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Abstract

The aBB algorithm is a deterministically based global optimization method that has been
successfully used to locate the global minimum energy conformations of peptide systems.
The goal of this procedure is to identify the native conformation of a given peptide by iden-
tifying the structure possessing the global minimum potential energy. However, a rigorous
conformational search should locate the structure exhibiting the global minimum free en-
ergy. In this work, novel methods are developed for locating free energy global minimum
conformations and clusters of peptides. These methods are based on an harmonic approxi-
mation for entropic effects, which requires the ability to generate a dense ensemble of distinct
low energy local minima. Two approaches, both based on the general concepts of the aBB
branch and bound framework, are used to generate these ensembles. In performing these
calculations, potential energy contributions were modeled using an all-atom force field. In
addition, hydration effects were also considered by utilizing a solvent—accessible volume of
hydration shell model. The free energy analysis was applied to both the unsolvated and
solvated forms of met— and leu—enkephalin. It was found that both methods produce dense,
Boltzmann-like, distributions of low energy metastable states. The inclusion of entropic ef-

fects was also found to influence the prediction of free energy global minima. In addition, a
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statistical treatment of the thermodynamics of folding showed that the transition tempera-
ture, which signified a collapse from high energy, extended structures to a ground-state-like

ensemble, could be identified.



1 Introduction

Predicting the native three-dimensional structure of proteins from amino acid information,
or the protein folding problem, has been the focus of much research since Anfinsen intro-
duced the hypothesis that native proteins are in their thermodynamically most—stable state
L Through the use of empirical potential energy functions, which are used to model the
interatomic interactions of the peptide system, the multiple-minima problem has become a
hallmark of computational chemistry. Some methods, including metropolis Monte Carlo and
molecular dynamics, can be used to search the multidimensional energy landscape, although
the results tend to be dependent on the choice of starting conformations. Therefore, a fun-
damental issue that has been addressed through the protein folding problem is the ability
to develop efficient methods for finding the global potential energy minimum from among
many local minima 23,

However, locating the global minimum potential energy conformation is not sufficient be-
cause Anfinsen’s thermodynamic hypothesis requires the minimization of the conformational
free energy. Specifically, potential energy minimization neglects the entropic contributions
to the stability of the molecule. An approximation to these entropic contributions can be
developed by using information about low energy conformations. That is, once a sufficient
ensemble of low energy minima has been identified, a statistical analysis can be used to esti-
mate the relative entropic contributions, and thus the relative free energy, for conformations
in the ensemble.

Therefore, the analysis of the free energy of peptides requires efficient methods for lo-
cating not only the global minimum energy structure but also large numbers of low energy
conformers. A variety of methods have been used to find such stationary points on poten-
tial energy surfaces. For example, periodic quenching during a Monte Carlo or molecular
dynamics trajectory can be used to identify local minima#. However, a drawback of these
approaches is their inherent stochastic nature. In its original form, the aBB deterministic
global optimization algorithm5’6’7’8’9 has been shown to be an efficient method for finding
the global minimum energy conformation for both unsolvated and solvated peptide systems
101112 1y this work, novel methods are proposed within the framework of the aBB al-

gorithm to optimize the free energy of peptide systems. These modifications facilitate the



generation of ensembles of low energy conformers, which can be used to identify the global
minimum free energy conformation, as well as perform detailed free energy rankings.

In the first section, issues related to the energetic modeling of peptide systems are consid-
ered. This includes specification of potential and solvation modeling, as well as a discussion
on the ability to rigorously and approximately model the entropic contributions to the free
energy of these systems. The next section gives an overview of the problem formulation.
The third section outlines the theoretical and algorithmic development for the aBB based
methods, including their proficiency in locating the global, as well as ensembles of local min-
imum energy conformations. Computational results are then presented for both the isolated
and solvated forms of met— and leu—enkephalin examples. This is followed by a final section

devoted to a summary and discussion of the results.

2 Energy Modeling

2.1 Potential Energy Model

Many models have been developed using a classical description of molecules in terms of
atomic bonds and effective interactions. Some of these parameterizations of molecular poten-
tial functions include ECEPP13.1415 AMBER 1617 cHARMM 8, DISCOVER1?, GRO-
MOSQO, MM321, ENCADQQ, ECEPP/223 and ECEPP/324. In most cases, these force
fields are atom centered potentials from which the total molecular energy is computed as a
sum over all pairwise interactions.

In this work, the ECEPP/3 (Empirical Conformational Energy Program for Peptides)
potential model is utilized24. In this force field, it is assumed that covalent bond lengths
and bond angles are fixed at their equilibrium values. Under this assumption, all residues of
the same type have essentially the same geometry in various proteins. Therefore, a chain of
any sequence can be generated using the fixed geometry specific to each type of amino acid
residue in the sequence.

Based on these approximations, the conformation is only a function of the dihedral angles.
That is, ECEPP/3 accounts for energy interaction terms which can be expressed solely in

terms of the independent torsional angles. The total conformational energy is calculated



as the sum of the electrostatic, nonbonded, hydrogen bonded, and torsional contributions.
Additional contributions are calculated for special structural features, such as proline rings
and disulfide bridges. The main energy contributions are computed as the sum of terms for
each atom pair whose interatomic distance is a function of at least one dihedral angle. The
contributing terms to the total potential energy of ECEPP /3 are shown in Figure 1, and the

development of the appropriate parameters is discussed and reported elsewhere 24

2.2 Solvation Energy Model

Solvation contributions are generally believed to be a significant force in stabilizing the
native conformations of proteins. Explicit methods include solvation effects by actually sur-
rounding the peptide with solvent molecules. Energetic evaluations require the calculation
of both solvent-peptide and solvent-solvent interactions. Although these methods are con-
ceptually simple, explicit inclusion of solvent molecules greatly increases the computational
time needed to simulate the peptide system. Therefore, most simulations of this type are
limited to local conformational searches. In addition, it is difficult to quantify the effect of
hydrophobic interactions that result from the ordering of water molecules.

In contrast, continuum models use a simplified representation of the solvent environment
by neglecting the molecular nature of the water molecules. Calculations of solvation free
energies using electrostatic continuum models rely on numerical solutions to the Poisson—
Boltzmann equation from which dielectric and ionic strength effects are obtained 2. Other
continuum models estimate free energies of solvation as a function of geometric quantities,
such as surface areas and volumes.

In this work, solvation contributions are included implicitly using empirical correlations
with solvent accessible volumes2%. The main assumption of these models is that, for each
functional group of the peptide, a hydration free energy can be calculated from an averaged
free energy of interaction of the group with a layer of solvent known as the hydration shell.
In addition, the total free energy of hydration is expressed as a sum of the free energies of

hydration for each of the functional groups of the peptide.



2.2.1 Accessible Volume of Hydration Shell

The proportionality between the hydration energy and the solvent—accessible volume of a
hydration layer surrounding the peptide can be represented in the form :

N

Egyp = ZI(VHSi)(di) (1)

=
An additive relationship for the N individual atoms of the peptide is assumed. Here (V HS;)
represents the solvent—accessible volume of hydration shell for each atom ¢ that is exposed to
water, and the (J;) parameters are empirically determined free energy of hydration densities
for these atoms.

The hydration shell is defined by the volume inside a sphere of radius R? but outside a
sphere of radius RY, with both radii centered on atom 4. The larger radius, R}, corresponds
to the radius of the first hydration shell of atom %, while R} is equal to the van der Waals
radius. In order to calculate (VHS;), the volume of a collection of overlapping hard spheres
must be computed using :

VR) = Y aiSi — > bijDij + Y cijiTiji — D dijiuQijni (2)

i ij ijk ijkl
In Equation (2), S; signifies the volume of a single sphere, while D;;, T} and @ represent
the volume of intersection of two, three and four spheres, respectively. This is sufficient
because all higher order overlaps can be decomposed into the three types of intersections
included in Equation (2). Therefore, the solvent-accessible volume of hydration can be

written as :

(VHS;) = V(R}) = V(R}) (3)

The first term in Equation (3) is calculated using Equation (2) with the radii of all atoms
set equal to their van der Waals radii, while the second term is calculated with the radius of
atom 7 equal to R? and the van der Waals radii of all the other atoms. A number of methods
to compute hydration shell volumes have been proposed 26,2728

The form of Equation (2) is not suitable for force field models using pairwise intramolec-
ular potential, such as ECEPP/3. Furthermore, direct truncation at the double—overlap

term would lead to large errors. In this work, the RRIGS (Reduced Radius Independent



Gaussian Sphere) approximation is used to efficiently calculate the exposed volume of the
hydration shell26. This method uses a truncated form of Equation (2) but also artificially
reduces the van der Waals radii of all atoms other than atom ¢ when calculating (VHS;).
These reductions effectively decrease the contribution of the double overlap terms, leading
to a cancellation of the error that results from neglecting the triple and higher overlap terms.
In addition, the characteristic density of being inside the overlap volume of two intersecting
spheres is not represented as a step function, but as a Gaussian function; this provides con-
tinuous derivatives of the hydration potential. Therefore, the solvation energy contributions
can easily be added at every step of local minimizations since the RRIGS approximation has
the same set of interactions as the ECEPP/3 potential.

Free energy density parameters for solvent accessible volumes have been developed for
nonionic and charged organic solute molecules2930:31 T this work, RRIGS specific (6;),
which were developed by a least square fitting of experimental free energy of solvation data

26

for 140 small organic molecules“”, are used.

2.3 Free Energy Modeling

Most force fields are used to describe only potential energy and, occasionally, solvation en-
ergy contributions for a given peptide system. However, rigorous consideration of Anfinsen’s

1 requires the global minimization of the conformational free en-

thermodynamic hypothesis
ergy. Therefore, the entropic contributions to the stability of the protein must be estimated
in order to augment the prediction provided by potential and solvation energy models. In
peptide systems, this entropic contribution arises from fluctuations around a local confor-
mational state. There exists a number of procedures, including both exact and approximate
calculations, that can be used to determine the entropic contributions, and thus the free
energy, of peptide systems.

First, assume that the full conformational space R can be considered as the union of
disjoint basins of attraction, and the conformational space associated with a given basin
(denoted by 7) is defined by R,. The energy, E, is a function of the variable set #, which

corresponds to the set of dihedral angles used to describe the conformational state of the

system. Each basin of attraction is characterized by a unique local minimum at position



0*

, with a corresponding energy E*. That is, local minimization starting at any point in
y g gy Ly g yp

R, will lead to the local minimum at 7. It should be noted that this approximation of the
conformational space excludes all maxima and saddle point conformations.

For a given temperature, 7', the probability that a peptide occupies the conformational
space of a given basin (R,) can be described by a Gibbs/Boltzmann distribution :

[r, exp(—=BE(0))do
Jrexp(=BE(0))dd

Here (3 is equivalent to kBLT If the numerator is redefined as the partition function (Z,) for

(4)

by =

the basin, Equation (4) can be rewritten as :
Z
Dy = 77 (5)

The total partition function for the entire conformational space is represented by Z. Since
this function is described by a disjoint set of basins (R,), it is equivalent to the following

form :
Z = Z Zn (6)
vy
Once the probability is known, the corresponding free energy, G, associated with each basin

can also be calculated :

G, = - (7)

Using these definitions, a rigorous procedure can be envisioned for calculating the exact
probability associated with a given basin. First, a sample of conformations must be generated
with initial starting energies FE;, as defined by the total set I. Each structure is minimized
to identify its corresponding basin minimum (6}). These structures define the set I() (i.e.,
those structures associated with basin ). As the sampling goes to infinity, the probability

associated with basin v can be calculated by the following expression :

peacact — 21(7)61(7) exp(_ﬂE@(’Y)) (8)
7 el e:cp(—ﬁEi)

Obviously, such a method is intractable for large systems, and this is the impetus for devel-

oping approximate methods.



