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Abstract Deterministic global optimization plays an essential role in the solution
of many difficult problems with applications ranging from economics and
operations research to computational chemistry and molecular biology.
In this chapter we explore the application of deterministic global opti-
mization approaches to problems related to protein structure prediction.
Due to the complex nature of protein interactions, energy landscapes
which model these systems display huge numbers of local minima often
separated by high energy barriers. Since the number of local minima
is vast, the corresponding formulation has earned the simple yet sug-
gestive title of “multiple-minima” problem. Based on the complexity of
the energy hypersurface, there is an obvious need for the development of
effective global optimization techniques. In this work, we have focused
on the development of such global optimization methods through the
foundations of the aBB deterministic global optimization approach.

Keywords: Deterministic global optimization, Protein folding, Structure prediction,
Energy modeling



2

1. INTRODUCTION

Proteins are undoubtedly the most complex and vital molecules in
nature. This complexity arises from an intricate balance of intra- and
inter-molecular interactions which define the native three-dimensional
structure of the system, and subsequently its biological functionality.
Recent advances in genetic engineering have heightened the interest in
research related to understanding the dynamics and predicting the equi-
librium native protein folding and docking conformations. The ability
to predict these structures is of great theoretical interest, especially in
the fields of biophysics and biochemistry. Moreover, the applications of
such knowledge also promise to be exciting. For example, the ability
to predict these structures would greatly increase our understanding of
hereditary and infectious diseases and aid in the interpretation of genome
data. Such knowledge would also likely revolutionize the process of de
novo drug design.

Anfinsen’s thermodynamic hypothesis (Anfinsen et al., 1961) suggests
that this native structure is in a state of thermodynamic equilibrium
corresponding to the system with the lowest free energy. Experimen-
tal studies have since shown that, under native physiological conditions
and after denaturation, globular proteins spontaneously refold to their
unique, native structure (Kim and Baldwin, 1990). Understanding the
transition of a protein from a disordered state to its native state defines
the protein folding problem.

The use of computational techniques and simulations in addressing the
protein folding and peptide docking problems became possible through
the introduction of qualitative and quantitative methods for modeling
these systems. The development of realistic energy models also estab-
lished a link to the field of global optimization, where, based on An-
finsen’s hypothesis, the quantity to be optimized is the free energy of
the system. Because the number of local minima is vast, the corre-
sponding problem formulation has earned the simple yet suggestive title
of “multiple-minima” problem. The basis for these difficulties is best
summarized by Levinthal’s paradox (Levinthal, 1968). This paradox
suggests a contradiction between the almost infinite number of possible
stable states that the system may sample and the relatively short time
scale required for actual protein folding. Levinthal’s observations sug-
gest that the native state is the lowest kinetically accessible free energy
minimum, which may be different from the true global minimum. These
principles have been used to develop computational techniques for pre-
dicting protein folding pathways (Becker and Karplus, 1997; Czerminski
and Elber, 1990; Church et al., 1996; Leopold et al., 1992; Sali et al.,
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1996). Such techniques attempt to map the shape of the energy hyper-
surface and determine whether this surface “funnels” a protein towards
a dominant conformational basin. By invoking the thermodynamic hy-
pothesis, the overall shape of the energy hypersurface is neglected and
the problem can be formulated in terms of global minimization, which
requires the use of effective global optimization techniques. If this for-
mulation is to reproduce the behavior of realistic systems, the folding
of actual proteins should not be kinetically hindered. This has been
verified for various systems by performing denaturation-refolding ex-
periments. In addition, by introducing structural characteristics whose
formation may act as kinetic barriers, such as the formation of disulfide
bonds, the performance of the thermodynamic equilibrium model should
be improved.

Based on the complexity of the energy hypersurface, there is an obvi-
ous need for the development of efficient global optimization techniques.
Although the energy can be expressed analytically, exhaustive searches
are possible for only the smallest of systems. These observations, and the
importance of the protein folding and peptide docking problems, have
propelled the introduction of new global search strategies specifically
designed for these problems.

In the sequel, we first outline the basics of the deterministic global op-
timization approach, aBB, which has been used extensively to study the
protein structure prediction. This is followed by a comprehensive study
of ab-initio modeling for structure prediction of single chain polypep-
tides. An extensive comparison of energy modeling, including solvation,
entropic effects and free energy calculations, is provided for the oligopep-
tides. The related problem of restrained structure refinement in the
presence of sparse experimentally derived restraints is also discussed.

2. THEORY

The generic optimization problem to be addressed has the following
form:

min 1

X

subject to  g(x) <
L

i‘,

b (1.1)

x € [x",

0
0
xV]

where x is a vector of n continuous variables, f(x) is the objective func-
tion, g(x) is a vector of inequality constraints, and h(x) is a vector of
equality constraints. Both the objective function and constraint equa-
tions are assumed to be twice continuously differentiable. x” and xV
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denote the lower and upper bounds on the x variables, respectively.
The constraints define the feasible region for the problem.

Two main classes of global optimization techniques have been de-
veloped to address problem (1.1), namely, stochastic and deterministic
approaches. Stochastic methods, such as those based on genetic algo-
rithms (Goldberg, 1989) and simulated annealing (Kirkpatrick et al.,
1983), can be used to treat unconstrained nonconvex problems. How-
ever, the stochastic nature of the search strategy invalidates any claims
regarding global optimality since it is impossible to obtain valid bounds
on the solution of the problem. The addition of nonconvex constraints
further complicates these solution schemes. In contrast, deterministic
methods rely on a theoretically-based search of the domain space to
guarantee the identification of the global optimum solution.

A common characteristic of deterministic global optimization algo-
rithms is the progressive reduction of the domain space until the global
solution has been found with arbitrary accuracy. The solution is ap-
proached from above and below by generating converging sequences of
upper and lower bounds, and the generation of these bounds on the
global optimum solution is an essential part of all deterministic global
optimization algorithms (Floudas, 2000; Horst and Pardalos, 1995; Horst
and Tuy, 1993).

The aBB algorithm has been developed to address general twice
continuously differentiable models of type 1.1 (Adjiman and Floudas,
1996; Adjiman et al., 1996; Adjiman et al., 1998b; Adjiman et al.,
1998a; Androulakis et al., 1995). The algorithm is built on a branch-
and-bound framework and can handle generic nonconvex optimization
problems represented by formulation (1.1). e-convergence to the global
optimum solution is guaranteed when the functions f(x), g(x) and h(x)
are twice continuously differentiable. The algorithm has been shown to
terminate in a finite number of iterations for this broad class of problems
(Adjiman et al., 1998b; Adjiman et al., 1998a; Maranas and Floudas,
1994a; Maranas and Floudas, 1994b).

