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Abstract

We propose a new method for calculating all stationary states, including saddle points of
all orders, of a potential energy surface based on the BB deterministic branch and bound
global optimization algorithm. This method is based on rigorous optimization methods and
offers a theoretical guarentee of enclosing all solutions to the equation VV = 0. We ap-
ply this method to Murrel-Sorbie analytic potential energy surfaces of HCN, HSiN, HBO,
and CS,, and to the ECEPP/3 (Empirical Conformational Energy Program for Peptides)
potential energy surfaces of alanine, alanine dipeptide, and tetra-alanine. For alanine, ala-
nine dipeptide, and tetra-alanine, we proceed to analyze the topography of the potential
energy surface by calculating reaction pathways, transition rate matrices, time-evolution of

occupation probabilities, and rate disconnectivity graphs.
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1 Introduction

Stationary points of potential energy surfaces (i.e., where VV = 0) play an important role
in computational chemistry. The local minima of a potential energy surface represent stable
molecular configurations, and the first order saddle points generally correspond to transition
states which connect two such configurations. A chemical reaction, isomerization process, or
a protein-folding process can be thought of as a transition between two local minima through
a transition state on the potential energy surface, or a series of such transitions.

Determining the location of the stationary points on a potential energy surface is the first
step in understanding how the potential energy surface is connected (i.e., understanding
its topography). Once these stationary points are known, the possible reaction pathways
between two given configurations can be enumerated and transition rates can be calculated.
Even higher order saddle points may play an important role in transition state theory,
as these states provide alternative reaction pathways. Hence, a method of generating all
stationary points of a given potential energy surface would be extremely useful in elucidating
the pathways selected.

There are a number of methods for generating stationary points of potential energy
surfaces already in use. The most obvious method is applying the Newton-Raphson method
to VV = 0. The Newton-Raphson method tends to yield a solution whenever the initial
guess is close to a stationary point and the Hessian matrix has the appropriate signature for
the type of stationary point desired (minima, first-order saddle, etc). It cannot be used, for
example, to walk away from a local minimum towards a first-order saddle point.

The various “eigenmode-following” methods are sophisticated variants of the Newton-
Raphson method [1, 2, 3, 4, 5, 6]. The Hessian is diagonalized, and a modified Newton-
Raphson step is generated by “shifting” some of the eigenvalues of the Hessian, from positive
to negative or vice versa, before applying its inverse. These methods allow one to step away
from local minima in search of transition states, and vice versa. Further details can be found
in Appendix A.

There are a number of stochastic methods used to find stationary points [7]. Local minima
can be obtained by frequent quenching of a constant energy (or temperature) trajectory
[8]. Simulated annealing by running a constant temperature trajectory simulation, slowly
reducing the temperature to zero in the process, can sometimes lead to good candidates for
the global minimum. The method of “slowest slides” [9] has been used to search for transition

states connecting two given local minima: a constant energy trajectory is followed during a



transition from one local minimum to the other, and the maximum along that trajectory is
taken as an initial guess for the transition state.

Other methods exist for searching for the global minimum of a potential energy surface.
Diffusion equation and distance scaling methods have been applied to the problem of finding
the global minimum of a potential energy surface [10]. Smoothing transformations are ap-
plied to the potential energy surface to eliminate the irrelevant local minima. The remaining
minima are tracked back to the original potential energy surface as the transformations are
gradually removed. Another method involves obtaining a large sample of local minima and
forming a “convex global underestimator” of the potential energy surface based on those
sample points [11]. The global minimum of the original potential energy surface is sought in
the vicinity of the global minimum of the convex global underestimator.

All of these methods, good in their own right, share one very important drawback: there
is no guarantee that all (or even the most important) local minima and first or higher-order
transition states will be found.

In this paper, we propose a method of finding all stationary points of a given potential
energy surface based on the aBB deterministic branch and bound global optimization algo-
rithm [12, 13, 14, 15, 16], which is described in detail in Sections 2—4. This is an application of
the more general method of finding all solutions to systems of non-linear equations described
in [12]. We applied this method to the Murrel-Sorbie analytic potential energy surfaces of
triatomic molecules, such as HCN, HSiN, HBO, and CS,, and to the ECEPP/3 (Empirical
Conformational Energy Program for Peptides) potential energy surfaces of alanine, alanine
dipeptide, and tetra-alanine. The details of this search will be discussed in Sections 5, 6, 7,
and 9.

Once the minima and saddles have been located, the topography of the potential energy
surface can be further analyzed. In Section 8, we present the results of our analysis for
alanine and alanine dipeptide. Section 9 presents the computational studies of tetra-alanine
and the analysis of the pathways.

It is simple matter to follow each saddle point back to the two minima it connects. It is
worth noting that searching downhill from transition states towards minima is always more
reliable than searching uphill from a given minimum towards a first-order transition state.
Since we have already located all of the first-order transition states, it is not necessary to
start at the minima and proceed uphill. After determining the connectivity of the potential
energy surface, transition rates between minima can be calculated using Rice-Ramsperger—
Kassel-Marcus (RRKM) theory [17, 18].



Recently, Becker and Karplus [19] proposed a graphical representation of the topography
of a potential energy surface. They define a finite energy (temperature) generalization of
the “catchment region”. As the energy (temperature) is increased, regions that were once
disconnected by high barriers begin to merge. This coalescence process is described by
means of an “energy (temperature) disconnectivity graph”. The shape of the disconnectivity
graph reveals an enormous wealth of dynamical information. We extended their idea by
constructing a “rate disconnectivity graph” based on transition rates rather than energy

levels or barrier heights.

2 Problem formulation

Stationary points of all orders (i.e., minima, maxima, first order and higher order transition
states) of a given potential energy surface V' (x) are determined by the constraint VV = 0,
which can be written out more fully as

v
81’,‘ N

where N, is the number of variables: x = (z1,...,2zn,)-

0, i=1,...,N, (1)

Equation (1) is a special case of the general class of non-linearly constrained systems of

algebraic equations:

fz(X) = 0, 7;:1,...Nf
gi(x) < 0, j=1,...N,

xF <x <xV (2)

where f;(x) represent the equality constraints (/N; is the number of such constraints) and
gj(x) represent the inequality constraints (/V, is the number of such constraints). Indeed,
(2) can be reduced to (1) by assigning f;(x) = 0V/0z; fori =1,..., Ny = N, and N, = 0.
Equation (2) can be re-expressed as a global optimization problem by introducing a slack
variable s and minimizing its value over an augmented variable set (x,s) subject to a set of

relaxed constraints:

nxlisns
subject to fz‘(X),—s < 0, 1=1,...Ny
—filx)—s < 0, i=1,...Ny
gi(x) < 0, j=1,..N,
xb<x<xV (3)
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The following two facts are self-evident:
e If s < 0, the constraints in (3) are infeasible.
e If s =0, the constraints in (3) reduce to the original problem (2).

It follows that s = 0 is the global minimum of (3) (provided that (2) has solutions), and that
there is a one-to-one correspondence between global minima (x*, s*) of (3) and solutions x*
of the original problem (2). Therefore, the problem of finding all solutions to (2) can be
reformulated as the problem of finding all global minima of (3).

In the next section, we will explain how the aBB global optimization algorithm [12, 13,

14, 15, 16] can be used to find all global minima of (3), and hence, all solutions to (2).

3 The aBB global optimization approach

In this section, we describe the BB global optimization algorithm [12, 13, 14, 15, 16], as it
is applied to the general problem of determining all solutions to a system of algebraic con-
straints (2). This adaptation is based on the correspondence between solutions of (2) and
global minima of (3) with s = 0. The BB algorithm can be applied to any problem involv-
ing constraints which are twice continuously differentiable (C?). Thus, the only necessary
assumptions we need to make are that fj(x) and g;(x) are C* functions for i = 1,..., N;
and j =1,..., N, respectively.

The algorithm proceeds by exploring the configuration space for solutions to (2). We
begin with the full region x € [xl,xY], and subdivide regions into smaller regions. Each
region is tested before it is divided to see if a solution to (2) can possibly exist there. This
is accomplished by finding a lower bound of the global minimum of (3) over the region in
question. If the lower bound is positive, then s = 0 cannot lead to a feasible point of (3),
and hence no solution to (2) can exist in the given region. The region will be fathomed (i.e.,
eliminated from further consideration). On the other hand, if the lower bound is negative
or zero, there may or may not be a solution to (2) in that region. In this case, further
subdivision and testing will be necessary. If the region size becomes small enough and the
region is still active (i.e., its lower bound is negative or zero), then a solution to (2) is
obtained within that region by a local search. The algorithm terminates when all regions
have been fully processed.

Lower bounds of the global minimum of (3) are determined by solving a modified problem,

called the lower bounding problem, over the given region. The goal here is to replace (3) with



a new problem which is convex and has an expanded feasibility region. Both goals can be
accomplished by replacing the LHS of each constraint in (3) with convexr underestimators
of those functions. If fi"(x) < fi(x), fi(x) < —fi(x), and g;(x) < g;(x) are all convex
functions, then a valid lower bounding problem would be to minimize s subject to the

convexified constraints:

ffx)—s < 0, i=1,...,N;
fix)—s < 0, i=1,...,N¢
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gi(x ., Ny (4)

Since the constraints are all convex functions, any local optimization package should be able
to locate its global minimum. Furthermore, every feasible point of (3) is also a feasible point
of (4) since these functions are underestimators of the original functions. It follows that the
global minimum of (4) is a valid lower bound of the global minimum of (3).

The crux of the oBB algorithm is finding valid convex underestimators, f;*(x) and gj(x),
for the functions +f;(x) and g;(x), respectively, over a given region. An important con-
sideration is that the convex underestimators be as tight (i.e., close in value to the original
constraint functions) as is reasonably possible, as tighter underestimators lead to better lower
bound estimates. It is important to be able to fathom regions as quickly as possible if they do
not contain any solutions to (2). However, this cannot always be done: it frequently occurs
that a region contains no solution to (2) (i.e., the global minimum of (3) over that region is
positive), but the lower bound obtained from (4) for that region is negative. Such regions
obviously must be explored further, until positive lower bounds are obtained. A better lower
bound estimate can lead to significant improvement in the efficiency of the algorithm.

It should be noted that the partitioning of a region into subregions naturally permits
tighter convex underestimators, as the restrictions placed on the convex underestimators are
reduced (they only have to be convex and underestimate the original constraint functions
over the region of interest). This is critical to the eventual termination of the «BB algorithm,
since it is important that regions which contain no solutions ultimately be fathomed. If the
lower bounds on those regions were never to improve to a point where they all would become
positive, then the algorithm would never terminate.

The most generally applicable method for the generation of convex underestimators,
which we employ in our search for all stationary states, is to subtract off a quadratic term

from the original constraints:

ff) = filx) = af " Y (a} — wp) (o — )
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fix) = —fi(x) - f’*Z(x,?—xk)(xk—:cé)
g;(x) = g —0492 — z) (2 — %) (5)
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are the upper and lower bounds of the region in question [12]. The

f,_
y O

and x
f+

where x
coeflicients o and ag must be positive and sufficiently large so as to guarantee the
convexity of f;"(x), fi(x) and §;(x) over the region [x%,x"]. A function is convex if and
only if its Hessian matrix is positive semi-definite at all points x € [xZ, xY]. This observation

leads to the following lower limit on the choice of each o':

of > L min (n(H,)),0)

2 xe[xL xU]
3 1
o7 2 4y max, (W (H;()),0}
1
ag _5 xEl[ZClI%I}cU { ( 9j (X))’ 0} (6)

The o underestimators f;7(x), f;(x) and g;(x) given by (5) have the following properties:

e They are valid underestimators of the original constraint functions and are convex over

the region [x%, xY] (provided, of course, that (6) is satisfied).

o They match the constraint functions at all corner points (i.e., f7(x) = +f;(x) and

gj(x) = g;(x) at all corner points).

e The maximum separation between an « underestimator f (x) and the function it un-
derestimates f(x) always occurs at the center of the rectangle x™4 = (xI' +x%)/2 and

has the value

max () - f() = 2o |xV — x|

x€[xL xU] 4

This value decreases as the region is partitioned.

e The o underestimator constructed over the region [x”, xY] will always be more tight
than an o underestimator constructed over a larger region. In other words, as the
regions are partitioned into smaller region, the underestimators will more closely ap-

proximate the functions they are underestimating.

1t is at this point that the assumption that all constraint functions are C? come into play. It is important
that the Hessian of each constraint exist and have bounded eigenvalues over the region of interest, or else
the inequalities (6) may be meaningless or impossible to satisfy.



The latter two properties insure that the lower bounds follow a monotonically non-decreasing
sequence as the algorithm progresses, and that it will eventually terminate.

Calculating values of o according to (6) is difficult in general because the Hessian matrices
Hy, and H,; depend on x. If the selected values of a are too small (the inequalities are not
satisfied), the “convex underestimators” will not be convex after all, and thus there is no
guarantee that using a local optimization solver will yield the global minimum of the lower
bounding problem. Lower bounds generated this way may not be valid. On the other hand,
if the selected values are too large, the underestimators will be convex, but they will be very
loose. This may lead to poor computational performance of the algorithm.

A simplified method of calculating « is to start with small values of « (e.g., a{ =

of

7~ = af = 5) and increase the values of o until no new solutions are found. This can be a

practical solution to many problems where the correct values of a: are difficult to determine,
or lead to poor performance. However, this method has the one serious drawback in that
it sacrifices the theoretical guarantee of finding all solutions. In spite of this fact, we were
f:j: — 5

able to identify all minima and first-order transition states of alanine by setting «;
Further discussion of alanine can be found in Section 6.

A more robust method involves calculating the Hessian matrices Hy, and H,, at various
grid points to get a sample of required o values. First we select a grid, {x*}. Then we
evaluate the Hessian for each constraint at each grid point, Hy,(x*) and H,y, (x*), and use
(6) to determine precomputed values of "t (x*), of" (x*) and o (x*) at each grid-point.
During the BB run, appropriate values of « for a given region are determined by selecting
the maximum « over all grid-points contained in the region. The search is expedited by
computing the a(x*) values in a well-defined order and making sure each « value is greater
than its predecessors. That way, we can be sure that one particular grid point, the one which
was calculated last, will indeed contain the maximum value of a(xy) over all grid points in
the entire region.

The “grid” method for the calculation of o was used to determine values of « for the
triatomic molecules. While the absolute theoretical guarantee is still lacking, since searching
over a grid is not the same as searching over all points in a region, the grid alphas are quite
practical and rather effective for such problems. It should be noted that the generation of

values of « that are theoretically rigorous can be made based on the recent work of [15, 16].



4 (Geometrical interpretation

In this section, we give a geometric illustration of how the BB algorithm works by showing
how it would locate all of the solutions of a single equation f(z) = 0 over the interval

x € [0,4]. The function we use for our illustration is
f(z) = —2cos g(”’ +0.05) + e~ 20(@—0.2) _ ~20(@—16)* | ~20(z~24)> _ ~20(z~3.5)’

A graph of this function is given in Figure 1. There are three solutions to f(z) = 0 in this
interval. They are
Zsol € {0.59014,1.82399, 3.27691}

The corresponding global optimization problem is obtained by introducing a slack variable

s and minimizing s subject to the constraints
f#)=s<0< f(z)+s

The feasibility region for fixed s is determined by intersecting the region of space between
f(z) — s and f(z) + s with the z-axis. This procedure is shown graphically in Figure 2.
For s > 0, the feasibility region forms intervals around the actual solution to f(z) = 0.
Minimizing s subject to the constraints above has the effect of pushing the two graphs
together until they both meet at f(x) (at s =0). At s = 0, the feasibility region reduces to
the solution set for f(z) = 0 (each interval reduces to a point). For s < 0, the graphs cross
and the feasibility region is empty. s = 0 is clearly the global minimum whenever f(z) =0
has solutions.

In order to set up the lower bounding problem, we need to find convex underestimators for
+f(z) for each interval under consideration. We begin with the complete interval [0, 4]. The

function f(z), and a valid set of convex underestimators f[ﬁ 4(2) are plotted in Figure 32.The

2We constructed fﬁ; ] (z) by augmenting

b—=x T —a
b
b_a+f( )b—a ,

Ly a.5(x) = f(a)

the linear interpolation of f(z) over the interval [a,b], by linear combinations of concave functions of the
general form
1— e—kl(w—a) ekQ(w—a) -1
w[a,b],khkz (IL') = 1 — g—k1(b—a) - eka(b—a) _ 1’

which equal zero at both endpoints. For [0,4], we used
f[JSA] (z) = Ly j0,4(®) — 3-85¢(0,4,1/4,7/4()

_f[5,4] (x) = Ly 0,41(x) + 3.6891,4],2,1/4(x) + 0.0510,4,1 /10,100 ()



convex underestimators f[ﬁ " (x) essentially envelop the graph of f(z) in a convex region. This
convex region contains all the points f*(z) <y < —f~(z), and its intersection with the z-
axis is given by f*(z) < 0 < —f (). All solutions to f(z) = 0 in the region z € [0, 4]
must lie in this intersection region because f*(x) and —f~(z) surround the function f(z)
(see Figure 3). If this region had been empty, then no solution to f(z) = 0 could possibility
exist in the interval [0,4]. This is not the case, but see later on when we discuss the interval
2,3].