2.3.1 Harmonic Approximation

A tractable method for including entropic effects for proteins relies on the concept of the
harmonic approximation. Initially, the theoretical development of this approximation for
polymer systems generated debate in the literature32:3334, In the work of Go and Scheraga
32 4 classical rigid model was used to characterize a partition function based on the fixed
bond length and bond angle assumptions. In contrast, Flory34 derived a different partition

33 actually

function using a classical flexible model. Later analysis by Go and Scheraga
showed that the flexible model was also applicable to the fixed bond length and bond angle
system (i.e., a peptide described by the internal coordinate system).

In either case (i.e., rigid or flexible), entropic contributions can be calculated by employing
an harmonic approximation33. The fundamental concept is to characterize the basin of
attraction () by the properties of its corresponding local minimum (67), and not by a
random sampling of conformations. These properties include the local minimum energy
value, E7, and the convexity around the local minimum. Essentially, the convexity measure
is used to approximate the basin of attraction region as a hyperparabola centered at the local
minimum. Therefore, the anharmonic nature of the true basin, which defines the deviation
from approximated harmonic behavior, controls the error associated with this assumption.

At each minimum (¢) the harmonic approximation to the entropy can be evaluated using

the following expression :
SIPPTOT — ——k In |Det (H,)| + fA T 9

Here Det (H,) refers to the determinant of the Hessian (second derivative matrix) evaluated
at the local minimum 6. The function f(T) is an additive term that is only dependent
on temperature35. The approximated free energy can then be calculated by combining the

energetic and entropic contributions through the follow expression :
Gt = E7 — TSP + f(T) (10)

By substituting the harmonic entropic approximation from Equation (9), Equation (10)

becomes :

Gomrer = B 4 % In[Det (H,)] + F(T) (11)



In this equation, it becomes evident that the free energy for a given basin is estimated using
only the properties of the corresponding local minimum, that is, the local minimum energy
(E}) and a measure of local convexity (Det (H,)). A temperature dependent term, f(T), is
included, although it does not affect relative free energy comparisons.

Expressions for the probabilities and partition functions can also be developed. By
combining Equations (5), (7) and (11), an approximation for the partition function of a
given basin can be written as :

In [Det (H,)]

In Z2PP* — —BE" — 5

—Bf(T)+nZ (12)

A further simplification can be made by realizing that —3f(T) and In Z are constant for a
given temperature (i.e., f(T) = —8f(T) + In Z). Equation (12) can be rewritten as :

1

1/2
govmror _ [W] exp (—BE;) (T) (13)

Finally, by using Equation (6), an approximate probability associated with a given basin ()

can be calculated using the following equation :

1/2
1 *
[[Det(fm]] exp (~AE;)

N 1 1/2
i=1 [W] exp (—(E;)

appror __

by

(14)

As expected, the f(T') term disappears, and the statistical weight becomes a function of only
the temperature (through (), the local minimum energy value and the measure of convexity.
In order to develop a meaningful comparison of relative free energies, the total partition
function (i.e., the denominator of Equation (14)) must include an adequate ensemble of low
energy local minima, as well as the global minimum energy conformation.

These probabilities can be used to estimate the occupancy of each individual basin, or
summed in order to calculate cumulative probabilities for an ensemble of structures exhibit-
ing similar physical or energetic properties. It should be noted that the determination of free
energy using the harmonic approximation does not require the explicit inclusion of a con-
tribution based on the density of states. That is, the harmonic approximation decomposes
the energetic states within a basin of attraction into one energetic value represented by the

local minimizer of the basin. In contrast to counting methods, which estimate probabilities
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based on the density of states, the contribution of each structure should be accounted for
only once. Therefore, using the harmonic approximation requires a structural comparison of
all local minimizers.

The probabilities obtained through the harmonic approximation can also be used to
calculate thermodynamic quantities. Once the set of unique minimizers has been identified,
these structures can be ranked according to their free energy values, and then divided into
bins of a specified energy width. Probabilities for each bin can be calculated by summing

the individual probabilities (as defined in Equation (14)) :

n;
P]qpproz — Z p’(;pproa: (15)
y=1
Here P;""*" signifies the probability for energy bin j. The summation includes the n;

individual probabilities (p??") belonging to bin j. Average thermodynamic quantities can

now be estimated using the equations with the following form :
<E>r=) P"" <E > (16)
J

Here the total average energy, < E >p, is calculated by summing the bin probabilities

multiplied by the mean energy of bin j, < E >;.

3 Problem Formulation

The energy minimization problem for proteins is formulated as a nonconvex nonlinear opti-
mization problem. Let i = 1,..., Nggs be an indexed set describing the sequence of amino
acid residues in the peptide chain. There are ¢;, 1, w;, ¢ = 1,..., Npps dihedral angles along
the backbone of this peptide. In addition, let £ = 1,..., K* denote the dihedral angles of
the side chains for the i** residue and j = 1,..., JV denote the dihedral angles of the amino
end group and j = 1,..., J¢ of the carboxyl end group, respectively. Therefore, these angles
can be defined in following manner : x¥, i =1,..., Nggs, k = 1,..., K* for the side chain
dihedral angles; ¢, j =1,...,J" and ¢¢, j =1,...,J¢ for the amino and carboxyl end

group dihedral angles, respectively. Using these definitions the optimization problem takes

11



the following form :

min E(¢za wza Wi, Xfa ¢;v7 ¢jc) (17)
subject to —7m < ¢ < m, t=1,...,Nggs

-1 < Y; < 7w i=1,...,Nggs

—T S UJZ S ﬂ-’ IL:1, "jNRES

- < Xz S’/T) 7/:1; "?NRES7k:]‘""’Ki

- < N <7 j=1,...,JY
- S ¢C S T, j:l,__',JC

In general, FE represents the total of both the potential and solvation energies. In this
work, these functions are modeled using the ECEPP/ 324 and RRIGS26 force fields. At this
point, the usual approach for predicting the native conformation of a protein is to treat Equa-
tion (17) as a global optimization problem. Along these lines, a large number of techniques
have been developed to locate global minima on complicated energy hypersurfaces, and these
approaches have been extensively reviewed 23, The typical limitation is that many methods
depend heavily on the supplied initial conformation. As a result, there is no guarantee for
global convergence because large sections of the domain space may be overlooked.

It has been found that the BB global optimization approach5’6’7’8’9 is particularly effi-
cient for locating the global minimum energy conformations of isolated and solvated peptides
10111236 e development of this novel branch and bound method was motivated by the
need for an algorithm that could guarantee convergence to the global minimum of nonlinear
optimization problems with twice—differentiable functions237. The application of this algo-
rithm to the minimization of potential energy functions was first introduced for microclusters
38’39, and small acyclic molecules4041,

The inclusion of free energy modeling into the protein folding problem does not change
the general formulation given by Equation (17). However, an additional condition must be
satisfied; that is, an ensemble of local minimum low energy conformations must be generated

along with the global minimum energy conformation. Once this ensemble has been compiled,
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a free energy ranking can be performed using the harmonic approximation presented in the
previous section.

In the following sections, the application of the BB deterministic global optimization
algorithm to the free energy protein folding problem is discussed. For introductory purposes,
the general aBB approach, as applied to the prediction of global minimum energy confor-
mations, is outlined in Section 4. The remainder of Section 4 is devoted to the development
of rigorous aBB methods for locating ensembles of low energy conformations. Finally, novel
aBB based algorithms, which are used to locate low energy conformers in this work, are

presented in Section 5.

4 aBB — Deterministic Global Optimization
4.1 Global Minimum Energy Conformation

The aBB global optimization algorithm effectively brackets the global minimum solution
by developing converging sequences of lower and upper bounds. These bounds are refined
by iteratively partitioning the initial domain. Upper bounds on the global minimum are
obtained by function evaluations or local minimizations of the original energy function, E.
Lower bounds belong to the set of solutions of the convex lower bounding functions, which
are constructed by augmenting £ with the addition of separable quadratic terms. The lower

bounding function (L) of the energy hypersurface can be expressed in the following manner

NRrEs

L=E+{ Y as(s—a)(s/—¢)+ (18)
i=1
NgrEs

> a (0 =) (W7 — i) +
=1
NgrEs

L U
Z lyy; (wi - wi) (wi - wi) +
i=1
Nrps K'

S Yo (X =) (8 - ) +

i=1 k=1

JN
> agy (670 = 0)) (877 — ) +
j=1
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JC
Lo (677 = 97) (67 = o) )

Here ¢F, L, wl x5, QS;-V’L, quC’L and ¢V, U, WV, XY, ¢;-V’U, qﬁ]C’U represent lower and up-
per bounds on the dihedral angles ¢;, ¥;, wi, X, ;V , (b](-}. The « represent nonnegative param-
eters which must be greater or equal to the negative one-half of the minimum eigenvalue of
the Hessian of E over the defined domain. A number of methods have been developed for
estimating these parameters7’8’40’42. The overall effect of these terms is to overpower the
nonconvexities of the original nonconvex terms by adding the value of 2« to the eigenvalues
of the Hessian of E. The convex lower bounding functions, L, possess a number of important

properties which guarantee global convelrgence41 :

(i) L is a valid underestimator of F;

(ii) L matches E at all corner points (points that uniquely define the multidimensional

subregion) of the box constraints (constraints that set the lower and upper variable

bounds);
(iii) L is convex in the current box constraints;

(iv) the maximum separation between L and E is bounded and proportional to o and to
square of the diagonal of the current box constraints. This property ensures that an

€. convergence tolerance can be reached for a finite size partition element;

(v) the underestimators L constructed over supersets of the current set are always less
tight than the underestimator constructed over the current box constraints for every

point within the current box constraints.

Once solutions for the upper and lower bounding problems have been established, the next
step is to modify these problems for the next iteration. This is accomplished by successively
partitioning the initial domain into smaller subdomains. One possible partitioning strategy
involves successive subdivision of the original hyper-rectangle by halving on the midpoint
of the longest side (bisection). In order to ensure non—decreasing lower bounds, the hyper—

rectangle to be bisected is chosen by selecting the region which contains the infimum of the

14



minima of lower bounds. A non-increasing sequence for the upper bound can be developed
by solving the original nonconvex problem, E, locally and selecting it to be the minimum
over all the previously recorded upper bounds. Obviously, if the single minimum of L for any
subdomain is greater than the current upper bound, this hyper-rectangle can be fathomed
(discard region from branch and bound tree because it cannot contain the global minimum).
In the worst case scenario the full branch and bound tree would need to be expanded and
searched. However, for the protein folding problem and for many problems (in general), the
ability to fathom significant portions of the domain space accelerates convergence to the

global minimum. A one-dimensional example of this algorithm is illustrated in Figure 2.

4.2 Enumerating All Local Minima : Rigorous Approaches

Several rigorous methods can be envisioned for locating local minimum energy conforma-
tions using the aBB deterministic global optimization approach. As an introduction to
the ideas used in this work, two rigorous approaches for finding all local minimum energy
conformations are discussed.