The oBB global optimization approach is based on the convex relax-
ation of the original nonconvex formulation (1.1). This requires convex
lower bounding of all expressions, and these expressions can be classified
as : (i) convex terms; (ii) nonconvex terms of special structure; and (iii)
nonconvex terms of general structure. Obviously, convex lower bound-
ing functions are not required for original convex expressions (e.g., linear
terms). Certain nonconvex terms, including bilinear, trilinear and uni-
variate concave functions, possess special structure that can be exploited
in developing lower bounding functions. All other nonconvex terms can
be underestimated using a general expression (Androulakis et al., 1995).
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When applying the aBB approach to the protein folding problem, for-
mulation (1.1) involves only nonconvex expressions of general structure.
For this reason, the following exposition will briefly cover underestima-
tion for terms of special structure and then focus on the development of
a convex lower bounding formulation for global optimization involving
generic nonconvex objective and constraint functions.

2.1 UNDERESTIMATING TERMS OF
SPECIAL STRUCTURE

In the case of a bilinear term zy, (Al-Khayyal and Falk, 1983) showed
that the tightest convex lower bound over the domain [z, zY] x [y, yY]
is obtained by introducing a new variable wg which replaces every oc-
currence of zy in the problem and satisfies the following relationship:

wp = max{z"y + yFz — z"y"; Yy +yYz — Yy}, (1.2)

This lower bound can be relaxed and included in the minimization prob-
lem by adding two linear inequality constraints,

wp > zly+ylz —alyl, (1.3)
wg > aVy+yVz—2UyY. ’
Moreover, an upper bound can be imposed on w to construct a bet-
ter approximation of the original problem (McCormick, 1976). This is
achieved through the addition of two linear constraints:

wp < 33Uy + ny - waL’ (1.4)
wp < zly+yYz—azlyY. '

A trilinear term of the form zyz can be underestimated in a similar
fashion (Maranas and Floudas, 1995). A new variable wr is introduced
and bounded by the following eight inequality constraints:

wr > a:yLzL + mLyzL + xLyLz - 2a:LyLzL,

wr > :ByUzU + :vazL + :BUyLz — mUyLzL — mUyUzU,

wr > myLzL + mLyzU + mLyUz — xLyUzU — mLyLzL,

wr > myUzL + :cUyzU + mLyUz — mLyUzL — mUyUzU,

wr > $yLzU + mLyZL + $UyLZ _ a:UyLZU _ mLyLzL’ (1.5)
wp > xyLzU + xLyzU + :vaUz — xLyLzU — nyUzU,

wr > :vazL + :EUyzL + wLyLz — :UUyUzL — xLyLzL,

wr > zyUzV +2VyzV + 2VyVz — 22UyU Y.



Fractional terms of the form z/y are underestimated by introducing a
new variable wr and two new constraints (Maranas and Floudas, 1995)
which depend on the sign of the bounds on z.

we > ol jy +z/yY — 2zl /yY ifzl >0
Fo= z/yY —xly/ytyY + 2l /yl ifzl <0 (1.6)
we > 2V )y + z/y* — 2V JyF ifzV >0 '
Fo2

z/yl — Yy yPyY + 2V 4V if2¥ <0

For fractional trilinear terms, eight new constraints are required (Maranas

and Floudas, 1995). The fractional trilinear term zy/z is replaced by
the variable wrr and the constraints for 2, y%, 2z > 0 are given by

wrr > zy"/2Y + aly/2Y + aty" [z — 2alyl 2V,

wrpr > oyt )2V + 2ty /2t + atyY )z — 2ty )2t — atyl)2Y,

wpr > oy /2l +2Vy /Y + 2yl )z — Uyl )2V — Uy J2E,

wer > 0y (2 + aVyle byl )z - atyV [V — Uy
wer > oy +aby/o +aVyt [z — Uyt feb - olyb /0] ()
wpp > a:yU/zU +wa/zL + xLy/z _ xLyU/zU _ nyU/zL’

W Z wyL/zU + :L‘Ly/ZL + waL/z _ nyL/ZL _ .'ELyL/zU,

wpr > oy /2l + 2Vy /2l + 2VyV [z — 22V Y /2L

Univariate concave functions are trivially underestimated by their lin-
earization at the lower bound of the variable range. Thus the convex
envelope of the concave function ut(z) over [z¥, zV] is the linear function
of z:

u :I:U —Uu .TL
A L ) (18)

ut(zl) +

The generation of the best convex underestimator for a univariate con-
cave function does not require the introduction of additional variables
or constraints.

2.2 UNDERESTIMATING GENERAL
NONCONVEX TERMS

A general nonconvex term f(x) belonging to the class of twice con-
tinuously differentiable functions can be underestimated over the entire
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domain x € [x*,xY] by the function f(x) defined as
n
Fx) = f(x) + ) ailzf — @) (@] — @) (1.9)
=1

where the a;’s are non negative scalars.

f(x) is a guaranteed underestimator of f(x) because the original non-
convex expression is augmented by the addition of separable quadratic
functions which are negative over the entire domain [x”,xV]. Further-
more, since the quadratic term is convex, all nonconvexities in the orig-
inal term f(x) can be overpowered by using sufficiently large values of
the «; parameters. R

The convex lower bounding function f(x), defined over the rectangu-
lar domain of x < x < xV, possesses a number of important properties
which guarantee the convergence of the aBB algorithm to the global
optimum solution :

(i) f(x) is a valid underestimator of f(x). That is:

Vx € [xL,xU] it can be shown that f(x) < f(x),

(ii) f(x) matches f(x) at all corner points.

(iii) f(x) is convex in x € [xL,xU].

(iv) The maximum separation between the nonconvex term of generic
structure, f(x), and its convex relaxation, f(x), is bounded and
also proportional to the positive a parameters and to the square
of the diagonal of the current box constraints :

max [f(x)—f(x)] = iia,(xf]—xff (1.10)

xL<x<xV

(v) The underestimators constructed over supersets of the current set
are always less tight than the underestimator constructed over the
current box constraints for every point within the current box con-
straints.

The key development in the convex lower bounding formulation is
the definition of the o parameters. Specifically, the magnitude of the «
parameters may be related to the minimum eigenvalue of the Hessian
matrix of the nonconvex term f(x).

a > max{O,—l min )\i(x)} (1.11)

i,xl<x<xU
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where \(x) represent the eigenvalues of the Hessian matrix (H(x)) for
the nonconvex term. An explicit minimization problem can be written
to find the minimum eigenvalue (Apn):

mi}\n A
st. det (Hy(x) — ) =0
x € [xF,xY]

The solution of this problem is a non-trivial matter for arbitrary non-
convex functions.

One method for the rigorous determination of « parameters for general
twice differentiable problems involves interval analysis of Hessian matri-
ces to calculate bounds on the minimum eigenvalue (Adjiman et al.,
1996; Adjiman and Floudas, 1996). The difficulties arising from the
presence of the variables in the convexity condition can be alleviated
through the transformation of the exact x-dependent Hessian matrix
to an interval matrix [H;] such that H(x) C [Hy], V x € [x%,xY].
The elements of the original Hessian matrix are treated as independent
when calculating their natural interval extensions (Ratschek and Rokne,
1988; Neumaier, 1990). The interval Hessian matrix family [H| is then
used to formulate a theorem in which the « calculation problem is re-
laxed (Adjiman et al., 1996). In other words, a valid lower bound on the
minimum eigenvalue can be used to calculate rigorous « values :

@2 {0, Amin (017} (112)

where A ([Hf]) is the minimum eigenvalue of the interval matrix fam-
ily [Hy].