Determining whether or not the feasibility region of f*(z) < 0 < —f~(z) is empty

involves introducing a slack variable and minimizing it subject to
ff@)—s<0<—f(2)+s (7)

This is the lower bounding problem. For s = 0, (7) reduces to f*(z) < 0 < —f (z). For
s # 0, the feasibility region of (7) is determined by shifting the enveloping functions fr (x)
and — f ~(z) by an amount s — away from each other if s > 0, and towards each other if s < 0
(see Figure 4). Graphically, minimizing s subject to (7) involves expanding or shrinking the
region between the underestimators by adjusting s until the region between f*(z) — s and
- f ~ () + s intersects the z-axis at a single point. For the interval [0, 4], this requires moving
+f* (z) towards each other, implying s, < 0 (in fact, the value is sy, = —2.135). The fact
that sy, < 0 indicates that there might be solutions to f(z) = 0 in this interval: we will
be forced to explore this region further. Note that the lower bounding problem is a convez
problem, and so any local optimization package should reach this unique global minimum.

We therefore subdivide the interval [0, 4] into two subintervals, [0, 2] and [2, 4], and explore
each interval for solutions just as we did for [0,4]. The convex underestimators for each
interval, f[ﬁﬂ (z) and fé 4(x), are shown in Figure 53. Note that each pair of underestimators
envelops the corresponding portion of the function f(z), and that the underestimators have
improved: they are closer to the function f(x). This will continue to happen as the intervals
become narrower.

Again, the question we ask in each interval is: can a solution to f(z) = 0 exist there?

The question is answered by solving the lower bounding problem. In both cases, the region

3We used X
ff5,2] (z) = Lf,[0,2] ()

_f[ag] (x) = Ly 0,2)(x) + 4.7010,21,1,2(x)
fg @) = Lyp.a(@) —3.50 93,0121 ()
_f[;,4] (x) = Ly [2,4)(x) + 0.40 912 4,1 /2,10()
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fH(z) <0< —f (x) does intersect the z-axis (see Figure 5), indicating possible solutions
in each interval. This fact is established by minimizing s subject to (7) within each interval.
In both cases, sy, < 0%, suggesting that f *(z) must move towards each other to reduce the
feasibility region to a point (see Figures 6 and 7). Both intervals must be explored further.

So we subdivide again, and look at the intervals [0, 1], [1, 2], [2, 3] and [3, 4]. The under-
estimators f[in +17(z) are plotted in Figure 8. For the intervals [0,1], [1,2], and [3,4], the
story is the same: s = 0 yields feasible points, smi, is negative®, and so we must subdivide
those intervals further. But something new happens for [2,3]. The convex envelope féﬁ?’] (x)
completely isolates f(z) from the z-axis. The lower bounding problem (7) is infeasible for
s = 0. The region between f[;?,] () and — f[;,:,)] (z) must be ezpanded before it touches the
z-axis (see Figure 9), and thus sy, will be greater than zero (in fact, sy, = +0.479). We
have rigorously concluded that no solution to f(z) = 0 can exist in the interval [2, 3], and so
we do not need to explore this interval any further. The ability to fathom regions like this
is what distinguishes aBB from a straight grid-search.

Exploration will continue with the intervals [0, 1], [1, 2], and [3, 4]. These intervals will be
subdivided and further tested. As the algorithm progresses, most intervals will eventually be
fathomed. A few intervals (three, in fact) will survive. Each of these intervals surrounds a
solution point, which will be located by a local search once the interval size is small enough.

The underestimators for our illustration were handpicked to illustrate the BB algorithm
at its best. Underestimators are usually not that tight. If the underestimators are not tight
enough, what can happen is that an interval which does not contain any solution to f(z) =0

might not be successfully fathomed. Let’s look again at the interval [2, 3] of our example,

1440021 _ 4989 and 224 = —1.150.

min min

5We used

Fon(@) = Lo (@) — 1.5049(0,11,1,2(#)
~fio11(®) = Ly o,1)(@) +0.55910,1,10,2(2)

f[Jf,z] () = Ly1,21(®) — 0.3091,2),1,4(2)

_f[iz] () = Ly n2(®) + 1.25¢p 9)6,2(2)

f[g,s] (z) = Ly, 12,3/(%) — 1.10 912 3),4,10(2)
—f[;,g](w) = Ly 2,3(2)

f[J?fA] () = Ly 3,4(x) — 11043 4,1,1(2)

~

—f[§,4] (x) = Lf,[3,4] (z) +0.80 1/1[3,4],3,9(55)
65101 — _0.464, s2) = —0.253, and sE:4 = —0.353.

min 5 “min min

11



except this time we use inferior underestimators ff; f:,,’]i(x) (see Figure 10)7. Notice how the
region between fmf+( ) and fmf (x) intersects the z-axis, even though f(z) does not,
suggesting that there might be solutions in that interval. In solving the lower bounding

problem, s will be negative®. In this case, the interval will have to explored further.
The underestimators we used to find stationary states of potential energy surfaces were
obtained by subtracting off a sufficiently large quadratic term from +f(x). For functions of

a single variable, the appropriate formula is

Je (@) = £1(@) - a*(a¥ —a) (@ - 2*)

The values of a* and o~ must be positive, and chosen so that f+(z) and f*~(z) are both
convex over the interval z € [z, zU]. This condition is very simple for functions of a single

variable: we must choose a* so that

1d*f
+ ___J
of = max {055
_ 1d2f
@ 2 zer[rmlg};lf {0, "2 dx? } ®)

This guarantees that d2f*/da? = d2f /dz?® + 2t and d2f®~ /dz® = —d2f/dz? + 20~ will
both be positive for all = in the interval in question.

For our example problem, d?f/dz?® € [—30.415,+32.305] over the complete interval x €
[0,4] (see Figure 11), and so minimum acceptable values of alpha are ot = 15.206 and
o~ = 16.152. In Figure 12, we plot f(z) and f*=(z) for various intervals, starting with the
complete interval [0, 4], and subdividing.

The underestimators for the large interval [0, 4] are extremely loose, but as the interval

is subdivided, the underestimators improve dramatically. The maximum deviation of the

underestimators from the function f(z) decreases with decreasing interval size z¥ — xt
according to
. 1
max _|f*%(z) — f(z)| = o |z¥ — 2F|?
e, (@) = f(@)] = g0t "

When z¥ — z¥ = 1, the underestimators are sufficiently tight that 3 out of the 5 intervals

1

not containing any solutions are successfully fathomed (see Figure 12). When zV — 2’ = T

TWe used - )
f[l;,?,’]—i_(m) = f[;g] (z) — 2.0¢p2,3),1,1(2)

—fE;g]_ (.'L') = —f[;,3] (IL') + 4.5¢[2,3],1’1($)
8sinf — _(.407.

min

12



another 6 intervals are trimmed away, leaving just four intervals: three of them containing
solutions. As the intervals are subdivided further, it will generally be the case that three
intervals survive (those containing the solutions) and the other intervals will be fathomed.
Once the interval size is small enough, BB essentially becomes a binary search targeted
around each solution.

The «a-underestimators can be further improved for some of the smaller intervals by
reducing the value of o and . The maximum in (8) need only be taken over the interval
in question, so it may be possible to reduce them from the appropriate values over the
interval [0,4]. For example, it can be seen from Figure 11 that d?f/dz? € [—10.001, 19.986]
over the interval = € [%, 1]. This permits us to use smaller alphas when generating the

convex underestimators for this interval: o7 ., = 5.000 and oz[_l = 9.993, thus improving

11 11
the overall quality of the underestimators. A[ftliough it obviousl; Ir]lakes no difference for this
particular interval (it cannot be fathomed whatever we do because a solution to f(z) = 0
is contained there), substantial savings in CPU time may result from using values of alpha
computed over each region in question.

It may also be possible to improve the algorithm performance by performing “bound
updates”. As an illustration of this procedure, let’s look again at the interval [0,2] (see
Figure 5). Recall that all solutions to f(z) = 0 which lie in the interval [0, 2] must also lie in
the interval determined by f[&] () <0< — f[E,Z] (x), which is the intersection of the x-axis
and the convex region enveloped by the functions f*(z) and —f~(x). If this interval can
be determined, then we lose nothing by reducing the interval under consideration from [0, 2]
to this smaller interval. This can lead to an enhanced performance of the algorithm. The
procedure is illustrated in Figure 13°.

The new bounds for the interval are determined computationally by solving the “bound-
update problem”

min/max z
T

subject to f*(z) <0< —f(x) 9)

These are the same constraints as the lower bounding problem (with s = 0), although the

objective function is different. Two optimization runs are required (one for each bound on

9The updated interval is [zL,2Y] = [0.310, 1.938]. The convex underestimators for this interval are given
by
f]j;](x) = Lf,[zL,zU] (SU)

—fou(®@) = Ly pr ov1(2) + 5.05 91,2 4o111.5(2)
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the variable), so there is a cost associated with bound updates'®. However, if the convex
envelope around f(x) intersects the z-axis over a relatively small interval, reducing the
interval under consideration may be well worth the extra effort. Not much is gained in the
case of [0, 2] (about a 20% reduction, see Figure 13), but for the interval [1, 2] (see Figure 8),
the reduction is substantial.

Note that the bound update procedure can be repeated, but eventually the tradeoff will
not be worthwhile. For example, if we repeat the bound update procedure for the new
interval [0.310,1.938] (Figure 13), we would solve (9) with f*(z) replaced by f& (z), and
obtain the new bounds [z, V] = [0.404, 1.897] (this is where — f;- () intersects the z-axis:
see Figure 13). However, these bounds are only a slight improvement (about 8%): definitely
not worth the extra effort to perform two local optimization runs. Do note that no matter
how many times we update the bounds, the resulting interval must contain both solutions
to f(xz) = 0, so there is a limit to what this procedure can do for us.

The aBB algorithm may be applied to the problem of finding all stationary points of a
given potential energy surface. It is especially suitable for small molecules or large molecules
with a limited number of degrees of freedom. In the next few sections, we shall apply this
method to triatomic molecules (3 degrees of freedom), alanine (4 degrees of freedom), alanine

dipeptide (7 degrees of freedom) and tetra-alanine (8 degrees of freedom).

5 Computational Studies: Triatomic Molecules

We applied the aBB algorithm to the problem of finding all stationary points of potential
energy surfaces of several triatomic molecules: HCN, HSiN, CS,, and HBO [20, 22, 23, 21].
We used the analytic potential energy surfaces introduced by Murrell and Sorbie [24] for
each of the molecules (see Tables I-V). In each case, the triatomic molecule geometry was
described using the three interatomic distances R4p, Rac, and Rgc. We solved the following

system of equations and inequalities:

OV/ORss = 0
OV/ORsc = 0
OV/ORze = 0

10Tt is an interesting exercise to compare the bound update procedure with solving the lower bounding
problem. Using the bound update procedure for the sole purpose of determining the feasibility of the lower
bounding problem for s = 0 would be inefficient because two local optimizations are needed instead of one.
The benefit of performing bound updates comes from reducing the size of the interval. Solving the lower
bounding problem and finding smin < 0 only tells us that there may be solutions to f(x) = 0 in the interval:
the lower bounding problem does not enable us to reduce the size of this interval.
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Riap < Rac+ Rpe
Risc < Rup+ Rpe
Rpc < Rap+ Rac (10)

The three equality constraints impose the stationary condition VV' = (. The three inequality
constraints impose the triangle inequality. Since the inequality constraints are linear, convex
underestimators for those constraints will not be necessary: they are simply added to the
lower bounding problem.

We selected as our initial region 0.7A < R; <5.0 A. The lower bound was selected by
calculating forces for various choices of (Rag, Rac, Rpc) for HCN. It was found that the
three atoms strongly repelled each other when the interatomic spacings were set to 0.7 A,
making it extremely unlikely that any important minima or transition states would exist for
R; < 0.7A. Since interatomic distances for stable configurations of these molecules tend to
be in the 1-2 A range, an upper bound of 5.0 A seems reasonable.

The constraints (10) turn out to be inappropriate for molecular configurations which are
collinear. When the molecule is collinear, one of the triangle inequalities becomes an equality
constraint. In this case, the R; can no longer vary independently in all three directions, and
it makes no sense to require that 9V/0R; vanish in all three directions. For example, if atom
B is in the middle, collinearity implies that Ryc = Rap + Rpc. In this case, a simultaneous
increase of R4c and decrease of Ryp and Rpc is geometrically impossible. The computed
values of V(Rap, Rac, Rpc) may very well change to first order when R; is varied as such,
and we are still at a physical stationary state. The proper way to handle collinear molecules
is to first impose the collinearity condition and replace the third variable by its expression in
terms of the other two: for example, replace V(Rap, Rac, Rgc) by V(Rap, Rap+Rpc, Rec),

and then impose the stationary conditions with respect to the two remaining variables:

d
iR V(Rap, Rag + Rpc, Rpc) =0
AB
d
V(Rap, Rap + Rpc, Rpc) =0
dRpc

The triangle inequality constraints are no longer needed.

It is therefore necessary to solve four problems for each triatomic molecule: one problem
for the non-collinear case and three problems for the collinear case, one for each atom in the
middle.

The values for ;" were selected by use of a 13 x 13 x 13 grid (or a 13 x 13 grid for collinear

molecules). The values of R; were partitioned according to the set

{0.7,0.8,0.9,1.0,1.1,1.3,1.6,2.0, 2.5, 3.0, 3.5, 4.0, 5.0}
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and Hessian values Hay/gr, were computed for each constraint at each grid point. Note that
the Hessian calculation involves third derivatives of V: the Hessian for 0V/OR; contains
elements of the form 0°V/OR;0R;0Ry,. These derivatives were evaluated analytically. Since
the potential energy terms contain factors which decrease exponentially with interatomic
spacing, it is expected that higher alpha values occur for smaller interatomic spacings. We
made sure of this by maximizing the alpha values obtained for a given grid point over all

other grid points with higher interatomic spacings. Appropriate values of alpha for the region
[R5, Ripl % [Ric, Ric] x [Rbe, R

are obtained by rounding down the lower bounds of each interval to the nearest grid point
and using the precomputed grid alphas stored there.

The results of our search for the molecules HCN, HSiN, CS,, and HBO are summarized
in Tables VI-X. The minima and first-order saddles and their connectivity are depicted in
Figures 14-18. Note that two potential energy surfaces for HBO were used, since they were
provided in the literature. “++-+-+4" indicates the long side of a collinear molecule in the
tables.

The results for HCN are listed in Table VI and shown in Figure 14. min.1 and min.2
are, the collinear HCN and HNC isomers, respectively. The two minima are connected via
the transition state 1st.1. It is clear that the transition between HCN and HNC takes place
via transfer of the hydrogen from one side of the molecule to the other. This transition is
discussed in [20]. In addition to these stationary points, there are two other minima and
three other transition states. min.3 is shaped like a small triangle and is connected by a very
shallow barrier to min.2 via the transition state 1st.2. min.4 corresponds to a weak hydrogen-
bonded structure C---HN (also discussed in [20]). It can make a transition to min.2 via a
simple rotation of the hydrogen around the nitrogen atom. min.4 can also make a transition
to min.1 via a slightly more complicated transition involving a hydrogen exchange between
N and C along with a rotation around the carbon atom. The escape barriers for min.3
and min.4 are relatively shallow, indicating that they play very little role in the dynamics
of HCN. min.3 appears to be nothing more than a wrinkle in the potential energy surface.
There is a good chance that it is an artifact of the construction of the analytic potential
energy surface, and therefore does not correspond to any physical state.

The results for HSiN are listed in Table VII and shown in Figure 15. min.1 and min.2
are the collinear HNSi and HSiIN isomers, respectively. Note the reversal in priority of

these two minima as compared with the analogous HCN molecule: HNSi is the ground
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state. These two configurations are connected via the transition state 1st.4. The transition
between HNSi and HSiN is clearly analogous to the transition between HCN and HNC. This
transition is discussed in [20]. There are four additional first-order transition states. Two of
them (1st.1 and 1st.5) connect min.1 and min.2 respectively to the dissociated state SiN+H.
The remaining two first-order transition states (1st.2 and 1st.3) connect min.2 and min.1
respectively to an artificial minimum of extremely low energy corresponding to SiH---N
(this minimum does not appear in Table VII because the solution is outside of the bounds
0.7A < R, < 5.0A: the nitrogen atom is about 6 angstroms from SiH). This anomalous
region of the potential energy surface can be explained by close examination of the analytic
formula in Table II. The exponential cutoff of the 3-body interaction term V; is governed by
the v; parameters. Note that v, and <3 are assigned very small values. This means that V;
is not cut off properly when Rs;ny and Ryy take on large values. This allows one of the terms
in V; (namely, —1.0421p3) to make a large negative contribution to the potential energy. It
is clear that this region of the potential energy surface is an artifact of its construction and
is not based on any physical reality. Note that both barriers of entry into this anomalous
region (1st.2 and 1st.3) are lower than the barrier between HSiN and HNSi (1st.4), making
this potential energy surface a highly dubious choice in any kinetic study of HSiN.

The results for CS, are listed in Table VIII and shown in Figure 16. min.1 corresponds
to the collinear SCS conformation. min.1 is connected to itself via the transition state
1st.2. The transition involves a 360° rotation of one of the sulfur atoms around the CS. The
other transition state (1st.1) is the transition structure for the reaction C + S, = CS + S.
Careful analysis reveals that min.1 is also connected to the dissocated state S+CS without
a barrier. There is very little discussion of CS; in [21] since their primary concern was with
the tetra-atomic molecule OCS,.