The first method relies on the introduction of a single inequality constraint to the problem

formulation given by (17). The new formulation is :

min E(¢i, i, wi, Xf, </5§Va ¢JC) (19)
subject to (E*=E)+¢ <0

~1 < ¢ < i=1,...,Nrgs

-1 < ¢Y; <7, i=1,...,Nggs

—Tr S w; S T, Z:l, --,NRES

—m < Xi <m 1=1, "aNRES: k:l,,KZ

—-T S ﬁbNSﬂ'a j:]-a"'aJN

d S ¢JC S , j:]-:"':JC

The additional constraint requires that the objective function values be larger than the energy

value at some local (or global) minimum, as denoted by E*, plus a positive parameter, €*.
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When ¢ = 0, the solution of the corresponding global optimization problem will give
the best local minimum energy conformation with an energy larger than E*. The original
formulation given by (17) is actually a special case of this problem in which £* = —oo and
¢* = 0. That is, in (17) no bounds are placed on the value of the objective function, F.
The global minimum energy conformation is only required to take some finite value. In order
to locate all local minima, a set of global optimization problems must be solved iteratively
with updating of the parameter E*.

The problem of finding all local minimum energy conformations can also be formulated

as a single global optimization problem, which can be deterministically solved using the

aBB algorithm43. This method stems from the idea that all stationary points (i.e., minima,

maxima and transition states) of the energy hypersurface satisfy the constraint VE(f) = 0.
This can be written as :
OE(6)
=0 =1,..., N, 20
agz Y ? ? 7 [4 ( )

Here Ny represents the total number of dihedral angles defined by the variable set . The
problem of finding local minima is equivalent to finding all solutions of Equation (20) for
which the Hessian of E is positive definite.

The problem posed in Equation (20) involves the solution of a system of nonlinear equa-

tions. The general case takes the following form :

hi(0) = 0  j=1,...,N, (21)
w® < 0 k=1,...,N,
L <

0 9 <Y

Here hjg) represents the IV, equality constraints, while gy represents the N, inequality
constraints. The lower and upper bounds on the set of variables (#) are given by #* and Y,
respectively.

Furthermore, the formulation given by (20) corresponds to a special case of (21) in which
there are no inequality constraints. This problem can first be transformed to a min-max
problem and then reformulated as a global optimization problem with the introduction of a

single slack variable, s.

min s (22)

f,s
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: E(0 .
subject to 89(1) - s<0, 1=1,...Ny
oFE (6 :
— 89(1) - <0, 1=1,...Ny

o< 9 <Y

For this formulation, the solution requires the global minimization of the slack variable, s,
with respect to s and the dihedral angles, . The constraints are infeasible for all negative
values of the slack variable, s. Therefore, the global solutions for this formulation require
s = 0 provided that the original set of equations has a feasible solution. If the global
optimum exhibits a nonzero value for s, the system of equations given by Equation (20) does
not possess a solution. In order to find all local minima for (20), all global minima of the
formulation given in (22) must be identified.

The identification of all multiple global solutions requires the use of a deterministic global
optimization method. Along these lines, the BB approach has been applied to a variety of
problems generalized by equations in (21)43. Successful identification of all solutions hinges
on effective subdivision of the conformational space. The possibility of a given subdomain
containing a global solution is explored by locating a lower bound on the global minimum
in that region. These lower bounds are developed by solving a relaxed optimization problem
in each subdomain. Each problem requires the construction of convex underestimators with
expanded feasibility regions, which can be accomplished by adding the appropriate separable
quadratic terms to the nonlinear constraints. The formulation becomes :

Iralin s (23)

Ny
subject to agg) + Yo (0 -0) (07 —6) —s<0,  i=1...N

N,
‘age(f) + ;60‘&(9?—91)(01‘]—91)—%0, i=1,...N,

< 9 <Y

The o’s (of; and o;;) are selected in order to guarantee the convexity of the constraint
functions within the particular subdomain. If the solution of the lower bounding problem

results in s > 0, the region is fathomed because s = 0 cannot be a feasible solution to the
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original formulation. In contrast, when s < 0 for the lower bounding problem, the region
must be further subdivided until all regions are considered.

Both methods for rigorously locating all local minimum energy conformations have some
disadvantages. On one hand, the first approach should effectively locate low energy con-
formers in order of increasing energy. However, locating each minimum requires the solution
of a full global optimization problem. The second approach avoids this drawback because
it can be solved as a single global optimization problem. However, when dealing with a
high dimensional search space, the number of necessary subdivisions may be computation-
ally inhibitive. In addition, this method will potentially locate stationary points other than
local minima. Therefore, the development of other methods for locating low energy local

minimum energy conformations were pursued in this work.

5 Ensemble of Local Minimum Energy Conformations

5.1 Energy Directed Approach (EDA)

Since the number of local minima on a given energy hypersurface may become astronomi-
cally large (e.g., the number of local minima for met-enkephalin is estimated to be on the

order of 10'144)

, methods that do not necessarily provide all local minima were developed.
Specifically, it was determined that the generation of ensembles of low energy conformers is
possible through algorithmic modifications of the general BB procedure. Rigorous imple-
mentation of the global optimization algorithm requires the minimization of a convex lower
bounding function in each domain. The unique solution 6 for each lower bounding minimum
can then used as a starting point for the minimization (or function evaluation) of the original
energy function in the current domain. In the case of local minimization, each partitioned
region provides a single minimum energy conformation as the algorithm proceeds. Using
this information, along with the global minimum energy conformation, a list of low energy
conformers can be constructed.

A method for increasing the number of local minima produced within each subdomain

would involve the selection of multiple random starting points for minimizing the upper

bounding function. At first, this approach appears to be equivalent to choosing random
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points for local minimization. Initially, when the subdomains constitute significant portions
of the original domain space, this is the case. However, as the separation between lower and
upper bounds decreases, the subdomains are localized in regions of low energy. Therefore,
the random point selection is localized in regions which contain low energy local minima.
However, this approach does not take advantage of the information provided by the lower
bounding functions. Rigorously, these functions posses a single minimum in each subdomain.
Since the choice of « affects the convexity of the lower bounding functions, the a values can be
modified to ensure a certain nonconvexity in these functions. In this case, the lower bounding
functions possess multiple minima, and these functions can be minimized several times in
each domain. In addition, since the lower bounding functions smooth the original energy
hypersurface, the location of these multiple minima provide information on the location of
low energy minima for the upper bounding function. Therefore, by using the location of the
minima of the lower bounding function as starting points for local minimization of the upper
bounding function, an improved set of low energy conformations can be identified. As before,
these conformations are also localized in those domains with low energy as the subdomains
decrease in size. This energy directed approach (EDA) is represented schematically in Figure

3.
5.1.1 Algorithmic Description

The determination of local (and global) minimum energy conformations using aBB requires
the interfacing of a number of programs : aBB5’6’7’8’9, PACK45, NPSOL46 and potential
and solvation energy modules. PACK, a peptide generation program, is called once directly
by aBB in order to initialize the current problem. In subsequent steps PACK is called
through NPSOL46, a local nonlinear optimization solver used to locally solve both the upper
and lower bounding problems47. PACK internally transforms to and from Cartesian and
internal coordinate systems, and provides potential energy and gradient contributions for the
ECEPP/324 potential model at every step of the local minimizations. When considering
solvation energy using solvent accessible volume of hydration layers, the RRIGS module is
also used20. Finally, an additional module, UBC (Upper Bound Check), is used to verify

the quality of the upper bound solutions. The overall interface is shown schematically in
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Figure 4.

The basic steps of the algorithm are as follows:

(1)

(2)

(3)

The initial best upper bound is set to an arbitrarily large value. The original domain
is partitioned along one of the global variables. « values are initially chosen to be

constant (¢ = ) for all global variables.

The lower bounding function (L) is constructed in each hyper-rectangle. Three local

minimization are performed using the following procedure :

(A) 50 random points are generated and used for function evaluations.

(B) The point with the minimum value is used as a starting point for local minimiza-
tion of L using NPSOL, with calls (through PACK) to ECEPP/3 and possibly
the RRIGS solvation module.

(C) The unique solutions are stored

If the minimum valued solution (of all local minima of L in this subdomain) is greater

than the current best upper bound the subdomain is fathomed.

The unique local minima (points) for L are used as initial starting points for local
minimizations of the upper bounding function (F) in each hyper-rectangle. Again, the
appropriate calls are made to PACK and the potential and solvation energy modules.

Two additional minimizations are performed using the following procedure :

(A) 50 random points are generated and used for function evaluations.

(B) The point with the minimum value is used as a starting point for local minimiza-
tion of F using NPSOL, with calls (through PACK) to ECEPP/3 and possibly
the RRIGS solvation module.

In all cases, the UBC (upper bound check) module is also called. UBC checks that
the absolute value of each gradient in the objective function gradient vector is below
a specified tolerance (107 kcal/mol/deg). If a gradient does not satisfy this check the

corresponding variable bounds are incrementally increased and the problem is solved
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with the previous point used as the initial starting point. This process is repeated
until the gradient constraints are satisfied or an iteration limit is exceeded. UBC also

48, which is used to verify

employs algorithms to calculate the second derivative matrix
that the upper bound solution is a local minimum; that is, the Hessian matrix must be
positive semi-definite. If the matrix is not positive semi-definite or the gradient checks

are not satisfied, the upper bound solution is rejected. All local minima are stored.
(4) The current best upper bound is updated to be the minimum of those thus far stored.

(5) The hyper-rectangle with the current minimum value for L (this is the minimum value
of all local minima of L in each subdomain) is selected and partitioned along one of

the global variables. All « values are updated according to the following rule:
a = agR" (24)

In this equation o refer to the initial values from Step 1. R is a reduction parameter
(0 < R < 1), and L refers to the current level in the branch and bound tree. For

R = 1 the a values are kept constant at the initial value, .

(6) If the best upper and lower bounds are within the € tolerance, or a maximum iteration

limit has been exceeded, the program will terminate, otherwise it will return to Step

2.

5.2 Free Energy Directed Approach (FEDA)

A second approach incorporates free energy information into the branch and bound algo-
rithm. Specifically, harmonic entropic contributions are calculated and included at each
minima, of the upper and lower bounding functions. In this way, the progression of lower
and upper bounds includes a temperature dependent entropic term. A similar modification
449

to the Monte Carlo minimization method has also been proposed*“, and has been shown to

be effective in locating low energy conformers of peptides 50,51,
The problem formulation is identical to the one given in (17). That is, the minimization

of F and L are still performed using only potential and solvation energy contributions.
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However, once local minima have been located, the free energy is calculated by the following

expression:

G = Ungin + % In[Det (Hears)] (25)

This equation is similar to Equation (11), although the additive term f(7") has been omitted
because it is a function of temperature only. Uy, represents the local minimum energy of
E or L, and Det (Hyyy,) is the determinant of the Hessian evaluated at this local minimum.
The specification of a thermodynamic temperature (5 = ICB%T) is required as an additional
input parameter.

A single rigorous application of the aBB algorithm to this problem will result in the
identification of the global minimum free energy at a given temperature. However, the goal
of this work is to identify an ensemble of low energy and, in this case, low free energy
conformers so that a free energy ranking and comparison can be made. Therefore, the
algorithmic steps for the Free Energy Directed Approach (FEDA) are similar to those for
EDA, with the additional evaluation of the free energy (G) at each local minima of F and L.

The thermodynamic temperature used in Equation (25) must be specified as an additional

input parameter.

6 Computational Studies
6.1 Isolated Met-enkephalin : EDA

The EDA was first applied to the isolated form of met-enkephalin. Met—enkephalin (H-Tyr—
Gly-Gly-Phe-Met-OH) is an endogenous opioid pentapeptide found in the human brain,
pituitary, and peripheral tissues and is involved in a variety of physiological processes. The
peptide consists of 24 independent torsional angles and a total of 75 atoms, and has played the
role of a benchmark molecular conformation problem. All 24 dihedral angles were considered
variable, with the 10 dihedral angles of the backbone residues acting as global variables
(variables on which branching occurs). For both peptides, the EDA algorithm detailed in
Section 5.1.1, was applied 10 times. The input conditions used for these runs are given in

Table 192,
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Once the ensemble of local minima had been compiled, a set of distinct conformations
was identified by checking for repeated and symmetric conformations. In addition, a con-
formation was only considered unique if at least one dihedral angle differed by at least 50°
when comparing each pair of conformations. These conformations were then used to gener-
ate results and distributions according to energy and free energy values. Energy bins were
used to characterize a group of distinct structures between a range of energy values (every
0.5 kcal/mol) relative to the global minimum energy structure. For example, Bin 1 con-
tains structures that are 0.0-0.5 kcal/mol above the global minimum energy structure, Bin
2 contains structures that are 0.5-1.0 kcal/mol above the global minimum energy structure,
etc.