An O(n?) method to calculate these a values is the straightforward
extension of Gerschgorin’s theorem (Gerschgorin, 1931) to interval ma-
trices. For a real matrix A = (a;;), the well-known theorem states that
the eigenvalues are bounded below by A, such that

J#
For an interval matrix [A] = ([a;;, @;]), a lower bound on the minimum
eigenvalue is given by

Amin 2 min [g,-i — ) max (IQUI, Iﬁijl)] :

J#i

Amin = Inz,in (aii - Z |Clij|> . (1.13)
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This procedure provides a single « value which is valid for all variables.

Non-uniform diagonal shift matrices can be used to calculate a differ-
ent « value for each variable in order to construct an underestimator of
the form shown in Equation (1.9). The non-zero elements of the diag-
onal shift matrix can no longer be related to the minimum eigenvalue
of the interval Hessian matrix [Hy|. If all elements of the scaling vector
are set to 1, the equation for the «; values becomes :

1
; = max {0, 3 (Qii - Z |a|ij> } )
j#i

However, the choice of scaling is arbitrary, and different o; parameters
can be estimated through various scaling techniques.

2.3 CONVEXIFICATION OF FEASIBLE
REGION

To obtain a valid lower bound on the global solution of the noncon-
vex problem, the lower bounding problem generated in each domain
must have a unique solution. This implies that the formulation include
only convex inequality constraints, linear equality constraints and an in-
creased feasible region relative to that of the original nonconvex problem.
The left-hand side of any nonconvex inequality constraint, g(x) < 0, in
the original problem can simply be replaced by its convex underestima-
tor g(x), constructed according to Equation (1.9), to yield the relaxed
convex inequality g(x) < 0.

For an equality constraint containing general nonconvex terms, the
equation obtained by simple substitution of the appropriate underesti-
mators is also nonlinear. Therefore, the original equality h(x) = 0 must
be rewritten as two inequalities of opposite signs,

- (1.14)
These two inequalities must then be underestimated independently to
give h*(x) and h™(x).

2.4 CONVEX LOWER BOUNDING
PROBLEM FORMULATION

Summarizing the concepts introduced so far, a convex relaxation for
any nonconvex problem of type (1.1) belonging to the broad class of
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twice continuously differentiable continuous NLPs can be constructed as

min f(x)

subject to g(x) <0
ht(x) <0 (1.15)
h (x) <0
x € [xF,xY]

where " denotes the convex underestimator of the specified function over
the domain x € [x”,xV]. Since the inclusion of convex terms and non-
convex terms of special structure has been neglected, these functions
involve only « type underestimating expressions. These underestima-
tors are functions of the size of the domain under consideration, and
because the aBB algorithm follows a branch-and-bound approach, this
domain is systematically reduced at each new node of the tree. Tighter
lower bounding functions can therefore be generated by updating the
underestimating equations. The lower bounds on the problem form a
non-decreasing sequence, and the underestimating strategy is therefore
consistent, as required for convergence.

2.5 VARIABLE BOUND UPDATES

The quality of the convex lower bounding problem can also be im-
proved by ensuring that the variable bounds are as tight as possible.
These variable bound updates can either be performed at the onset of
an aBB run or at each iteration.

In both cases, the same procedure is followed in order to construct
the bound update problem. Given a solution domain, the convex un-
derestimator for every constraint in the original problem is formulated.
The bound problem for variable z; is then expressed as

min / max z;
X X
xiL’NEW/:E,U’NEW = { subject to g(x) <0 (1.16)

xl <x<xV

where g(x) are the convex underestimators of the constraints, and the
bounds on the variables, x” and xV are the best calculated bounds.
L,NEW .
Thus, once a new lower bound z; on z; has been computed via a
minimization, this value is used in the formulation of the maximization
. UNEW
problem for the generation of an upper bound z;” .
Because of the computational expense incurred by an update of the
bounds on all variables, it is often desirable to define a smaller subset of
the variables on which this operation is to be performed. The criterion

devised for the selection of the branching variables can be used in this
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instance, since it provides a measure of the sensitivity of the problem to
each variable.

2.6 THE BB ALGORITHM

The global optimization method aBB deterministically locates the
global minimum solution of (1.1) based on the refinement of converging
lower and upper bounds. The lower bounds are obtained by the solution
of (1.15), which is formulated as a convex programming problem. Up-
per bounds are based on the solution of (1.1) using local minimization
techniques.

As previously mentioned, the maximum separation between the generic
nonconvex terms and their respective convex lower bounding represen-
tations is proportional to the square of the diagonal of the current rect-
angular partition. As the size of the rectangular domains approach zero,
this separation also become infinitesimally small. That is, as the current
box constraints [x”, xV] collapse to a point, the maximum separation be-
tween the original objective function of (1.1) and its convex relaxation
in (1.15) becomes zero. This implies that for the positive numbers € and
x there always exists another positive number § which, by reducing the
rectangular region [x”,xV] around x so that ||xV — x|| < 6, cause the
difference between the feasible region of the original problem (1.1) and
its convex relaxation (1.15) to become less than e. Therefore, any fea-
sible point x of problem (1.15), including the global minimum solution,
becomes at least efeasible for problem (1.1) by sufficiently tightening
the bounds on x around this point.

Once the solutions for the upper and lower bounding problems have
been established, the next step is to modify these problems for the next
iteration. This accomplished by successively partitioning the initial rect-
angular region into smaller subregions. The number of variables along
which subdivision is required is equal to the number of variables x par-
ticipating in at least one nonconvex term of the (1.1) formulation. The
default partitioning strategy used in the algorithm involves successive
subdivision of the original rectangle into two sub-rectangles by halving
on the midpoint of the longest side of the initial rectangle (bisection).
Therefore, at each iteration a lower bound of the objective function (1.1)
is simply the minimum over all the minima of problem (1.15) in each
sub-rectangle of the initial rectangle. In order to ensure lower bound
improvement, the sub-rectangle to be bisected is chosen by selecting the
sub-rectangle which contains the infimum of the minima of (1.15) over
all the sub-rectangles. This procedure guarantees a non—decreasing se-
quence for the lower bound. A non-increasing sequence for the upper
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bound is found by solving the original nonconvex problem (1.1) locally
and selecting it to be the minimum over all the previously recorded upper
bounds. Obviously, if the single minimum of (1.15) for any sub-rectangle
is greater than the current upper bound, this sub-rectangle can be dis-
carded because the global minimum cannot be within this subdomain
(fathoming step).

Figure 1.1 diagrams an unconstrained one-dimensional example of
the approach. The mathematical proof that the aBB global optimiza-
tion algorithm converges to the global optimum solution is presented
in (Maranas and Floudas, 1994a). In addition to computational chem-
istry related problems, the aBB approach has been applied to a variety
of constrained optimization problems (Adjiman et al., 1998b; Adjiman
et al., 1998a; Adjiman et al., 1996; Androulakis et al., 1995).

