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Abstract

An ab initio method has been developed to predict helix formation for
polypeptides. The approach relies on the systematic analysis of overlapping
oligopeptides to determine the helical propensity for individual residues. De-
tailed atomistic level modeling, including entropic contributions and solva-
tion/ionization energies calculated through the solution of the nonlinear Poisson-
Boltzmann equation, is utilized. The calculation of probabilities for helix for-
mation is based on the generation of ensembles of low energy conformers. The
approach, which is easily amenable to parallelization, is shown to perform very
well for several benchmark polypeptide systems, including bovine pancreatic
trypsin inhibitor, the immunoglobulin binding domain of protein G, and chy-
motrypsin inhibitor 2.

Keywords : Protein folding; secondary structure prediction; free energy; alpha
helix; global optimization



1 Introduction

Proteins are essential molecules that exhibit complex structural and functional rela-
tionships. Biological functionality is defined by the native three-dimensional structure
of the protein, which in turn depends on the intricate balance of molecular interac-
tions of the system. It is well known that many proteins fold spontaneously from
random disordered states into compact (native) states of unique shape. However, the
ability to explain the mechanisms that govern this transformation has not yet been
realized. The protein folding problem is to understand this folding process and to
predict the three dimensional structure of proteins from their one dimensional amino
acid sequence.

An important question regarding the prediction of the native folded state of a
protein is how the formation of secondary and tertiary structure proceeds. Two
common viewpoints provide competing explanations to this question. The classical
opinion regards folding as hierarchic, implying that the process is initiated by fast
formation of secondary structural elements, followed by the slower arrangement of
the tertiary fold. The opposing perspective is based on the idea of a hydrophobic
collapse, which suggests that tertiary and secondary features form concurrently.

Inherent to the hierarchical view of protein folding is the dominant role of local
forces in determining the formation of secondary structure. These local forces denote
those interactions between neighboring residues, rather than nonlocal forces that may
arise during tertiary structure formation. In other words, local sequence information
should be sufficient to predict native secondary structure if folding is hierarchic. In
considering the local prediction of secondary structure elements, such as a-helices,
(-strands and turns, most methods rely on statistical treatments !, More recent work
has led to the proposal of a physical theory for secondary structure formation based
on local interactions and sterics234. The basis for this theory hinges on the role of
intrinsic propensities for backbone conformations and backbone hydrogen bonding.

The alternative perspective stresses the importance of the hydrophobic collapse
rather than local propensities in determining a protein’s fold. In this view, hydropho-
bic forces drive the collapse through the desolvation of side chains. It is believed
that these non-local side chain interactions influence the formation of tertiary as well
as secondary structural elements®. Tn addition, these ideas suggest that simple side
chain models of protein folding may be sufficient to predict folding behavior.

For both cases experimental evidence has been produced to support the underlying
claims. For example, kinetic studies have shown that elements of secondary struc-
ture common to the native fold are able to form before substantial tertiary structure
arrangement. The boundaries of helical structure can also be identified through lo-
cal sequence information, implying that local interactions dominate helix formation.
Finally, fragments of longer protein sequences can form native-like folds in absence
of long range interactions®. On the other hand, support for non hierarchical folding
through a hydrophobic collapse includes experiments showing that protein folds are



less affected by mutations on their surfaces than in their hydrophobic cores’. In

addition, hydrophobic collapse, like secondary structure formation, occurs rapidly in
certain cases®. Other results, such as the formation of 3-sheet folds through a-helical
intermediatesg, imply that secondary units are not preassembled and can be driven
by tertiary structure formation.

It is interesting to note that simulations of a hydrophobic collapse through side
chain models fail to predict the formation of a-helices U, This indicates that simpli-
fied models for protein folding may not be sufficient because they lack a full structural
and energetic description of secondary structure formation. Other methods, such as
those based on a statistical mechanical treatment for helix determination, have been
effective, but lack a true physical basis L.

In this work, the principles of hierarchical folding are used to develop a method
for the prediction of « helices in protein systems. The support for this procedure for
a-helix determination is based on observations that native like segments of helical
secondary structure form rapidly. The ability for helices to overcome Levinthal’s
paradox suggests that « helix formation can occur during the earliest stages of protein
folding. Such a mechanism for the helix-coil transition is based on local interactions
which induce nucleation and propagation of the helix 11,

2 Secondary Structure Prediction

Secondary structure prediction is often an important precursor in tackling the overall
protein folding problem, and many methods have been developed in an attempt to
accurately predict the location of « helices and 3 strands. The most successful meth-
ods rely on homology modeling or multiple sequence alignments to predict secondary
structure using only the amino acid sequence. If the databases of experimental struc-
tures contain significantly similar (homologous) sequences to the predicted sequence,
then local conformation patterns, such as a helices and § strands, can be predicted
with accuracy that in certain cases can exceed 70 percent. However, most protein
sequences do not possess known structural homologues, which causes a significant
decrease in prediction accuracy. For these cases the natural extension of the com-
parative modeling approach to fold recognition and threading techniques has shown
some Success.

For target sequences possessing known folds, the technique of comparative mod-
eling begins with the process of sequence alignment; in other words, the search for
homologous proteins. This procedure is practical when sequence identities are greater
than 30 percent12’13. Since the goal of sequence alignment is to identify and accu-
rately align segments of related sequences, the use of multiple sequence alignment has
been an important development that has led to the ability to better identify sequence
variability, insertions and deletions14. The most successful seq5u6161(:1e7 alignment tech-

niques use profiles derived from databases of sequence families 121 . More recently,



advanced sequence alignment methods have been based on hidden Markov models
19 and genetic algorithms 20,

The success of sequence alignment, as measured by the sequence identity score,
directly determines the complexity of the homology modeling process. For sequence
identities greater than 70 - 90 percent, the backbone template of the homologous pro-
tein provides a very accurate model for the target sequence21’22. The only remaining
step is to correctly place the side chains of the target sequence onto the backbone of
the template sequence. The task becomes more complex as sequence identities de-
crease to the vicinity of 30 percent. Aligned sequences in this range generally adopt
the same fold, however the sequence is dominated by the modeling of loops, which
introduces additional challenges23’24.

For target sequences possessing known folds but low sequence identities (less than
30 percent), the applicability of comparative modeling becomes uncertain. In fact,
before the sequence can be properly aligned, the question of accurately detecting a
remote homologous sequence must be addressed. These complications have led to
the development of threading methods, an NP complete class of problems, in which
the target sequence is threaded onto the backbone of the template sequence while
evaluating the sequence fitness. Typically, these fitness functions represent environ-
ment based 2226, 7’28, or knowledge based potentials derived from the PDB 2930,
Other alternative threading schemes involving one dimensional secondary structure
predictions have also been proposed31’32’25. Although threading methods are much
more reliable than traditional alignment techniques, accuracy levels for the correct
detection of remote homologues is still below 40 percent. These difficulties are mag-
nified when trying to identify correct alignments and build two and three dimensional
models33.

When analyzing a target sequence possessing an unknown fold, as is the case
for most proteins, homology modeling becomes even more difficult. Since secondary
structures can usually be predicted more reliably than other features of protein struc-
ture, the major efforts have focused on these one dimensional predictions. Initial
attempts in the area of secondary structure Z)prediction were based on examining stere-
ochemical properties?)4 and statistics 393637, Many studies have also focused on the
devel(zlpment of intrinsic sets of helix propensities to give better a-helix predictions
38,39,40.41 \fore recently, the benefits of multiple sequence alignments and increased
database information have been instrumental in improving prediction accuracies 2.
Many methods rely on evolutionary information through an analysis of the develog—
ment of protein families from both sequence and structural databases43:44:45,46.47
Enhancements in secondary structure prediction accuracy using evolutionary concepts
have been substantial. For example, an easily implemented and standard statistical
method, GOR36, provides 60 percent accuracy for three state (a, 3, coil) secondary
structure prediction, with only 10 percent of these residues exhibiting reliability scores
comparable to homology modeling for known folds. The PHD method43, which uses
a feed forward neural network trained by back propagation of evolutionary infor-



mation, provides a sustained prediction accuracy over 70 percent with 45 percent
of these residues having acceptable reliability scores. More recent neural network
methods such as PSIPRED*®*“  have achieved sustained accuracies over 75 percent.