In the case of isolated met-enkephalin, the 10 (EDA) runs generated a total of 83908
distinct local minima. The potential energy global minimum (PEGM) conformation for
met-enkephalin possesses an energy of -11.707 kcal/mol. This conformation exhibits a type
II’ 3-bend along the N-C’ peptidic bond of Gly® and Phe®. Essentially, this structure
corresponds to the free energy global minimum (FEGM) conformation for a temperature of
0 K, that is, when entropic contributions are not included. When considering the harmonic
free energy, the prediction of the FEGM can be calculated over a range of temperatures.
Table II provides information on the FEGM for temperatures ranging from 100 K to 500 K.

As Table II shows, the PEGM persists as the FEGM at a temperature of 100 K. How-
ever, at the next three temperature points (i.e., 200 K, 300 K, 400 K) the FEGM exhibits a
potential energy contribution 1.808 kcal/mol higher than the PEGM. The ¢ and v values for
this structure are also significantly different than those for the PEGM. In fact, the conforma-
tional code (B*AAAE) indicates that the central residues display an « helical configuration.
At a temperature of 500 K, the FEGM structure changes again, while the potential energy
difference between the FEGM and PEGM increases to 5.369 kcal/mol. These differences
suggest that the inclusion of entropic contributions greatly affects the relative stability of
individual low energy structures. In addition, as the temperature increases, the stability
offered by entropic contributions offsets substantial differences in potential energy.

Table III provides information on the distribution of distinct low free energy minima

within 8.0 kcal/mol of the FEGM for a range of temperatures. For a given temperature the
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general trend indicates a large increase in the number of minima as the free energy increases
above the FEGM. Several exceptions to this trend occur at high temperature and large bin
number. In these cases, the number of minima remains constant or even decreases slightly.
This is most likely due to an inadequate sampling of higher potential energy minima. For
a given bin, it is also apparent that the clustering of low free energy structures increases
with temperature. This increased density of the free energy bins indicates that increases in
energy are offset by entropic contributions.

These observations are also supported by the information shown in Figure 5. This plot
displays the range of potential energy in free energy bins at temperatures of 250 and 500
K, with the potential energy bins included for comparison. As expected, the potential
energy values for the free energy bins increase with increasing temperature. In addition,
the range of potential energy values increases in higher free energy bins. It is interesting
to note that this occurs because the minimum potential energy is relatively (i.e., within
a few kcal/mol of the PEGM) low for each bin, whereas the maximum potential energy
value increases in higher bins. The corresponding differences are also greater at higher
temperature. For example, at 500 K some bins exhibit a 20 kcal/mol range in potential
energy. These trends explain the increased number of low free energy conformers. That is,
bins of low free energy contain conformers of relatively high potential energy because of their
more stabilizing entropic contributions. The plot also implies that the PEGM appears in
bins 3 and 10 for temperatures of 250 and 500 K, respectively.

Relative free energies were also calculated for clusters of low energy conformers. This
analysis is useful because it is difficult to capture the true accessibility of individual struc-
tures based on a point-wise approximation of entropic effects. That is, the harmonic free
energy approximation does not provide a continuous free energy landscape. By clustering
structures into larger groups, it is hoped that the error associated with these estimates will
average out. Typically, structures are clustered by calculating and comparing root mean
squared deviations. In this work, since the enkephalin peptide is relatively small, struc-
tures were grouped based on the Zimmerman codes for the central residues of the peptide
53, Specifically, for met-enkephalin, structures were said to belong to the same cluster if the

central 3 residues possessed the same 3 code letters based on the Zimmerman classification
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53 The relative free energy of a cluster was calculated by the following equation :

IIIE- p;zpprom
Gcluster = - zEC’ﬂ (26)

In Equation (26) the individual p;”"**  which refers to the statistical weight based on the
harmonic approximation, are summed for the set of conformations belonging to a particular
cluster (C'). These individual probabilities were calculated by normalizing each probability

with respect to the overall probability at a given temperature :

approz __ eXp[—ﬂ(Ggpproz _ G?pprow)]

D; - Zj exp[_ﬁ(Ggpprow _ G;pprow)]

(27)

A reference free energy, GP"°" was used to normalize the probabilities at each temperature
point. All free energies, GgPP™*®, G;*"" and G, refer to the harmonic approximation
of the free energy as calculated using Equation (11). The denominator, which represents
the total probability at a given temperature, is calculated by summing over the set of all
conformers.

The relative free energies for clusters of met-enkephalin structures are given in Table
IV. At each temperature point the Zimmerman code and corresponding data for the top 3
clusters are listed. The results indicate that the structure exhibiting the individual lowest
free energy does not always belong to the cluster with lowest free energy. At 100 and 200
K the DC*B and AAA clusters are consistent with the structures of the FEGM. However,
although the FEGM retains the AAA structure at 300 and 400 K, the group of structures
possessing the lowest Gysrer at these temperatures exhibits a CD*A Zimmerman code. This
is, at least in part, attributable to the large number of structures grouped in this cluster. In
contrast to the a-helical type structure for the FEGM, the CD*A structures possess elements
of a B-turn conformation. Specifically, the lowest free energy conformer exhibiting a CD*A

structure at 300 and 400 K, possesses a type II 3-bend along the Gly?>-Gly® backbone.

6.2 Isolated Met-enkephalin : FEDA

FEDA was also applied to the isolated form of met-enkephalin. For this approach, the
thermodynamic temperature appears as an input parameter, and these values had to be

specified along with initial « values. Several methods can be envisioned for initializing the
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FEDA. For example, if the goal is to characterize the low free energy conformers at a single
temperature, a full set of FEDA runs could be performed for that temperature. This type
of search should efficiently locate the global and many low free energy conformers for that
temperature. However, in this work the goal was to effectively characterize the FEGM and
low free energy conformers over a range of temperatures. Therefore each of the 10 (FEDA)
runs were conducted at a unique temperature point in the range of 50 to 500 K. The details
of the conditions for these runs are given in Table V.

In total, 87974 distinct local minima were found after compiling the results from the 10
(FEDA) runs for isolated met-enkephalin. The PEGM and FEGM found using the FEDA
are displayed in Table VI. It should be noted that when comparing PEGM for the EDA and
FEDA, both structures possess the same potential energies, but a different set of dihedral
angles. However, these structures are actually the same. That is, the different values of x»
and xs for Tyr; represent a degenerate state for tyrosine, which is generated by rotating
both of these dihedral angles by 180°. An important observation is that at 200 K the FEDA
method predicts a slightly lower FEGM. The structure possesses a lower potential energy
(-10.547 vs. -9.899 kcal/mol) and exhibits a free energy value that is 0.044 kcal/mol lower
than the EDA predicted FEGM. The remaining FEGM predictions are consistent for the
two approaches.

An analysis of the distribution of distinct minima, as given by Table VII, reveals that
the results are qualitatively consistent with those produced by the EDA. It should be noted
that in all cases, the lowest free energy bin is as populated as the corresponding EDA bins,
which indicates that each run using the FEDA was able to find a better distribution of low
free energy conformers near the FEGM. This is not unexpected, considering that the FEDA
runs were conducted at the same discrete temperature points used in the analysis. However,
when comparing the populations of higher energy bins at low temperatures, the number of
minima are larger for the EDA. Some of this variation, especially near the 150 to 200 K
range is probably due to the lower FEGM found by the FEDA. In general, the FEDA seems
to provide a denser distribution of distinct minima at higher temperatures and large bin
number.

A comparison of the relative efficiencies for the EDA and FEDA to generate low energy

26



local minima can also be made by examining Figure 6. In this plot the cumulative fraction
of conformers, which is equal to the total number of unique conformers within the first 8,
12 and 16 energy bins over the total number of unique conformers, is given as a function
of temperature. It is apparent that both approaches are highly efficient. For example, at
400 K approximately 90 percent of the total unique conformations identified are in the top
16 free energy bins, which ranges up to 8 kcal/mol above the FEGM. The lower fractions
at lower temperatures indicate that a relatively large number of conformations have high
potential energies, and that these energetic differences are not offset by entropic effects at
low temperatures. A more subtle comparison can be made by observing that the EDA
cumulative fractions are generally higher for temperatures lower than 400 K. Although the
total number of unique conformations is slightly lower for the EDA, this trend indicates that
the EDA is more efficient at filling low energy bins, especially at lower temperatures.

The results for the cluster analysis of the FEDA met-enkephalin structures are given in
Table VIII. There are some differences between the EDA and FEDA cluster free energies,
although the overall trend is the same. At all temperatures, excluding 200 K, the cluster
exhibiting the lowest cluster free energy is the same as in the EDA analysis. At 200 K, the
FEDA predicts the AAA cluster as having a slightly higher free energy than the C*DE cluster
, which only appears as the third cluster in Table IV. In both analyses, the transition from
the ground state DC*B cluster to the CD*A cluster as temperature increases, is evident.

Since both the EDA and FEDA provide large amounts of statistical information for the
peptide system, this data was used to perform a simple thermodynamic analysis of the folding
process. It is widely accepted that the folding of peptides progresses successively. The first
step of this process is typically associated with a structural collapse, that is, a transition from
random extended structures to an ensemble of compact structures. This transition should
also be associated by significant changes in the description of the ensemble as temperature
changes. For example, a peak in the specific heat at the transition temperature indicates
a steep decrease in average potential energy of the ensemble. In order to verify that such
a transition occurs for met-enkephalin, the specific heat was calculated using the following

expression :
B2 (< E? >p — < E >2)
N

C= (28)
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Here N refers to the number of amino acid residues in the peptide. The average energy
and squared energy (< E >r and < E? >, respectively) were calculated at 10 temperature
points using expressions of the form given in Equation (16). The bin probabilities were based
on an energy width of .015625 kcal/mol. In addition, a reference free energy, GeP ™ (the
lowest free energy), was used to normalize the probabilities at each temperature point.

The results for isolated met-enkephalin are shown in Figure 7. Both the EDA and FEDA
predict a transition temperature in the 250-275 K temperature range. This is consistent with
the increase in bin density and structural diversity at higher temperatures, and suggests a
sharp increase in the average potential energy of the system at this temperature. It also
supports the transition from the DC*B ground state (PEGM) cluster to the higher potential
energy CD*A cluster in this temperature range.

Similar results for characterizing the folding transitions of enkephalins have also been
obtained by multicanonical simulations®4. This is encouraging because the two methods
possess fundamental differences. In contrast to this work, the multicanonical approach does
not rely on the identification of low energy local minima or the concepts of the harmonic
approximation. Instead, thermodynamic quantities are developed by first generating large
ensembles of structures with wide ranging energies and then employing reweighting tech-
niques. In addition, although the multicanonical simulations included detailed atomistic

level modeling, only unsolvated systems were considered.