3. STRUCTURE PREDICTION OF
OLIGOPEPTIDES

The use of computational techniques and simulations in addressing
the protein folding problem became possible through the introduction of
qualitative and quantitative methods for modeling these systems. Given
a sufficiently accurate description of the intramolecular forces, it is in
principle possible to predict the folded conformation through global op-
timization. In our work, we have focused both on the development of
global optimization methods and on the verification of energy modeling
techniques.

In the area of energy modeling, our work has involved the investigation
of numerous detailed representations of protein systems. In addition to
the traditional all-atom potential energy models, our work has explored
the effects of solvation contributions. In fact, although the problem of
considering solvation effects in global conformational energy searches has
been made tractable by the development of implicit solvation models,
results for such formulations are essentially nonexistent, and those that
have appeared are for limited searches only. In our work, both solvent
accessible area and volume effects have been considered in the context
of global searches for oligopeptides. In addition, we have examined the
effects of several parameterizations for these models, and have been able
to identify those that provide the best correspondence between compu-
tational and experimental results.

3.1 POTENTIAL ENERGY MODELS

There are a number of approaches that may be used to model protein
interaction energies. In reality, the dynamics of atoms are governed by
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Iter 1

L1 L2

lter 2
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Fathom L3
athom L4 >
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L4

L5 \ L6

Fathom

L7 Ilter 4
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Fathom
\

© Lower Bound @ Upper Bound
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Figure 1.1 One-dimensional illustrative example of the BB approach. In iteration
1 the overall domain is bisected, the two convex lower bounding functions are created
and their unique minima (L1 and L2) are identified. An upper bound is also identified.
Since L1 is less than L2, the region containing L1 is further bisected in iteration 2,
while the other region is stored. The minimum of one region (L3) is greater than
the new upper bound, so this region can be fathomed. The other region is stored.
In iteration 3 the region with the next lowest lower bound (L2) is bisected and since
both new lower bound minima (L5 and L6) are greater than the current best upper
bound, the entire region is fathomed. Finally, by iteration 4, the region containing
L4 is bisected which results in a region that can be fathomed (containing L7) and a
convex region whose minimum (L8) equals the current upper bound and is the global
minimum.
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the quantum theory of their participating electrons. Using the Born-
Oppenheimer approximation, one can determine the energy for fixed
atomic nuclei from the smallest eigenvalue of the Hamiltonian of the
electron system. These approximations and their derivatives are cal-
culated using ab-initio methods. However, due to their computational
complexity, such calculations are limited to extremely small molecules.
Less detailed, semi-empirical methods are based on all atom representa-
tions of the peptide. In general, these models, also known as force fields,
are expressed as summations of empirically derived potential functions,
with the mathematical form of individual energy terms based on the phe-
nomenological nature of that term. Other simplified models have been
used to reduce the degrees of freedom associated with the conformational
energy expressions.

For this work the ECEPP/3 (Empirical Conformational Energy Pro-
gram for Peptides) (Némethy et al., 1992) potential model is utilized. In
this force field, it is assumed that the covalent bond lengths and bond
angles are fixed at their equilibrium values. Then, the conformation is
only a function of the independent torsional angles of the system, also
known as dihedral angles. The total conformational energy is calculated
as the sum of the electrostatic, nonbonded, hydrogen bonded, and tor-
sional contributions. There is also a pseudo—potential for loop closing
if the polypeptide contains two or more sulfur—containing residues. The
main energy contributions (electrostatic, nonbonded, hydrogen bonded)
are computed as the sum of terms for each atom pair (i,j) whose inter-
atomic distance is a function of at least one dihedral angle. The general
potential energy terms of ECEPP/3 are shown in Figure 1.2, while the
development of the appropriate parameters is discussed and reported
elsewhere (Némethy et al., 1992).

3.2 SOLVATION ENERGY MODELS

Solvation contributions are generally believed to be a significant force
in stabilizing the native conformations of proteins. Explicit methods
can be used to include solvation effects by actually surrounding the
polypeptide with solvent molecules and calculating solvent—peptide and
solvent—solvent interactions. Although these methods are conceptually
simple, explicit inclusion of solvent molecules greatly increases the com-
putational time needed to simulate the polypeptide system. Therefore,
most simulations of this type are limited to restricted conformational
searches. In addition, it is difficult to quantify the effect of hydrophobic
interactions that result from the ordering of water molecules.
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E= > 332.0M (Electrostatic)
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+ 5 Fh- & (Nonbonded)
(i.j)JNB 1 / i

+ Fr%_ rTBO (Hydrogen bonded)
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Figure 1.2 Potential energy terms in ECEPP/3 force field. r;; refers to the inter-
atomic distance of the atomic pair (ij). @: and @Q; are dipole parameters for the
respective atoms, in which the dielectric constant of 2 has been incorporated. Fj; is
set equal to 0.5 for 14 interactions and 1.0 for 1-5 and higher interactions. A;;, Cjj,
A:;j and B;; are nonbonded and hydrogen bonded parameters specific to the atomic
pair. E,; and E,; are parameters corresponding to torsional barrier energies for a
given dihedral angle. 6 represents any dihedral angle. ¢ takes the values -1,1, and
ny, refers to the symmetry type for the particular dihedral angle. The cystine loop—
closing term is calculated as a penalty term of three distances involved in loop—closing,
where r;; represents the actual distance and r;, represents the required distance. B;,
the penalty parameter, is set equal to 100. Finally, F, is a fixed internal energy
that is added for each proline residue in the protein. Energy units are kcal/mole and
distance units are A
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Methods for estimating solvent free energies have also been devel-
oped using both integral equations and continuum models. Integral
equation methods can be used to evaluate solvent structure and ther-
modynamic properties. Typically, molecular dynamics or Monte Carlo
simulations are used to calculate ensemble averages from which free en-
ergy differences can be obtained. A number of methods have been pro-
posed to estimate these solvation free energies from simulations based on
molecular dynamics and Monte Carlo averages (Dejaegere and Karplus,
1996; Kollman, 1993; Straatsma and McCammon, 1992). The integral
equation method has also been used to analyze the solvent structure of
a protein system (Kitao et al., 1993). In contrast, continuum models
use a simplified representation of the solvent environment by neglecting
the molecular nature of the water molecules. Calculations of solvation
free energies using electrostatic continuum models rely on numerical so-
lutions to the Poisson—Boltzmann equation from which dielectric and
ionic strength effects are obtained (Honig et al., 1993). Other contin-
uum models estimate free energies of solvation as a function of surface
areas and volumes.

In our work, solvation contributions are included implicitly using em-
pirical correlations with both surface area (Perrot et al., 1992) and vol-
ume (Augspurger and Scheraga, 1996). The main assumption of these
models is that, for each functional group of the peptide, a hydration free
energy can be calculated from an averaged free energy of interaction of
the group with a layer of solvent known as the hydration shell. In addi-
tion, the total free energy of hydration is expressed as a sum of the free
energies of hydration for each of the functional groups of the peptide;
that is, an additive relationship is assumed.