In addition to evolutionary information, other secondary structure prediction
methods have exploited database information based on physical property information
such as solvent accessibility. For example, reliable predictions of solvent accessibility
for conserved and functional regions of the target sequence can be used to identify sec-
ondary structure by comparing accessibility patterns derived from database proteins
50 Methods which attempt to refine the procedure for accessibility based prediction
have been developed recently51’52. However, the extension of comparative modeling
and fold recognition techniques to two and three dimensions has generally resulted
in low accuracy predictions for sequences with unknown folds. Improvements will
require the use of enhanced mean force potentials53’54, or the development of more
accurate ab initio techniques.

3 Outline of Prediction Approach

The proposed approach for the ab initio prediction of helical segments in polypeptides
is based on the key ideas of (i) partitioning the sequence of aminoacids into oligopep-
tides (e.g., pentapeptides, heptapeptides) such that consecutive oligopeptides have
an overlap, for instance, four aminoacids for pentapeptides; (ii) atomistic level mod-
eling of all appropriate interactions for each oligopeptide using the ECEPP/3 force
field; (iii) generation of an ensemble of low energy conformations for each oligopep-
tide; (iv) incorporation of the entropic contributions and free energy calculations
for each oligopeptide; (v) calculations of the contributions to free energy due to the
formation of cavity for selected oligopeptides; (vi) calculations of the solvation con-
tribution to free energy using the nonlinear Poisson-Boltzmann equation for selected
oligopeptides; (vii) calculations of the ionization contribution to free energy using the
nonlinear Poisson Boltzmann equation for selected oligopeptides; (viii) calculation of
equilibrium occupational probabilities for the helical clusters based on the free en-
ergies of the oligopeptides; and (ix) classification of residues as helical according to
average propensities for each residue as calculated by the equilibrium occupational
probabilities for the helical clusters. A flowchart outlining the main steps of the
approach is given in Figure 1.

4 Partitioning into Oligopeptides

The concept of partitioning the aminoacid sequence into overlapping oligopeptides
is based on the idea that the formation of helices relies on local interactions and
the positioning of each segment within the total protein. For instance, each pair
of overlapping pentapeptides has four common aminoacids, and for a single chain



polypeptide with N residues this translates into an analysis of a total of N — 4
pentapeptides. A schematic of these overlapping subsequences for the first 12 residues
of BPTI is given in Figure 2.

Note that the first aminoacid (R) participates only in one pentapeptide (denoted
as 1), the second aminoacid (P) participates in two pentapeptides (denoted as 1 and
2), the third aminoacid (D) participates in three pentapeptides (denoted as 1,2,3), the
fourth aminoacid (F) participates in four pentapeptides (denoted as 1,2,3,4), while
the aminoacids 5-8 (C,L,K,P) each participate in five pentapeptides.

By considering such overlapping pentapeptides and performing free energy calcu-
lations based on full atomistic models for each system (see Klepeis and Floudas, 1999
55), the effect of the local interactions of the neighboring aminoacids is considered
explicitly. As a result, situations in which the same segment of identical aminoacid
sequence can adopt different conformations in different proteins, as reported by Mi-
nor and Kim56, can be identified. This is because the local interactions extend
beyond the boundaries of the helical segment, and therefore are sufficient to account
for such conformational preferences, as suggested by4. It should also be noted that
a similar partitioning can also result in overlapping heptapeptides or nonapeptides.
It is also worth noting that the idea of partitioning the polypeptide into overlap-
ping nonapeptides was first pointed out by Anfinsen and Scheraga57 who suggested
the minimization with respect to the dihedral angles of the central residue and the
consideration of a five state model.

The partitioning of the aminoacid sequence into oligopeptides offers the distinct
advantages that (i) the novel free energy calculation method that we have recently
developed and which is based on deterministic global optimization 55 can be directly
applied to a linear sequence of N — 4 pentapeptides or N — 6 heptapeptides or N — 8
nonapeptides, and (ii) all oligopeptide free energy calculations can be performed in
parallel, where NV is the number of aminoacids in the single chain polypeptide under
study.

5 Atomistic Modeling

The prediction of a-helices is based on a method that includes detailed atomistic
level modeling of the protein system. This modeling is based on the ECEPP/3 semi-
empirical force field model. For this force field, it is assumed that the covalent bond
lengths and bond angles are fixed at their equilibrium values, so that the conforma-
tion is only a function of the independent torsional angles of the system. The total
force field energy, Ey cofialds 1S calculated as the sum of electrostatic, nonbonded,
hydrogen bonded, and torsional contributions. The main energy contributions (elec-
trostatic, nonbonded, hydrogen bonded) are computed as the sum of terms for each
atom pair (i,j) whose interatomic distance is a function of at least one dihedral angle.
The general potential energy terms of ECEPP/3 are shown in Figure 3, while the



development of the appropriate parameters is discussed and reported elsewhere®S.

6 Ensembles of Low Energy Conformers

Locating the global minimum potential energy conformation is not sufficient because
Anfinsen’s thermodynamic hypothesis requires the minimization of the conforma-
tional free energy. Specifically, potential energy minimization neglects the entropic
contributions to the stability of the molecule. An approximation to these entropic
contributions can be developed by using information about low energy conformations.
That is, once a sufficient ensemble of low energy minima has been identified, a sta-
tistical analysis can be used to estimate the relative entropic contributions, and thus
the relative free energy, for each conformation in the ensemble. A variety of meth-
ods have been used to find such stationary points on potential energy surfaces. For
example, periodic quenching during a Monte Carlo or molecular dynamics trajectory
can be used to identify local minima®9. In this work two algorithms are advocated
for generating low energy ensembles for pentapeptide sequences. The first is based
on modifications of a deterministic branch and bound algorithm, aBB. The second,
conformation space annealing (CSA), which does not provide the deterministic guar-
antees of the BB, is based on the combination of genetic algorithms and simulated
annealing60.

Our previous work has shown that the generation of ensembles of low energy con-
formers is possible through algorithmic modifications of the general aBB procedure
55 The original implementation of the deterministic BB global optimization algo-
rithm requires the minimization of a convex lower bounding function in each domain.
The unique solution for each lower bounding minimum can then used as a starting
point for the minimization (or function evaluation) of the original energy function
in the current domain. In the case of local minimization, each partitioned region
provides a single minimum energy conformation as the algorithm proceeds. Using
this information, along with the global minimum energy conformation, a list of low
energy conformers can be constructed.

However, this approach does not take advantage of all the information provided by
the lower bounding functions. Rigorously, these functions posses a single minimum
in each subdomain. Since the choice of o (convexity parameter) affects the convexity
of the lower bounding functions, the a values can be modified to ensure a certain
nonconvexity in these functions. In this case, the lower bounding functions possess
multiple minima, and these functions can be minimized several times in each domain.
In addition, since the lower bounding functions smooth the original energy hypersur-
face, the location of these multiple minima provide information on the location of low
energy minima for the upper bounding function. Therefore, by using the location of
the minima of the lower bounding function as starting points for local minimization
of the upper bounding function, an improved set of low energy conformations can be
identified. As before, these conformations are also localized in those domains with



low energy as the subdomains decrease in size. This energy directed approach (EDA)
is represented schematically in Figure 4.

