

steps are involved in the solution procedure.

- Since all the sub-regions A, B, C involve a fairly small number of potential locations,
there is no need of applying a quality cut-off for these regions. The determination of
optimal well locations for these regions lead to 12 optimal locations in area A, 19 in

area B and 10 in area C.

- The results for each region are shown in Table 9.

- Consider the 124+19+10=41 optimal wells found within the feasibility test formulation
to identify the feasible optimal well locations, 39 optimal wells and completions are

identified.

- Fix the 39 optimal wells and determine the remaining feasible potential sites. Three
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feasible points have been found with quality smaller than 0.8 units which is the cost of
drilling a well. Consequently, no more well locations can be selected. The 39 optimal
well locations that have been identified have an associated quality of 158.135 and cost

of 33.2.

The final results for each one of these regions are shown in Table 10. The optimal well
locations and multiple completions are shown in Table 11 and illustrated in Figure 21.

Regarding the computational requirements, the commercially available software package
CPLEX 4.08 is utilized for the solution of MILP mathematical models. Most of the time
needed for the solution is devoted to the generation of the large number of clique constraints
involved in the model. Using the branching strategy based on pseudo reduced costs and
the primal simplex approach to solve the subproblems at each node, the solution of the
subproblems that correspond to each subregion within 0.1% integrality gap requires the
solution of MILP problems that involve the constraints and variables shown in Table 12,
where the B&B nodes and CPU times needed are also reported.

Aggregated Distance Constraints: The alternative aggregated form of distance con-
straints (1) are used for the solution of the optimization problems that correspond to the
different subregions. The optimal well locations obtained are the same. However, the model
size is drastically decreased which result in a substantial improvement in the computational
requirements of the solution procedure. The results obtained using CPLEX 6.0 in a HP

C160 workstation, are shown in Table 13.
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5.2.2 Simultaneous Approach

In this section all potential well locations are considered simultaneously in an optimization
problem of finding the optimal well locations and completions using the aggregated distance
constraints. Forty wells are proposed with an associated quality of 158.95 and cost of 34.0.
The overall objective is 124.95. The results are shown in Table 14 and illustrated in Figure 22.
The solution time for the simultaneous consideration of all the potential well locations was

12532 CPU seconds using CPLEX 6.0 in a HP C160 workstation.

5.3 Comparison

As shown in Table 13, the decomposition approach requires the utilization of 1402 CPU
sec for region A, 1740 CPU sec for region B, and 460 CPU sec for region C using CPLEX
6.0 in a HP C160 workstation. In comparison to the solution of the overall problem, the
decomposition approach requires 3603 CPU sec using CPLEX 6.0 in a HP C160 workstation,
compared to 12532 CPU sec required by the simultaneous approach. In terms of the quality
of the solutions obtained, the decomposition approach results in the selection of 39 well sites
with cost of 33.2 and overall quality of 158.135 which leads to an objective of 124.935. The
simultaneous approach, on the other hand, places 40 wells with cost of 34.0 and quality
of 158.95 which in turn results in an objective of 124.95 very close to the objective value
obtained from the decomposition approach although the computational time required follow-
ing the decomposition approach was the one fourth of the time needed for the simultaneous

consideration of all the potential well locations.

25



6 Conclusions

This paper proposed a novel decomposition based approach to address the problem of field

development for a given reservoir. The approach is based on:

- 3-D reservoir characterization by its quality and geo-object expressing field productivity

and connectivity,

- field decomposition,

- an iterative scheme based on a quality cut-off criterion, and

- an efficient problem formulation that results in a MILP optimization problem that can

be solved to optimality for each of the decomposed subproblems.

The proposed approach is applied to two industrial case studies involving 59,432 and 6,206
candidate surface well locations, respectively, for which there are 65 and 75 possible well
completions.

Three alternative models are proposed to further exploit the nature of the problem. An
important feature of Model 1 is that it can explicitly handle the grid points in z direction
and consequently can form the basis of placing deviated wells. The comparison of the deter-
mined well locations with the locations proposed following a heuristic procedure illustrates

the advantage of the proposed approach.
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Region x bounds y bounds | No of potential
(grid units) (grid units) | well locations
Region A | 100 <z < 260 | 80 <y <137 4129
Region B | 260 < x <436 | 80 <y <137 2795
Region C | 300 <z <436 | 0<y <80 1991
Region D | 140 <2 <300 | 0<y <80 5328

Table 1: Boundaries of the Different Regions

o1




Region | # Wells | Overall Quality | Average Quality
Region A 9 98521.052 21282.5832
Region B 10 73548.36 16463.36
Region C 9 54945.883 11797.683
Region D 9 81060.393 17905.657

Table 2: Optimal Solution for the Different Regions
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Well | XCoord | YCoord | Number of | Overall | Average | Geo-Object
Completions | Quality | Quality
1 147.0 85.0 5 7631.379 | 1526.276 1.0
2 394.0 76.0 5 7428.15 | 1485.630 3.0
3 427.0 56.0 5 7100.81 | 1485.130 8.0
4 197.0 34.0 5 7405.685 | 1481.137 1.0
5 266.0 78.0 5 7007.868 | 1401.574 5.0