Accessible surface area methods assume that the free energy of hydra-
tion is proportional to the solvent—accessible surface area of the peptide,
as described by the following equation:

N
Enyp = Y _(Ai)(04) (1.17)

i=1
In Equation (1.17), an additive relationship for N individual functional
groups is assumed. (A;) represents the solvent—accessible surface area
for the functional group, and (o;) is an empirically derived free energy
density parameter. Once the solvent—accessible surface areas have been
calculated, these values must be multiplied by the appropriate (o;) pa-
rameters as shown in Equation (1.17). A variety of atomic solvation
parameter (ASP) sets have been developed to model the transfer of
atoms from a gaseous to a hydrated environment. In our work, five ASP
sets, namely the WE1 (Wesson and Eisenberg, 1992), WE2 (Wesson and
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Eisenberg, 1992), OONS (Ooi et al., 1987), SCKS (Schiffer et al., 1993),
and JRF (Williams et al., 1992) parameters, have been studied.

For volume shell models, the free energy of hydration is assumed to
be proportional to the water—accessible volume of a hydration layer sur-
rounding the peptide. This can be represented in the form:

N
Epyp = Y _(VHS;)(&) (1.18)
i=1
An additive relationship for the N individual atoms of the peptide is
assumed, and (VHS;) represents the solvent-accessible volume of hydra-
tion shell for each atom i which is exposed to water. The (¢;) parameters
are empirically determined free energy of hydration densities for these
atoms. The hydration shell is defined by the volume inside a sphere
of radius Rf but outside a sphere of radius R}, with both radii cen-
tered on atom ¢. The larger radius, th, corresponds to the radius of the
first hydration shell of atom i, while RY is equal to the van der Waals
radius. Free energy density parameters for solvent accessible volumes
have been developed for nonionic and charged organic solute molecules
(Kang et al., 1987a; Kang et al., 1987b; Kang et al., 1988). In this work,
RRIGS specific (;) parameters, which were developed by a least square
fitting of experimental free energy of solvation data for 140 small organic
molecules (Augspurger and Scheraga, 1996), are used.

3.3 GLOBAL OPTIMIZATION
FRAMEWORK

The energy minimization problem is formulated as a unconstrained
nonconvex global optimization problem, which is fashioned after the
general formulation given in problem 1.1. Let ¢ = 1,..., Nrgs be an
indexed set describing the sequence of amino acid residues in the peptide
chain. There are ¢;,;,w;, ¢ = 1,..., Ngpps dihedral angles along the
backbone of this peptide. In addition, let K* denote the number of
dihedral angles for the side chain of the i** residue and JV and J¢
denote the number of dihedral angles for the amino and carboxyl end
groups, respectively. Using these definitions the optimization problem
takes the following form:

min E(gblazpz,wz’Xf’g;vae]C) (119)
subject to —7 < ¢; < 7, i=1,...,Nggs

- < Y < 7w, 1=1,...,Ngrgs

-7 S (0974 S ™, ’izl,...,NRES
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In general, E represents the total potential energy function and the free
energy of solvation. However, in the case of one ASP set, in particu-
lar the JRF ASP (Williams et al., 1992), the potential energy function
is minimized before adding the hydration energy contributions for this
ASP set. In other words, gradient contributions from solvation are not
considered. This approach is represented by the following equation:

B =~ B + B (120

Even after reducing this optimization problem to a function of internal
variables (dihedral angles), the multidimensional surface that describes
the energy function has an astronomically large number of local minima.
A large number of techniques have been developed to search this noncon-
vex conformational space. In general, the major limitation is that these
methods depend heavily on the supplied initial conformation. As a re-
sult, there is no guarantee for global convergence because large sections
of the domain space may be bypassed. To overcome these difficulties,
the aBB global optimization approach (Adjiman et al., 1997; Adjiman
et al., 1998b; Adjiman et al., 1998a; Adjiman et al., 1996; Androulakis
et al., 1995) has been extended to identifying global minimum energy
conformations of solvated peptides. The aBB global optimization al-
gorithm effectively brackets the global minimum solution by developing
converging sequences of lower and upper bounds. These bounds are re-
fined by iteratively partitioning the initial domain. Upper bounds on
the global minimum are obtained by local minimizations of the original
energy function, E. Lower bounds belong to the set of solutions of the
convex lower bounding functions, which are constructed by augmenting
FE with the addition of separable quadratic terms.

The determination of the global minimum energy conformation using
aBB requires the interfacing of a number of programs (aBB (Adjiman
et al., 1997; Adjiman et al., 1998b; Adjiman et al., 1998a; Adjiman et al.,
1996; Androulakis et al., 1995), PACK (Scheraga, 1996), NPSOL (Gill
et al., 1986) and potential and solvation energy modules). PACK, a pep-
tide generation program, is called once directly by aBB in order to ini-
tialize the current problem. In subsequent steps PACK is called through
NPSOL (Gill et al., 1986), a local nonlinear optimization solver used to
solve both the upper and lower bounding problems. PACK internally



Deterministic Global Optimization for Protein Structure Prediction 19

transforms to and from Cartesian and internal coordinate systems, and
provides potential energy and gradient contributions for the ECEPP/3
potential model at every step of the local minimizations. When con-
sidering surface—accessible solvation, surface areas are calculated using
MSEED (Perrot et al., 1992); whereas volumes of hydration shells are
determined using the RRIGS module (Augspurger and Scheraga, 1996).
Finally, an additional module, UBC (Upper Bound Check), is used to
verify the quality of the upper bound solutions. The entire suite of pro-
grams has been combined to form the GLO-FOLD software package for
the prediction of protein structure, as shown in Figure 1.3.

4. FREE ENERGY MODELING

Locating the global minimum potential energy or the global minimum
potential plus solvation energy conformation is not sufficient because
Anfinsen’s thermodynamic hypothesis requires the minimization of the
conformational free energy. Specifically, potential energy minimization
neglects the entropic contributions to the stability of the molecule. An
approximation to these entropic contributions can be developed by using
information about low energy conformations. That is, once a sufficient
ensemble of low energy minima has been identified, a statistical analysis
can be used to estimate the relative entropic contributions, and thus the
relative free energy, for conformations in the ensemble.

Therefore, the analysis of the free energy of peptides requires efficient
methods for locating not only the global minimum energy structure but
also large numbers of low energy conformers. A variety of methods have
been used to find such stationary points on potential energy surfaces.
For example, periodic quenching during a Monte Carlo or molecular dy-
namics trajectory can be used to identify local minima (Stillinger and
Weber, 1984). However, a drawback of these approaches is their inher-
ent stochastic nature. In its original form, the BB deterministic global
optimization algorithm (Adjiman et al., 1996; Adjiman et al., 1997; Ad-
jiman et al., 1998b; Adjiman et al., 1998a; Androulakis et al., 1995) has
been shown to be an efficient method for finding the global minimum
energy conformation for both unsolvated and solvated peptide systems
(Androulakis et al., 1997; Klepeis et al., 1998; Klepeis and Floudas,
1999). Here, novel methods are proposed within the framework of the
aBB algorithm to optimize the free energy of peptide systems. These
modifications facilitate the generation of ensembles of low energy con-
formers, which can be used to identify the global minimum free energy
conformation, as well as perform detailed free energy rankings.
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Figure 1.3 Interface for aBB within GLO-FOLD. The arrows indicate the direction
of information flow. The names of the input, output, and intermediate files are
indicated, in addition to selected source code files. References to “f & f'” and “f
only” describe whether gradient evaluations or only function evaluations are used in
the respective modules.
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In peptide systems, this entropic contribution arises from fluctuations
around a local conformational state. There exists a number of proce-
dures, including both exact and approximate calculations, that can be
used to determine the entropic contributions, and thus the free energy,
of peptide systems.