The conformational space annealing method (CSA)60 relies on stochastic mea-
sures to converge to a cluster that should include the global minimum energy con-
formation. Through the use of genetic algorithm updates, an ensemble of low energy
minima is also produced. The first step involves the generation of a set of bank confor-
mations, which should initially be distributed randomly throughout the conformation
space. Each conformation in the bank is regarded as a representative of a group of
local minima within a certain distance in conformational space. The distance measure
between conformations ¢ and j is the root mean square deviation with respect to the
dihedral angles :

Ny

1 2
Dij = N, > (6:—0) (1)

i=1

As the algorithm proceeds the parameter D¢, which defines the size of a cluster in
conformation space, is slowly annealed from the original bank distribution value to
an arbitrarily small value.

The group representatives in the bank are updated by generating additional con-
formations. The generation of these conformations is based on the concepts of a ge-
netic algorithm, so that fragments of conformation ¢ are replaced by randomly chosen
conformations from the rest of the bank. The updating rules include replacing indi-
vidual dihedral angles, randomly chosen groups of correlated (small number) dihedral
angles, and connected groups (large number) of dihedral angles. The newly generated
conformations are minimized and compared to the set of bank conformations. If the
bank conformation closest in conformational space to the new conformation exhibits
a value of D;; < D¢y, the bank conformation is replaced by the new conformation
if the new conformation provides a lower energy value. However, if D;; > Dy for
all conformations in the bank, the new conformation defines a new cluster which will
enter the bank if it provides an energy lower than the highest energy representative
in the bank. In this way the number of bank conformations remains constant. The
termination criteria is heuristic and is related to the total number of minimizations.

7 Free Energy and Entropic Calculations

The analysis of these pentapeptides is based on a procedure to identify the free
energy probability of having the three central residues of the pentapeptide within the
helical region of the ¢ — v space. This requires the incorporation of entropic effects
to calculate free energy probabilities of individual metastable states of the system

In particular, a strict interpretation of Anfinsen’s thermodynamic hypothesis
requires the global minimization of the conformational free energy to predict the



native structure of a protein. In practice, however, most protein models include only
potential and solvation effects. One reason for this neglect of including entropic effects
is that a rigorous free energy model requires infinite sampling to associate accurate
statistical weights with each microstate.

Other approximate calculations exist for estimating these statistical weights (and
thus entropic effects). The most simplistic model would rely on only the Boltzmann
weight associated with each microstate. A more sophisticated approximation, known
as the harmonic approximation, utilizes second derivative information to character-
ize the basin of attraction. More complex schemes try to mimic the anharmonic
trajectory along the energy surface. These quasi-harmonic approximations generally
require the use of MC/MD simulations.

In this work, entropic effects are included via the harmonic approximation61’62’63.
The development of this model can be understood physically by first considering the
partition function for the system :

_(E-TS) __E S
Z = exp *BT = exp *BT expks (2)

In Equation (2) the partition function is the product of the Boltzmann (exp[—FE/kgT)])
factor and the number of states available to the system (exp[S/kg]). At a given sta-
tionary point, the harmonic approximation is equivalent to :

B() = B0,)+ 5 (6 0,)HE,) (0 0) ©

Here ~ identifies the stationary point, and the stationarity condition (VE(6,) =
0) is used to eliminate the gradient term. In this way, each basin of attraction
is characterized by properties of its corresponding minima, which include the local
minimum energy value, E(6,), and the convexity (Hessian) information around the
local minimum, H(@,). An analogous representation of this system is Ny independent
harmonic oscillators, each with its own characteristic vibrational frequency. The
minimum can then be characterized by the occupation of each normal mode.

To develop an expression for the entropic effect, Equation (3) can be substituted
into Equation (2). By summing over all energy states, the partition function becomes

_E
= exp *

har LoD 1
Z, 5T f(T) H X (4)

In Equation (4), f(7) is a function dependent only on temperature, while \; represent
the eigenvalues of H(f,). Comparison of Equations (4) and (2) implies that :

s Ay
exprs H)\— (5)

10



Equation (5) can be rewritten in terms of the harmonic entropic contribution, Sﬁlylar :

Shar o _kyn[Det (H(6,))] (6)

A more rigorous derivation of the harmonic approximation leads to the following
expression for the harmonic entropy :

ghar _ —%B In [Det (H(6,))] (7)

This can be used to calculate relative free energies via the following equation :

kgT

FMT — E(6,) + In [Det (E(6,))] (8)

Finally, each microstate can be assigned a statistical weight (p?ar) by considering

the ratio of the partition function for that microstate (Zbar) to the total partition
function :
1/2 o)
1 E

har {[Det(H(ew))]] exp(—5,7)
pfy = ny 1/2 ( ) (9)

1 E(6;

2.221 [[Det(H(ei))]] exp(=F,7)

To develop a meaningful comparison of relative free energies, the total partition func-
tion (denominator of Equation (9)) must include an adequate ensemble of low-energy
local minima, as well as the global minimum energy conformation. Therefore, effi-
cient methods for identifying low energy ensembles, as outlined in the previous section,
must be employed. It should also be noted that the harmonic approximation does not
require the explicit inclusion of a contribution based on the density of states because
each local minimizer is accounted for only once (in contrast to counting methods).

Relative free energies can also be calculated for clusters of low energy conformers.
This analysis is useful because it is difficult to capture the true accessibility of individ-
ual structures based on a point-wise approximation of entropic effects. That is, the
harmonic free energy approximation does not provide a continuous free energy land-
scape. Typically, structures are clustered by calculating and comparing root mean
squared deviations. In the case of determining « helical structure, a conformer is
said to belong to the a-helical cluster if the torsional angles of three central residues
belong to the a-helical region of the ¢ — 1) space (denoted as AAA). The relative free
energy of the a-helical cluster can be calculated by the following equation :

Fppp = —ksTln Y phar (10)
icAAA

11



In Equation (10) the individual plhar, which refers to the statistical weight based on
the harmonic approximation, are summed for the set of conformations belonging to
the AAA cluster. These individual probabilities are calculated by normalizing each
probability with respect to the overall probability at a given temperature :

har _ _exp[-@(Flar — phary)
L X ep[-p(Far - )

, is used to normalize the probabilities at each temper-

(11)

A reference free energy, F1aT

ature point. All free energies, F; Ohar’ Fihar and F jhar, refer to the harmonic approxi-
mation of the free energy as calculated using Equation (8). The denominator, which
represents the total probability at a given temperature, is calculated by summing over
the set of all conformers.

8 Electrostatic Contributions to Free Energy

Initially, the overlapping pentapeptides are modeled as neutral peptides surrounded
by a vacuum environment using the ECEPP/3 force field. The incorporation of
solvation effects requires additional energetic modeling, as well as considering the
role of ionizable side chains. These contributions can be included through explicit or
continuum based hydration models.

Explicit methods include solvation effects by actually surrounding the peptide
with solvent molecules. Energetic evaluations require the calculation of both solvent—
peptide and solvent-solvent interactions. Although these methods are conceptually
simple, explicit inclusion of solvent molecules greatly increases the computational
time needed to simulate the peptide system. Therefore, most simulations of this type
are limited to local conformational searches.

Continuum models use a simplified representation of the solvent environment by
neglecting the molecular nature of the water molecules. Many models estimate free
energies of solvation as a function of geometric quantities, such as surface areas and
volumes. More rigorous calculations of solvation free energies include electrostatic
continuum models, which rely on numerical solutions to the Poisson-Boltzmann equa-
tion, and from which dielectric and ionic strength effects are obtained 64.

In this work, solvation and ionization free energies are calculated through the
solution of the nonlinear Poisson Boltzmann equation, for which both finite difference
and multigrid boundary element solution methods are available 6966 In particular,
the finite difference solution of the Poisson Boltzmann equation as implemented in the
DELPHI package is adopted 67,68 In addition, the approach includes a procedure for
effectively evaluating both the solvation and ionization free equilibria of the peptide
conformations®%70. The resulting total free energies can then be used to identify
equilibrium occupational probabilities for the a-helical clusters.