The results for HBO (PES1) are listed in Table IX and shown in Figure 17. min.1
corresponds to the collinear HBO minimum. It is connected to itself via the transition state
1st.2. The transition involves a 360° rotation of the hydrogen atom around the boron atom
(the oxygen atom gets out of the way). The other transition state (1st.1) connects min.1 to
the dissociated state H+BO. This potential energy surface was discussed in [22], where it was
claimed that there is a second minimum corresponding to a “bent” HOB structure. We were
unable to locate this minimum or any transition state which might lead to this minimum
using aBB. We also did not locate this minimum using an eigenmode-following algorithm
(Eigenmode ITI, described in Appendix A), using Figure 1 of [25] to obtain a reasonably close

initial guess. Our conclusion is that this second minimum does not exist on the potential
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energy surface described in [22]. We suspect that there may be a typographical error in that
potential energy surface!l.

The same authors also provided a second potential energy surface for HBO (called PES2)
in [23]. Our results for this potential energy surface are listed in Table X and shown in
Figure 18. We found both the collinear HBO (min.1) and collinear HOB (min.2) minima,
as well as the transition between them (1st.1). The other transition state (1st.2) connects
min.1 to itself, with the same 360° rotation of the hydrogen atom around the boron atom as
found in PESI.

6 Computational Studies: Alanine

We have also applied the proposed approach to the problem of finding all stationary states
of alanine. We used the ECEPP/3 potential energy surface [26], fixing all bond lengths and
bond angles to their equilibrium values, and allowing just the four relevant dihedral angles,
¢, ¥, w, and x to vary (see Figure 19). Note that the dihedral angle x specifies the rotation of
a methyl group, and therefore has a 120° rotational symmetry. The other angles are allowed
to vary over a complete 360° interval.

We performed our search for stationary states using the proposed method by trying
various fixed values of of°. The results of our searches, which were performed on an HP-
132B workstation, are summarized in Table XI. The 17 local minima and 62 first-order
transition states can be found in Tables XII and XIII, respectively.

We appear to have found all of the minima and first-order transition states by setting
oif = 5. This conclusion is based on the fact that increasing o to 10, 15, and finally 20 did
not locate any additional states. As a final check, we conducted a brute force Eigenmode II1
search for minima and first-order transition states. In each case, we laid down a 9 x9x9x9
grid of starting points and allowed Eigenmode III to take up to 100 steps in the direction
of the stationary state. The Eigenmode III search located the same 17 local minima and 62

first-order transition states, and took about 229 CPU seconds!?.

1 Communication with the original authors was unsuccessful.

12A couple of points should be made regarding the Eigenmode IIT grid search. First of all, although the
Eigenmode IIT grid search appears to be more (time) efficient than aBB in locating stationary states, there
is no guarentee, even theoretical, that all solutions will be found by the grid search. Increasing the size of
the grid will increase the likelihood that any given stationary point will be found, but at a cost of increasing
the CPU time required for the search. It should also be pointed out that the time required for the grid
search is exponential in the number of degrees of freedom of the molecule, and so is only practical for small
molecules.
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The 1¢—¢ plot for alanine is shown in Figure 20. It shows the 17 local minima (large
numbered dots) and 62 first-order transition states (small unnumbered dots), as well as the

connections between them. Further discussion of alanine can be found in Section 8.

7 Computational Studies: Alanine Dipeptide

We have also applied the BB approach to alanine dipeptide (also known as “terminally
blocked alanine”). We again employed the ECEPP/3 potential energy surface [26], fixing all
bond lengths and bond angles to their equilibrium values, and allowing the 7 most relevant
dihedral angles (6, 02, ¢, 9, w, X, 63) to vary (see Figure 21). The dihedral angles 6,, x, and 63
describe the orientation of a methyl group, and therefore exhibit a 120° rotational symmetry.
The other dihedral angles can in principle vary over a complete 360° interval.

Unlike alanine, it is both impractical and uninteresting to allow all of the dihedral angles
to vary completely over their domain. For example, angles such as w and 6 which control
the orientation of the CO double bonds are usually confined to values near 180°, at least
for the lower energy conformers. We determined the bounds to use for each angle by first
conducting an Eigenmode III search for minima and first-order transition states on a 67
point grid, and then examining the range of values taken by each angle for the lowest energy

minima and first-order transition states. We came up with the following bounds'®:

0, € [108.9°,189.1°]
0, € [166.2°,189.1°]
¢ € [0°,360°]

e [0° 360°]

€ [166.2°,189.1°]
x € [108.9°,229.2°]
f; € [108.9°,189.1°]

After selecting the bounds for all of the variables, we performed an aBB run with of° = 30.
After 550958 iterations and 62204 seconds of CPU time on an HP-132B workstation, we
found a total of 203 stationary points, including 10 local minima, 38 first-order saddles, 60
second-order saddles, 54 third-order saddles, 30 fourth-order saddles, 9 fifth-order saddles,

13The reason why the bounds are not nice round numbers (when expressed in degrees) is because we
expressed them in radians when we selected them.
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and 2 sixth-order saddles. The 10 local minima are listed in Table XIV and the 38 first-order
transition states are listed in Table XV.

The 1—¢ plot for the alanine dipeptide is shown in Figure 22. Unlike alanine, the alanine
dipeptide molecule has been extensively studied in the literature [27, 28, 29, 30, 31, 32, 33,
34, 35]. More common names have been assigned to the various stationary points and/or
regions of the 1-¢ plot for alanine dipeptide. The C7* conformation (so named because of
the 7-atom ring closed by a hydrogen bond [27]) is widely regarded as the global minimum,
and indeed corresponds well with min.1. Its mirror image, C%*, corresponds to both min.9
and min.10. Cs (or C£*) corresponds to min.2, which is an extended conformation. The
“polyproline conformation”, Py, corresponds to min.5. ag refers to the conformations which
tend to form right-handed alpha-helix structures in larger peptides, and correspond to min.3,
and in some cases, min.6. Its mirror image, ay,, corresponds to min.7. One reference, [32],
indicates the existence of a “3,” structure which is fairly close to min.4, as well as an “ay”
which corresponds to min.8.

None of the references above acknowledged the existence of all 10 minima. Of course,
it must be acknowledged that most of these studies used potential energy surfaces other
than ECEPP/3, which may account for the difference. Reference [30] includes a study of
alanine dipeptide using ECEPP/2 (which is identical to ECEPP/3 for this molecule). In
Table V of [30], they list 5 minima, while in Figure 10 of [30], it is clear from the contour
plot that at least 3 additional minima exist, and there is strong evidence for the existence
of the remaining two minima.

Further discussion of alanine dipeptide can be found in Section 8.

8 Reaction pathways

Having now identified the local minima and first-order transition states, we are now in a
position to enumerate the reaction pathways between states and calculate transition rates.

First we determine the connectivity between the local minima and the first-order transi-
tion states. We followed each first-order transition state to the two local minima it connects
by using the Eigenmode III algorithm. The transition state is perturbed slightly in each of
the two directions along the reaction coordinate (i.e., along the one eigenmode corresponding
to a negative eigenvalue), and then Eigenmode III is used to find a local minimum from that
starting point. This gives us a list of (minimum, transition state, minimum) triples.

The lists of triples for alanine and alanine dipeptide are given in Tables XVI and XVII,

respectively. These triples define the connectivity between pairs of minima through transition
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states, and were used in the construction of the 1)—¢ plots for alanine and alanine dipeptide
which were given in Figures 20 and 22, respectively.

Once the triples are determined, we can calculate the transition rate matrix using Rice—
Ramsperger-Kassel-Marcus (RRKM) theory [17, 18]. The basic assumption behind RRKM
theory is that the behavior of the molecule near the transition state can be treated ther-
modynamically, even though the transition state itself is not stable. A transition from one
minimum to another through a given transition state is considered to have taken place when
the transition state is reached via thermal fluctuation. The probability that this occurs is
proportional to the ratio of the partition functions around the transition state and initial
minimum respectively (see Appendix B for details). The rate associated with this transition
is given by

kT
Wistssj = T% (11)
J

The partition functions are evaluated using the harmonic approximation around a given

stationary point. The result is LT
Q= G_EO/kT H h—l/ (12)

where Fj is the potential energy and v; are the vibrational frequencies of the molecule around
the stationary point in question. The product is taken over all vibrational modes (i.e., with
positive 1?). Note that for a transition state, this is one less mode than for a local minimum
since the reaction coordinate direction is excluded. Putting (11) and (12) together, we obtain
I1; sz

ts

H ” e_(Ets_Ej’)/kT (13)
i#r.c. V1

Wj’—)ts—)j =

Note that the vibrational frequencies take into account the vibrational entropy of the system.
It is important to remember that for 7" # 0, it is the free energy surface which governs the
reaction process.

The transition rate matrix is defined as
Wiy =2 Wirsts
ts

It can be calculated for a given molecule once we have determined all of the local minima,
transition states, and their connectivity. Vibrational frequencies are computed by solving

the generalized eigenvalue problem:

(H— (v/2m)’T)x =0 (14)
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where H is the Hessian of the potential energy function, and I is the generalized inertia
tensor'. The transition rate matrix for alanine at room temperature 7 = 300K is given
in Table XVIII. This can be converted into a transition probability matrix by normalizing
each column so that they add up to 1. The transition probability matrix for alanine is given
in Table XIX.

The time-evolution of occupation probabilities for each of the 17 stable configurations is

determined as follows:

@ (overall rate of tral_lsitions)_ (overall rate of transitions)
dt into state j out of state j

= Z Wi Py (t Z W)

J'#7 J'#7

which can be rewritten in a more compact form as
= wj Py (t) (15)
jl
where w;j; is equal to Wj;/, except that the diagonal elements are replaced by
- Wi
J'#]
Note that the sum over each column of w;j is zero.

Coupled linear differential equations like (15) are solved by diagonalizing the matrix w;;r,
so that

ijj’ug'f) — )\(i)ugz)
Substituting P;(t) = 3=, p;(t)u; % into (15) yields a system of decoupled differential equations
pi = Api(t)

which can easily be solved: p;(t) = p;(0)e*”?. The general solution to (15) can therefore be

written
)\(”t
Z pi(0 J

where the coefficients p;(0) are determined by the initial conditions P;(0).
One of the eigenvalues A% is zero (this is a consequence of > jwjy = 0). The associated

eigenvector corresponds to the equilibrium probability distribution:

uf’ = Pj(+00) = Q;/ X Qr
:

"The generalized inertia tensor I is defined so that the kinetic energy of the molecule is § 3=, ; #:1;;%;
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All other eigenvalues are negative, and correspond to transient probabilities. The decay time
is given by 7V = —1/A\(®)_ The probability eigenvectors and corresponding decay times for
alanine at 7' = 300 K are given in Table XX.

The decay times range from 1.6 x 107135 to 5.9 x 10~ '!s. All of the interesting dynamics
takes place over the time interval 107'*s < ¢ < 107s. A logarithmic plot of P;(t) over this
time range for each of the 17 “pure state” initial conditions is given in Figures 23-25.

We make the following observations regarding alanine. The energies and molecular con-
figurations for the 17 local minima are summarized in Table XII, and the connectivity is
summarized in the 1)—¢ plot in Figure 20. There appear to be two main groups of minima,
min.01-min.08, and min.09-min.17, the energy gap between the two groups being much
larger than the energy gaps within the two groups. At room temperature equilibrium, ala-
nine occupies the lower group of minima almost exclusively. This is because energies within
the lower group are within £7° (0.597 kcal/mole) of the ground state energy, but the higher
group is 6-10 times k7" higher in energy.

Because transition rates between the lower 8 states are so large (most of the barriers are
smaller than k7)), it is difficult to partition this group any further. It is worth observing
that min.01 is only the third most likely occupied state at equilibrium. min.07 and min.08
have higher equilibrium probabilities. Even though these two states are almost k7" higher
in energy, they have a large partition function because one of the vibrational frequencies
is small (see (12)). This is particularly noticeable for min.07 (the state with the highest
occupation probability), where one of the eigenvalues of the Hessian is very nearly zero.

In contrast with the lower 8 states, the upper 9 states can be partitioned further. Based
on the transition probability matrix in Table XIX, we discover that min.09—min.17 partition
into 3 groups: (min.09, min.10, min.11), (min.12, min.14, min.15), and (min.13, min.16,
min.17) (see Figure 26). The transitions between states within each group are considerably
more likely than transitions between states in different groups. Only in the case of the
third group, 13-16-17, is there a significant probability of a transition to the lower 8 states,
indicating a “slow” decay from the upper 9 to the lower 8 states. Actually, “slow” may be a
bit of a misnomer, since equilibrium is achieved from any initial probability distribution in
less than 1077s.

The groupings come to life when we examine the solutions to the Master equation (15).
For example, if we follow the time-evolution of alanine starting in state min.09 (i.e., Py(0) =
1, all others 0), we see that for the first 107'%s, Py and Pj; increase to significant values,
indicating transitions into those states. Only after 10~!'s do we begin to see significant

amounts of min.01-min.08. The other two groups (the 12-14-15 and 13-16-17 groups) see
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very little action, indicating a low probability of transition into these groups from 9-10-11.
The time-evolutions corresponding to starting in min.10 and min.11 are similar.

If we start in the 12-14-15 group, the effect is very similar, although transitions from 12-
14-15 to 9-10-11 is somewhat more likely than the reverse (no doubt this is energy-related).
It seems that the path from 12-14-15 to the lower group is as likely as not to pass through
one of the 9-10-11 states first.

The 13-16-17 group is the most interesting. Notice that min.13 is very stable by com-
parison to the other upper 9 minima because the barriers to escape from this particular
minimum are very high. If alanine starts in min.13, it is very likely to make a transition
directly from min.13 to the lower group. Examining the transition probability matrix, we
see that min.13 also has a fairly high likelihood of making a transition to min.16 or min.17.
But the time-evolution of min.13 indicates a maximum of about 1% occupation probability
of occupying either min.16 or min.17. This is resolved by realizing that min.16 and min.17
both have much shorter lifetimes, about 100 times shorter than min.13. Thus, alanine will
spend very little time in either of these states, preferring instead to make a transition back
to min.13, or to the lower group. This fact is also evident in the time-evolution of min.16
and min.17. In both cases, the occupation of min.13 peaks out around ¢t = 107'2s with an
occupation probability around 80%. This implies that min.16 and min.17 will very likely
make a transition to min.13, where alanine will spend a relatively long time, before reaching
the lower group.

This analysis is further facilitated by constructing a “rate disconnectivity graph” for
alanine, in which the connectivity of the minima are classified according to the transition
rates.

Minima may be classified into groups according to their connectivity. Transitions between
minima which fall below a certain cutoff rate are ignored. The remaining transitions (the
“fast” ones) define the rate-dependent connectivity of the potential energy surface. The
minima are then partitioned into connection components according to this connectivity:
minima within the same group are connected via a reaction pathway, minima within different
groups are not connected. A larger rate cutoff results in fewer transitions being considered,
and therefore a finer partition will result. For example, if the rate cutoff exceeds the highest
transition rate, the partition will be the discrete partition (each minimum will fall into its
own group, separate from all other minima). If the rate cutoff is lower than the lowest
transition rate, all minima will fall into one group.

This partitioning into groups may be visualized by drawing the rate disconnectivity

graph. The vertical axis represents the transition rate cutoff, with lower cutoffs appearing
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higher in the graph. If we start at the top of the graph, all minima fall into one group which
is represented by a single node. At some cutoff value, a critical transition gets eliminated
which disconnects the minima into two groups. This is represented graphically by the node
splitting into two at the rate cutoff value. As the rate cutoff is increased further, more and
more transitions are eliminated and the graph continues to bifurcate as the groups of minima
further subdivide. Finally, the rate cutoff is sufficiently high that there are no transitions
left: each minimum will lie in a group by itself. The minima are identified at the base of the
graph.

The rate disconnectivity graph for alanine at room temperature is shown in Figure 27.
The partitioning of the upper nine states into the 3 subgroups 9-10-11, 12-14-15, and 13-16-
17 is now transparently obvious. The rate of transitions between two minima is indicated on
the rate disconnectivity graph by how far up the tree they are connected. Minima within the
same group are connected at a much lower point on the tree than minima within different
groups, suggesting that transitions within the same group are much faster.

Let’s focus for a moment on the 9-10-11 group of alanine. From the rate disconnectivity
graph, we can readily see that transitions within the group occur at a rate in excess of
10'2 Hz, whereas transitions in or out of the group occur at a rate of around 10! Hz, which
is about 10 times slower. It is likely that if alanine is prepared in (or makes a transition to)
one of these states, it will make several transitions within the group before finally making
a transition to another state outside the group. Similar observations hold for the 12-14-15
and 13-16-17 groups.

Upon close examination of the rate disconnectivity graph, it appears that the states
min.01-min.08 do in fact partition into subgroups. It appears that (min.01, min.03, min.04)
form one group, which is somewhat separated from (min.02, min.05, min.06, min.08). Ev-
idence for these groupings does exist in the solutions to the Master equation, if one looks
carefully enough. For example, in the time evolution of min.01, P; and P, rise slightly above
the rest of the minima (with the exception of Pr), indicating slightly higher transition rates
among that group of states. Similar observations may be made for the time evolution of
min.02-min.06 and min.08 (min.07 seems to be doing its own thing).