First, assume that the full conformational space R can be considered
as the union of disjoint basins of attraction, and the conformational
space associated with a given basin (denoted by ) is defined by R,.
The energy, FE, is a function of the variable set 6, which corresponds to
the set of dihedral angles used to describe the conformational state of
the system. Each basin of attraction is characterized by a unique local
minimum at position 67, with a corresponding energy EJ. That is, local
minimization starting at any point in R, will lead to the local minimum
at 67. It should be noted that this approximation of the conformational
space excludes all maxima and saddle point conformations.

A rigorous procedure can be envisioned for calculating the exact prob-
ability associated with a given basin. First, a sample of conformations
must be generated with initial starting energies F;, as defined by the to-
tal set I. Each structure is minimized to identify its corresponding basin
minimum (63). These structures define the set I(7) (i.e., those struc-
tures associated with basin 7). As the sampling goes to infinity, the
probability associated with basin 7 can be calculated by the following
expression :

pe:mct — Zi(’Y)EI(’Y) emp(_ﬂEi(’Y)) (1.21)
v Yiel e-Tp(_ﬁEi)

Obviously, such a method is intractable for large systems, and this is the
impetus for developing approximate methods.

A tractable method for including entropic effects for proteins relies on
the concept of the harmonic approximation. Initially, the theoretical de-
velopment of this approximation for polymer systems generated debate
in the literature (Go and Scheraga, 1969; Go and Scheraga, 1976; Flory,
1974). In the work of (Go and Scheraga, 1969) (Go and Scheraga, 1969) a
classical rigid model was used to characterize a partition function based
on the fixed bond length and bond angle assumptions. In contrast,
(Flory, 1974) (Flory, 1974) derived a different partition function using
a classical flexible model. Later analysis by (Go and Scheraga, 1976)
(Go and Scheraga, 1976) actually showed that the flexible model was
also applicable to the fixed bond length and bond angle system (i.e., a
peptide described by the internal coordinate system).
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An approximate probability associated with a given basin () can be
calculated using the following equation :

approz _ [[Det (Hv)]] o exp (—ﬁEj;)

(1.22)

—1/2
] exp (—pE;)

S |iDet (1)

To develop a meaningful comparison of relative free energies, the total
partition function (i.e., the denominator of Equation (1.22)) must in-
clude an adequate ensemble of low energy local minima, as well as the
global minimum energy conformation.

These probabilities can be used to estimate the occupancy of each
individual basin, or summed in order to calculate cumulative probabili-
ties for an ensemble of structures exhibiting similar physical or energetic
properties. It should be noted that the determination of free energy us-
ing the harmonic approximation does not require the explicit inclusion of
a contribution based on the density of states. That is, the harmonic ap-
proximation decomposes the energetic states within a basin of attraction
into one energetic value represented by the local minimizer of the basin.
In contrast to counting methods, which estimate probabilities based on
the density of states, the contribution of each structure should be ac-
counted for only once. Therefore, using the harmonic approximation
requires a structural comparison of all local minimizers.

The probabilities obtained through the harmonic approximation can
also be used to calculate thermodynamic quantities. Once the set of
unique minimizers has been identified, these structures can be ranked
according to their free energy values, and then divided into bins of a
specified energy width. Probabilities for each bin can be calculated by
summing the individual probabilities (as defined in Equation (1.22)) :

nj
P;ppmm = pPrrer (1.23)
y=1

Here P;Lp ProT signifies the probability for energy bin j. The summa-
tion includes the n; individual probabilities (p5P"**) belonging to bin
j- Average thermodynamic quantities can now be estimated using the
equations with the following form :

<E>p=) P <E>; (1.24)

J

Here the total average energy, < E >, is calculated by summing the
bin probabilities multiplied by the mean energy of bin j, < E >;.
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4.1 FREE ENERGY PROBLEM
FORMULATION

As before, the energy minimization problem for proteins is formulated
as a nonconvex nonlinear optimization problem. The inclusion of free
energy modeling into the protein folding problem does not change the
general formulation. However, an additional condition must be satisfied;
that is, an ensemble of local minimum low energy conformations must be
generated along with the global minimum energy conformation. Once
this ensemble has been compiled, a free energy ranking can be performed
using the harmonic approximation presented in the previous section.

Several rigorous methods can be envisioned for locating local min-
imum energy conformations using the aBB deterministic global opti-
mization approach. As an introduction to the ideas used here, two rig-
orous approaches for finding all local minimum energy conformations are
discussed.

The first method relies on the introduction of a single inequality con-
straint to the problem formulation given by (1.19). The new formulation
is :

subject to (E*—E)+€¢ <0
- S ¢Z S , i:]-a"'aNRES
- < ¢ <7 i1=1,...,Nggs
- < w; < o, ‘izl,...,NRES
—1 < x¥ <@ oi=1,...,Nggs, k=1,...,K°
—r < ¢ < j=1,....J"
—r < ¢f < m j=1,...,J¢

The additional constraint requires that the objective function values
be larger than the energy value at some local (or global) minimum, as
denoted by E*, plus a positive parameter, ¢*. When ¢* = 0, the
solution of the corresponding global optimization problem will give the
best local minimum energy conformation with an energy larger than E*.
The original formulation given by (1.19) is actually a special case of this
problem in which E* = —o0 and ¢ = 0. That is, in (1.19) no
bounds are placed on the value of the objective function, £. The global
minimum energy conformation is only required to take some finite value.
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In order to locate all local minima, a set of global optimization problems
must be solved iteratively with updating of the parameter E*.

The problem of finding all local minimum energy conformations can
also be formulated as a single global optimization problem, which can be
deterministically solved using the aBB algorithm (Maranas and Floudas,
1995). This method stems from the idea that all stationary points (i.e.,
minima, maxima and transition states) of the energy hypersurface satisfy
the constraint VE(f) = 0. This can be written as :

OE(6)
00;

Here Ny represents the total number of dihedral angles defined by the
variable set §. The problem of finding local minima is equivalent to
finding all solutions of Equation (1.26) for which the Hessian of E is
positive definite.

Both methods for rigorously locating all local minimum energy con-
formations have some disadvantages. On one hand, the first approach
should effectively locate low energy conformers in order of increasing
energy. However, locating each minimum requires the solution of a full
global optimization problem. The second approach avoids this drawback
because it can be solved as a single global optimization problem. How-
ever, when dealing with a high dimensional search space, the number of
necessary subdivisions may be computationally inhibitive. In addition,
this method will potentially locate stationary points other than local
minima. Therefore, the development of other methods for locating low
energy local minimum energy conformations were pursued.