The overall methodology encompasses the following steps:

12



1 Using the ECEPP/3 forcefield, an ensemble of low potential energy oligopeptide
(e.g., pentapeptide) conformations, along with the global minimum potential en-
ergy conformation, are identified using deterministic global optimization based
techniques.

2 Determine a set of unique conformers (Z) by removing all duplicate and sym-
metric minima, as well as those that do not differ by more than 50 degrees for
at least one dihedral angle (disregarding the first and last backbone dihedral
angles and the last dihedral angle in each side chain).

3 For the set Z calculate the vibrational entropic component using the harmonic
approximation.

4 Model cavity formation in an aqueous environment using a solvent accessible
surface area correlation :

Feavity = YAsa +b (12)

This macroscopic free energy term is based on a fit to the experimental free
energy of transfer of alkane molecules into water. The values for the v and b
parameters are taken to be 0.005 kcal/mol A and 0.860 kcal/mol, respectively.

5 Rank the set (Z) according to the energies given by (FIar 4+ Feavity)-
6 For a subset of conformations belonging to (Z) calculate the total energy ac-
cording to :

+ F ionize

_ rphar
Fyotal = Fvac + Fcavity + Fsoly (13)
Here F.), represents the difference in the polarization energies when moving
from a vacuum to an aqueous environments, and Fionization represents the
ionization energy (see below). The thermodynamic process that captures this

transition is given in Figure 5.

7 Fi,tq] 1s subsequently used to calculate equilibrium occupational probabilities
of the a-helical cluster.

8.1 Solvation Free Energy

Calculating the polarization of the environment as an aqueous phase is based on the
difference between electrostatic polarization free energies of the peptide in the vacuum
and water environments. The change in going from a vacuum to aqueous environment
is given by :

F F

solv = polar(6 = 80) — Fyolar(e = 1) (14)

p
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This involves finding the induced surface charge (solving the Poisson-Boltzmann equa-
tion) for two systems in which the only difference is the dielectric constant (¢) of the
surrounding medium; that is 80 and 1 for the aqueous and vacuum phases, respec-
tively.

Finding Fpolar’
the Poisson-Boltzmann equation when the neutral protein (zero ionization) is in the
aqueous and vacuum phases. The reaction field energy is determined by calculating
the induced surface charge at the surface of the molecule (due to point charges) and
then summing the potential at every charge :

Fpotar =5 X 1% a9

Reaction field energies can be obtained as a special application of the solution
of the Poisson-Boltzmann equation. In particular, the distribution of charges and
dielectric boundaries is first used to solve the Poisson-Boltzmann equation through
finite difference for all points of a three-dimensional grid. This provides a potential
at each grid point. In order to calculate the surface charge density, the proximal grid
point potentials are combined for a patch of the constructed Conolly surface. The
reaction field energy is calculated by determining the effect of the charge density at
each surface patch for each charge point.

which corresponds to the reaction field energy, requires solving

8.2 Ionization Free Energy

For ionizable residues additional calculations must be made for the ionization of these
groups in the aqueous phase at a given pH. The determination of this quantity depends
on the calculation of the partition function for single or multiple titration sites :

2

1onize

(pH) =kTInZ (16)
The partition function includes contributions from all 2V jonization states of the
system, where N is the number of ionizable groups :

2N

Z =) exp[-AG;/kT] (17)

i=1
The free energy of the ith state is given by ;

N
AG; = 3" (2,2.303kT (pH — pK,) +6; 3 6,AGy) (18)

j=1 1<k<j

Here z; is the charge on the group in the ¢th state, and J§ parameters are binary
indicators (i.e., 0 when the group is neutral and 1 when the group is charged). pK; is

14



the intrinsic pKjy for the jth group, and pH is the current pH value. AGjj represent
coupled (multiple site) terms.

Intrinsic pKy values are obtained by looking at the difference of ionizing the
protein in the protein environment and in an isolated aqueous phase :

pK; = pK? — v,AAG;/2.303kT (19)

Here «; is equal to -1 or +1 for acidic or basic ionizable groups, respectively. The
AAG; term is easily related to the pK shift (ApK;) by the following :

AAG,

ApK, = o7
P = ,2.303kT

(20)

The thermodynamic cycle for AAG; involves the introduction of the ionizable
group into the protein system and the difference in free energy when going between
the neutral and protonated form of that group. This is represented by Figure 6.

Examination of the thermodynamic cycle provides the following decomposition
for AAG; :

AAG,

Vj

= (AG;(PS//8]) — AG;(PS]/SY)) (21)

AG,(PS;/S;) represents the change in free energy when moving the (ionized) ion-
izable group from an isolated aqueous environment into the protein environment.
AG,;(PS]/S7) represents the same transition but for the neutral form of the ionizable
group.

The individual AG; terms can be further decomposed :

AG; = AG§XH field n AG})erm dipole (22)

The first term, AGP™ field Lofers to the reaction field effects, that is, those ef-
fects that arise due to the dielectric continuum nature of the system. For example,
AGP™ field (pgF /SH) is the difference in reaction field energy for group j in state
i when changing the dielectric continuum from the isolated aqueous state (¢ = 80

only) to that of the protein environment (e = 2 in some regions). More specifically,

AG§XH field captures the change in free energy due to the reduced exposure to water.

Since we are concerned with the effect on the ionizable group 7, the rest of the protein
carries zero partial atomic charges.

In order to calculate the change in reaction field energy, AG;*" ﬁe]d(PS;r /ST,
the Poisson-Boltzmann equation is solved for both systems shown in Figure 7 to get
the reaction field potential map ¢tX® field(pg+y and g0 field(g+y  This data can
be used to map the surface charge distribution on the boundary between the different
dielectric environments, that is, o(PS;") and o(S;), respectively. By replacing the

15



surface integral with the appropriate summation, the change in reaction field energy
becomes :

AGJr-XH ﬁeld(PSj/S;") _

%[ Z g;+05(PS;) _ Z Qj+Us(S£F)}

- Tiv+ —Tg - Tiv —Tg
B 5 el T A Sl

In this equation the set j+ refers to the set of partial atomic charge points (with
charges g, ) of the protonated ionizable group. The set of surface points are denoted
as s(PS;) and s(S]") for the isolated and protein environments, respectively. The
quantity |rj; — rs| is the magnitude of the distance between the points defined by
sets j+ and s.

A similar set of equations can be derived for the neutral form of the ionizable
group. The systems are shown schematically in Figure 8. AGT*" field (pgt /3¢) can
be calculated from the following equation :

AG§XH ﬁeld(PSZO/SZO) —

1 > 2jo0s(PS7) > jo0s(S7)

2 o . |/rj0 - 7"5‘ o : |Tj0 - TS‘
s(PS7) 70 s(S7) J0
The final contribution to AAG; is based on the difference in potential forces on

the ionizable group which arise from permanent dipoles of the entire system. Rather

than consider these term separately, the overall dipole change can be written as :
AAGg)erm dipole _ AG})erm dlpole(PS;L/S;L) _ AG,;)erm dlp(ﬂe(PS;’/Sf) (23)

In the isolated systems, (S; and S?), permanent dipole effects are not present.