6.3 Isolated Leu-enkephalin : EDA

A similar free energy analysis was performed for isolated leu—enkephalin (H-Tyr—Gly—Gly—
Phe-Leu—OH), an endogenous pentapeptide in which the methionine residue of met-enkephalin
has been replaced by a leucine residue. The peptide also possess 24 independent torsional
angles, and a total of 77 atoms. Like met-enkephalin, the PEGM for isolated leu-enkephalin
exhibits a type II' 8-bend, although the bend is now shifted to the N-C’ peptidic bond of
Gly?>-Gly®. For this example, the 10 (EDA) runs produced a total of 55414 unique local
minima, which were then checked and ranked based on the set of distinct minima. Infor-
mation on the FEGM over a range of temperature values is given in Table IX. The results

exhibit some important differences from those for met-enkephalin. Most notably, the PEGM
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structure persists as the FEGM over a wider range of temperatures. This indicates that
the PEGM for isolated leu-enkephalin occupies a wider basin, which is supported by the
value of In[Det (H)| = 84.66. In addition, when the FEGM structure becomes different at
temperatures of 400 and 500 K, these structures exhibit a S-turn conformation. That is for
both FEGM, a type II 8-bend occurs around the N-C’ peptidic bond of Gly?-Gly?3.

The data in Table X confirm these observations. Specifically, the distribution of distinct
minima indicates that free energy bin populations at low free energy are smaller than the cor-
responding potential energy bin populations. This is related to the combination of the lowest
potential energy contributions with relatively large (less negative) entropic contributions for
both the PEGM and a group of related low energy structures. Only at approximately 3
kcal /mol (about 6 bins) does the trend of increasing bin density with increasing temperature
become evident. The decrease in bin populations at large bin numbers and high temperature
is also more apparent for this example.

Potential energy comparisons also reveal the low free energy characteristics of the PEGM.
A plot of the minimum and maximum potential energies for free energy bins at temperatures
of 0, 250 and 500 K are given in Figure 8. In contrast to met-enkephalin, the minimum and
maximum potential energy values are the same for the first free energy bins at both 0 and
250 K. This indicates that at 250 K the lowest potential energy structures also have the
lowest free energy values. Although this is not the case at 500 K, the narrow range of
energy values does suggest a small cluster of low free energy structures at this temperature.
Other observations are more consistent with the results for met-enkephalin. For example,
the range of potential energy values increases with increasing free energy. In addition, a
significant number of low energy minima occupy high energy bins, which is evidenced by the
relatively low minimum energy values at both 250 and 500 K. This indicates that although
the PEGM exhibits a relatively wide minima, other minima with low potential energy are
much narrower. For example, a low energy conformer with a potential energy of -9.333
kcal/mol (just 0.16 kcal/mol higher than the PEGM), occupies bin 6 (rather than bin 1 for
the PEGM) at 250 K.

In order to determine the overall accessibility of the cluster containing the PEGM con-

former, a cluster analysis was also performed for isolated leu-enkephalin. The results are
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given in Table XI. The C*DE cluster, which contains the PEGM, persists as the dominant
cluster at both 100 and 200 K. However, at 300 K the lowest free energy cluster does not
include the FEGM. In fact, although the C*DE cluster still has relatively low free energy
values at higher temperatures, the CD*A cluster provides the lowest free energy at 300, 400
and 500 K. This cluster, which includes a type II 3-bend along the Gly?>-Gly® backbone, is
identical to dominant cluster for isolated met-enkephalin at the same temperatures. These
results suggest that the CD*A cluster is highly accessible basin for both forms of isolated
enkephalin.

6.4 Isolated Leu-enkephalin : FEDA

FEDA runs were also conducted for isolated leu-enkephalin using the protocol outlined in
Section 6.1. These runs produced a total of 57723 distinct local minima. At all temperature
points between 50 and 500 K the FEGM were found to be identical (with the exception of
symmetric shifts in certain x angles) between the EDA and FEDA. In addition, the FEDA
again predicts as many, if not slightly more, distinct minima for the lowest free energy bin.
However, in general the EDA still performed better for low temperatures and intermediate
bins; although at intermediate temperatures, the methods are comparable. As expected, at
high temperatures and at large bin number the FEDA again provides more populated bins.
This is evidenced by the data plotted in Figure 9. As with isolated met-enkephalin, both
approaches are also efficient in locating low free energy conformers. However, in contrast to
met-enkephalin, the higher fractions at lower temperatures indicate that a larger number of
conformers have both relatively low potential and free energy at these temperatures.

A clustering analysis of the FEDA low energy minima was also performed, and the
results provided qualitative agreement with those from the EDA analysis (shown in Table
IV). In order to develop a complete description of the leu-enkephalin system, specific heat
calculations were then conducted so as to identify the transition temperature. The results for
isolated leu-enkephalin are shown in Figure 10. Both the EDA and FEDA predict a transition
temperature near 275 K, which is consistent with the met-enkephalin results shown in Figure

7.
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6.5 Solvated Met-enkephalin

The EDA was then applied to the RRIGS solvated form of met-enkephalin using the same
protocol and conditions as detailed in Section 6.1. Qualitatively, the PEGM (in this case
PEGM refers to potential+solvation) for solvated met-enkephalin exhibits a more extended
conformation than that which is observed for the isolated form. As detailed in Table XII, the
PEGM structure persists as the FEGM at 100 K. However, at each subsequent temperature,
the FEGM structure changes, and this change is accompanied by an increase in total energy
(potential and solvation). As with isolated met-enkephalin, the difference in total energy
between the PEGM and FEGM at 500 K is greater than 5 kcal/mol. This suggests that
entropic effects are important in defining the predicted native structure. When considering
individual structures, entropic effects tend to produce more extended FEGM conformations
at higher temperatures, especially with regard to the placement of the aromatic rings. It is
interesting to note that in a previous study the positioning of aromatic rings was found to be a
major difference when considering the ability of solvation models to predict extended PEGM
conformations for the solvated enkephalin peptidesu. The sequence of FEGM structures is
illustrated in Figure 11.

The distribution of the 72784 distinct minima for solvated met-enkephalin exhibits some
important differences from those results obtained for the isolated form of the peptide. This
is evidenced by the information presented in Table XIII and the plot in Figure 12. In
particular, the low and intermediate energy bins are much denser than the corresponding
bins for isolated met-enkephalin, especially within 4 kcal/mol (8 bins) of the FEGM. In
addition, some higher energy bins are actually more populated at lower temperatures. One
obvious reason for these differences is the high density of conformers for the original system
(at 0 K). This high density of states causes the original energy differences to be relatively
small, and the entropic correction tends to induce an even stronger equalization of the free
energy values. This equalization is best illustrated by the data plotted in Figure 12, which
indicates that the efficiency of locating low free energy conformers is relatively high at all
temperatures. In fact, the highest density of states occurs near the middle of the temperature

range, rather than at high temperatures as predicted for the isolated peptide. This behavior
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may be due to a lack of much higher energy local minima which would probably populate
these high temperature, high energy bins.

Similar conclusions can be drawn by examining the data presented in Figure 13, which
provides information on the energy extrema for free energy bins at temperatures of 0, 250
and 500 K. As expected, for both 250 and 500 K, the range of energy values increases for
higher free energy bins. In addition, for all bins, the minimum energy is relatively low and
generally within a few kcal/mol of the PEGM. However, unlike the isolated met-enkephalin
results, the maximum energy values do not become larger at higher temperatures. In fact,
the curves for maximum energy at 250 and 500 K are almost identical. This indicates that
relatively high energy minima may be needed in order to fill out these high temperature
bins.

A clustering analysis of the low free energy conformers was also performed for solvated
met-enkephalin, and the results are shown in Table XIV. At 100 K, the lowest free energy
cluster included the FEGM structure, which is also the PEGM structure. At higher temper-
atures, the correlation between the extended FEGM structures and the lowest free energy
cluster was also evident. In fact, all low energy clusters at 300, 400 and 500 K possess
highly extended backbone conformations, with nearly all geometries within the E and E*
regions on the Zimmerman conformational map. In fact, although the number of individual
structures in each cluster is not excessively large, many of these extended conformers reside
in the lowest free energy bins.

A specific heat profile was also derived for solvated met-enkephalin in order to understand
how the dominance of these extended cluster geometries affect the folding transition. These
results are show in Figure 14. As with isolated met-enkephalin, a folding transition is
indicated by the peak in the specific heat, which, in this example, occurs between 275
and 300 K. This represents a significant change in average energy, which accompanies the
collapse from an ensemble of extended conformations (EE*E and E*EE clusters) to the more
compact ground state cluster. For the solvated met-enkephalin example, this transition is

clearly illustrated by the cluster analysis and the structure plots given in Figure 11.
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6.6 Solvated Leu-enkephalin

An analogous set of runs, conducted for the RRIGS solvated form of leu-enkephalin, pro-
vided a total of 60288 distinct local minima. As with solvated met-enkephalin, the PEGM
for solvated leu-enkephalin is characterized by the extended backbone structure and the
proximity of its two aromatic rings. Data for the FEGM over the 100-500 K temperature
range are given in Table XV. Although the PEGM persists as the FEGM at a temperature
of 100 K, the FEGM at higher temperatures adopt more extended structures. In fact, since
all central residues for these FEGM reside in the E and E* regions of the Zimmerman con-
formational map, these conformations are extremely similar to the corresponding solvated
met-enkephalin FEGM.

This similarity between the enkephalin results also extends to the information presented
in Figure 15. As with solvated met-enkephalin, these data show that the free energy dis-
tribution provides a high density of conformers at low and intermediate energy bins. This
is also evidenced by relatively high efficiencies for locating low free energy structures at all
temperatures, as compared to the results for isolated leu-enkephalin. In addition, the de-
crease in densities at high temperature and high bin energies is consistent with the solvated
met-enkephalin results, and reflects the role of entropic effects in equalizing the free energy
values.

The results of the clustering analysis of the low free energy conformers for solvated leu-
enkephalin are shown in Table XVI. At 100 K, the lowest free energy cluster included
the FEGM structure, which again corresponds to the PEGM. At all higher temperatures
the dominant cluster possesses a E¥EE or EE*E structure, which are similar to the set of
FEGM structures at these temperatures. In contrast to the cluster analysis for solvated
met-enkephalin, the the E¥EE appears to be the dominant cluster even at 200 K. In spite of
these minor differences, the results for both solvated enkephalins follow the same qualitative
trends.

Finally, the results for the transition temperature prediction are shown in Figure 16. As
with solvated met-enkephalin, this transition is signified by a peak in the specific heat at

approximately 275 K. The ability to clearly identify the folding transition for both isolated
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and solvated enkephalin systems suggests that the analysis could be generalized to other

small peptide systems.

7 Conclusions

In this work a novel method was developed for locating the free energy global minimum
(FEGM) conformation of peptides within the context of the deterministic global optimiza-
tion algorithm, aBB. The inclusion of entropic effects was accomplished by employing an
harmonic approximation; a method that relies on the ability to generate an adequate ensem-
ble of distinct low energy local minima. In order to generate large numbers of low energy
metastable states two independent methods were implemented. The first method, EDA,
attempts to use information offered by the lower bounding function to find low energy local
minima. The second method, FEDA, expands on the first approach by incorporating free
energy information into the overall algorithm. Both approaches are based on the general
concepts of the aBB branch and bound framework, and rely on the algorithm’s ability to
identify regions, rather than points, of low energy. Another important feature is the use of
lower bound information in the generation of dense ensembles of low energy local minima.
The EDA and FEDA methods were then tested on isolated and solvated forms of the
peptides met- and leu-enkephalin. The results indicated that both approaches produced
dense distributions of low energy local minima®?. These data were then used to perform
detailed free energy rankings over a wide range of temperatures. In general, the inclusion
of entropic effects was found to influence the prediction of both the individual free energy
global minimum structures, as well as the accessibility of clusters of low energy structures.
The statistical data generated during these analyses were also used to perform a simple
thermodynamic analysis of the folding process. It was found that each system could be
characterized by a unique transition temperature, which signified the collapse of relatively

high energy, extended structures to an ensemble of ground-state-like structures.