=0, i=1,...,N (1.26)

4.2 ENSEMBLE OF LOCAL MINIMUM
ENERGY CONFORMATIONS

Since the number of local minima on a given energy hypersurface may
become astronomically large (e.g., the number of local minima for met-
enkephalin is estimated to be on the order of 10'! (Li and Scheraga,
1988)), methods that do not necessarily provide all local minima were
developed. Specifically, it was determined that the generation of en-
sembles of low energy conformers is possible through algorithmic mod-
ifications of the general aBB procedure. Rigorous implementation of
the global optimization algorithm requires the minimization of a con-
vez lower bounding function in each domain. The unique solution 8 for
each lower bounding minimum can then used as a starting point for the
minimization (or function evaluation) of the original energy function in
the current domain. In the case of local minimization, each partitioned
region provides a single minimum energy conformation as the algorithm
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proceeds. Using this information, along with the global minimum energy
conformation, a list of low energy conformers can be constructed.

A method for increasing the number of local minima produced within
each subdomain would involve the selection of multiple random start-
ing points for minimizing the upper bounding function. At first, this
approach appears to be equivalent to choosing random points for local
minimization. Initially, when the subdomains constitute significant por-
tions of the original domain space, this is the case. However, as the
separation between lower and upper bounds decreases, the subdomains
are localized in regions of low energy. Therefore, the random point se-
lection is localized in regions which contain low energy local minima.

However, this approach does not take advantage of the information
provided by the lower bounding functions. Rigorously, these functions
posses a single minimum in each subdomain. Since the choice of « af-
fects the convexity of the lower bounding functions, the « values can
be modified to ensure a certain nonconvexity in these functions. In this
case, the lower bounding functions possess multiple minima, and these
functions can be minimized several times in each domain. In addition,
since the lower bounding functions smooth the original energy hypersur-
face, the location of these multiple minima provide information on the
location of low energy minima for the upper bounding function. There-
fore, by using the location of the minima of the lower bounding function
as starting points for local minimization of the upper bounding func-
tion, an improved set of low energy conformations can be identified. As
before, these conformations are also localized in those domains with low
energy as the subdomains decrease in size.

A second approach incorporates free energy information into the branch
and bound algorithm. Specifically, harmonic entropic contributions are
calculated and included at each minima, of the upper and lower bounding
functions. In this way, the progression of lower and upper bounds in-
cludes a temperature dependent entropic term. A similar modification to
the Monte Carlo minimization method has also been proposed (Védsquez
et al., 1994), and has been shown to be effective in locating low energy
conformers of peptides (Meirovitch and Meirovitch, 1997; Meirovitch
and Viésquez, 1997).

The problem formulation is identical to the one given in (1.19). That
is, the minimization of E and L are still performed using only potential
and solvation energy contributions. However, once local minima have
been located, the free energy is calculated by the following expression:

1
G = Ustin + 5.5 1n[Det (Hasn)] (1.27)
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Unrin, represents the local minimum energy of E or L, and Det (H )
is the determinant of the Hessian evaluated at this local minimum. The
specification of a thermodynamic temperature (8 = 1/kpT) is required
as an additional input parameter.

A single rigorous application of the BB algorithm to this problem
will result in the identification of the global minimum free energy at a
given temperature. However, the goal is to identify an ensemble of low
energy and, in this case, low free energy conformers so that a free energy
ranking and comparison can be made. Therefore, the algorithmic steps
for the Free Energy Directed Approach (FEDA) are similar to those for
EDA, with the additional evaluation of the free energy (G) at each local
minima of £ and L. The thermodynamic temperature used in Equation
(1.27) must be specified as an additional input parameter.

4.3 FREE ENERGY COMPUTATIONAL
STUDIES

The EDA was first applied to the isolated form of met-enkephalin.
All 24 dihedral angles were considered variable, with the 10 dihedral
angles of the backbone residues acting as global variables (variables on
which branching occurs). For both peptides, the EDA algorithm detailed
above, was applied 10 times. The input conditions correspond to initial
« values of 5 and 10, with a subsequent reduction of these values based
on the current level in the branch and bound tree.

Once the ensemble of local minima had been compiled, a set of dis-
tinct conformations was identified by checking for repeated and sym-
metric conformations. In addition, a conformation was only considered
unique if at least one dihedral angle differed by at least 50° when com-
paring each pair of conformations. These conformations were then used
to generate results and distributions according to energy and free en-
ergy values. Energy bins were used to characterize a group of distinct
structures between a range of energy values (every 0.5 kcal/mol) relative
to the global minimum energy structure. For example, Bin 1 contains
structures that are 0.0-0.5 kcal/mol above the global minimum energy
structure, Bin 2 contains structures that are 0.5-1.0 kcal/mol above the
global minimum energy structure, etc.

In the case of isolated met-enkephalin, the 10 (EDA) runs generated
a total of 83908 distinct local minima. The potential energy global
minimum (PEGM) conformation for met-enkephalin possesses an energy
of -11.707 kcal/mol. This conformation exhibits a type II’ f-bend along
the N-C’ peptidic bond of Gly? and Phe*. Essentially, this structure
corresponds to the free energy global minimum (FEGM) conformation
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for a temperature of 0 K, that is, when entropic contributions are not
included. When considering the harmonic free energy, the prediction of
the FEGM can be calculated over a range of temperatures. The results
suggest that the inclusion of entropic contributions greatly affects the
relative stability of individual low energy structures.

The EDA was also applied to the RRIGS solvated form of met-enkephalin
using the same protocol and conditions as detailed above. Qualitatively,
the PEGM (in this case PEGM refers to potential+solvation) for sol-
vated met-enkephalin exhibits a more extended conformation than that
which is observed for the isolated form. As detailed in Table 1.1, the
PEGM structure persists as the FEGM at 100 K. However, at each sub-
sequent temperature, the FEGM structure changes, and this change is
accompanied by an increase in total energy (potential and solvation).
As with isolated met-enkephalin, the difference in total energy between
the PEGM and FEGM at 500 K is greater than 5 kcal/mol. This sug-
gests that entropic effects are important in defining the predicted native
structure. When considering individual structures, entropic effects tend
to produce more extended FEGM conformations at higher temperatures,
especially with regard to the placement of the aromatic rings. It is in-
teresting to note that in a previous study the positioning of aromatic
rings was found to be a major difference when considering the ability of
solvation models to predict extended PEGM conformations for the sol-
vated enkephalin peptides (Klepeis et al., 1998). The sequence of FEGM
structures is illustrated in Figure 1.4.

5. STRUCTURE REFINEMENT WITH
SPARSE RESTRAINTS

To effectively determine protein function it is important to predict the
three dimensional structure of the macromolecule. Over the last several
decades a number of experimental and theoretical approaches have been
developed and refined in order to achieve this goal, such as the com-
putational approaches outlined above. Experimentally, there now exist
two basic techniques used to perform protein structure refinement. The
first, X-ray crystallography, relies on the ability to crystallize the protein
so that diffraction patterns can be used for sufficient resolution. These
requirements have limited the applicability of this technique. A more
powerful method, NMR (nuclear magnetic resonance) spectroscopy, is
based on solution measurements of the system. Several key develop-
ments, including multidimensional NMR, experiments, have resulted in
the ability to determine solution structures for proteins consisting of over
200 residues.
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Table 1.1 Dihedral angle values for PEGM and FEGM structures of solvated met-
enkephalin. The temperatures are provided in the first row. The last two rows indi-
cate the harmonic free energy (kcal/mol) and the potential energy value (kcal/mol),
respectively.