That is, the ionizable group is only surrounded by a uniform dielectric continuum with
e = 80 and no permanent dipoles or ions are present. Therefore, AAG?erm dipole

collapses to :
AAG})erm dipole _ AG}_)erm dipOIe(PS;L/PSZ?) (24)

The calculation of this quantity requires the solution of Poisson-Boltzmann equation
for two systems. For the PS; system, the potential force (gb?frm dlpOle(PSf) due

to the protein dipole is calculated at the atomic centers of the protonated ionizable
group (set j+). For the PS? system, these forces (qﬁﬁerm dlpOle(PSf) are determined
at the atomic centers (set jo) of the neutral form of the ionizable group. A schematic
of these systems is shown in Figure 9.
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The final expression for AG})erm dlpO]e(PSZjF /PS?)

effective potential at the atomic charge centers :

AG;)erm dipOIe(PS;“/PSO Z J+¢perm dipole (PS7) Z ]o¢perm dlpole(PSO)

(25)

is based on the sum of the

The final step in treating multiple titration sites is the calculation of AGj terms.
This term represents an energetic adjustment due to the permanent dipole contri-
butions between each pair of titratable groups. In order to isolate the contributions
to only those between the ionizable groups, the remaining protein is treated as un-
charged. The expression for AGjj can decomposed as :

AGy = AG(PSITAYY 4 AG(PSIF) — AG(PSITF) — AG,(PSI™FT)  (26)

In total, four separate systems must be considered. The first term represents the
dipole effects between the charged forms of both groups 7 and k. The remaining
quantities, which correspond to combinations of the neutral and charged forms of
groups 7 and k, are necessary to correct the approximations made when calculating
the energies of single titration groups.

Permanent dipole calculations require the solution of the Poisson-Boltzmann equa-
tion for a distribution of permanent point charges. The solution provides the induced
potential at all grid points, which can be used to calculate the effects at a subset of
grid points (point charges).

9 Probabilities of o helix formation

The goal and final step of the approach is to classify the individual residues in the
overall sequence as helical or non-helical. In the case of considering overlapping
pentapeptides, for each residue, excluding the first and last three residues, this clas-
sification is based on information obtained from the three pentapeptides for which
the residue in question maintains one of the three central positions. As a result, the
combined effects of seven residues are accounted for when determining the helical
propensity of each individual residue. When considering heptapeptides and nonapep-
tides the sphere of influence exends to eleven and fifteen residues, respectively. For
each residue, the average probability of being in an helical conformation is defined
by the average of the AAA probability for the aforementioned three pentapeptides.
The individual AAA probability (pp A o) for each pentapeptide is equivalent to the
summation term shown in Equation (10) :

PAAA = D, phar (27)
icAAA

17



The individual probabilities are calculated according to Equation (11), which depends
on the total free energy of the system. For the case of pentapeptides without any
ionizable side groups or low helical probabilities (ps A A), the free energy is based
on the in vacuo calculations. However, the free energy includes detailed solvation
and ionization energies for those pentapeptides possessing ionizable side groups and
large initial helical probabilities. A residue is defined as helical if the combined
helical probabilities (pp A o) of the three pentapeptides exceed an average of about
90 percent.

10 Computational Studies

10.1 Bovine Pancreatic Trypsin Inhibitor, BPTI

The approach for a-helix prediction was applied to bovine pancreatic trypsin in-
hibitor (BPTI), a small globular protein found in many tissues throughout the body.
BPTT inhibits several of the serine protease proteins such as trypsin, kallikrein, chy-
motrypsin, and plasmin, and is a member of the pancreatic trypsin inhibitor (kunitz)
family, which is a family of serine protease inhibitors. These proteins usually have
conserved cysteine residues that participate in the formation of disulfide bonds. In
particular, BPTI possesses three disulfide bonds, which are denoted as Cys5-Cysb5,
Cys14-Cys38, and Cys30-Cysb1. The structure of the 58 amino acid residues chain
of BPTI has been resolved through several methods, including X-ray crystallography
(4PTT) ™ and a combination of X-ray and neutron diffraction experiments (5PTI)
2 Basic secondary structural features include a N-terminal 3;y helix, a C-terminal
a helix and several antiparallel 5 strand configurations.

Extensive experimental studies of the structural features and folding of BPTT have
been conducted 374757677, Many of these studies have attempted to elucidate
the folding pathway of BPTI through the formation of stable intermediates, which
necessarily have one or more broken disulfide bridges. Theoretical investigations of the
stability and folding of BPTI have also been performed78’79’80. These simulations
typically require information on secondary structural content and native contacts to
examine the formation of the native folded state. The novel aspect of this approach
is the identification of secondary structural features, including « helix prediction,
through ab initio modeling.

For BPTI, the partitioning of the overall 58 residue chain into overlapping pen-
tapeptides results in 54 pentapeptides. The individual uncharged pentapeptides are
indicated in Table I. In general, the end groups for each pentapeptide are simply
neutral amino groups at N termini and hydroxyl groups at C termini. For the case
of N terminal proline residues the amino group is replaced by an acetyl-amino group,
while C terminal proline residues require an amide-methyl group. The structural
classification of each pentapeptide is based on the conformational characteristics of
the three central residues. Based on the crystallographic structure, Table I indicates
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which pentapeptides possess core residues with full a helical structure.

For each pentapeptide, a series of free energy calculations was performed to iden-
tify low energy conformational ensembles. Energy modeling included standard poten-
tial energy components based on the ECEPP/3 forcefield, as well as configurational
entropic contributions according to the harmonic approximation. The description of
each conformer requires the specification of a set of independent torsion angles, and
uniqueness of individual conformers was assessed based on criteria involving these
variables. The total number of torsion angles and unique conformers for each pen-
tapeptide is presented in Table II.

The free energy of each unique conformer evaluated at 298 K was used to calculate
individual occupational probabilities for these metastable states. Clustering of these
states was based on the classification of the backbone torsion angles of the central
residues. Specifically, the probabilities of conformers exhibiting identical Zimmer-
mann codes for the core residues were summed and used to generate a rank ordered
list of conformational propensity. The first stage of the approach involves the iden-
tification of strong « helical clusters for the uncharged pentapeptides. Specifically, if
the probability of the « helical cluster (AAA) is greater than 90 for more than three
consecutive sets of core residues, the marked pentapeptides are considered for further
analysis. The second stage involves refinement of o helix probabilities based on de-
tailed electrostatic and ionization energy calculations obtained through the solution of
the Poisson Boltzmann equation. For the set of possible « helical pentapeptides con-
taining ionizable residues, probabilities were recalculated for a subset of conformers
using a combination of the free energy at 298 K and the polarization and ioniza-
tion free energy at pH 7. Finally, « helical propensity for each residue was assigned
according to the average AAA probability. The results are presented in Figure 10.
The prediction of an « helix corresponds to average AAA probabilities greater than
90 for more than three consecutive residues. For BPTI, a helices are predicted be-
tween residues 2 and 5 and between residues 47 and 54. These results are in excellent
agreement with the experimental structure.

10.2 Protein G, 1GB1

Protein G is a small globular protein produced by several Streptococcal species. The
proteins are composed of two or three nearly identical domains of about 55 amino
acids each. The system considered here is the immunoglobulin-binding domain from
streptococcal protein GG, a 56 amino acid polypeptide. The structure contains an
efficiently packed hydrophobic core between a four-stranded (-sheet and a four-turn
a-helix®* with an overall secondary structure of F8a33. The formation of the 3-sheet
consists of two (8 hairpin turns, each connecting antiparallel strands. The first and
last strands combine to form the final parallel 3 sheet to give the four-stranded config-
uration. Experimental structures have been determined using both crystallographic
82 and NMR-derived®! data.

19



Analysis of the immunoglobulin binding domain of Protein G has also been the
focus of theoretical studies on protein folding. In particular, the third and fourth
strands have been used to model the formation of 3 sheet structure through hairpin
folding. Initial observations included the proposal of a simple statistical mechanical
model in which the formation of hydrogen bonds, through a zipper mechanism, drives
hairpin folding83. More recently, simulations have shown that an early step in hairpin
folding is the formation of a hydrophobic cluster 348986,

For Protein G, a total of 52 overlapping pentapeptides, as presented in Table III,
were constructed. For all pentapeptides end groups corresponded to neutral amino
groups at N termini and hydroxyl groups at C termini. The structural classification of
each pentapeptide is based on the conformational characteristics of the three central
(core) residues. Based on the experimentally derived structure, Table III indicates
that pentapeptides 22 through 32 possess core residues with full a helical structure.