The partitioning of min.01-min.08 is much less pronounced than the partitioning of
min.09-min.17 because transitions amongst all of the states in the lower group min.01-
min.08 are fast to begin with. Nevertheless, the rate disconnectivity graph reveals these
groupings very clearly.

Let us compare the kinetic analysis above with the ¢)—¢ plot in Figure 20. The first thing

to note is that there is no evidence of the partitioning into the two main groups (min.01-
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min.08 and min.09-min.17) in the ¢—¢ plot. However, this is because the large energy gap
is not caused by rotations of ¢ or ?, but is instead caused by rotations of w. The lower
energy group corresponds to w ~ 180° and the upper energy group corresponds to w ~ 0°
(see Table XII). This is consistent with the well-known fact that w ~ 180° is strongly
energetically favored in peptides in general.

Evidence of further partitioning of the two main groups into subgroups can be found by
examining the ¢¥—¢ plot. Each of the subgroups (1-3-4, 2-5-6-8, 9-10-11, 12-14-15, and 13-
16-17) lies in horizontal “strips”. This corresponds to free variation in ¢, but little variation
in 7. The implication of our kinetic analysis is that variations in ¢ occur more readily (i.e.,
with lower barriers) than variations in 1 in alanine. We will shortly find that quite the
opposite is true in the longer peptides.

We can also perform a detailed analysis of alanine dipeptide using the same techniques as
with alanine. As a reminder, the list of triples is given in Table XVII and the ¥—¢ plot is given
in Figure 22. We calculated the transition rate matrix, which is given in Table XXI. The
probability eigenvectors and decay times were also calculated, and are given in Table XXII.
The time-evolution of the occupation probabilities are shown in Figures 28 and 29. Finally,
the rate disconnectivity graph is shown in Figure 30.

The first thing to notice is the partitioning of the 10 minima into two connection com-
ponents, min.01-min.06 and min.07-min.10, characterized by the fact that there are no
transitions between these two groups. This can be confirmed by examining the —¢ plot,
or by examining the transition rate matrix which will be in block diagonal form, as shown
in Table XXI. In fact, examination of the ©¥)—¢ plot reveals that the two groups are sepa-
rated according to their ¢ values (for min.01-min.06, ¢ lies in the interval [200, 290], and for
min.07-min.10, ¢ lies in the interval [50,80]). This suggests that for alanine dipeptide, the
1 degree of freedom is flexible, but the ¢ degree of freedom is totally inflexible. This is quite
the opposite of what we observed for alanine, and the contrast between the two degrees of
freedom is much more extreme in this case'®.

Because there are no transitions from min.01-min.06 to min.07-min.10, both of these
groups of minima evolve independently of one another. The transition rate matrix will par-
tition into block diagonal form. Also, the probability eigenvectors will partition into two

classes, one class describing the dynamics within the group min.01-min.06 (eigenvectors

15Tn fact, it turns out there are transition states which connect min.01-min.06 and min.07-min.10 provided
that we are willing to relax the bounds we placed on the other degrees of freedom (i.e., allowing all variables
to range from 0° to 360°). However, all of the resulting barriers are extremely high, and so the transitions
between these two groups of minima are slow by comparison. The transition from min.07 down to min.01
(the most relevant transition) takes about 0.01s.
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u(®>9) and the other class describing the dynamics within the group min.07-min.10 (eigen-

vectors u(03).

There will be two distinct equilibrium probability distributions, which is
apparent from the list of probability eigenvectors, and also from the time-evolution of the
occupation probabilities (e.g., compare the long time behavior of the system initially occu-
pying one of min.01-min.06 to the same system initially occupying one of min.07-min.10).
The rate disconnectivity graph also partitions into two trees with no connection between
them.

We will focus on each group separately. The transition rate matrix for min.01-min.06
takes on a peculiar shape. Minima in min.01-min.03 can make direct transitions only to
minima in min.04-min.06, and vice versa. This is manifested in the rate disconnectivity
graph which separates min.01, min.02, and min.03 from each other, as well as min.04, min.05,
and min.06. It can also be inferred from the occupation probabilities. For example, if the
system initially occupies min.01, then P, and P; take longer than P, and Ps to attain
appreciable values. Similar behavior is observed for min.02—min.06.

The dynamics of min.07-min.10 also has some interesting characteristics. The equilibrium
probability distribution is concentrated on the state min.07 because the energy levels are so
widely spread out (the four minima cover an energy range of more than 8&7"). According to
the rate disconnectivity graph, min.07-min.10 partitions further into (min.07, min.08) and
(min.09, min.10). This is actually quite evident from the transition rate matrix (from which
the graph is constructed), and appears in the time-evolution of min.07-min.10. Apparently,
there is only one transition from (min.09, min.10) to (min.07, min.08) (the transition state
is 1st.37), and it has a rather high barrier (almost 747). The transition out of min.09 is
particularly slow, since it must first climb to min.10 before making the transition through
1st.37 down to min.08.

9 Computational Studies: Tetra-alanine

We also studied tetra-alanine, employing the ECEPP/3 potential energy surface [26], fixing
all bond lengths and bond angles to their equilibrium values, as well as most of the dihedral
angles, and allowing only the 8 (¢, 1) variables to vary (see Figure 31).

Tetra-alanine is one of the smallest peptides which can exhibit a full alpha-helical turn
(corresponding to (¢;, 1;) = (300°,300°)), as well as an extended conformation (a beta sheet
conformation corresponding to (¢;, ¥;) = (300°,120°)) [35]. The isobutyryl-(ala)s-NH-methyl
(IAN) tetra-peptide, a variant of tetra-alanine, has been studied in Ref. [19, 35]. They found

139 local minima and 502 first-order transition states.
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We conducted a brute force Eigenmode III search for the minima and first-order transition
states. In each case, we laid down a rather coarse grid (4% points) of starting points and
allowed Eigenmode III to take up to 100 steps in the direction of the stationary state. The
Eigenmode III search located 7543 minima and 18902 first-order transition states. When we
followed each of the first-order saddles to the minima it connects, we located an additional
8582 minima, for a grand total of 16125 minima. It is very likely that there are even more
minima and transition states that we have not located yet.

We searched the stationary states for alpha-helical and extended conformation minima.

For alpha-helical states, we searched the following region for minima
270° < ¢; < 330° 270° < ¢p; < 335°

and found a single state, the ground state min.1, which satisfied these constraints. For

extended conformation states, we searched the following region for minima
270° < ¢; < 330° 90° < ¢; < 150°

and found a single state, min.1583, which satisfied these constraints. These two minima are
listed in Table XXIV along with other minima. We will be focussing on the transition from
min.1583 to min.1.

The first step towards understanding how a protein might proceed from an extended state
(min.1583) to a folded state (min.1) is to enumerate the reaction pathways between these
two states. This enumeration can be done using graph theory techniques. We construct
a graph where each node in the graph represents a minimum and each edge in the graph
represents a triple which connects two minima. The set of all paths from one given minimum
to another can be generated by an exhaustive search.

If we conduct this exhaustive search without restriction, we would generate an enormous
number of pathways. It is important for us to be able to restrict the pathways we generate in
a sensible manner (so that the most relevant pathways would be found). We can restrict the
set of pathways in any number of ways: (1) select pathways with monotonically decreasing
energies, (2) select pathways whose length (number of visited minima) is less than some
cutoff value, or (3) select pathways whose highest energy barrier is below some cutoff.

To analyze tetra-alanine, we chose method (2): restricting the path length. We began by
searching for pathways of increasing length until we finally found one. The shortest pathways
have a length of 10 (i.e., 10 total minima, including min.1583 and min.1, and therefore 9

transitions). The number of pathways found for a given length limit is shown in Table XXV
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for length limits up to 15. The 43 pathways corresponding to a length limit of 11 are listed
in Table XXVI and displayed in graph form in Figure 32. One of the pathways (the first one
in Table XXVI) is shown pictorially in Figure 33. Table XXIV contains a list of all minima
found in these pathways. The minima are classified according to Table XXIII.

In order to prioritize the pathway list, we estimated the amount of time it would take
for tetra-alanine to follow a particular pathway from min.1583 to the ground state. This
was accomplished by solving the Master equation for a reduced system consisting only of the
minima and transition states which lie along the given pathway in question. The decay time
of the longest lived transient probabilities was used as an estimate of the overall transition
time.

Most transition times lie between 1071%s and 1078s. However, there were 7 pathways
which involved very slow transitions (over a second), which corresponded to very long tran-
sition times'®. In each case, it is possible through examination of the transition rate matrix
to determine exactly where the bottle-necks occur. Very slow transitions (indicative of very
high barriers) are indicated in Table XXVI by an asterisk between the two minima. These
long-lived pathways are very unlikely to play any serious role in the dynamics of protein
folding, since they occur so slowly.

It therefore makes sense to eliminate these pathways by effectively removing the very
slow transitions. We applied a rate cutoff of 10® Hz, eliminating triples corresponding to
transition rates below that cutoff, and recalculated the pathways. The number of pathways
remaining after applying the cutoff for each length limit considered earlier is also listed in
Table XXV. The 7 pathways marked “long” in Table XXVI were eliminated when the rate
cutoff was applied, but the other 36 pathways of length 11 or less survived, as expected.

We next determine the time required overall by tetra-alanine to find its ground state from
min.1583. We expect the overall transition time to be on the order of 107105, the estimated
transition time for the fastest pathways. Unfortunately, there are over 16000 minima, and
even if we only pay attention to those minima which are connected to min.1, we still have
over 12000 minima to work with. Solving the Master equation involves finding eigenvectors
and eigenvalues of a 12000 x 12000 matrix, which does not fit in our computer’s memory.
However, if we again apply the same rate cutoff, 10° Hz, this reduces the number of minima
still connected to min.1 to 2173, which is a number we can handle. In effect, we are focussing
our attention to a subtree of the rate disconnectivity graph containing min.1 and with a root

node at around 10% Hz. This subtree contains 2173 minima.

16The actual value of the transition time is meaningless, since the eigenvalue of the transition rate matrix
which corresponds to the long transition time is on the order of the machine epsilon, and will therefore be
dominated by round-off error.
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The Master equation was solved over the 2173 minima, resulting in Figure 34. Evidently,
tetra-alanine leaves min.1583 after on the order of 107'2s and eventually finds its way to
min.1 after 1071%s. The time in between is obviously spent passing through intermediate
states.

We next analyze the pathways listed in Table XXVI in terms of the changes in the
underlying geometry of the tetra-alanine molecule as it proceeds from min.1583 to min.1.
We do this by first classifying the minima according to its (¢;, ;) values. Each pair of
(¢,1) values is classified by a single letter optionally followed by one or two primes, as
summarized in Table XXIII. The geometry of a given minimum is therefore described by
four such letters. Note particularly that the letter “a” (without a prime) indicates values
of (¢,1) which are within 30° of the nominal values expected for an alpha-helical structure,
and similarly, “b” indicates values of (¢, 1)) which are within 30° of the values expected for
a beta-sheet structure. Therefore, min.1 is classified as “aaaa” and min.1583 is classified as
“bbbb”. The classification of each minimum is included in the list of minima (Table XXIV)
as well as the list of pathways (Table XXVI).

During the transition from min.1583 to min.1, each of the four i) angles must rotate
from “b” to “a”. Examining Table XXVI reveals that this process takes place in small
well-defined steps. If we look at the fastest pathway, we see that in this case, each i angle
rotates about half-way (i.e., b — i) until an “ii'ii” structure is reached, and then each v angle
rotates the rest of the way (i.e., i — a). This pathway is illustrated in Figure 33. Other
pathways approach the alpha-helical structure more creatively. For example, the second
fastest pathway begins by rotating 3 out of the 4 ¢ angles half-way, reaching an “ii'bi”
structure, before rotating 1), all the way to “a”. Then, 15 is finally rotated from “b” to “i”,
but not before going through “j” first. Finally, the remaining 1 variables are rotated the
rest of the way to the alpha-helical structure of min.1.

We make the following general observations regarding the rotation of the ¢ angles during

the transitions from min.1583 to min.1:
e Each 9 angle normally progresses in the sequence b +i—aorb —j—1i— a.

e No direct b — a transitions are observed, indicating that a rotation of ¢ from beta-

sheet to alpha-helical values is too large for a single transition.

e The 9 angle rarely proceeds backwards, which is to be expected since these are the
shortest pathways. However, cases do exist where this happens (e.g., min.34 — min.74

in the second very slow pathway in Table XXVT).
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e Usually only one ¢ angle changes at a time. The exceptions tend to occur in the slower

pathways.

e There is a tendency for most of the ¢ angles to rotate half-way (b — i) before any of
them rotate the rest of the way (i — a). In other words, tetra-alanine tends to visit

intermediate states consisting of 3 or 4 i’s during its progress from min.1583 to min.1.

The rotation of ¢ angles plays much less of a role in the folding process than rotation
of ¢ angles. ¢ takes on similar values for alpha-helical and beta-sheet conformations. Fur-
thermore, as is true for alanine dipeptide, rotations in the ¢ angle are far less flexible than
rotations in the ¢ angle. To understand this, consider the very slow transitions shown in
Table XXVI. The bottle-necks tend to occur whenever a ¢ angle rotates from within the
interval [180°,330°] (indicated by one or zero primes) to outside this interval (indicated by
a double-prime). In fact, it is always the case that whenever such a ¢ rotation takes place,
the transition is a slow one.

We next construct the rate disconnectivity graph for tetra-alanine. Although it is not
difficult to construct the complete graph, it is difficult to display it in a readable format since
there are 16125 minima. Even if we focus our attention on those minima connected to min.1,
there are still 12373 minima to deal with. We were still able to make several comments about
the graph just from wandering about it and examining various subgraphs.

The first thing we noticed is that most nodes split very unevenly: often one of the two
branches consists of a single state, or a very small number of states. A graph of this sort of
shape (single minima breaking off from the main branch) suggests a funnel-type potential
energy surface [19].

The graph begins at the slowest transition rate, which is 1.29 x 107" Hz. The graph
involves small groups breaking away from the central branch until a transition rate of around
1Hz at which point the main branch still contains 7972 minima. Between 1 Hz and 12 Hz,
several groups of several hundred states each break away from the main branch. At 12 Hz,
2176 minima remain. This suggests a great deal of interesting dynamics occuring on a
time-scale of about one second.

It is interesting to note that all 2176 minima which are connected to min.1 by transi-
tions faster than 12 Hz satisfy the constraints 180° < ¢; < 330°. Conversely, most of the
minima which satisfy these constraints are among the 2176 minima connected to min.1 by
transitions faster than 12 Hz. This demonstrates unequivocally what we asserted earlier,
that any ¢ rotation from within [180°,330°] to outside this interval was guarenteed to be

slow. Apparently there is a very high barrier between these two regions.
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Between 12 Hz and 10! Hz, very little happens along the main branch. At 10'° Hz, the
main branch still contains 2166 minima (just 10 minima broke away), and at 10'! Hz, the
main branch still contains 2044 minima.

Beginning at around 10! Hz, the graph becomes interesting again. min.1 and min.1583
remain connected until the rate cutoff reaches 2.24 x 10'! Hz, which is consistent with the
transition times of the pathways listed in Table XXVI, and with Figure 34. The subgraph
under the node which splits min.1 and min.1583 is shown in Figure 35. It contains 1112
minima. The rate disconnectivity graph ends at around 10" Hz.

We followed the graph down to min.1 and min.1583 respectively, and then proceeded
up the graph a few levels just to see which minima were most tightly connected to these
minima. The subgraphs are shown in Figures 36 and 37, respectively. We can see that
several of the minima in the vicinity of min.1583 are the same minima which appear along
the shortest length pathways from min.1583 to min.1 (Table XXVI). min.1114, min.1410,
min.1095, and min.633 are all strongly connected to min.1583. In contrast, the minima most
strongly connected to min.1 do not appear to have anything to do with the pathways from
min.1583. Only min.11 appears both in Table XXVI and Figure 36.

However, this asymmetry should not be a surprise. The minima which are closely con-
nected to min.1583 are those minima which min.1583 can make fast transitions to. These
transitions out of min.1583 inevitably lead to the ground state, so it makes sense that many
of these minima will appear in a list of pathways to the ground state. On the other hand,
minima which are closely connected to min.1 represent states which can make fast transi-
tions to min.1. There is no reason to believe that many, or even any of these states making
a transition to min.1 would have originally came from min.1583. Following the potential
energy surface down from min.1583 will inevitably lead to min.1, but following the potential
energy surface up from min.1 will not necessarily reach min.1583.

After completing our analysis of tetra-alanine using the minima and first-order saddles
we obtained from the Eigenmode III search, we conducted BB runs on select regions of
the potential energy surface. A sampling of our results is given in Table XXVII. We began
our search with v = 20, and if necessary, increased « until we found all of the stationary
points found by the Eigenmode III search. In all cases, modest values of « (i.e., less than
100) were sufficient to locate all minima and first-order saddles found by Eigenmode III. In
many cases, we found additional first-order saddles.

To give a firmer test base, we repeated the Eigenmode III search on a larger grid (6% grid
points), and searched for first-order saddles. We then generated the minima by following

each first-order saddle back to the two minima it connects. Combining the results of the 48
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grid and 6° grid gives us a grand total of 62372 minima and 212938 first-order saddles. The
Eigenmode III results listed in Table XXVII include these additional stationary points.