34



8 Acknowledgments

The authors gratefully acknowledge financial support from the National Science Foundation,

Air Force Office of Scientific Research, and the National Institutes of Health (R01 GM52032).

35



References

7

11

C. B. Anfinsen, E. Haber, M. Sela, and F. H. White, J. Proc. Nat. Acad. Sci. USA, 47,
1309-1314 (1961).

C. A. Floudas, J. L. Klepeis, and P. M. Pardalos, In DIMACS Series in Discrete Math-
ematics and Theoretical Computer Science. American Mathematical Society, 1999, (in

press).
A. Neumaier, SIAM Rev., 39, 407-460 (1997).
F. H. Stillinger and T. A. Weber, J. Chem. Phys., 80, 4434 (1984).

C. S. Adjiman, I. P. Androulakis, C. D. Maranas, and C. A. Floudas, Comput. Chem.
Eng., 20, $419-5424 (1996).

C. S. Adjiman, I. P. Androulakis, and C. A. Floudas, Comput. Chem. Eng., 21, S445-S450
(1997).

C. S. Adjiman, S. Dallwig, C. A. Floudas, and A. Neumaier, Comput. Chem. Eng. (1998),

(in press).

C. S. Adjiman, I. P. Androulakis, and C. A. Floudas, Comput. Chem. Eng. (1998), (in

press).
I. P. Androulakis, C. D. Maranas, and C. A. Floudas, J. Glob. Opt., 7, 337-363 (1995).
I. P. Androulakis, C. D. Maranas, and C. A. Floudas, J. Glob. Opt., 11, 1-34 (1997).

J. L. Klepeis, I. P. Androulakis, M. G. Ierapetritou, and C. A. Floudas, Comput. Chem.
Eng., 22, 765-788 (1998).

J. L. Klepeis and C. A. Floudas, J. Comp. Chem., (accepted for publication), 1999.

F. A. Momany, L. M. Carruthers, R. F. McGuire, and H. A. Scheraga, J. Phys. Chem.,
78, 1595-1620 (1974).

36



16

17

18

19

20

21

22

23

24

27

28

F. A. Momany, L. M. Carruthers, and H. A. Scheraga, J. Phys. Chem., 78, 1621-1630
(1974).

F. A. Momany, R. F. McGuire, A. W. Burgess, and H. A. Scheraga, J. Phys. Chem., 79,
2361-2381 (1975).

S. Weiner, P. Kollman, D.A. Case, U.C. Singh, C. Ghio, G. Alagona, S. Profeta, and
P. Weiner, J. Am. Chem. Soc., 106, 765784 (1984).

S. Weiner, P. Kollman, D. Nguyen, and D. Case, J. Comp. Chem., 7, 230-252 (1986).

B. Brooks, R. Bruccoleri, B. Olafson, D. States, S. Swaminathan, and M. Karplus, J.
Comp. Chem., 4, 187-217 (1983).

P. Dauber-Osguthorpe, V. A. Roberts, D. J. Osguthorpe, J. Wolff, M. Genest, and A. T.
Hagler, Proteins, 4, 31 (1988).

W. F. van Gunsteren and H. J. C. Berendsen, GROMOS, Groningen Molecular Simula-
tion, Groningen, The Netherlands, 1987.

N. L. Allinger, Y. H. Yuh, and J. H. Lii, J. Am. Chem. Soc., 111, 8551-8565 (1989).
M. Levitt, J. Mol. Biol., 170, 723-764 (1983).
G. Némethy, M. S. Pottle, and H. A. Scheraga, J. Phys. Chem., 87, 1883-1887 (1983).

G. Némethy, K. D. Gibson, K. A. Palmer, C. N. Yoon, G. Paterlini, A. Zagari, S. Rumsey,
and H. A. Scheraga, J. Phys. Chem., 96, 6472-6484 (1992).

B. Honig, K. Sharp, and A. Yang, J. Phys. Chem., 97, 1101-1109 (1993).

J. D. Augspurger and H. A. Scheraga, J. Comp. Chem, 17, 15491558 (1996).

A. J. Hopfinger, Macromolecules, 4, 731-737 (1971).

Y. K. Kang, G. Némethy, and H. A. Scheraga, J. Phys. Chem., 91, 4105-4109 (1987).

Y. K. Kang, G. Némethy, and H. A. Scheraga, J. Phys. Chem., 91, 4109-4117 (1987).

37



30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Y. K. Kang, G. Némethy, and H. A. Scheraga, J. Phys. Chem., 91, 4118-4120 (1987).

Y. K. Kang, K. D. Gibson, G. Némethy, and H. A. Scher aga, J. Phys. Chem., 92,
4739-4742 (1988).

N. Go and H. A. Scheraga, J. Chem. Phys., 51, 4751-4767 (1969).
N. Go and H. A. Scheraga, Macromolecules, 9, 535-542 (1976).
P. J. Flory, Macromolecules, 7, 381-392 (1974).

A

The temperature (only) dependent terms (f(T), f(T), f(T), f(T)) that appear in Equa-
tions 9-13 cancel because the methods involve only relative entropies and free energies.

Therefore, the exact forms are not necessary.

C. D. Maranas, I. P. Androulakis, and C. A. Floudas, In DIMACS Series in Discrete
Mathematics and Theoretical Computer Science, volume 23, pages 133-150. American

Mathematical Society, 1996.

C.A. Floudas, In L.T. Biegler, T.F. Coleman, A.R. Conn, and F.N. Santosa, editors, Large
Scale Optimization with Applications, Part II: Optimal Design and Control, volume 93,
pages 129-184. IMA Volumes in Mathematics and its Applications, Springer—Verlag, 1997.

C. D. Maranas and C. A. Floudas, J. Chem. Phys., 97, 76677677 (1992).

C. D. Maranas and C. A. Floudas, Annals of Operations Research, 42, 85-117 (1993).
C. D. Maranas and C. A. Floudas, J. Chem. Phys., 100, 1247-1261 (1994).

C. D. Maranas and C. A. Floudas, J. Glob. Opt., 4, 135170 (1994).

C. S. Adjiman and C. A. Floudas, J. Glob. Opt., 9, 23-40 (1996).

C. D. Maranas and C. A. Floudas, Journal of Global Optimization, 7, 153—-182 (1995).
Z. Li and H. A. Scheraga, J. Mol. Struct. (Theochem.), 179, 333-352 (1988).

H.A. Scheraga, PACK: Programs for Packing Polypeptide Chains, 1996, online documen-

tation.

38



46

47

48

49

50

51

52

53

54

55

P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright, NPSOL 4.0 User’s Guide,
Systems Optimization Laboratory, Dept. of Operations Research, Stanford University,
CA., 1986.

The use of NPSOL is for illustrative purposes only. Any local nonlinear minimization

package can be substituted.

T. Noguti and N. Go, J. Phys. Soc. Japan, 52, 3685-3690 (1983).

M. Vésquez, G. Némethy, and H. A. Scheraga, Chemical Reviews, 94, 2183-2239 (1994).
H. Meirovitch and E. Meirovitch, J. Comput. Chem., 18, 240-253 (1997).

H. Meirovitch and M. Vasquez, J. Mol. Struct. (Theochem.), 398-399, 517-522 (1997).

A single rigorous implementation of the algorithm can be used to verify that the global
minimum energy structure has been found. However, for the enkephalin examples, the

EDA and FEDA runs also identified the corresponding global energy minima.

S. S. Zimmerman, M. S. Pottle, G. Némethy, and H. A. Scheraga, Macromolecules, 10,
1-9 (1977).

U. H. Hansmann, M. Masuya, and Y. Okamoto, Proc. Natl. Acad. Sci. USA, 94, 10652-
10656 (1997).

At a given temperature, the density of distinct metastable states was found to follow a

Boltzmann-like distribution within 5 kcal/mol of the free energy global minimum.

39



Table I: Input parameters used for 10 EDA runs. « refers to the initial o values used for
all global variables. R refers to the reduction rate applied at each level of the branch and
bound tree.

Run No. oy R
1-5 5 0.90
6-10 10 0.80
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Table II: Dihedral angle values for PEGM and FEGM structures of isolated met-enkephalin
using EDA. The temperatures are provided in the first row. The last two rows indicate the
harmonic free energy (kcal/mol) and the potential energy value (kcal/mol), respectively.

Residue DA PEGM 100K 200K 300K 400K 500K
Tyr, 10) -83.4 -83.4 179.8 179.8 179.8  90.2
P 155.8 155.8 -18.2 -18.2 -18.2 149.1

w 1771 -177.1 -178.1 -178.1 -178.1 177.5

x1 -173.2  -173.2 1782 1782 1782 169.8
X2 79.3 79.3 81.3 81.3 81.3 -108.2
xs -166.3 -166.3 1773 1773 1773 177.6
Glyo ¢ -15643 -1543 -59.8 -59.8 -59.8 -66.1
(% 85.8 85.8 -37.6  -376  -37.6 87.5
w 168.5 168.5 -178.8 -178.8 -178.8 -173.4
Glys 0] 83.0 83.0 -67.0 -67.0 -67.0 1472
(% -75.0 -75.0  -40.1 -40.1  -40.1 -36.7
w -170.0 -170.0 179.7 179.7 179.7 175.1
Phey ¢ -1369 -1369 -709 -70.9 -70.9 -92.5
Y 19.1 19.1 -39.5  -39.5 -39.5 -34.7
w -1741 -1741 -179.8 -179.8 -179.8 -179.1
X1 58.9 98.9 173.9 1739 1739 179.1
X2 94.5 945 -102.6 -102.6 -102.6 74.7
Mets ¢ -163.5 -163.5 -161.0 -161.0 -161.0 -154.7
Y 160.9 160.9 1221 1221 1221 1353
w -179.8 -179.8 -178.0 -178.0 -178.0 179.9
X1 52.9 52.9  -174.7 1747 -1747  -172.6
X2  175.3 175.3 174.0 1740 1740 175.1
xs -179.9 -179.9 179.0 179.0 179.0 179.9
xa -178.6 -178.6 -60.1 -60.1 -60.1  -60.0
G -11.707  -2.499  6.151 14.175 22.200 29.592
E -11.707 -11.707 -9.899 -9.899 -9.899 -6.338
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Table III: Number of distinct minima in bins for isolated met-enkephalin using EDA. Each
bin represents a 0.5 kcal/mol range above the previous bin. The temperatures are given in

the first row.

50K 100K 150 K 200K 250 K 300K 350 K 400 K 450 K 500 K

Bin 0K
1 2 1 2 10 6 3 3 4 16 16 8
2 3 5 13 22 12 9 15 24 18 21 31
3 12 25 36 28 52 42 40 40 29 69 7
4 45 48 95 105 105 100 101 115 164 184 184
) 49 69 120 233 199 206 213 249 309 397 475
6 90 125 263 451 435 403 410 491 726 893 918
7 166 292 467 806 763 765 848 1043 1438 1655 1687
8 303 497 766 1250 1297 1362 1524 1906 2464 2821 2695
9 552 776 1233 1929 2079 2247 2601 3069 3932 4284 4111
10 840 1177 1710 2915 3168 3475 3927 4707 5774 6030 5562
11 1121 1675 2681 3879 4355 4899 5708 6655 7573 Y775 7116
12 1618 2467 3526 5303 5935 6572 7364 8333 9437 9448 8721
13 2331 3223 4491 6821 7619 8360 9203 10228 10730 10473 9719
14 2973 4050 6037 8058 8834 9712 10598 11244 11651 11285 10630
15 3747 5250 7258 9031 9821 10585 11504 11939 11915 11396 10745
16 4588 6422 8053 8587 9687 10958 11563 11432 9406 8482 8338
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Table IV: Clustered relative free energies for isolated met-enkephalin using the EDA. From
left to right, the information provided in this table includes : temperature, Zimmerman code’,
number of individual structures in cluster, total probability (3°; p;™*"**) and free energy of

cluster (Gcluster) .