The total number of torsion angles and unique conformers for each pentapeptide
is presented in Table IV. Strong « helical clusters were identified using the in vacuo
free energy for the uncharged pentapeptides. Based on these results, the probabili-
ties for charged pentapeptides 2 - 8, 14 - 35 and 44-52 were recalculated using free
energies which included polarization and ionization energies. The refined probabil-
ities were used to calculate « helical propensities for each residue according to the
average AAA probability. The inclusion of rigorous solvation and ionization energies
reduced the N-terminal helix to a short fragment of 4 residues, between residues 5 -
8, exhibiting average helix propensity above 90 percent. Furthermore, a depression in
the helix propensity below 90 percent for both residues 49 and 50 effectively disrupts
the formation of a potential C-terminal helix. One remaining extended helix survives
between residues 23 and 31. To investigate the two remaining helices, additional free
energy calculations were conducted for heptapeptides including residues 5 - 8 and 32
- 34 at core positions. The results indicate that the N-terminal helix does not form
for the longer heptapeptides, and that the second helix extends to residue 34. These
observations suggest that different oligopeptide systems may be useful for affirming
the pentapeptide results. Experimentally, the immunoglobulin binding domain of
Protein G exhibits one « helix between residues 22 and 35, which agrees well with
the prediction of a helix between residues 23 and 34. The final results are presented
in Figure 11.

10.3 Chymotrypsin Inhibitor, 3CI2

Like BPTI, chymotrypsin inhibitors are serine protease inhibitors. Chymotrypsin in-
hibitor 2 commonly refers to the potato I family of trypsin inhibitors, which has been
resolved experimentally using both crystallographic and NMR methods. Neglecting
the unstructured set of residues near the N-terminus, the truncated 63 residue chain
has a morphology consisting of 6 3 strands, a helix and a reactive loop. The or-
der of these secondary structural elements follows : strand;, strand,, helix, strands,
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reactive loop, strand,, strands, strandg. The four largest strands combine to form
a packed hydrophobic core around the helix, with strand; antiparallel to strandg,
strandg antiparallel to strand,, and strand, parallel to strands.

The folding characteristics of chymotrypsin inhibitor 2 protein have been studied
extensively through experimental methods. Important observations include its fast
folding two-state type kinetics with the same folding and unfolding transition state
8783 Molecular dynamics simulations have failed to elucidate a single unfolding
pathway, although common structural features have been identified. For example,
recent simulations indicate that the nucleation of both the #3 - 4 hairpin and the
four-turn helix rapidly form the native structureS390,  Like the immunoglobulin
binding domain of protein G, the strongest consolidation of secondary structure is
found in the « helix.

The decomposition of the truncated 63 residue chain of chymotrypsin inhibitor 2
results in a total of 59 overlapping pentapeptides, as presented in Table V. End groups
corresponded to neutral amino groups at N termini and hydroxyl groups at C termini
for all pentapeptides, excluding those with terminal Pro residues. Each pentapeptide
is classified according to the conformational characteristics of the three central (core)
residues. Based on the experimentally derived structure, Table V indicates that
pentapeptides 10 through 18 possess core residues with full « helical structure.

Table VI presents the total number of torsion angles and unique conformers for
each pentapeptide. Using the in vacuo free energy, the strongest a helical clusters
were identified for uncharged pentapeptides 9 through 20. The C-terminal region,
specifically between residues 45 and 55, also displayed relatively high AAA proba-
bilities, although two small depressions below 75 percent disrupt the possibility for
helix formation in this region. In addition, the region between residues 35 and 45,
which corresponds to the reactive loop structure, does not produce helical conformers.
Refined probabilities for pentapeptides 9 through 20 were used to calculate « helical
propensities for each residue according to the average AAA probability. These results,
as presented in Figure 12, support the prediction of a single helix between residues
12 and 21. These results agree extremely well with those found experimentally.

10.4 Comparison with Existing Methods

The results for the postulated superstructures were then compared to the PSIPRED
method for secondary structure predictiongl. PSIPRED utilizes two feed-forward
neural networks to perform an analysis on output obtained from PSI-BLAST (Po-
sition Specific Iterated - BLAST) 92 Cross validation of the method indicates that
PSIPRED is capable of achieving an average Q3 score of nearly 77 percent, which
is the highest result for any published secondary structure prediction methods. The
predictions are based on a standard three state model to indicate the location of helix,
strand and coil fragments for a given sequence.

Qualitatively, the results of the PSIPRED method and the ab initio approach
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agree quite well in the prediction of helical segments for the three proteins studied
here. In particular, the extended helix in each of the systems is accurately pre-
dicted with a high confidence level (an average of 8 out of 9 on a 0 to 9 scale) using
PSIPRED. Two disagreements are evident between the two predictions, and both
represent inaccuracies in the PSIPRED results. The first is a lack of the prediction
of the small N-terminal helix between residues 2 and 5 for BPTI. The second is the
weak prediction (confidence level less than 1) of an additional helix between residues
17 and 20 in the immunoglobulin binding domain of protein G. Figure 11 exhibits a
spike in the helix propensity for this region, although the conditions do not satisfy
the criteria for assigning a helical segment.

10.5 Computational Complexity

The extension of our ab initio helix prediction approach to larger protein systems
is facilitated through the use of distributed computing environments. The major
expense of the overall approach involves multiple solutions of the nonlinear Poisson-
Boltzmann equation for each conformation, which depends strongly on the number of
ionizable groups. An estimate of the computational effort is made for a 128 processor
(600 PIIT) parallel machine running Linux.

For each oligopeptide, the set of in vacuo free energy calculations can be performed
independently on single processors. To avoid significant idle time, the number of
oligopeptides, which is on the order of the total number of residues in the sequence,
should not exceed the number of available processors. As an example, a typical
pentapeptide would require approximately 15 CPU hours on a single processor. On a
128 processor system, results for a full set of pentapeptides from a 68 residue sequence
(or shorter) will complete in approximately 10 wallclock hours.

All additional calculations require the solution of the nonlinear Poisson-Boltzmann
equation, which is carried out by finite difference routines implemented in the DEL-
PHI packag667’68. The calculation of F, requires two calls to DELPHI, and the
number of calls is independent of the number of titratable groups in the system. For
each ionizable group six additional DELPHI calls are required, four reaction field cal-
culations (PS;,PS?,S?, SI) and two permanent dipole calculations (PS;,PS?). Two
of the six calculations involve only single residue conformations, rather than the full
protein system. When multiple titratable groups are present, four additional DEL-
PHI calls must be made for each pair of ionizable groups. The computational effort
is summarized in Table VII.

The set of DELPHI calls is performed for an ensemble of the lowest free energy
conformers for each oligopeptide. For an ensemble of 5000 pentapeptide conformers
the total CPU requirement is on the order about 0.5 wallclock hour on the 128 parallel
processor machine. However, the computational requirements are dependent on the
specific size and charge distribution of the system. When considering systems with
multiple titration sites, the computational cost increases considerably. For a two
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titratable group pentapeptide, a system of 5000 conformers requires approximately
1.5 wallclock hours on a parallel machine, while approximately 3 wallclock hours is
needed for a system with three ionizable groups.

When considering the total time to calculate helix propensities for a full protein
sequence, DELPHI calculations are performed only for those segments with oligopep-
tides exhibiting strong helix propensities in the vacuum state are considered. For
BPTI, 17 pentapeptides with ionizable side chains were included in this set. Overall,
1 day of wallclock time was required to perform the DELPHI calculations, in addition
to about 1 day for the initial in vacuo free energy runs.