A Eigenmode following algorithms

A very effective class of algorithms used for finding stationary points of a potential en-
ergy surface are the “eigenmode-following” algorithms. Essentially, they are sophisticated
variations on the Newton-Raphson method applied to the equation VV = 0.

The Newton-Raphson step is given by

Ax =—-H g

where g = VV and H = VVV are the gradient and Hessian matrix of the potential energy

surface respectively. If we diagonalize the Hessian
He; = b;e;
and decompose the gradient vector into components along the “eigenmodes” e;
g=>_ g
i
the Newton-Raphson step can be rewritten as
Ax = — Z %ei
7 Ui

The Newton-Raphson algorithm tends to locate stationary points which have the same
signature (i.e., number of negative eigenvalues) as the Hessian matrix at the starting point.
The reason for this is that the step Ax tends to increase V' along the eigenmode directions
corresponding to b; < 0 (the step is along +g;e;) and decrease V' along eigenmode directions
corresponding to b; > 0 (the step is along —g;e;). Thus, the Newton-Raphson method can
never be used to walk away from a local minimum towards a first-order saddle point. It
would always head back towards the local minimum.

In an eigenmode-following algorithm, the Newton-Raphson step is replaced by a slightly

more complicated step:

AX:_Zbiii)\iei

The eigenvalues of the Hessian b; are effectively shifted by an amount );. This algorithm

converges towards a stationary point whose signature matches the signs of b; — \; (i.e., if
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exactly one b; — \; is negative, then the algorithm will converge towards a first-order saddle
point). This is because V' tends to increase in directions corresponding to b; — A; < 0 and
decrease in directions corresponding to b; — A\; > 0. Eigenmode-following methods involve
making a selection of the shift parameters \; which allows one to control the signature of
the target stationary point, regardless of the signature of the Hessian at the starting point,
by effectively shifting b; to change its sign as required. Eigenmode-following algorithms can
be used to walk away from local minima towards first-order transition states, etc.

A very effective eigenmode-following algorithm is Eigenmode III given in [1]. The shift

parameters are given by

0 actual b; > 0, desired b; > 0

N = 2b; actual b; < 0, desired b; > 0
") L(bi + /b2 +4g?) actual b; > 0, desired b; < 0
0 actual b; < 0, desired b; < 0

We used Eigenmode III to generate a list of stationary states as a test of our own algo-
rithm. We also used Eigenmode III to follow each first-order transition state back to the two

minima it connects, so as to determine the reaction pathways.

B RRKM theory

In this Appendix, we discuss calculating reaction rates using RRKM theory in great detail,
and prove (11), (12), and (14).
Let’s begin with calculating the transition rate from one minimum j’ to another minimum
j through a particular transition state. According to RRKM theory [17], the rate in which
the transition occurs for an isolated system of (constant) energy F is
() - L Nu(E)
h pj(E)

where p;/(E) is the density of states near the minimum j' and Ni(E) = [”, pis(e) de is the

(16)

total number of states near the transition state which are available to the system at energy
E'Y.

The transition rate associated with a system in contact with a thermal reservoir is related
to the constant energy transition rate by integration over the probability distribution

KT = [ w(E) ( pr(E)e P dE ) a7

oo T oy (eI de

It pays to pay attention to the units to make sure they work out. Nis(E) is dimensionless, but p; (E)
has units of E~!. This implies that the proposed formula for the rate constant has units of E/h, which are
frequency units. These are appropriate units for a transition rate.
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The denominator is the partition function @); of the system around the initial minimum j'.
In the numerator, k(E)p;(E) can be replaced by Nis(E)/h (equation (16)). The calculation

then proceeds via integration by parts:

I O T _E/kKT
K1) = Go /_ ~ Nu(B)e P dE

11 00

= W0, (Nts(E)(—kTe—E/’“T)B"OO— / pis(E)(—kTe /¥ dE)
J' —o0

KT 1 [
= — s E —E/kT E

h Q]’ /OO pt( )e d
_ ths

h Qj

which is (11).
Equation (11) can be understood physically. The partition function @) can be expressed

in the form
Q= o F/IKT _ ,~(BE-TS)/KT _ ,S/k ~E/KT (18)

which is the product of e%*, the number of quantum states available to the system, and

e B/FT the Bolzmann factor. Thus, (11) can be expressed in words

K(T) (19)

kT ((number of quantum states near ts)e~s/+"
T —E; /kT

(number of quantum states near j')e

The ratio in parenthesis is the fraction of time spent near the transition state in an ergodic
system, or the probability that a random transition out of quantum state near ;' will reach
a quantum state in the vicinity of the transition state (at which point the transition from
j' to j is assumed to occur). If we now interpret the factor k7 /h as the average rate in
which transitions between quantum states occur, we end up with the sensible interpretation
that k(T'), the rate in which the transition state is reached from minimum j', is equal to
the product of the transition rate between quantum states and the probability that such a
transition would lead to the transition state. In other words, we can think of the system as
hopping randomly among states near the minimum j’ until, by chance, one of those hops
takes the system in the vicinity of the transition state, shortly after which the complete
transition from j’ to j will occur.

We need to evaluate the partition function @) around a given stationary point. We will

treat the potential energy surface in the harmonic approximation, by truncating its Taylor

8Note that the boundary terms both vanish in the integration by parts: at F — oo because of the
exponential factor e F/*T and at E — —oco because Nis(E) is certainly zero whenever E is less than the
global minimum of the potential energy surface.
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series expansion to second order:

V(x) =V(xo) + %(x —Xg) - H(x — xp) (20)
where H is the Hessian matrix (recall that g = VV = 0 at a stationary point, so there will
be no linear term).

Such a potential energy surface describes a system of n independent harmonic oscillators
with vibrational frequencies v, ..., 1,. The stationary states are each characterized by a list
of integers (ki,...,k,) (k; = 0,1,...), which are the “occupation numbers” of each normal

mode. The energy of such states is given by

1
E(kl, k) = E0+Zhljz ]{7 —{—2) (21)

=1

where Ey = V(xg) is the value of the potential energy at the stationary point.
The partition function is calculated by summing up the Boltzman factor for each fixed
energy state available to the system.

o

Q= D> exp(—E,,..k,)/kT) (22)

K1,eekn=0

For a harmonic oscillator system, this can be calculated exactly

Q = > exp(— EO/kT-i—Zhl/zk + )/kT)
k1yeiskn=0 =1

e~ Eo/kT Z Hexp —hv; (k; + )/kT)

k1,.. ,kn_O i=1

_Eg/kTH Z exp(—hv;(k; + )/kT)

=1 k;=0

e—EO/kT H e—hVi/QkT Z exp(—hlji/kT)ki
i=1 k=0
o—hwi/2KT

— o Bo/kT
- H —hl/l/kT

1
_  —Eo/kT
¢ 1;[1 9 sinh(hv;/2kT)

If we take the classical limit hy;/kT < 1, we obtain (12).

It remains for us to calculate the vibrational frequencies of a system around a given
stationary point. It is fortuitous that quantum mechanics and classical mechanics give the
same answer as far as calculating vibrational frequencies for a harmonic oscillator, so we will

present a classical derivation of (14).
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The configuration of the system is determined by a set of generalized coordinates, which

are simply the variables x = (z1,...,%,). The Lagrangian of this system is given by
1 1
L=K-V=sk-Ix—5x- Hx (23)

where H is the Hessian of the potential energy surface, and I is the generalized inertia tensor
(without loss of generality, we assume that xo = 0 and Ey = 0).

The motion of such a system is determined by the Euler-Lagrange equation
0L d oL
which leads to the differential equation

(24)

I+ Hx =0 (25)

The normal modes of the system are determined by requiring harmonic motion around
the equilibrium configuration
x(t) = e"tx(©) (26)
where x(© is the normal mode and v = w/27 is the frequency associated with that mode. If
we substitute (26) into (25), we obtain

(H—-w?)x® =0 (27)

which is equivalent to (14). The vibrational frequencies are calculated by solving the gener-
alized eigenvalue problem (27) (or (14)).

Note that the frequency calculation requires calculating the inertia tensor I. This is
accomplished by calculating the kinetic energy of the system in terms of the generalized
coordinates x, and then comparing the result to (23).

For this, we need the cartesian coordinates of all of the atoms as a function of the
generalized coordinates r = r(x), where r = (1, y1, 21, T2, Y2, 22, . . .) is the complete list of

cartesian coordinates. The velocities can be written in terms of x by the chain rule

de " Br]- dﬂ?z L dil?, .
_— = _— = X'i—’ == 1,...,3Na 28
dt Zaxi i~ =g g (28)

i=1 =1

where X;; = Or;/0x; is the 3N, X n rectangular matrix of derivatives of cartesian coordinates

with respect to the generalized coordinates. The kinetic energy is
1 3N,

— -2
K = ij;mjrj

3N, n

1 . " .
= 3 21 mj(zl Xjii) (D Xjiriwr)
j= i=

=1

1 n 3N,
= 3 > #i(Q] my XX )d
=1 =1
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where m; = my = m3 = the mass of the first atom, m4, = ms = mg = the mass of the second

atom, etc. Comparing this result to (23), we find

3N, 3N,
¢ ¢ ai y ai y
lz‘il = 7IL'X'Z'X'Z'I = m; J J 29
jzl TR ]Zl J 8]:, 8xi, ( )

The ECEPP/3 modeling system [26] provides us with the coordinate functions r(x). We
calculate the rectangular matrix &; first by finite differencing, and then apply (29) to obtain
1.

One must be very careful with the cartesian coordinate functions r(x) provided by
ECEPP/3 since these coordinates are usually assigned in a manner inconsistent with mo-
mentum and angular momentum conservation. A molecule can undergo overall translations
and rotations without affecting its structure. This introduces six additional degrees of free-
dom which must be fixed in order to evaluate the cartesian coordinates r(x). Usually this is
accomplished by fixing one atom at the origin, another atom along a fixed axis, and a third
atom within a fixed plane. Unfortunately, these constraints introduce external forces and
torques on the molecule which do not really exist, and these extra forces and torques have
an effect on the vibrational frequencies.

One solution is to enforce conservation of momentum and angular momentum on the
system by imposing more sensible restrictions on the cartesian coordinates. For example, if
the three translational degrees of freedom are eliminated by fixing the center of mass of the
system to the origin, rather than fixing the position of one particular atom, then momentum
will be conserved along any possible trajectory r(x(¢)). This can be accomplished by a simple
adjustment of the coordinate functions received from ECEPP/3. However, figuring out the
conditions which impose angular momentum conservation is much trickier.

A more elegant solution (and one which we adopt) is to augment the generalized co-
ordinates x with 6 additional coordinates, three translation variables (a,,ay,a,) and three
rotation angles (6,,6,,6,). Cartesian coordinates can then be calculated in terms of the

extended variable set as follows
r(x,a;,0;) = Ry(0:)Ry(0,)R.(0,)(r(x) + a) (30)

The effect of introducing the additional coordinates is that the artificial constraint forces
imposed on the system are removed since the system is now free to translate and rotate. The
six additional columns and rows added to H will all be zero because the potential V' does

not depend on these coordinates. However, the six additional columns and rows added to I
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will not be zero because pure translation and rotation does contribute to the kinetic energy
of the system.

If we solve (27) for the vibrational frequencies, we will discover 6 zero frequency modes,
which correspond to overall translation and rotation (only the last six components of the
normal mode will be non-zero). The remaining normal modes will in general have non-
zero frequencies, and involve motions within the molecule (i.e., changes in x), as well as
some overall translation and rotation component (whatever is necessary to insure overall
momentum and angular momentum conservation). The vibrational frequencies computed
this way will be physically correct, and appropriate for calculating the partition function
@ using (12). By augmenting the variable set in this manner, we no longer need to worry

about the cartesian coordinate functions r(x) that we receive from ECEPP/3.
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Table I: Potential energy surface for HCN [20]. Distances are in A and energies are in eV.

V= Veg+Ven+Var + Wi

Ven = —2.977(1.0 + 2.130r — 3.3817% + 4.6947°) e~ 21307
r = Rcg—1.0784

Ven = —7.929 (1.0 + 5.244r + 7.339r% + 4.9767°) e~ >-244r
r = Reny—1.1718

Var = —3.994 (1.0 + 3.070r) e~3070"

r = RNH —1.037
Vi = 4.582(1.0 — 0.0246p, + 6.2973p5 — 0.0737p3 — 0.1741p1ps + 0.3521p; ps
4 0.1559p2p3 — 0.0804p% + 18.2174p% — 0.6147p2 + 0.20200% + 19.13585
3
— 0.3955p3 — 0.3026p1p2p3) x [[(1 — tanh;p;/2)

i=1

P = RCH — 1479, P2 = RCN - 1479, pP3 = RNH —1.479
v = 1.617, v =5.729, 3 = 1.935

Table II: Potential energy surface for HSiN [20]. Distances are in A and energies are in eV.

V = Van+ Vein+Vau + Wi

Vain = —2.122(1.0 +2.929r) e 292"
r = Rgn—1.5224

Vsin' = —5.708 (1.0 + 3.642r + 2.6467* + 1.24173) e >%42
r = Rgn—1.5718

Van = —3.994 (1.0 + 3.070r) e~>07"

r = RNH —1.037
Vi = 5.018 (1.0 + 0.6408p; + 0.0915p, + 0.2329p; + 0.5917p1 ps + 0.7692p1 ps
3
+ 0.1314p9p3 + 0.2698p7 — 1.0421p5 — 0.1567p3) x [[(1 — tanh v;p;/2)
=1
Ppr = RSiH — 1993, P2 = RSiN — 1993, pP3 = RNH —1.993
M= 24, Yo = 04, Y3 = 0.2
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Table III: Potential energy surface for CS, [21]. Distances are in A and energies are in eV.

Vv
Ves

Vesr

VSS’

Vi

P1

Table IV:
are in eV.

v
VBH
VBo
Von

P1
4!

= Ves+ Ve + Vsg + W1

= —7.434 (1.0 + 3.445r 4 2.371r” + 1.239r°) >4+

= Rcs — 1.5349

= —7.434 (1.0 + 3.445r + 2.3717r% + 1.239r%) ¢ 3445
Res — 1.5349

= —3.954 (1.0 + 3.954r + 4.312r° + 2.332r%) ¢ >%%

= Rgy — 1.8892

= 3.438(1.0 + 1.874p; + 1.874p, — 0.950p; + 9.327p% + 9.327p5 + 1.833p3
+19.613p1p2 — 9.093p1p3 — 9.093p2p3) X (1 — tanhy(p1 + p2 + p3))
Rcs —1.5525, ps = Rey — 1.5525, p3 = Rgg — 3.1050

= 16

Potential energy surface for HBO (PES1) [22]. Distances are in A and energies

Veu + Veo + Vou + V1

= —2.3939 (1.0 + 3.3508p;) e~ >3°0%

= —7.7486 (1.0 + 3.6800p;) e >9300

= —4.1470 (1.0 + 3.7197p3) e~ >-1197s
—2.3888 (1.0 — 1.7893p; — 0.0640p; + 3.2157p3 + 0.2661p7 — 2.6342p; p,
— 2.2514p1ps + 0.4440p5 + 3.5274p2p3 + 3.4489p; — 4.3204p}

3
+ 2.0899p3 — 16.1359p1paps) X [ (1 — tanh ;p;/2)
=1

RBH — 116485, P2 = RBO — 118542, P3 = ROH — 2.35027
0.425, v, = 3.925, 3 = 2.40
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Table V: Potential energy surface for HBO (PES2) [23]. Distances are in A and energies are
in eV.