Table 3: Optimal Well Locations
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Well | XCoord | YCoord | Number of | Overall | Average | Geo-Object
Completions | Quality | Quality
1 160.0 11.0 5 6797.368 | 1359.474 7.0
2 227.0 110.0 4 5306.672 | 1326.668 1.0
3 426.0 66.0 5 6260.815 | 1252.163 3.0
4 353.0 109.0 3 3560.895 | 1186.965 4.0
5 324.0 108.0 4 4634.588 | 1158.647 4.0
6 165.0 63.0 5 5757.215 | 1151.443 1.0
7 274.0 96.0 5 5743.301 | 1148.660 1.0
8 376.0 77.0 4 4436.288 | 1109.072 3.0
9 319.0 67.0 5 5503.27 | 1100.654 1.0
10 335.0 53.0 5 5077.42 | 1015.484 6.0

Table 4: Optimal Well Locations
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Well | XCoord | YCoord | Number of | Overall | Average | Geo-Object
Completions | Quality | Quality
1 296.0 98.0 5 2755.555 | 551.111 17.0
2 211.0 16.0 5 4886.605 | 977.321 13.0
3 167.0 35.0 5 4800.65 | 960.130 1.0
4 180.0 77.0 2 1908.776 | 954.388 1.0
5 139.0 53.0 5 4734.31 | 946.862 11.0
6 13.0 57.0 5 4593.075 | 918.615 12.0
7 202.0 79.0 2 1805.772 | 902.886 1.0
8 144.0 67.0 5 4405.47 | 881.094 1.0
9 266.0 19.0 5 4317.73 | 863.546 9.0
10 106.0 41.0 ) 4100.17 | 820.034 14.0
11 285.0 45.0 5 3968.205 | 793.641 1.0
12 118.0 13.0 5 3435.994 | 687.199 15.0
13 294.0 32.0 5 3505.97 | 701.194 10.0
14 362.0 38.0 5 3234.55 | 646.910 18.0
15 312.0 32.0 4 2461.812 | 615.453 10.0
16 362.0 69.0 5 3048.02 | 609.604 1.0
17 34.0 4.0 5 2970.265 | 594.053 20.0
18 142.0 2.0 5 2797.82 | 559.564 16.0
19 21.0 33.0 5 2648.915 | 529.783 22.0
20 353.0 56.0 4 2027.54 | 506.885 6.0
21 248.0 19.0 5 2487.345 | 497.469 9.0
22 331.0 29.0 4 1903.424 | 475.856 19.0
23 13.0 80.0 5 2376.785 | 475.357 23.0
24 400.0 63.0 5 2350.39 | 470.078 21.0
25 106.0 72.0 5 2317.22 | 463.444 25.0
26 318.0 88.0 5 2302.312 | 460.462 4.0
27 293.0 23.0 5 2280.125 | 456.025 24.0
28 238.0 16.0 4 1662.392 | 415.598 1.0
29 277.0 122.0 5 2034.03 | 406.806 27.0
30 33.0 74.0 5 1933.81 | 386.762 28.0

Table 5: Optimal Well Locations
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Model Quality

1 430802.669
92097.307 (aver)
2 98089.269 (aver)

3 85510.993 (aver)

Proposed 170647.038
47017.113 (aver)

Table 6: Comparison with Proposed Well Locations based on 70 optimal wells
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Model Average Quality
Quality | Increase (%)

1 80138.28 70.445
2 84973.535 80.729
3 77384.721 64.588

[ Proposed [ 47017.113 | |

Table 7: Comparison with Proposed Well Locations based on 53 optimal wells
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Region x bounds y bounds | No of potential
(grid units) (grid units) | well locations
Region A | 0<z <105 0<y<55 1359
Region B | 55 <2 <105 | 55 <y <170 3167
Region C | 105 <z <163 | 80 <y < 170 1680

Table 8: Boundaries of the Different Regions - case study 2
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Region | Quality | Cost | Objective | # Wells
A 52.287 | 9.6 42.687 12
B 53.954 | 16.8 | 37.154 19
C 58.051 | 8.8 49.251 10
A+B+C | 164.292 | 35.2 129.092 41

Table 9: Results for each region

99




Region | Quality | Cost | Objective | # Wells
A 52.3 9.6 42.7 12
B 47.797 | 14.8 | 32.997 17
C 58.051 | 8.8 49.251 10
A+B+C | 158.135 | 33.2 | 124.935 39

Table 10: Final Results for different regions
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Well | XCoord | YCoord | Quality | Geo-Object
1 131.0 133.0 12.466 1.0
2 113.0 121.0 11.184 1.0
3 113.0 139.0 9.374 1.0
4 57.0 35.0 7.742 3.0
5 131.0 115.0 6.979 1.0
6 54.0 24.0 5.108 5.0
7 72.0 40.0 4.479 5.0
8 66.0 109.0 2.590 4.0
9 56.0 17.0 5.851 3.0
10 75.0 33.0 5.468 3.0
11 66.0 119.0 5.434 2.0
12 54.0 42.0 5.026 5.0
13 131.0 151.0 4.779 1.0
14 66.0 101.0 4.770 2.0
15 84.0 118.0 4.387 2.0
16 84.0 104.0 0.908 4.0
17 48.0 118.0 3.900 2.0