These values can also be used to estimate the total time to calculate free energies
for oligopeptides of larger protein systems. For the in vacuo free energy calculations
the total wallclock time will always be 1 day as long as the number of processor exceeds
the total number of oligopeptides, since each oligopeptide is run sequentially. When
considering the DELPHI calculations, although the dependence is approximately lin-
ear, the actual result varies according to the number of residues with titratable side
chains and their occurrence in the set of oligopeptides. If we consider a 100 residue
sequence with a composition similar to BPTI, the number of wallclock days required
for the DELPHI calculations will double for a 128 processor machine (2 days instead
of 1). The time can be easily reduced to 1 wallclock day by doubling the number of
available processors.

11 Conclusions

A general method has been developed for true ab initio prediction of helix propensity
for residues in a given protein sequence. An important component of the approach is
that some information regarding helix formation is retained locally, which is evidenced
by experimental observations regarding the strong nucleation characteristics of helices.
In order to capture local interactions and the unique positioning of each residue in the
overall protein, the protein sequence is decomposed into overlapping oligopeptides.
The analysis also involves detailed atomistic level modeling, and the refinement of
helix propensities according to polarization and ionization energies calculated through
the solution of the nonlinear Poisson Boltzmann equation. The end result is the
prediction of helical segments according to the average helix propensity assigned to
each residue.

The approach has been applied the location of a and 3—10 helices for three bench-
mark proteins which have been studied both experimentally and through simulation
: bovine pancreatic trypsin inhibitor, immunoglobulin binding domain of protein G
and chymotrypsin inhibitor 2. For BPTI and chymotrypsin inhibitor 2, the ab initio
study based on overlapping pentapeptides and the experimental results have excel-
lent agreement. For the immunoglobulin binding domain of protein G, the study of
overlapping heptapeptides and pentapeptides provides very good agreement with the
experimental results.
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Table I: Pentapeptide sequences used for a helix prediction of BPTI. The second
column assigns the identifier for each pentapeptide, while and (X) in the third col-

umn indicates the location, determined by experiment, of a helical core for the given

sequence.
| Pentapeptide | ID | PDB | Pentapeptide | ID | PDB |
Arg Pro Asp Phe Cys 1 X Gly Leu Cys Gln Thr 28
Pro Asp Phe Cys Leu 2 X Leu Cys Gln Thr Phe 29
Asp Phe Cys Leu Glu 3 Cys Gln Thr Phe Val 30
Phe Cys Leu Glu Pro 4 Gln Thr Phe Val Tyr 31
Cys Leu Glu Pro Pro ) Thr Phe Val Tyr Gly | 32
Leu Glu Pro Pro Tyr 6 Phe Val Tyr Gly Gly | 33
Glu Pro Pro Tyr Thr 7 Val Tyr Gly Gly Cys | 34
Pro Pro Tyr Thr Gly 8 Tyr Gly Gly Cys Arg | 35
Pro Tyr Thr Gly Pro 9 Gly Gly Cys Arg Ala 36
Tyr Thr Gly Pro Cys 10 Gly Cys Arg Ala Lys 37
Thr Gly Pro Cys Lys 11 Cys Arg Ala Lys Arg 38
Gly Pro Cys Lys Ala 12 Arg Ala Lys Arg Asn 39
Pro Cys Lys Ala Arg 13 Ala Lys Arg Asn Asn 40
Cys Lys Ala Arg Ile 14 Lys Arg Asn Asn Phe 41
Lys Ala Arg Ile Ile 15 Arg Asn Asn Phe Lys | 42
Ala Arg Ile Ile Arg | 16 Asn Asn Phe Lys Ser | 43
Arg Ile Ile Arg Tyr 17 Asn Phe Lys Ser Ala | 44
Ile Ile Arg Tyr Phe 18 Phe Lys Ser Ala Glu 45
Ile Arg Tyr Phe Tyr 19 Lys Ser Ala Glu Asp 46
Arg Tyr Phe Tyr Asn | 20 Ser Ala Glu Asp Cys | 47 X
Tyr Phe Tyr Asn Ala | 21 Ala Glu Asp Cys Met 48 X
Phe Tyr Asn Ala Lys 22 Glu Asp Cys Met Arg | 49 X
Tyr Asn Ala Lys Ala 23 Asp Cys Met Arg Thr 50 X
Asn Ala Lys Ala Gly | 24 Cys Met Arg Thr Cys o1 X
Ala Lys Ala Gly Leu 25 Met Arg Thr Cys Gly 52 X
Lys Ala Gly Leu Cys 26 Arg Thr Cys Gly Gly 53
Ala Gly Leu Cys Gln 27 Thr Cys Gly Gly Ala 54
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Table II: Summary of pentapeptide information. The second column provides the
number of dihedral angles for the peptide, while the third column indicates the to-
tal number of unique conformers identified during the ensemble generation of the

uncharged pentapeptides.

ID | DA | Unique | ID | DA | Unique |

1 33 | 16047 28 | 33 | 13306
2 32 | 15176 29 | 35 | 15591
3 35 | 15537 30 | 34 | 14253
4 |32 | 13700 31 | 36 | 17216
5 29 | 9503 32 | 32 | 13296
6 30 | 12065 33 | 29 | 11578
7 129 | 13228 34 | 28 | 9785

8 27 | 8945 35 | 32 | 14398
9 28 | 11222 36 | 30 | 9998

10 | 27 | 11004 37 | 35 | 11704
11 | 29 | 9783 38 | 42 | 16344
12 | 27 | 8202 39 | 44 | 17904
13 | 36 | 15528 40 | 40 | 13700
14 | 39 | 13817 41 | 41 | 15364
15 | 42 | 14838 42 | 41 | 17997
16 | 44 | 17851 43 | 36 | 18261
17 | 46 | 20289 44 | 34 | 15945
18 | 41 | 17768 45 | 35 | 14153
19 | 40 | 14571 46 | 36 | 14136
20 | 39 | 14240 47 | 32 | 14248
21 | 33 | 14692 48 | 34 | 12565
22 | 35 | 15915 49 | 40 | 12630
23 | 34 | 13479 50 | 39 | 16798
24 | 31 | 11169 51 | 37 | 9503

25 | 32 | 10419 52 | 36 | 16426
26 | 32 | 12468 53 | 32 | 13802
27 | 31 | 12116 54 | 26 | 13127
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Table IIT: Pentapeptide sequences used for a helix prediction of Protein G. The sec-
ond column assigns the identifier for each pentapeptide, while and (X) in the third
column indicates the location, determined by experiment, of a helical core for the

given sequence.

| Pentapeptide | ID | PDB | Pentapeptide | ID | PDB |
Met Thr Tyr Lys Leu | 1 Glu Lys Val Phe Lys 27 X
Thr Tyr Lys Leu Ile | 2 Lys Val Phe Lys Gln 28 X
Tyr Lys Leu Ile Leu | 3 Val Phe Lys Gln Tyr 29 X
Lys Leu Ile Leu Asn | 4 Phe Lys Gln Tyr Ala | 30 X
Leu Ile Leu Asn Gly | 5 Lys Gln Tyr Ala Asn | 31 X
Ile Leu Asn Gly Lys | 6 Gln Tyr Ala Asn Asp | 32 X
Leu Asn Gly Lys Thr | 7 Tyr Ala Asn Asp Asn 33
Asn Gly Lys Thr Leu | 8 Ala Asn Asp Asn Gly 34
Gly Lys Thr Leu Lys | 9 Asn Asp Asn Gly Val 35
Lys Thr Leu Lys Gly | 10 Asp Asn Gly Val Asp 36
Thr Leu Lys Gly Glu | 11 Asn Gly Val Asp Gly 37
Leu Lys Gly Glu Thr | 12 Gly Val Asp Gly Glu | 38
Lys Gly Glu Thr Thr | 13 Val Asp Gly Glu Trp 39
Gly Glu Thr Thr Thr | 14 Asp Gly Glu Trp Thr | 40
Glu Thr Thr Thr Glu | 15 Gly Glu Trp Thr Tyr | 41
Thr Thr Thr Glu Ala | 16 Glu Trp Thr Tyr Asp 42
Thr Thr Glu Ala Val | 17 Trp Thr Tyr Asp Asp | 43
Thr Glu Ala Val Asp | 18 Thr Tyr Asp Asp Ala | 44
Glu Ala Val Asp Ala | 19 Tyr Asp Asp Ala Thr | 45
Ala Val Asp Ala Ala | 20 Asp Asp Ala Thr Lys 46
Val Asp Ala Ala Thr | 21 Asp Ala Thr Lys Thr | 47
Asp Ala Ala Thr Ala | 22 X Ala Thr Lys Thr Phe 48
Ala Ala Thr Ala Glu | 23 X Thr Lys Thr Phe Thr | 49
Ala Thr Ala Glu Lys | 24 X Lys Thr Phe Thr Val 50
Thr Ala Glu Lys Val | 25 X Thr Phe Thr Val Thr 51
Ala Glu Lys Val Phe | 26 X Phe Thr Val Thr Glu 52
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Table TV: Summary of pentapeptide information. The second column provides the
number of dihedral angles for the peptide, while the third column indicates the to-
tal number of unique conformers identified during the ensemble generation of the