V. = Vea+Veo+Vou+W

Ve = —2.3939 (1.0 + 3.3508p,) e 335081
Vo = —T7.7486 (1.0 + 3.6800p,) ¢~ 3080002
Vou = —4.1470 (1.0 + 3.7197p3) e~ 7197
Vi = —2.3888(1.0 — 1.1485p; — 0.3768p, + 3.8907p3 — 0.54290% — 2.0869p1 po

— 1.1469p, p3 + 0.0339p3 + 2.0365p,p3 + 6.8852p2 + 0.00273

3
+2.6051p5 + 7.8303p3) x J[(1 — tanh~;p;/2)
=1

Pp1r = RBH - 116485, P2 = RBO — 118542, pP3 = ROH — 2.35027
7 = 1.50, 7o =3.25, v3=3.75

Table VI: Stationary states for HCN

Name Energy (eV) Rcex (A) Rew (A)  Rau (A)
min.1 —13.592216 1.153199 1.065499 +++++
min.2 —12.972507 1.159151 +++++ 0.993337
1st.1 —11.444169 1.117973 1.053920 1.387751
min.3 —11.379411 0.857321 0.980846 (0.989053
1st.2 —11.345399 0.929066 1.039138 1.041348
min.4  —5.548224 +++++ 2.332871 1.038901
1st.3 —5.249953  2.344235 2.980408 1.044279
1st.4 —3.102484 2.582865 1.081559 2.737336
2nd.1 —1.937592 2.311896 1.792855 2.327696
2nd.2 8.094669 ++++4++ 0.857573 0.806900
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Table VII: Stationary states for HSiN

Name Energy (eV) Rgin (A) Rein (A) Ry (A)
min.1  —9.358509  1.523293 +-++++ 0.998205
min.2  —6.098599  1.529589 1.459587 ++4++++
Ist.1  —5.666608 1.575921 +-++++ 2.969229
1st.2  —5.148745  2.006322 1.361586 +++-++
1st.3 —4.908996  2.394222 2.137985 0.974497
1st.4  —3.717495 1.461352 1.634576 2.093709
1st.5  —3.144739  1.523964 2.426269 +++++
2nd.1  —2.876954  1.501908 2.309780 3.069649
2nd.2  —0.728138 2.155742 1.473093 2.044809
2nd.3 1.109602  2.778075 2.617596 +++++
max.1 1.720516  2.647092 2.415996 3.498876
Table VIII: Stationary states for CS,
Name Energy (eV) Rsg (A) Res (A)  Reg (A)
min.l  —12.004549  +++4+++ 1.552423 1.552423
1st.1 —1.668827  2.695109 2.761780 ++++-+
2nd.1 —0.049003  3.978689 4.171035 4.171035
1st.2 97.485407  1.417729 0.909824 +++++
2nd.2 103.740893  1.813412 0.949957 +++++

Table IX: Stationary states for HBO (PES1)

Name Energy (eV) Rgo (A) Rau (A) Rou (A)
min.1 —16.678316 1.185029 1.165505 +++++
1st.1 —7.098281 1.187663 3.264083 +++++
1st.2 —6.556670 +-++++ 1.162756 2.349431
2nd.1 —0.216647 2.554093 ++4+++ 3.688902

Table X: Stationary states for HBO (PES2)

Name Energy (eV) Rpo (A) Rgu (A) Rom (A)
min.1 —16.678851 1.184168 1.168947 +4+++4+
min.2 —11.305022 1.192048 +4++++ 2.383483
1st.1 —11.134196 1.185979 2.906576 2.398381
1st.2 —6.639250 +++++ 1.154136 2.344208
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Table XI: Stationary points of alanine.

+

oF =5 of =10 of =15 of =20
Iterations 17306 30137 43735 58046
CPU time (sec) 576 1152 1854 2656
Local minima 17 17 17 17
1st-order saddles 62 62 62 62
2nd-order saddles 71 82 83 83
3rd-order saddles 30 45 46 46
Local maxima 3 5 7 7
Total solutions 183 211 215 215
Table XII: 17 local minima of alanine.

Minimum F (kcal/mole) ¢ (deg) ¢ (deg) w (deg) x (deg)
min.01 2.677051 -80.917 -33.304 179.667 180.340
min.02 2.861981 -73.536 139.081 180.259 180.486
min.03 2.892502 60.085 -46.408 179.323 179.469
min.04 3.009668 187.686 -54.033 179.430 178.797
min.05 3.015236 61.899 123.574 180.549 179.606
min.06 3.142731 186.523 104.847 180.512 178.161
min.07 3.220681 -57.605  22.982 180.258 183.134
min.08 3.309932 214.440 171.296 179.980 180.905
min.09 6.236178 65.377 66.425  -3.223 179.919
min.10 6.764486 -79.789 72,511  -2.937 179.312
min.11 6.940900 184.014  75.412  -2.343 178.160
min.12 7.014898 -78.138 159.567 3.224 181.398
min.13 7.084476 185.147 -55.619 5.577 174.675
min.14 7.387601 56.137 157.767 5.131 179.913
min.15 7.408455 207.597 162.271  -0.217 181.208
min.16 8.772372 -26.959 -44.694 -19.985 179.562
min.17 8.850583 -27.168 -62.739  16.715 178.631
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Table XIII: 62 first-order transition states of alanine.

Saddle E (kcal/mole) ¢ (deg) ¢ (deg) w (deg) x (deg)

1st.01 3.156555 205.936  -22.612 179.863 180.122
1st.02 3.187229 188.969 67.250 180.668 179.061
1st.03 3.220681 -57.695 22.538 180.253  183.117
1st.04 3.245969 -62.257 54.156  180.482 181.574
1st.05 3.311030 222.458 170.910 179.987  180.934
1st.06 3.311484 207.652  165.482 180.025 180.535
1st.07 3.614353 -1.518 -5.620 179.844  181.279
1st.08 3.640605 64.066 22.725 180.210 182.231
1st.09 3.729918 193.090 233.646  179.493  181.187
1st.10 3.805265 -63.292  233.512 179.665  182.014
1st.11 3.846946 124.089  -55.131  179.253  179.600
1st.12 3.953160 124.257 108.300 180.634  179.282
1st.13 4.013967 -1.651  161.635 180.194 181.140
1st.14 4.173786 66.577  224.589  179.698  183.051
1st.15 6.223994 -82.041  -32.479  179.669  120.402
1st.16 6.417347 -75.500 141.615 180.246  120.526
1st.17 6.610153 193.207  -48.342  179.488  119.217
1st.18 6.617442 62.318 -45.515 179.309 119.703
1st.19 6.756069 62.652 129.574 180.508 119.756
1st.20 6.787633 193.607  128.744 180.328  119.295
1st.21 7.078400 229.659 69.796 -0.564  179.378
1st.22 7.159186 129.534 67.075 -3.181  179.030
1st.23 7.411289 218.209  162.965 -1.113  181.403
1st.24 7.675726 -4.949 68.951 -0.924  180.595
1st.25 8.064792 -0.726  162.114 -0.245  181.568
1st.26 8.501975 125.121  158.201 4.795 180.456
1st.27 8.872613 -24.942  -56.299 3.397  178.450
1st.28 9.128055 -71.909  135.390  -35.050  180.453
1st.29 9.279329 58.866 137.308  -34.323  179.525
1st.30 9.320592 -72.315  -47.805  -34.950 170.150
1st.31 9.354995 -66.836  100.753 33.914 179.258
1st.32 9.431146 63.312  101.295 33.817 178.848
1st.33 9.540317 191.382  136.590  -34.503  179.472
1st.34 9.542205 187.232  102.092 34.567  178.075
1st.35 9.640362 -78.449  -79.254 30.564 167.858
1st.36 9.818227 24.174  -47.920 -30.903  170.220
1st.37 10.171651 191.949  -54.376 -1.771  116.061
1st.38 10.186598 26.140  -75.566 25.336  167.903
1st.39 10.301416 -80.260  163.588 3.294  121.411
1st.40 10.880595 60.711  162.073 4.561  120.410
1st.41 11.009258 183.917  -61.049 87.367  178.203
1st.42 11.086837 72.367  -50.273 82.793 180.875
1st.43 11.124220 -86.290  -28.501  -86.074  179.967
1st.44 11.181241 69.208  -23.889 71.028  181.004
1st.45 11.210376 64.456 98.459  -87.746  178.877
1st.46 11.213608 213.229 -3.257  -86.087  180.787
1st.47 11.268395 -68.548  113.054  -87.000  179.801
1st.48 11.309974 -81.980 -5.516 81.495 180.976
1st.49 11.310009 -53.860  -60.472 80.875  180.436
1st.50 11.389593 182.369 90.523  -86.697 177.576
1st.51 11.484439 57.483  -33.757  -86.483  178.862
1st.52 11.494613 213.154 24.176 85.592  182.301
1st.53 11.509215 -72.840  136.179 86.403  180.607
1st.54 11.602675 -69.368 92.193 -20.946  117.112
1st.55 11.606165 65.102 88.618 -19.685 116.863
1st.56 11.712331 61.326  124.430 86.501  179.598

1st.57 11.732850 159.961  -11.986 66.565  177.907
1st.58 11.793153 192.980 91.439 -20.137 116.206

1st.59 11.800318 79.959 19.480 -68.216  183.655
1st.60 11.839776 187.902  113.001 86.308 178.601
1st.61 11.982450 79.570  -53.377  -14.238  118.667
1st.62 12.098725 -45.796  -51.352  -20.126  116.985

47



Table XIV: 10 minima of alanine dipeptide.

Minimum E (kcal/mole) 6; (deg) 63 (deg) ¢ (deg) o (deg) w (deg) x (deg) 03 (deg)
min.01 -5.180369 179.567 181.346 279.636  75.818 178.849 180.715 180.318
min.02 -4.469561 180.167 179.776 205.253 157.194 180.098 179.237 179.953
min.03 -4.373772 179.869 180.335 286.362 325.115 180.062 181.608 179.912
min.04 -4.076014 180.373  179.396 209.269  45.565 180.044 181.042 179.976
min.05 -4.058307 179.916 180.199 284.458 139.059 180.608 181.916 179.859
min.06 -3.445010 180.006 180.023 201.722 302.536 179.063 174.413 180.315
min.07 -2.815686 180.287  179.342 54.669 46.016 180.278 186.879 180.046
min.08 -0.112282 180.369  179.137 63.665 185.251 177.831 200.847 180.851
min.09 2.065108 180.857  177.019 T7.757  295.756 179.986 207.508 180.088
min.10 2.188548 179.267  182.567 57.636 271.806 188.766 163.886 177.140
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Table XV: 38 first-order saddles of alanine dipeptide.

Saddle E (kcal/mole) 6; (deg) 62 (deg) ¢ (deg) ¢ (deg) w (deg) x (deg) 63 (deg)
1st.01 -4.331961 119.502  181.467 279.585  75.788 178.850 180.716 180.318
1st.02 -4.052569 179.918 180.229 285.078 130.222 180.451 181.710 179.949
1st.03 -3.978339 179.568 181.340 279.683  75.929 178.692 180.709 120.473
1st.04 -3.635211 180.165 179.524 209.052 108.130 179.557 178.142 180.161
1st.05 -3.623680 120.123  179.752 205.241 157.200 180.098 179.237 179.953
1st.06 -3.529282 179.916 180.288 237.932 60.216 179.784 180.756 180.078
1st.07 -3.518100 119.858 180.399 286.376 325.062 180.062 181.604 179.909
1st.08 -3.305410 180.005 180.475 245.192 149.006 180.367 181.303 179.867
1st.09 -3.265688 180.167  179.776  205.252 157.201 180.112 179.237 119.953
1st.10 -3.224577 120.290 179.356 209.223  45.585 180.046 181.037 179.976
1st.11 -3.205613 119.913 180.236 284.477 138.899 180.608 181.911 179.860
1st.12 -3.166873 179.865 180.329 286.317 325.163 180.082 181.612 119.943
1st.13 -3.114901 179.516  181.724 255.119  10.378 179.882 182.899 180.017
1st.14 -2.872860 180.374  179.396 209.269  45.571 180.050 181.041 119.978
1st.15 -2.851601 179.917 180.198 284.398 138.885 180.681 181.916 119.768
1st.16 -2.597710 119.997 180.024 201.715 302.546 179.060 174.418 180.316
1st.17 -2.340470 180.274  179.367 239.218 302.774 179.124 177.239 180.294
1st.18 -2.241695 180.007 180.023 201.725 302.591 178.923 174.420 120.414
1st.19 -1.961786 120.279  179.264 54.689  46.027 180.280 186.870 180.048
1st.20 -1.602898 180.291  179.345 54.696  45.950 180.270 186.903 119.956
1st.21 -1.000853 180.261 179.486 203.337 159.698 180.151 119.207 179.930
1st.22 0.013990 180.178  179.482 200.855 303.145 178.457 115.139 180.527
1st.23 0.476551 179.419 181.975 265.114 103.799 179.087 121.641 180.321
1st.24 0.518612 179.717  181.236  272.179 326.978 180.130 124.351 179.934
1st.25 0.739801 120.358  179.051 63.691 185.232 177.833 200.831 180.851
1st.26 0.787970 180.671 178.632 220.681  27.648 181.910 124.575 179.338
1st.27 1.090129 180.369  179.137  63.647 185.305 177.524 200.811 120.999
1st.28 2.011870 179.757  180.993 69.743 127.642 180.397 203.690 179.857
1st.29 2.235108 180.105 180.081 57.013  34.932 181.155 129.311 179.838
1st.30 2.910394 121.122  176.561 77.963 295.819 179.979 207.449 180.091
1st.31 3.036065 119.046  182.928 07.489 271.826 188.750 163.861 177.144
1st.32 3.270683 180.857  177.026 77.751  295.751 179.981 207.509 120.043
1st.33 3.693830 180.235  179.152 67.815 283.213 187.576 186.788 177.622
1st.34 4.043629 179.872  180.900 60.407 178.274 177.748 139.602 180.896
1st.35 4.557812 178.562  185.042 65.673 283.817 182.556 124.496 179.286
1st.36 5.990539 180.290 179.409 205.195 237.066 182.285 181.648 179.244
1st.37 6.272659 179.918  180.448 53.354 240.740 174.271 181.764 181.541
1st.38 6.705320 179.952 179.853 271.009 238.764 178.227 181.828 180.618
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Table XVI: Triples for alanine.

Lower minimum

Higher minimum

Saddle  Minimum Barrier (kcal/mole) Minimum Barrier (kcal/mole)
1st.01 min.01 0.479505 min.04 0.146888
1st.02 min.01 0.510179 min.06 0.044499
1st.03 min.01 0.543631 min.07 0.000001
1st.04 min.02 0.383988 min.07 0.025288
1st.05 min.02 0.449050 min.08 0.001099
1st.06 min.06 0.168753 min.08 0.001552
1st.07 min.01 0.937302 min.03 0.721851
1st.08 min.03 0.748103 min.05 0.625369
1st.09 min.04 0.720251 min.08 0.419987
1st.10 min.01 1.128215 min.02 0.943285
1st.11 min.03 0.954444 min.04 0.837279
1st.12 min.05 0.937925 min.06 0.810430
1st.13 min.02 1.151987 min.05 0.998731
1st.14 min.03 1.281284 min.05 1.158550
1st.15 min.01 3.546959 min.01 3.546944
1st.16 min.02 3.555384 min.02 3.555366
1st.17 min.04 3.600515 min.04 3.600486
1st.18 min.03 3.724991 min.03 3.724940
1st.19 min.05 3.740885 min.05 3.740834
1st.20 min.06 3.644938 min.06 3.644903
1st.21 min.10 0.313914 min.11 0.137500
1st.22 min.09 0.923009 min.11 0.218287
1st.23 min.12 0.396391 min.15 0.002835
1st.24 min.09 1.439549 min.10 0.911240
1st.25 min.12 1.049894 min.14 0.677192
1st.26 min.14 1.114375 min.15 1.093521
1st.27 min.16 0.100242 min.17 0.022030
1st.28 min.10 2.363569 min.12 2.113157
1st.29 min.09 3.043152 min.14 1.891729
1st.30 min.13 2.236116 min.16 0.548221
1st.31 min.10 2.590510 min.12 2.340097
1st.32 min.09 3.194969 min.14 2.043546
1st.33 min.11 2.599418 min.15 2.131863
1st.34 min.11 2.601306 min.15 2.133751
1st.35 min.13 2.555886 min.17 0.789779
1st.36 min.13 2.733751 min.16 1.045856
1st.37 min.13 3.087355 min.13 3.087175
1st.38 min.13 3.102122 min.17 1.336015
1st.39 min.12 3.286518 min.12 3.286445
1st.40 min.14 3.492995 min.14 3.492952
1st.41 min.04 7.999591 min.13 3.924782
1st.42 min.03 8.194336 min.13 4.002361
1st.43 min.01 8.447169 min.13 4.039744
1st.44 min.09 4.945064 min.13 4.096765
1st.45 min.05 8.195140 min.09 4.974199
1st.46 min.01 8.536558 min.13 4.129132
1st.47 min.02 8.406415 min.10 4.503910
1st.48 min.01 8.632923 min.10 4.545489
1st.49 min.01 8.632959 min.17 2.459426
1st.50 min.01 8.712542 min.11 4.448693
1st.51 min.03 8.591937 min.13 4.399963
1st.52 min.01 8.817562 min.11 4.553713
1st.53 min.02 8.647235 min.12 4.494317
1st.54 min.10 4.838233 min.10 4.838190
1st.55 min.09 5.370058 min.09 5.369988
1st.56 min.05 8.697095 min.14 4.324731
1st.57 min.11 4.791950 min.13 4.648374
1st.58 min.11 4.852294 min.11 4.852254
1st.59 min.09 5.564141 min.13 4.715843
1st.60 min.06 8.697045 min.11 4.898876
1st.61 min.13 4.898154 min.13 4.897975
1st.62 min.16 3.326618 min.16 3.326354
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Table XVII: Triples for alanine dipeptide.