48.0 118.0 2.054 4.0
18 38.0 25.0 3.770 3.0
19 36.0 24.0 3.559 5.0
20 107.0 93.0 3.452 2.0

107.0 93.0 0.881 9.0
21 37.0 7.0 3.412 3.0
22 47.0 100.0 3.159 2.0

47.0 100.0 3.313 4.0
23 65.0 91.0 3.242 4.0
24 84.0 100.0 3.067 2.0
25 32.0 6.0 2.905 5.0
26 57.0 53.0 2.747 3.0
27 107.0 111.0 2.490 2.0
28 125.0 95.0 2.420 2.0
29 75.0 51.0 2.220 3.0
30 45.0 82.0 2.100 4.0

45.0 82.0 0.917 6.0
31 113.0 157.0 1.946 1.0
32 53.0 136.0 1.673 4.0
33 62.0 64.0 1.164 6.0
34 144.0 130.0 1.131 8.0

144.0 130.0 0.949 11.0
35 67.0 169.0 1.107 10.0
36 98.0 127.0 1.050 7.0
37 80.0 129.0 1.038 7.0
38 85.0 163.0 0.967 10.0
39 63.0 82.0 0.957 6.0

Table 11: Results of the decomposition approach
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Region | Constraints | Binary | Nodes | CPU
Variables (hrs)

A 322439 3804 31 37.8

B 423477 5495 4 30.3

C 211785 2834 2 5.6

Table 12: Computational requirements for different regions
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Region | Constraints | Binary | Nodes | CPU
Variables (sec)
A 8921 3494 3 1402
B 17104 7020 2 1741741
C 8319 3394 2 460

Table 13: Computational requirements for different regions utilizing the aggregated distance
constraints
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Well ID/GeoObj XCoord | YCoord | Quality
1 | W-131-115.G-0001 | 131.0 115.0 6.98
2 | W-113-121.G-0001 | 113.0 121.0 11.18
3 | W-131-133.G-0001 | 131.0 133.0 12.47
4 | W-113-139.G-0001 | 113.0 139.0 9.37
5 | W-131-151.G-0001 | 131.0 151.0 4.78
6 | W-113-157.G-0001 | 113.0 157.0 1.95
7 | W-107-093.G-0002 | 107.0 93.0 3.45
8 | W-125-095.G-0002 | 125.0 95.0 2.42
9 | W-047-100.G-0002 47.0 100.0 3.16
10 | W-084-100.G-0002 84.0 100.0 3.07
11 | W-066-101.G-0002 66.0 101.0 4.77
12 | W-107-111.G-0002 | 107.0 111.0 2.49
13 | W-048-118.G-0002 48.0 118.0 3.90
14 | W-084-118.G-0002 84.0 118.0 4.39
15 | W-066-119.G-0002 66.0 119.0 5.43
16 | W-037-007.G-0003 37.0 7.0 3.41
17 | W-056-017.G-0003 56.0 17.0 5.85
18 | W-038-025.G-0003 38.0 25.0 3.77
19 | W-075-033.G-0003 75.0 33.0 5.47
20 | W-057-035.G-0003 57.0 35.0 7.74
21 | W-075-051.G-0003 75.0 51.0 2.22
22 | W-057-053.G-0003 57.0 53.0 2.75
23 | W-045-082.G-0004 45.0 82.0 2.10
24 | W-065-091.G-0004 65.0 91.0 3.24

W-047-100.G-0004 47.0 100.0 3.31
25 | W-084-104.G-0004 84.0 104.0 0.91
26 | W-066-109.G-0004 66.0 109.0 2.59

W-048-118.G-0004 48.0 118.0 2.05
27 | W-053-136.G-0004 53.0 136.0 1.67
28 | W-032-006.G-0005 32.0 6.0 2.91
29 | W-036-024.G-0005 36.0 24.0 3.56
30 | W-054-024.G-0005 54.0 24.0 5.11
31 | W-072-040.G-0005 72.0 40.0 4.48
32 | W-054-042.G-0005 54.0 42.0 5.03
33 | W-062-064.G-0006 62.0 64.0 1.16

W-045-082.G-0006 45.0 82.0 0.92
34 | W-063-082.G-0006 63.0 82.0 0.96
35 | W-098-127.G-0007 | 98.0 127.0 1.05
36 | W-080-129.G-0007 | 80.0 129.0 1.04
37 | W-144-130.G-0008 | 144.0 130.0 1.13
38 | W-089-086.G-0009 89.0 86.0 0.82

W-107-093.G-0009 | 107.0 93.0 0.88
39 | W-085-162.G-0010 85.0 162.0 0.97
40 | W-067-166.G-0010 67.0 166.0 1.11

W-144-130.G-0011 | 144.0 130.0 0.95

Table 14: Results of the Simultaneous consideration of all potential points

64