uncharged pentapeptides.

ID | DA | Unique | ID | DA | Unique |

1 40 | 11506 27 | 40 | 16465
2 |40 | 13998 28 | 40 | 17392
3 |41 | 17160 29 | 38 | 14052
4 |41 | 6373 30 | 36 | 15207
5 36 | 13446 31 | 37 | 15127
6 37 | 14089 32 | 35 | 14520
7 | 36 | 10365 33 | 34 | 13436
8 36 | 15659 34 | 31 | 11423
9 38 | 15058 35 | 33 | 14832
10 | 38 | 14563 36 | 33 | 14796
11 | 37 | 13340 37 | 30 | 13140
12 | 37 | 14899 38 | 31 | 11266
13 | 36 | 14534 39 | 33 | 14842
14 | 34 | 13604 40 | 33 | 15295
15 | 38 | 16686 41 | 33 | 16180
16 | 35 | 13942 42 | 36 | 16356
17 | 35 | 13027 43 | 35 | 17710
18 | 35 | 13508 44 | 34 | 13052
19 | 33 | 11803 45 | 34 | 14942
20 | 30 | 7966 46 | 36 | 15524
21 | 32 | 9743 47 | 36 | 15206
22 | 30 | 9296 48 | 35 | 14521
23 | 31 | 9297 49 | 37 | 13870
24 | 35 | 13341 50 | 37 | 14857
25 | 37 | 13055 51 | 35 | 10579
26 | 36 | 14895 52 | 36 | 14015
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Table V: Pentapeptide sequences used for « helix prediction of Chymotrypsin In-
hibitor. The second column assigns the identifier for each pentapeptide, while and
(X) in the third column indicates the location, determined by experiment, of a helical

core for the given sequence.

| Pentapeptide | ID | PDB | Pentapeptide | ID | PDB |
Lys Thr Glu Trp Pro | 1 Val Leu Pro Val Gly 31
Thr Glu Trp Pro Glu | 2 Leu Pro Val Gly Thr 32
Glu Trp Pro Glu Leu | 3 Pro Val Gly Thr Ile 33
Trp Pro Glu Leu Val | 4 Val Gly Thr Ile Val 34
Pro Glu Leu Val Gly | 5 Gly Thr Ile Val Thr 35
Glu Leu Val Gly Lys | 6 Thr Ile Val Thr Met 36
Leu Val Gly Lys Ser | 7 Ile Val Thr Met Glu | 37
Val Gly Lys Ser Val | 8 Val Thr Met Glu Tyr | 38
Gly Lys Ser Val Glu | 9 Thr Met Glu Tyr Arg 39
Lys Ser Val Glu Glu | 10 Met Glu Tyr Arg Ile 40

—
—

Ser Val Glu Glu Ala
Val Glu Glu Ala Lys
Glu Glu Ala Lys Lys
Glu Ala Lys Lys Val
Ala Lys Lys Val Ile
Lys Lys Val Ile Leu
Lys Val Ile Leu Gln

Glu Tyr Arg Ile Asp 41
Tyr Arg Ile Asp Arg | 42
Arg Ile Asp Arg Val 43
Ile Asp Arg Val Arg | 44
Asp Arg Val Arg Leu | 45
Arg Val Arg Leu Phe | 46
Val Arg Leu Phe Val | 47

—
W N

[
S Ot

— o
= >
I B e e B R

Val Ile Leu Gln Asp | 18 Arg Leu Phe Val Asp 48
Ile Leu Gln Asp Lys | 19 Leu Phe Val Asp Lys 49
Leu Gln Asp Lys Pro | 20 Phe Val Asp Lys Leu | 50
Gln Asp Lys Pro Glu | 21 Val Asp Lys Leu Asp 51
Asp Lys Pro Glu Ala | 22 Asp Lys Leu Asp Asn 52
Lys Pro Glu Ala Gln | 23 Lys Leu Asp Asn Ile 53
Pro Glu Ala Gln Ile | 24 Leu Asp Asn Ile Ala | 54
Glu Ala Gln Ile Ile | 25 Asp Asn Ile Ala Gln 55
Ala Gln Ile Ile Val | 26 Asn Ile Ala Gln Val 56
Gln Ile Ile Val Leu | 27 Ile Ala Gln Val Pro 57
Ile Ile Val Leu Pro | 28 Ala Gln Val Pro Arg o8
Ile Val Leu Pro Val | 29 Gln Val Pro Arg Val | 59
Val Pro Arg Val Gly | 30
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Table VI: Summary of pentapeptide information. The second column provides the
number of dihedral angles for the peptide, while the third column indicates the to-
tal number of unique conformers identified during the ensemble generation of the

uncharged pentapeptides.

ID | DA | Unique || ID | DA | Unique |

1 35 | 10298 31 | 30 | 11437
2 33 | 11321 32 | 32 | 11628
3 34 | 12697 33 | 34 | 11175
4 | 33 | 14703 34 | 34 | 10990
) 33 | 12990 35 | 38 | 13885
6 37 | 13776 36 | 39 | 15161
7 |35 | 13654 37 | 38 | 15321
8 34 | 10664 38 | 42 | 17316
9 35 | 10727 39 | 43 | 16508
10 | 39 | 15274 40 | 42 | 16825
11 | 35 | 13712 41 | 45 | 20074
12 | 38 | 13365 42 | 45 | 17963
13 | 40 | 14972 43 | 45 | 17897
14 | 39 | 13970 44 | 45 | 17573
15 | 39 | 13485 45 | 44 | 18113
16 | 42 | 16415 46 | 40 | 14218
17 | 41 | 17093 47 | 40 | 16916
18 | 39 | 14896 48 | 38 | 14668
19 | 41 | 15837 49 | 38 | 16246
20 | 37 | 13871 50 | 39 | 14241
21 | 36 | 12371 51 | 39 | 15462
22 | 33 | 10227 52 | 40 | 16039
23 | 34 | 13767 53 | 36 | 12919
24 | 35 | 13498 54 | 36 | 14734
25 | 38 | 12992 55 | 36 | 13957
26 | 37 | 12585 56 | 33 | 9773
27 | 40 | 15102 57 | 35 | 11123
28 | 36 | 11470 58 | 37 | 12567
29 | 34 | 9755 59 | 33 | 11325
30 | 30 | 8804

35



Table VII: Total number of DELPHI calls required for calculation of F
AG ji, terms.
No. ionizable groups |1 2 3 4 5 N
Foolv 2 2 2 2 2 2
G 6 12 18 24 30 6N
AG 0 4 12 24 40 2N(N-1)
Total 8 18 32 50 T2 2(N+1)?
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