Lower minimum Higher minimum
Saddle Minimum Barrier (kcal/mole) Minimum Barrier (kcal/mole)
1st.01 min.01 0.848409 min.01 0.848382
1st.02 min.01 1.127800 min.05 0.005738
1st.03 min.01 1.202047 min.01 1.202030
1st.04 min.02 0.834349 min.04 0.440803
1st.05 min.02 0.845881 min.02 0.845848
1st.06 min.01 1.651087 min.04 0.546732
1st.07 min.03 0.855672 min.03 0.855646
1st.08 min.02 1.164151 min.05 0.752897
1st.09 min.02 1.203885 min.02 1.203873
1st.10 min.04 0.851437 min.04 0.851405
1st.11 min.05 0.852694 min.05 0.852667
1st.12 min.03 1.206913 min.03 1.206899
1st.13 min.03 1.258871 min.04 0.961113
1st.14 min.04 1.203167 min.04 1.203154
1st.15 min.05 1.206712 min.05 1.206706
1st.16 min.06 0.847300 min.06 0.847271
1st.17 min.03 2.033302 min.06 1.104540
1st.18 min.06 1.203327 min.06 1.203316
1st.19 min.07 0.853900 min.07 0.853867
1st.20 min.07 1.212788 min.07 1.212787
1st.21 min.02 3.468708 min.02 3.468706
1st.22 min.06 3.459121 min.06 3.458999
1st.23 min.01 5.657017 min.01 5.656919
1st.24 min.03 4.892453 min.03 4.892383
1st.25 min.08 0.852082 min.08 0.852046
1st.26 min.04 4.864000 min.04 4.863983
1st.27 min.08 1.202419 min.08 1.202410
1st.28 min.07 4.827556 min.08 2.124151
1st.29 min.07 5.050969 min.07 5.050793
1st.30 min.09 0.845286 min.09 0.845254
1st.31 min.10 0.847518 min.10 0.847489
1st.32 min.09 1.205599 min.09 1.205575
1st.33 min.09 1.628720 min.10 1.505280
1st.34 min.08 4.156048 min.08 4.155910
1st.35 min.09 2.493324 min.10 2.369264
1st.36 min.02 10.460099 min.06 9.435548
1st.37 min.08 6.384940 min.10 4.084111
1st.38 min.03 11.079090 min.05 10.763625
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Table XVIII: Transition rate matrix for alanine at 77 = 300 K. Table entries are base 10
logarithms of the actual transition rates expressed in Hz.

From

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 10.6 11.1 11.9 12.3 11.6 11.1 9.7 10.3 10.8 11.7
2 11.0 10.5 11.8 10.9 12.1 10.4 10.2
3 11.5 10.2 11.9 11.6 10.5
4 12.0 12.0 10.5 10.9 10.5
5 11.6 11.6 10.2 11.9 10.1 10.4
6 11.5 12.0 10.3 11.7 10.1
7 11.6 11.5

To 8 12.3 11.3 11.9
9 7.3 9.1 11.8 12.2 9.4 11.2
10 6.4 7.2 11.6 9.5 12.3 11.0
11 7.0 6.9 12.0 12.3 9.3 8.8 10.7
12 6.8 10.8 10.8 12.1 12.3
13 7.2 7.3 7.2 9.0 8.5 10.7 12.5 12.2
14 6.8 10.5 11.7 10.4 11.4
15 10.6 12.3 11.8
16 10.8 10.7 12.3
17 6.4 10.5 12.3
Table XIX: Transition probability matrix for alanine at 7' = 300 K.
From

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 .0189 .0452 .3710 .6417 .2130 .6140 .0022 .0061 .2363 .1241
2 .0456  .0127 .3225 .3861 .6736 .0099 .0057
3 1627 .0079 .2734 .1831 .1298
4 .4348 .4225 .0098 .0511 .1097
5 1521 .1987 .0067 .3559 .0078 .0113
6 .1389 .4878 .0100 .2754 .0034
7 1994 1243

To 8 .6659 .0752 4212

9 8e-6 .0010 .2374 .4640 .0099 .0732
10 le-6 5e-6 .2587 .0013 .5144 .0327
11 5e-6 4e-6 .7124 7248 .0007 .0024 .0248
12 2e-6 .0247 .0226 .5890 .8572
13 Te-6 9e-6 5e-6 .0007 9e-5 .1798 .5733 .3685
14 3e-6 .0197 .1928 .0127 .1181
15 0116 .7464 .3141
16 .2175 .0094 .5075
17 le-6 .1150 4175
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Table XX: Probability eigenvectors and decay times for alanine at 7" = 300 K.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

70 = (equilibrium)
u;o) = -120  .091 -051 .057  .055 .081 .406  .145 .001 .001 -001 .001 -001 .001 -001 .001 -001

(1) =592 x10711g
u;l) = —.059 —.043 —.025 —.028 —.025 —.038 —.216 —.069 .141 .090 .093 .071 .002 .029 .078 .00l .00l

7(2) =8.15 x 107125
«® = 007 .038 —.003 —.002 .016 .025 .262 .057 —.044 —.027 —.028 .039 —.384 .016 .044 —.008 —.007

78 =788 x 10712
u;a) = .002 —.002 .002 .002 —.002 —.003 .002 —.004 —.219 —.133 —.141 .176 .051 .069 .197 .001 .00l

7(4) =390 x 107125
oY = _—.044 —.079 —.035 —.033 —.061 —.090 .500 —.161 .00l .001 .001 .001 .00l .001 .00l .00l .00l

75 =1.64 x 107125
w8 = _.236 .119 —.127 —.138 .015 .037 .118 .213 .00l .00l —.001 —.001 .00l —.001 —.001 .00l .00l

7(6) =708 x 107135
« = 083 .113 —.004 .068 —.216 —.230 —.053 .238 —.001 .00l .00l .001 —.001 —.001 .00l .001 .00l

(M) =489 x 107135
W« = _.226 117 .215 —.017 .145 —.231 .026 —.027 .001 —.001 —.001 —.001 .00l .001 —.001 —.001 —.001

78 =470 x 10713 5
ug.s) = —.021 .010 .019 —.004 .014 —.013 .003 —.010 —.337 .251 .098 .031 .001 —.118 .077 .001 .001

79 =447 x 107135
u;.g) = —.006 —.003 .006 .001 —.001 .003 .002 .004 .266 —.195 —.068 .053 —.001 —.230 .169 —.001 —.001

7(10) — 4,30 x 10713 5
w19 = _.005 .068 .010 —.027 .078 —.098 —.009 —.040 .003 —.002 —.001 .001 —.321 —.001 .001 .154 .189

(1) =384 x 107135
+ = 183 156 —.168 .014 .150 —.157 —.048 —.129 .001 —.001 —.001 .001 .001 —.001 .001 —.001 —.001

7(12) — 9,86 x 10713 5

ug.”) —.174 —.178 —.093 .233 .087 —.056 .036 .146 —.001 .001 .001 —.001 .001 —.001 .001 .001 .001
7(13) =270 x 107135

u§13) = .167 —.236 .018 —.153 .085 —.113 .004 .229 —.001 —.001 .001 —.001 .001 .001 .001 —.001 —.001
7(14) — 9 49 x 10713 5

u§14) = —.004 .012 .001 .003 —.004 .004 —.001 —.009 —.027 —.024 .053 —.434 .001 .059 .373 —.001 —.001
7(15) = 92.20 x 10~ 135

u§15) —.004 .005 —.001 .002 .001 —.002 .001 —.002 —.158 —.307 .463 .032 —.001 —.002 —.029 .001 .001
7(16) —1.60 x 107135

«19 = _.046 002 .001 .010 —.001 .003 .003 —.002 —.001 .001 —.001 —.001 .114 .001 .001 —.453 .370
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Table XXI: Transition rate matrix for alanine dipeptide at 7' = 300 K. Table entries are base
10 logarithms of the actual transition rates expressed in Hz.

From
1 2 3 4 5 6 7 8 9 10
1]124 12.2 11.7
2 12.4 11.8 114 5.9
3 124 114 4.1 11.7
4111.8 11.7 11.2 124
To 5| 11.8 11.7 4.4 12.4
6 4.8 10.5 124
7 12.4 10.7
8 85 124 10.0
9 12.4 11.5
10 79 11.6 12.2

Table XXII: Probability eigenvectors and decay times for alanine dipeptide at 7" = 300 K.

1 2 3 4 3 6 7 8 9 10

7(04) = 0o (equilibrium)

u¥ = 251 158 .161 .106 .314 .011 .000 .000 .000 .000
79 = 6.05 x 10725

u™ = 142 .098 —.450 .029 .231 —.050 .000 .000 .000 .000
729 =202 x 10725

u? = 028 .030 —.478 —.022 .114 .328 .000 .000 .000 .000
739 =931 x 10 s

u? = 291 —.486 .004 —.014 .205 .000 .000 .000 .000 .000
T = 7.84 x 107"%5

u* = 317 014 —.040 .167 —.460 .002 .000 .000 .000 .000
754 = 2.93 x 1075

u¥ = 347 123 031 —.386 —.113 .000 .000 .000 .000 .000

7(08) = 0o (equilibrium)

w{ =000 .000 .000 .000 .000 .000 .993 .007 .000 .000
(1) =1.88 x 1070

wf™ =000 .000 .000 .000 .000 .000 —.500 .054 .202 .245
72D =216 x 1075

uf = 000 .000 .000 .000 .000 .000 —.499 .500 .000 .000
73 =1.36 x 102

uf* =000 .000 .000 .000 .000 .000 —.028 .069 .431 —.472
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Table XXIII: Classification scheme for (¢, ) pair.

Symbol Y Decoration 0]
a 270° < ¢ < 335° No prime 270° < ¢ < 330°
i 335° < 9 or ¥ < 90° Prime 180° < ¢ < 270°
b 90° <9 < 150° Double prime otherwise
j 150° <o < 270°

Table XXIV: Some relevant minima of tetra-alanine, including the alpha-helical ground state
(min.1) and the extended conformation (min.1583). Table is continued on the next page.

Minimum Class E (kcal/mole) ¢1 (deg) 1 (deg) @2 (deg) o (deg) 3 (deg) 3 (deg) ¢4 (deg) 4 (deg)

min.1** aaaa —6.6427 291.088 324.888 288.232 323.652 291.110 320.053 291.100 319.917
min.2 aaai —4.6014 290.594 331.498 296.407 320.177 283.311 312.544 272.011 67.416
min.3 aaab’ —3.7123 289.741 330.166 289.774 325.541 283.982 316.464 206.928 102.188
min.11 aai’a’ —2.2950 293.732 327.039 294.150 324.732 260.545 50.035 199.309 304.202
min.14 aaab —1.8670 290.042 325.945 286.426 326.265 288.257 321.662 289.283 144.673
min.17 j'aal —1.5702 203.340 175.491 302.231 315.665 284.649 308.041 273.059 73.339
min.21 i'aaa —1.3500 215.034 36.412 287.996 329.027 293.890 321.499 284.431 319.025
min.22 aaai’’ —1.3494 289.971 324.220 290.397 323.466 287.173 324.820 54.204 47.013
min.23 iaal’ —1.3344 280.912 75.518 293.578 330.091 299.642 327.048 244.500 36.758
min.25 ai'a’i —1.1691 296.516 317.533 263.439 53.102 198.981 303.747 278.303 73.169
min.29 iaaa —0.8911 278.421 68.085 271.089 308.381 283.423 325.858 284.583 330.163
min.31 ia'aa —0.8004 279.257 63.605 194.069 304.378 273.089 311.542 277.316 313.388
min.33 ia'aa —0.5982 280.566 68.270 198.965 302.454 280.251 319.576 279.515 328.443
min.34 iaai —0.5532 280.776 75.704 292.887 332.344 297.638 322.884 276.076 70.001
min.35 aai’i —0.5506 288.392 324.138 288.590 325.096 252.129 49.902 279.822 75.130
min.36 aai’i —0.5480 293.923 314.343 283.786 315.939 268.756 64.240 279.564 75.341
min.40 ia’ai’ —0.3703 279.771 65.649 195.270 302.493 277.843 328.026 236.284 27.847
min.43 aai’a —0.2937 288.403 325.983 287.642 328.594 251.206 42.855 284.408 325.160
min.60 iaii 0.2089 280.659 74.810 293.340 317.836 277.284 70.527 279.615 75.181
min.63 ai'i’i 0.2624 296.354 324.322 251.358 28.730 203.421 41.462 279.775 75.482
min.64 i'aal 0.2775 213.296 40.242 292.361 316.562 285.937 317.365 272.128 66.233
min.74 jaai 0.4873 283.353 153.193 295.352 326.348 294.049 322.643 275.108 68.654
min.79 aai’b 0.5774 287.361 324.511 288.710 325.221 250.999 49.459 284.039 144.497
min.82 iaii’ 0.6078 280.737 74.867 290.365 320.928 278.578 71.853 208.745 41.400
min.84 ij’ai’ 0.6904 280.198 75.042 204.528 160.723 298.647 325.376 249.197 38.321
min.91 iiii 0.7689 280.921 75.765 280.927 75.267 280.768 75.110 280.048 75.397
min.95 iaij’ 0.8342 280.667 74.953 291.054 320.776 279.092 74.585 206.929 159.006
min.98 ai'’a 0.8575 296.117 324.339 251.263 28.030 204.158 40.043 283.932 325.227
min.112 ai'i’y’ 0.9968 297.773 324.921 250.435 33.232 204.529 43.945 205.589 159.141
min.116 iai’i 1.0649 279.344 71.274 284.771 318.539 207.040 40.669 278.903 75.073
min.132 ai'i'if 1.1718 296.674 326.686 253.105 30.532 206.490 40.207 208.083 43.002
min.137 iaib 1.1983 280.699 74.974 293.509 317.540 277.481 70.810 283.286 147.302
min.138 ai’j’i 1.1999 289.121 326.880 214.597 38.209 202.901 161.278 281.728 77.102
min.148 al'i'b 1.2984 296.237 323.823 250.337 28.976 203.036 41.710 283.017 144.502
min.151 al’ai’ 1.3162 290.833 326.730 246.372 42.212 291.456 328.274 216.916 41.079
min.159 ai’ii 1.3879 291.265 323.531 249.176 49.310 280.647 75.002 280.161 75.486
min.173 iia’i 1.4927 280.883 75.859 282.187 73.426 199.681 304.197 279.480 74.667
min.177 aaji 1.5261 287.639 326.979 288.441 326.290 281.875 160.095 281.193 74.727
min.179 ai’ii 1.5324 289.537 330.985 219.202 51.987 281.038 75.302 280.196 75.645
min.180 iii’” 1.5337 281.275 76.297 279.362 340.949 281.781 73.712 51.398 60.822
min.187 i'a’ai’ 1.5853 254.065 19.303 205.733 304.060 293.358 328.309 222.447 35.408
min.199 iaj'i 1.6603 280.683 74.994 287.146 329.197 207.453 159.003 280.368 75.870
min.201 ibai 1.6833 281.095 76.231 285.565 145.947 293.017 320.213 277.303 72.427
min.209 ii’ii 1.7245 280.240 73.245 207.981 41.535 280.738 75.510 280.058 75.447
min.221 ij'ii 1.7956 281.107 76.490 205.670 160.385 281.141 75.101 279.988 75.387
min.235 ibii 1.8712 281.085 76.101 286.094 146.431 280.901 75.070 279.896 75.298
min.239 iabi 1.8963 280.600 74.982 289.492 321.029 279.827 142.372 281.013 76.420
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Minimum Class E (kcal/mole) ¢1 (deg) 1 (deg) 2 (deg) 2 (deg) @3 (deg) o3 (deg) a4 (deg) a4 (deg)
min.251 iibi 1.9322 280.763 75.646 280.974 75.432 285.583 145.736 280.407 75.851
min.267 ii’ai’ 2.0218 280.303 73.253 208.637 41.492 298.750 324.633 248.244 37.194
min.316 ii’ai’ 2.1937 280.285 73.201 208.964 41.125 292.110 329.845 219.195 41.771
min.325 i’aia 2.2266 209.841 47.550 294.183 317.171 276.396 68.436 283.600 324.392
min.326 iai'b 2.2275 279.311 71.485 284.412 318.924 206.296 42.003 282.084 142.317
min.352 i’aii’ 2.3051 209.854 48.419 291.256 319.922 278.076 71.752 209.510 41.284
min.358 ii’j'i 2.3318 280.169 73.172 207.982 40.964 204.695 158.623 280.186 75.617
min.385 ij'ii’ 2.4042 280.657 75.518 205.244 159.503 280.204 72.490 207.274 42.239
min.387 iaai’”’ 2.4080 280.328 74.153 291.009 326.554 290.249 326.407 53.229 47.300
min.401 iiii’ 2.4461 280.336 73.374 207.887 41.765 280.350 73.729 207.799 42.924
min.404 iaa’a 2.4562 279.478 71.386 281.740 315.463 199.331 301.857 278.776 315.899
min.417 ibii’ 2.5007 281.010 75.961 286.380 146.832 280.489 73.273 207.748 42.681
min.466 iiij’ 2.6164 280.183 73.298 208.123 41.445 280.586 76.200 205.952 157.751
min.512 ii’ib 2.7183 280.304 73.456 208.125 41.462 280.967 76.153 285.384 145.483
min.523 ibj’i 2.7397 281.001 76.235 287.728 143.591 205.183 158.937 280.098 75.594
min.531 ii'i'i 2.7567 280.210 72.964 209.229 40.244 208.778 43.064 279.936 75.602
min.547 i'iai 2.7970 209.002 45.699 282.348 74.164 200.200 304.095 279.727 74.962
min.551 biij’ 2.8116 285.536 140.720 280.950 75.411 280.458 75.459 205.826 157.618
min.562 ii’bi 2.8513 280.069 73.107 207.664 41.618 285.047 144.447 280.476 76.038
min.568 ij'j'i 2.8676 280.744 76.664 206.237 158.969 205.393 158.426 280.208 75.835
min.600 biib 2.9507 285.711 139.655 280.849 75.211 280.778 75.440 285.184 144.851
min.613 bbii 2.9765 285.318 141.350 286.323 145.310 280.911 75.115 279.849 75.303
min.618 iii’i" 2.9871 281.138 76.121 279.165 67.669 200.719 48.084 54.528 44.496
min.623 ii'i'i 2.9917 280.087 72.716 251.070 15.100 210.756 41.654 280.005 75.492
min.630 i’j’y’ 3.0096 280.366 73.666 208.081 41.340 204.934 158.813 205.464 158.129
min.633 ibbi 3.0132 280.999 76.263 286.077 146.175 286.025 144.576 280.441 76.008
min.663 bibi 3.1032 285.337 140.991 281.207 75.803 285.347 146.696 280.412 75.874
min.697 ibi’i 3.1691 281.204 76.434 287.072 144.627 209.720 43.487 279.948 75.628
min.730 ii’i’j’ 3.2451 280.158 73.025 208.933 40.187 208.476 42.407 204.721 157.156
min.822 ij’j'’ 3.4907 280.716 76.757 206.209 159.098 205.407 159.017 205.518 158.279
min.869 ibbj’ 3.5841 280.947 76.257 285.750 146.635 287.388 143.407 205.488 159.016
min.959 bbij’ 3.7821 285.009 142.273 285.638 146.402 280.831 75.657 205.710 157.134
min.975 ii’i'b 3.8019 280.185 73.032 209.269 40.394 208.413 43.532 284.451 143.135
min.1095 bbib 4.0125 285.167 140.777 285.741 145.585 281.152 75.833 284.850 145.157
min.1114 bbbi 4.0442 284.987 142.700 285.984 146.123 286.157 145.937 280.376 75.923
min.1253 bj'j'i’ 4.2862 286.361 141.712 205.525 159.880 205.410 158.862 205.503 158.399
min.1305 bj'i'y’ 4.3852 286.584 142.079 205.645 160.522 211.090 40.653 204.113 157.106
min.1338 bbj’j 4.4576 284.689 142.123 286.990 145.084 205.378 159.673 205.440 157.973
min.1410 bbbj’ 4.6113 284.739 142.857 285.569 146.610 287.414 144.872 205.411 158.785
min.1473 iaa/i"’ 4.7402 280.256 74.012 285.665 332.880 206.028 302.858 53.097 47.534
min.1497 bi'i’j’ 4.7648 285.615 140.902 213.960 38.185 207.003 43.025 204.742 157.080
min.1583** bbbb 4.9159 284.726 142.633 285.597 147.139 285.907 146.801 285.359 145.270
min.2210 aai’a’ 6.4112 295.754 329.033 300.723 326.911 245.860 38.554 65.320 283.281
min.2482 ba'’i'i 7.4542 296.215 117.472 63.760 281.189 204.359 36.378 277.629 73.127
min.9305 aaia// 36.4913 291.329 328.388 299.971 322.799 284.344 87.086 124.069 321.733
min.9309 iaia’’ 36.6860 280.932 75.379 300.330 322.262 285.105 87.140 124.004 321.676