Temp (K) Code Number Y, pi"™"  Geuster

(]

DC*B 113 0.636 0.0899
100 CC*B 136 0.0794 0.503
C*DE 557 0.0765 0.511
AAA 323 0.230 0.585
200 DC*A 1828 0.213 0.615
C*DE 676 0.192 0.656
CD*A 2685 0.297 0.723
300 DC*A 1843 0.100 1.372

AAA 328 0.0990 1.379
CD*A 2654 0.219 1.209
400 DC*A 1799 0.0452 2.461
AAA 329 0.0380 2.600
CD*A 2449 0.112 2.174
200 C*C*A 1361 0.0256 3.640
C*AE 1463 0.0229 3.752

¢ S. S. Zimmerman, M. S. Pottle, G. Némethy, and H. A. Scheraga, Macromolecules, 10, 1-9
(1977).
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Table V: Input parameters used for FEDA runs. aq refers to the initial o values used for all
global variables. R refers to the reduction rate applied at each level of the branch and bound
tree. T refers to the thermodynamic temperature at which the free energy was calculated.

RunNo. a9 R T(K) | RunNo. oy R T(K)
1 5 0.90 o0 6 5 090 300
2 5 090 100 7 5 090 350
3 5 090 150 8 5 0.90 400
4 5 0.90 200 9 5 0.90 450
) 5 0.90 250 10 5 0.90 500
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Table VI: Dihedral angle values for PEGM and FEGM structures of isolated met-enkephalin
using FEDA. The temperatures are provided in the first row. The last two rows indicate the
harmonic free energy (kcal/mol) and the potential energy value (kcal/mol), respectively.

Residue DA PEGM 100K 200K 300K 400K 500K
Tyry 10) -83.4 -83.4 -163.1  179.8 179.8 -90.2

P 155.8 155.8 -40.5 -18.2 -18.2  149.1
w 1771 -1771 -177.7 -178.1  -178.1  177.5
x1 -173.2  -173.2 -172.2 1782 1782 169.8
x2 -100.7  -100.7 93.2 81.3 81.3 71.8
X3 13.7 13.7 -1772 1773 1773 -24
Glyo ¢ -1564.3 -154.3 65.1 -09.8  -59.8  -66.1
(% 85.8 85.8 -89.7 376  -37.6 87.5
w 168.5 168.5 1741 -178.8 -178.8 -173.4
Glys 0] 83.0 83.0 -152.6  -67.0 -67.0 147.2
(% -75.0 -75.0 34.4 -40.1  -40.1  -36.7
w -170.0 -170.0 -178.9 179.7 179.7 175.1
Phey ¢ -136.8 -136.8 -155.4 -70.9 -70.9 -92.5
Y 19.1 19.1 159.8  -39.5 -39.5  -34.7
w -1741 -1741  179.2 -179.8 -179.8 -179.1
X1 28.9 98.9 02.1 173.9 1739 179.1
X2  -85.5 -85.9 829  -102.6 -102.6 74.7
Mets ¢ -163.5 -163.5 -79.3 -161.0 -161.0 -154.7
P 160.9 160.9 130.4 1221 1221 1353
w -1798 -179.8 -178.7 -178.0 -178.0 179.9
X1 92.9 52.9 -66.8  -174.7 -174.7 -172.6
X2 1753 175.3 179.8 1740 1740 175.1
x3 -179.9 -179.9 -179.9 179.0 179.0 179.9
xa -178.6 -178.6  -60.0 -60.1  -60.1  180.0
G -11.707  -2.499  6.107 14.175 22.200 29.592
E -11.707 -11.707 -10.547 -9.899 -9.899 -6.338
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Table VII: Number of distinct minima in bins for isolated met-enkephalin using FEDA. Each
bin represents a 0.5 kcal/mol range above the previous bin. The temperatures are given in

the first row.

50K 100K 150 K 200K 250 K 300K 350 K 400 K 450 K 500 K

Bin 0K
1 2 1 3 10 8 ) ) 6 17 15 8
2 3 6 14 9 10 11 16 23 19 23 30
3 12 26 38 92 23 43 42 41 o6 63 86
4 46 48 95 87 91 100 97 107 156 188 193
b} 47 69 116 180 189 205 208 249 324 407 478
6 87 122 259 373 400 391 403 481 721 898 988
7 161 290 470 654 730 758 846 10561 1476 1801 1756
8 297 488 760 1063 1246 1368 1524 1936 2576 2966 3052
9 543 762 1182 1637 1918 2188 2597 3181 4136 4618 4538
10 828 1140 1624 2413 2996 3511 4032 4863 6033 6481 6070
11 1066 1560 2569 3542 4193 4852 5726 6791 8047 8466 7832
12 1527 2404 3433 4735 5785 6616 7499 8630 9989 10069 9426
13 2244 3070 4470 6288 7382 8341 9315 10632 11286 11130 10484
14 2818 4004 5833 7451 8649 9727 10862 11833 12430 11937 11102
15 3657 5064 7075 8723 9617 10818 12004 12606 12358 11968 11238
16 4472 6257 7848 8718 10108 11295 12167 12003 9952 8640 8576
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Table VIII: Clustered relative free energies for isolated met-enkephalin using the FEDA. From
left to right, the information provided in this table includes : temperature, Zimmerman code’,
number of individual structures in cluster, total probability (3°; p;™*"**) and free energy of

i
cluster (Gcluster) .

Temp (K) Code Number 3;p/"™"™" Gauster
DC*B 107 0.532 0.125

100 C*DE 990 0.232 0.291
CC*A 1604 0.0636 0.547
C*DE 1275 0.331 0.439

200 AAA 322 0.209 0.623
DC*A 1729 0.174 0.694

CD*A 2128 0.263 0.796

300 C*DE 1360 0.125 1.239
AAA 327 0.111 1.309
CD*A 2116 0.192 1.313
400 C*DE 1362 0.0464 2.440

DC*A 1714 0.0429 2.502
CD*A 1966 0.0922 2.368
200 C*AE 2088 0.0308 3.459
C*C*A 1900 0.0279 3.555

¢ S. S. Zimmerman, M. S. Pottle, G. Némethy, and H. A. Scheraga, Macromolecules, 10, 1-9
(1977).
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Table IX: Dihedral angle values for PEGM and FEGM structures of isolated leu-enkephalin
using EDA. The temperatures are provided in the first row. The last two rows indicate the
harmonic free energy (kcal/mol) and the potential energy value (kcal/mol), respectively.

Residue DA PEGM 100K 200K 300K 400K 500K
Tyr, 10) -163.1 -163.1 -163.1 -163.1 -152.2 -150.8
Y -42.3 -42.3 -42.3 -42.3 154.5 155.2

w 1777 17T 17T -1777 0 176.2 0 176.3

x1 -174.8 -174.8 -174.8 -1748 1740 175.1
X2 90.2 90.2 90.2 90.2 73.2  -106.8
xs -177.3 -1773 -1773 -177.3 -1754 179.1
Gly, () 65.9 65.9 65.9 65.9 -68.4  -68.8
Y -88.3 -88.3 -883 -88.3 81.5 80.1
w 1742 1742 1742 1742 -174.8 -175.0
Glys ¢ -150.8 -150.8 -150.8 -150.8 153.6 154.9
Y 31.9 31.9 31.9 31.9 -38.7  -39.9
w -178.7 -178.7 -178.7 -178.7 1742 174.1
Phey ¢  -158.7 -158.7 -138.7 -158.7 -88.7 -86.5
Y 157.2  157.2 1572 1572 -40.6 -394
w 178.0 1v8.0 178.0 178.0 -179.7 180.0
X1 53.2 53.2 53.2 53.2  -179.8 -179.5
X2 84.4 84.4 84.4 84.4 80.3 80.3
Leus 0] -r.8  -77.8  -7r.8 778 -79.6  -77.0
Y 123.3 1233 123.3 1233 127.8 -44.5
w  -178.7 -178.7 -178.77 -178.7 -178.77 178.5
x1 -179.8 -179.8 -179.8 -179.8 179.8 179.8
X2 64.5 64.5 64.5 64.5 64.3 63.9
xs 1726 1726 1726 1726 1723 -67.9
xs 1794 1794 1794 1794 -60.6 -60.7
G -9.349 -0.938 7.473 15.885 23.538 30.686
E -9.349  -9.349 -9.349 -9.349 -5.137 -4.654
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Table X: Number of distinct minima in bins for isolated leu-enkephalin using EDA. Each bin
represents a 0.5 kcal/mol range above the previous bin. The temperatures are given in the
first row.

Bin 0K 50K 100K 150 K 200K 250K 300K 350K 400K 450K 500K

1 15 11 4 4 4 4 3 8 3 3 3

2 15 9 12 6 ) ) 15 16 7 2 2

3 37 30 22 21 26 29 34 29 18 12 7

4 60 47 o1 49 48 62 65 79 42 21 38
b} 147 114 101 94 102 107 152 187 128 113 109
6 240 239 216 211 210 232 322 414 304 254 226
7371 362 354 357 394 488 615 778 o987 219 291
8 958 561 959 993 720 882 1182 1450 1111 1033 975
9 781 808 896 1040 1190 1412 1856 2298 1951 1676 1495
10 1215 1271 1378 1525 1744 2192 2728 3202 2902 2634 2324
11 1598 1746 1941 2161 2540 3121 3937 4695 4045 3575 3245
12 2072 2295 2566 3007 3619 4286 5263 5971 5404 4906 4382
13 2731 2945 3316 4008 4615 5450 6510 7131 6771 5994 5155
14 3234 3787 4447 4909 5631 6591 7579 8182 7534 6943 6479
15 4166 4702 5173 5736 6618 7570 8509 8963 8393 8061 7452
16 4111 4658 5327 6295 7174 7792 7320 5722 7578 7436 6640
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Table XI: Clustered relative free energies for isolated leu-enkephalin using the EDA. From left
to right, the information provided in this table includes : temperature, Zimmerman code’,

number of individual structures in cluster, total probability (3; p;

cluster (Gcluster) .

approxr
%

) and free energy of

Temp (K) Code Number ;0"  Geuster
C*DE 827 0.814 0.0410
100 DC*A 905 0.133 0.401
CC*A 1027 0.0296 0.699
C*DE 979 0.517 0.262
200 DC*A 972 0.224 0.594
CD*A 1402 0.0709 1.052
CD*A 1450 0.209 0.932
300 C*DE 1055 0.167 1.068
DC*A 1030 0.128 1.228
CD*A 1377 0.163 1.444
400 C*DE 989 0.0543 2.316
DC*A 917 0.0491 2.396
CD*A 1110 0.0818 2.487
500 C*AE 10561 0.0311 3.449
C*DE 792 0.0232 3.737

¢ S. S. Zimmerman, M. S. Pottle, G. Némethy, and H. A. Scheraga, Macromolecules, 10, 1-9

(1977).
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Table XII: Dihedral angle values for PEGM and FEGM structures of solvated met-
enkephalin. The temperatures are provided in the first row. The last two rows indicate
the harmonic free energy (kcal/mol) and the potential energy value (kcal/mol), respectively.