Table XXV: Number of pathways from min.1583 to min.1 with a given length restriction.

Maximum length Pathways

Pathways (10° Hz cutoff)

9
10
11
12
13
14
15

0

4

43
325
2023
11895
62292

26

0

3

36
235
1376
6698
28298



Table XXVI: Pathways from min.1583 (extended conformation) to min.1 (alpha-helical con-
formation) consisting of 11 minima or less, in increasing order of overall transition time. An
asterisk indicates an extremely slow transition (over 1s). Table is continued on the next

page.

Transition time (s) Pathway
8.79 x 10~ 11 1583 1114 663 562 209 60 36 35 2 1
bbbb  bbbi  bibi ii'bi ii'ii  iaii aai'i aai'i aaai aaaa
1.06 x 10~10 1583 1114 663 562 239 199 60 36 35 2 1
bbbb  bbbi  bibi ii'bi iabi iaj'i iaii aai'i aai'i aaai aaaa
1.10 x 1010 1583 1114 663 562 209 179 159 36 35 2 1
bbbb  bbbi  bibi ii'bi ii'ii ai'ii aiii aai'i aai'i aaai aaaa
1.15 x 10~10 1583 1114 663 562 358 199 60 36 35 2 1
bbbb  bbbi  bibi ii'bi ii’ji iaj'i iaii aai'i aai'i aaai aaaa
1.16 x 10710 1583 1114 633 251 91 209 60 36 35 2 1
bbbb  bbbi ibbi iibi  iiii  ii'ii  iaii aai'i aaii aaai aaaa
1.18 x 10710 1583 1114 633 235 91 209 60 36 35 2 1
bbbb  bbbi ibbi ibii  iiii  ii'ii  iaii aai'i aai'i aaai aaaa
1.18 x 10~10 1583 1114 663 251 91 209 60 36 35 2 1
bbbb  bbbi  bibi iibi  iiii  ii'ii  iaii aai'i aai'i aaai aaaa
1.20 x 1010 1583 1114 663 562 358 138 63 35 2 1
bbbb  bbbi  bibi ii'bi ii’ji ai'j’i ai’i'i aai'i aaai aaaa
1.24 x 10~10 1583 1114 613 235 91 209 60 36 35 2 1
bbbb  bbbi  bbii ibii iiii ii'ii iaii  aaii  aai'i aaai aaaa
1.50 x 10~10 1583 1114 663 562 358 138 63 132 98 43 1
bbbb  bbbi  bibi ii'bi ii’j'i ai'j'i ai'i'i ai'i'i’ ai''a aai'a aaaa
1.51 x 10710 1583 1114 633 235 221 209 60 36 35 2 1
bbbb  bbbi ibbi ibii ij’ii  ii'ii  iaii aai'i aai'i aaai aaaa
1.55 x 10~10 1583 1114 663 562 358 138 177 36 35 2 1
bbbb  bbbi  bibi ii'bi ii’ji ai'ji aaji aai'i aai'i aaai aaaa
1.61 x 10710 1583 1114 613 235 221 209 60 36 35 2 1
bbbb  bbbi  bbii ibii ij'ii  ii'ii  iaii aai'i aai'i aaai aaaa
2.09 x 1010 1583 1114 663 562 358 531 63 35 2 1
bbbb  bbbi  bibi ii'bi ii’ji ii'i'i ai’i'i aai'i aaai aaaa
2.20 x 1010 1583 1410 869 417 385 84 267 316 151 2 1
bbbb  bbbj’ ibbj’ ibii’ ij'ii’ ij'ai’ ii'ai’ ii'ai’ ai'ai’ aaai aaaa
2.28 x 10710 1583 1114 633 523 568 358 138 63 35 2 1
bbbb  bbbi ibbi ibji ij'j'i ii'j'i ai’j/i ai'i'i aai'i aaai aaaa
2.34 x 1010 1583 1114 663 562 358 531 63 132 98 43 1
bbbb  bbbi  bibi ii'bi ii'ji ii'i'i ai'i'i ai'i'i’ ai'i'a aai'a aaaa
2.70 x 1010 1583 1114 663 562 358 138 63 132 98 11 1
bbbb  bbbi  bibi ii'bi ii’j'i ai'j'i ai'i'i ai'i'i’ ai''a aai'a’ aaaa
3.17 x 10710 1583 1114 633 523 568 358 531 63 35 2 1
bbbb  bbbi ibbi ibji ij'ji ii'ji ii'i'i ai'i'i aai'i aaai aaaa
3.18 x 10710 1583 1114 663 562 358 531 63 132 98 11 1
bbbb  bbbi  bibi ii'bi ii'ji ii'i'i ai'i'i ai'i'i’ ai'i'a aai'a’ aaaa
3.55 x 10710 1583 1114 663 562 358 531 623 116 35 2 1

bbbb  bbbi  bibi ii'bi ii'ji ii'i'i ii'i'i  iai'i aai'i aaal aaaa
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Transition time (s) Pathway

478 x 10710 1583 1095 600 512 137 975 148 79 14 2 1
bbbb  bbib biib ii'ib iaib ii'i'b ai'i'b aai'b aaab aaai aaaa
7.59 x 1010 1583 1095 600 512 137 34 23 29 33 31 1
bbbb  bbib biib ii'ib iaib iaai  iaai’ iaaa ia'aa ia'aa aaaa
8.46 x 1010 1583 1095 600 512 137 34 23 316 151 2 1
bbbb  bbib biib ii'ib iaib iaai  iaai’ ii'ai’ ai'ai’ aaai aaaa
9.68 x 1010 1583 1095 600 512 137 34 23 40 187 2 1
bbbb  bbib biib ii'ib iaib iaai  iaai’ ia'ai’ i'a’ai’ aaai aaaa
1.00 x 10—° 1583 1114 633 523 697 201 173 547 25 2 1
bbbb  bbbi  ibbi  ibj'i  ibi'i  ibai iia'i  i'ia'i ai’a'i aaai aaaa
1.15 x 10~° 1583 1095 600 512 137 34 60 36 35 2 1
bbbb  bbib biib ii'ib iaib iaai iaii  aai'i aai'i aaali aaaa
1.58 x 1079 1583 1410 959 551 466 401 82 352 325 21 1
bbbb  bbbj’  bbij’ biij’ i’y difil’ iaii’  i'aii’ i'aia i'aaa aaaa
1.71 x 10~° 1583 1095 600 512 466 401 82 352 325 21 1
bbbb  bbib  biib ii'ib iy il iail’  i'ail’ i'ala i'aaa aaaa
2.08 x 107° 1583 1410 959 551 466 95 82 352 325 21 1
bbbb  bbbj’  bbij’ biij’ ii'ij  iaij’ iaii’  i'aii’ i'aia  i'aaa aaaa
2.19 x 107? 1583 1095 600 512 466 95 82 352 325 21 1
bbbb  bbib  biib ii'ib  ii'i))  iaij iaii’  i'aii’ i'aia i'aaa aaaa
3.42 x 1079 1583 1410 1338 1253 1305 1497 730 112 3 2 1
bbbb bbbj’ bbj'j’ bjj'j’ bji'j’ by i) ai't’j’  aaab’ aaai  aaaa
3.43 x 1079 1583 1410 1338 1253 822 630 730 112 3 2 1
bbbb bbbj’ bbj'j bjii i i’y ii'ifj  ai'i'j’ aaab’ aaai aaaa
3.84 x 1079 1583 1095 600 512 137 34 74 17 64 2 1
bbbb  bbib  biib ii'ib iaib iaai jaai  j'aai i'aai aaai aaaa
1.31 x 10~8 1583 1095 600 512 137 975 148 112 3 2 1
bbbb  bbib  biib ii'ib iaib  ii'i'b  ai'i'b ai'i'j’ aaab’ aaai aaaa
7.62 x 1074 1583 1095 600 512 137 34 23 29 404 31 1
bbbb  bbib biib ii'ib iaib iaai  iaai’ iaaa iaa’a ia’'aa aaaa
long 1583 1095 600 512 137 326 x 2482 x 116 35 2 1
bbbb  bbib biib ii'ib iaib  iai'b ba''i'i iai'i aai'i  aaai aaaa
long 1583 1095 600 512 137 34 74 x 387 22 x 2 1
bbbb  bbib  biib ii'ib iaib iaai jaai iaai” aaai” aaai aaaa
long 1583 1095 600 512 137 34 x 387 1473 22 x 2 1
bbbb  bbib biib ii'ib iaib iaai iaai’” iaai” aaai” aaai aaaa

long 1583 1095 600 512 137 34 x 387 22 % 2 1

bbbb  bbib biib ii'ib iaib iaai iaai” aaai” aaai aaaa
long 1583 1114 633 523 697 * 618 * 9309 9305 x 2210 * 43 1
bbbb  bbbi  ibbi  ibji  ibii iii'i" iaia” aaia” aai'a” aai’'a aaaa
long 1583 1114 663 562 209 60 34 x 387 22 x 2 1
bbbb  bbbi bibi ii'bi ii'ii iaii iaai iaai” aaai” aaai aaaa
long 1583 1114 663 562 239 x 180 x 60 36 35 2 1
bbbb  bbbi bibi ii’bi iabi  iiii” iaii  aai'i aai'i aaai aaaa
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Table XXVII: Selected results from our BB tetra-alanine runs.

Eigenmode
Region Type II1 aBB « CPU (s) Iterations

2223 min 25 2341 1733

—_

bbbb min 20 235916 284127
1st
2nd
3rd

4th
bibi min
1st
2nd

20 21136 25632

bbbj’  min
1st
2nd
3rd
4th
5th

20 395041 469618

—_

80 484865 362337

aai'i min
1st

— N O N W 0NO R = O =
— N = IO~ O NN RO R

99



2
1.5
1
f(z)
0.5
1 3 T
-0.5
Tsol
-1
1.5

Figure 1: Plot of f(x) for z € [0, 4].

Figure 2: f(z) is shifted by a positive slack variable s = 1. Note that the feasibility region
of f(z) — s <0< f(x) + s forms intervals around the solutions to f(z) = 0.
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Figure 3: The functions_ f*(z) are convex underestimators of 4 f(z) over the interval [0, 4].
Note how f*(z) and —f~ (x) form a convex envelope around f(z).

— (@) + Smin |

Figure 4: During the solution to the lower bounding problem, the convex underestimators
fi(x) are shifted by a slack variable. Two different shifts are shown above, one positive
s+ = 1, and the other negative sy, = —2.135. Spin represents the global minimum to the
lower bounding problem: the feasibility region of the lower bounding problem is reduced to
a single point x,;, = 1.754, shown above.
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Figure 5: The interval [0, 4] has been subdivided into [0, 2] and [2,4]. The convex underes-
timators f*(z) for each subinterval, shown above, form a convex envelope around f(z). As
the intervals get smaller, the envelope gets tighter.

PN

0(%) — Smin

Figure 6: This figure represents the solution to the lower bounding problem in the interval
0,2]. (min, Smin) = (0.656, —1.189).
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Figure 7: This figure represents the solution to the lower bounding problem in the interval
(2,4]. (Zmin, Smin) = (3.154, —1.150).

[
T

2.3)(®)

Figure 8: The intervals [0, 2] and [2, 4] have been further subdivided into [0, 1], [1,2], [2, 3],
and [3,4]. Shown above are the convex envelopes around f(x) formed by convex under-
estimators in each of these intervals. Note that the convex envelopes for [0, 1], [1,2], and
(3, 4] intersect the z-axis, but the convex envelope for [2,3] does not. This will allow us to
conclude rigorously that no solutions to f(z) = 0 exist in [2, 3].
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Figure 9: The lower bounding problem for the interval [2, 3] is solved. Note that the convex
envelope must be expanded before it touches the z-axis resulting in a positive value for sy,.
This interval will be fathomed. (Zmin, Smin) = (2, +0.479).

0.5
0 0.5 3.5 2T
-0.5
1k
1.5}
2k
Ainf,+
-2.5¢ f[2,3] (.T)

Figure 10: This is the same situation as Figure 9, except that the underestimators ff; g’]i (x)
are less tight. As a result, the convex envelope now crosses the z-axis and s will be

negative. This interval will not be fathomed, in spite of the fact that no solutions to f(z) =0
exist there. (zi"f | sinf ) = (2.447,—-0.407).

min’ “min
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Figure 11: This is a plot of d?f/dr?. The maximum and minimum values of d*f/dz? are
useed to calculate adequate values of o*.
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Figure 12: Shown above are the convex envelopes formed by « underestimators for various
interval sizes ¥ — z¥, starting with the entire interval [0, 4], and subdividing. The values of
alpha are fixed to ™ = 15.206 and o~ = 16.152. The convex envelopes which don’t cross
the z-axis are designated as “fathomed” to indicate that these intervals would be fathomed
by the aBB algorithm.
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Figure 13: Using the bound update procedure, the interval [0, 2] can be reduced to [xL ,o¥] =
[0.310,1.938] (highlighted above). This allows us to use tighter underestimators fZ (z) and
at the same time, reduce the interval we are considering. This procedure can be repeated,

although in this case, not much would be gained.
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Figure 14: Minima and first-order transition states of HCN.
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Figure 15: Minima and first-order transition states of HSiN.
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Figure 16: Minima and first-order transition states of CSs.
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Figure 17: Minima and first-order transition states of HBO (PESI).
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Figure 18: Minima and first-order transition states of HBO (PES2).
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Figure 19: Alanine
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Figure 20: ¥—¢ plot for alanine.
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Figure 21: Alanine dipeptide
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Figure 22: 1—¢ plot for alanine dipeptide.
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Figure 23: Time
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Figure 24: Time evolution of min.06-min.11 for alanine.
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Figure 25: Time evolution of min.12-min.17 for alanine.
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Figure 26: Schematic drawing showing how min.01-min.17 of alanine are connected.
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Figure 27: Rate disconnectivity graph for alanine at 7" = 300 K.
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Figure 28: Time evolution of min.01-min.05 for alanine dipeptide
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Figure 29: Time evolution of min.06-min.10 for alanine dipeptide
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Figure 30: Rate disconnectivity graph for alanine dipeptide at 7" = 300 K.
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Figure 31: Tetra-alanine
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Figure 33: One possible pathway from min.1583 to min.1.
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Figure 34: Occupation probabilities for min.1583 and min.1 for tetra-alanine at 7" = 300 K,
given that the system is in min.1583 initially.
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Figure 35: Partial rate disconnectivity graph for tetra-alanine. The root node is the node
minima.

which connects min.1583 to min.1 in the full rate disconnectivity graph. It contains 1112
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Figure 36: Partial rate disconnectivity graph for tetra-alanine, in the vicinity of min.1.
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Figure 37: Partial rate disconnectivity graph for tetraalnine, in the vicinity of min.1583.
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