Residue DA PEGM 100K 200K 300K 400K 500K
Tyr, 10) -168.2 -168.2 -170.9 -168.4 -168.4 -152.5

Y -30.9 -30.9 -28.9 -34.3 -34.3 153.2

w 178.6 178.6 1775  -1789 -1789 1785

x1 -173.5  -173.5 1788 178.7 178.7  -179.0

xz2 -100.9  -100.9 61.3 -100.8  -100.8 -101.2

X3 19.3 19.3 -4.1 179.0 179.0  -179.9

Gly, (0] 78.5 78.5 73.8 177.8 1778  -173.9
Y -86.5 -86.9 47.6 -179.9  -180.0 177.1

w -177.3  -177.3  -179.2  180.0 180.0  -179.8

Glys [0) 162.4 162.4 167.6  -180.0 -180.0 179.6
Y 92.2 92.2 -145.2  179.9 179.9  -179.3

w 172.6 172.6 175.2 179.7 179.7 179.6

Phey ¢ -150.3 -150.3 -149.3 -155.3 -1554 -155.4
Y 159.8 159.8 135.8 147.2 149.5 149.3

w -178.1 -1781 -176.6 -176.8 -178.3 -178.3

X1 65.8 65.8 1773  -179.5 -179.5  -179.7

X2  -874 -87.4  -108.1 -111.7 -105.6 74.4

Mets 0] -75.0 -75.0 -85.9 -78.7 -78.7 -78.9
Y 113.9 113.9 -41.1 -51.1 113.4 113.5

w -1784 -1784  179.9 1797 -179.1 -179.1

x1 -172.3  -172.3  -65.6 -67.2 -67.4 -67.4

X2  176.1 176.1  -179.6 -178.8 -178.8 -178.8

xs -180.0 -180.0 -1794 -1799 -179.9 -179.9

X4 60.0 60.0 179.5  -180.0 60.0 -60.0
G -50.060 -41.896 -34.566 -28.604 -22.828 -17.166
E -50.060 -50.060 -48.676 -46.030 -45.780 -44.797
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Table XIII: Number of distinct minima in bins for solvated met-enkephalin. Each bin repre-
sents a 0.5 kcal/mol range above the previous bin. The temperatures are given in the first
row.

Bin 0K 50K 100K 150 K 200K 250K 300K 350K 400K 450K 500K

1 10 11 16 17 21 18 19 22 21 21 13
2 14 17 35 122 236 149 98 95 97 94 79
3 34 66 299 042 896 607 378 283 223 195 166
4 117 296 668 1589 2075 1496 883 635 520 412 343
5 326 626 1907 3163 3636 2644 1730 1175 814 678 248
6 717 1582 3324 4902 5438 4256 2812 1957 1418 1047 762
7 1440 2865 5393 6733 6816 5790 4451 3061 2172 1623 1202
8 2611 4521 6906 7692 7569 6730 5390 4376 3123 2299 1705
9 3891 6337 787 7952 7650 7221 6301 4972 4073 3132 2263
10 5567 7342 8094 7304 6838 7158 6736 5925 4699 3788 2903
11 6677 8090 7193 6612 6320 6374 6675 6232 5426 4453 3501
12 7624 7483 6618 5915 5645 6028 6295 6270 5754 5015 4161
13 7650 6920 5726 4864 4582 5279 5756 5972 5822 5328 4577
14 7047 6106 4680 3875 3645 4280 5113 5546 5689 5387 4879
15 6375 5066 3710 3086 2978 3449 4361 4973 5376 5271 5012
16 5534 4090 2848 2237 2140 2796 3437 4233 4809 5141 4964
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Table XIV: Clustered relative free energies for solvated met-enkephalin. From left to right,
the information provided in this table includes :

of individual structures in cluster, total probability (3; p;

(Gcluster) -

temperature,
approx
(2

Zimmerman code’, number
) and free energy of cluster

Temp (K) Code Number Y, p;™" ™  Geauster
C*H*E 139 0.466 0.152

100 C*DF 286 0.224 0.297
C*G*A 205 0.0991 0.459

C*A*E 1112 0.0521 1.174

200 A*E*E 393 0.0468 1.217
E*EE 149 0.0421 1.259

E*EE 148 0.0474 1.818

300 EE*E 152 0.0445 1.856
D*E*E 149 0.0273 2.147

EE*E 151 0.0476 2.419

400 E*EE 145 0.0391 2.575
EEE 159 0.0266 2.883

EE*E 149 0.0460 3.059

500 E*EE 142 0.0327 3.397
EEE 156 0.0299 3.488

¢ S. S. Zimmerman, M. S. Pottle, G. Némethy, and H. A. Scheraga, Macromolecules, 10, 1-9

(1977).
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Table XV: Dihedral angle values for PEGM and FEGM structures of solvated leu-enkephalin.
The temperatures are provided in the first row. The last two rows indicate the harmonic
free energy (kcal/mol) and the potential energy value (kcal/mol), respectively.

Residue DA PEGM 100K 200K 300K 400K 500K
Tyr, 10) -168.4 -168.4 -168.4 -168.4 -168.4 -152.5

Y -30.7 -30.7 -34.3 -34.3 -34.3 153.2

w 178.5 1785  -178.9 -178.9 -1789  178.6

x1 -173.4 -173.4 1787 178.7 178.7  -179.0

X2 78.7 78.7 -100.8  -100.8 -100.8 -101.2

xs -161.1 -161.1  179.0 179.0 179.0  -179.9

Gly, 0] 78.9 78.9 177.8 177.8 1778  -173.9
Y -87.2 -87.2  -180.0 -180.0 -180.0  177.3

w -177.3  -177.3  180.0 180.0 180.0  -179.8

Glys [0) 163.2 163.2  -180.0 -180.0 -180.0  179.8
Y 91.5 91.5 179.9 179.9 179.9  -179.5

w 172.7 172.7 179.7 179.7 179.7 179.7

Phey ¢ -150.7 -150.7 -155.4 -155.4 -155.4 -155.4
Y 161.5 161.5 148.6 148.6 148.6 148.5

w -1784 -1784  -1787 -1787 -178.7 -178.7

X1 66.7 66.7 -179.7  -179.7  -179.7  -179.8

X2  -86.8 -86.8 73.7 73.7 73.7 -106.3

Leus 0] -75.4 -75.4 -76.5 -76.5 -76.5 -76.6
(% 105.3 105.3 111.0 111.0 111.0 111.0

w -1783 -1783 -179.1 -179.1 -179.1 -179.1

x1  179.5 179.5 179.2 179.2 179.2 179.2

X2 63.8 63.8 63.8 63.8 63.8 63.8

X3  172.2 172.2 172.3 172.3 172.3 172.3

X4 99.3 59.3 179.3 179.3 179.3 179.3
G -46.565 -38.219 -30.543 -24.671 -18.798 -12.991
E -46.565 -46.565 -42.287 -42.287 -42.287 -41.301
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Table XVI: Clustered relative free energies for solvated leu-enkephalin. From left to right,
the information provided in this table includes :

of individual structures in cluster, total probability (3; p;

(Gcluster) -

temperature,
approx
(2

Zimmerman code’, number
) and free energy of cluster

Temp (K) Code Number Y, p;™" ™  Geauster
C*H*E 149 0.492 0.141
100 C*DF 294 0.192 0.328
C*G*A 168 0.151 0.376
E*EE 120 0.0552 1.151
200 A*E*E 271 0.0477 1.209
C*A*E 759 0.0458 1.225
E*EE 118 0.0574 1.704
300 EE*E 101 0.0336 2.023
D*E*E 103 0.0266 2.163
E*EE 116 0.0451 2.464
400 EE*E 100 0.0361 2.639
E*DE 104 0.0245 2.948
E*EE 111 0.0364 3.291
500 EE*E 100 0.0351 3.329
EEE 138 0.0236 3.723

¢ S. S. Zimmerman, M. S. Pottle, G. Némethy, and H. A. Scheraga, Macromolecules, 10, 1-9

(1977).
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Figure 1: Potential energy terms in ECEPP/3 force field. r;; refers to the interatomic
distance of the atomic pair (ij). @; and @), are dipole parameters for the respective atoms,
in which the dielectric constant of 2 has been incorporated. Fj; is set equal to 0.5 for 1-4
interactions and 1.0 for 1-5 and higher interactions. A;;, Cjj, A;j and B;; are nonbonded
and hydrogen bonded parameters specific to the atomic pair. E,; and E,; are parameters
corresponding to torsional barrier energies for a given dihedral angle. 6, represents any
dihedral angle. ¢, and ¢; take the values -1,1, and n; and n; refer to the symmetry type for
the particular dihedral angle. The cystine loop—closing term is calculated as a penalty term
of three distances involved in loop—closing, where 7; represents the actual distance and r;,
represents the required distance. B;, the penalty parameter, is set equal to 100. Finally, E,
is a fixed internal energy that is added for each proline residue in the protein.

Fiugre 2: One-dimensional illustrative example of the aBB approach. In iteration 1 the
overall domain is bisected, the two convex lower bounding functions are created and their
unique minima (L1 and L2) are identified. An upper bound is also identified. Since L1 is less
than L2, the region containing L1 is further bisected in iteration 2, while the other region is
stored. The minimum of one region (L3) is greater than the new upper bound, so this region
can be fathomed. The other region is stored. In iteration 3 the region with the next lowest
lower bound (L2) is bisected and since both new lower bound minima (L5 and L6) are greater
than the current best upper bound, the entire region is fathomed. Finally, by iteration 4, the
region containing L4 is bisected which results in a region that can be fathomed (containing
L7) and a convex region whose minimum (L8) equals the current upper bound and is the
global minimum.

Figure 3: Using multiple lower bound minima to find low energy conformers of the upper
bounding function.

Figure 4: Interface for global optimization.

Figure 5: Potential energy comparison for isolated met-enkephalin using EDA. Minimum
and maximum potential energies versus bin number are plotted for three temperatures : T
=0 K, 250 K, 500 K.

Figure 6: Plot of cumulative fraction of low energy conformers for isolated met-enkephalin,
which is equal to the number of unique conformers within the first 8, 12 and 16 energy bins
over the total number unique conformers, versus temperature. Both EDA and FEDA data
are plotted.

Figure 7: Plot of specific heat using EDA and FEDA free energy results for isolated met-
enkephalin.

Figure 8: Potential energy comparison for isolated leu-enkephalin using EDA. Minimum and
maximum potential energies versus bin number are plotted for three temperatures : T = 0
K, 250 K, 500 K.
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Figure 9: Plot of cumulative fraction of low energy conformers for isolated leu-enkephalin,
which is equal to the number of unique conformers within the first 8, 12 and 16 energy bins
over the total number unique conformers, versus temperature. Both EDA and FEDA data
are plotted.

Figure 10: Plot of specific heat using EDA and FEDA free energy results for isolated leu-
enkephalin.

Figure 11: FEGM structures for solvated met-enkephalin. The top figure is the PEGM and
the FEGM for 100 K. The structures at other temperatures (200,300,400,500) are shown left
to right, top to bottom.

Figure 12: Plot of cumulative fraction of low energy conformers for solvated met-enkephalin,
which is equal to the number of unique conformers within the first 4, 6, 8, 10, 12, 14 and 16
energy bins over the total number unique conformers, versus temperature.

Figure 13: Energy comparison for solvated met-enkephalin. Minimum and maximum poten-
tial energies versus bin number are plotted for three temperatures : T = 0 K, 250 K, 500 K.

Figure 14: Plot of specific heat using free energy results for solvated met-enkephalin.

Figure 15: Plot of cumulative fraction of low energy conformers for solvated leu-enkephalin,
which is equal to the number of unique conformers within the first 4, 6, 8, 10, 12, 14 and 16
energy bins over the total number unique conformers, versus temperature.

Figure 16: Plot of specific heat using free energy results for solvated leu-enkephalin.
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