Residue DA PEGM 100K 200K 300K 400 K 500 K

Tyr; ¢ -168.2 -168.2 -170.9 -168.4 -168.4 -152.5
P -30.9 -30.9 -28.5 -34.3 -34.3 153.2
w 178.6 178.6 1775 -1789  -178.9 178.5
x1 -173.5  -173.5 178.8 178.7 178.7  -179.0

x2 -100.9  -100.9 61.3 -100.8  -100.8  -101.2
X3 19.3 19.3 -4.1 179.0 179.0  -179.9
Glyo ¢ 78.5 78.5 73.8 177.8 177.8  -173.9
P -86.5 -86.5 47.6 -179.9  -180.0 177.1
w -177.3  -177.3  -179.2 180.0 180.0  -179.8
Glys ¢ 162.4 162.4 167.6  -180.0 -180.0 179.6
P 92.2 92.2 -145.2 179.9 179.9  -179.3
w 172.6 172.6 175.2 179.7 179.7 179.6
Phey ¢ -150.3 -150.3 -149.3 -155.3 -155.4 -155.4
P 159.8 159.8 135.8 147.2 149.5 149.3
w -178.1  -178.1  -176.6  -176.8 -178.3  -178.3
X1 65.8 65.8 1773 -179.5 -179.5  -179.7
X2 -87.4 -87.4 -108.1  -111.7  -105.6 74.4
Mets 0] -75.0 -75.0 -85.5 -78.7 -78.7 -78.9
P 113.9 113.9 -41.1 -01.1 113.4 113.5
w -1784  -178.4 179.9 179.7  -179.1  -179.1
x1 -172.3  -172.3 -65.6 -67.2 -67.4 -67.4
X2 176.1 176.1  -179.6 -178.8 -178.8  -178.8
x3 -180.0 -180.0 -179.4 -179.9 -179.9 -179.9
X4 60.0 60.0 179.5  -180.0 60.0 -60.0
G -50.060 -41.896 -34.566 -28.604 -22.828 -17.166
E -50.060 -50.060 -48.676 -46.030 -45.780 -44.797
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Figure 1.4 FEGM structures for solvated met-enkephalin. The top figure is
the PEGM and the FEGM for 100 K. The structures at other temperatures
(200,300,400,500) are shown left to right, top to bottom.
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This section focuses on the development of a novel approach for pro-
tein structure prediction via experimental NMR restraints. Tradition-
ally, the protein folding global optimization problem involves a progres-
sion of unconstrained minimizations. However, the introduction of ex-
perimentally derived or artificial restraints can be used to recast the
fundamental protein folding problem as a constrained global optimiza-
tion problem. The constraints, through reduction of the feasible search
space, serve two important purposes : 1) attempt to correct any de-
ficiencies of the energy model, and 2) focus the efforts of the global
optimization algorithm.

This constrained approach is applied to the NMR structure predic-
tion problem, although a variety of restraint information could be used.
The proposed constrained formulation differs from traditional NMR ap-
proaches in several fundamental ways. First, the energy model is rep-
resented by a detailed full atom force field, rather than simplified non-
bonded potential terms. This should make the approach especially ef-
fective when the number of NMR restraints per residue decreases; that
is, the accuracy of the energy model becomes more significant. In addi-
tion, traditional solution approaches apply target function distance ge-
ometry or simulated annealing to unconstrained problem formulations
in which restraints are represented by penalty function approximations.
The solution of the constrained formulation requires the use of con-
strained local optimization solvers and an overall global optimization
framework for nonlinearly constrained problems. This is accomplished
through the application of the ideas of the BB deterministic global opti-
mization approach (Adjiman et al., 1996; Adjiman et al., 1997; Adjiman
et al., 1998b; Adjiman et al., 1998a; Androulakis et al., 1995). aBB
based global optimization techniques have also been applied to NMR
type structure prediction problems (Klepeis et al., 1999; Standley et al.,
1999).

Because the location of the global minimum relies on effectively solv-
ing constrained local optimization problems, convergence to the global
minimum can be enhanced by consistently identifying low energy solu-
tions. These observations illustrate the need for reliably locating low
energy feasible points for initializing the constrained local optimization
routine. Along these lines, a combined torsion angle dynamics (TAD)
and simulated annealing scheme has been implemented within the con-
text of the global optimization framework. Torsion angle dynamics
(TAD) has recently been shown to be more effective than Cartesian
coordinate dynamics (Giintert et al., 1997; Rice and Briinger, 1994). In
this case, the degrees of freedom are rotations around single bonds, which
reduces the number of variables by approximately tenfold because bond
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lengths, bond angles, chirality and planarities are kept fixed at optimal
values during the calculation.

5.1 ENERGY MODELING

Basic data obtained from NMR studies consist of distance and tor-
sion angle restraints. Once resonances have been assigned, nuclear Over-
hauser effect (NOE) contacts are selected and their intensities are used
to calculate interproton distances. Information on torsion angles are
based on the measurement of coupling constants and analysis of pro-
ton chemical shifts. Together, this information is used to formulate a
nonlinear optimization problem, the solution of which should provide
the correct protein structure. Typically, a hybrid energy function of the
following form is employed:

E = Egorcefield + WomrEnmr- (1.28)

The energy, E, specified by this target function includes a chemical de-
scription of the protein conformation through the use of a force field,
Eiorcefield- The force field potentials are generally much simpler repre-
sentations of all atom force fields. The distance and dihedral angle re-
straints appear as weighted penalty, Fpnmr, terms that should be driven
to zero.

The second term of Equation (1.28) can be rewritten as :

Enmr = Edistance + Edihedral- (1'29)

Here Egistance and FEginedral represent the violation energies based on the
distance and dihedral angle restraints, respectively. These functions can
take several forms, although a simple square well potential is commonly
used. The expressions also include a summation over both upper and

: O Tationa _ pupper 1
lower dlstapce Ylolatlons, f.or example, I?]distanct? = Ejictance T Edistance:
When considering upper distance restraints this becomes:
(.. _ juppery2 . ] upper
upver  _ Z Aj(d; —d;7"7)* ifd; >d;, (1.30)
distance —~ 1 0 otherwise.
J

The squared violation energy is considered only when the calculated
distance d; exceeds the upper reference distance diPP". This squared
violation can then multiplied by a weighting factor A;. A similar con-
tribution is calculated for those distances that violate a lower reference
distance, d;ower:

A(d _ dlpwer)Z ifd; < dlpwer
lower J\%3 g J 7 ’
Baistance ;{ 0 otherwise. (1.31)
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For dihedral angle restraints the functional form is similar to that of
Equations (1.30) and (1.31). As before, the total violation, Eginedral,

is a sum over upper and lower violations (i.e., Egihedral = Eyhoqeal +

Elgver ). A dihedral angle w; can be restrained by employing a quadratic
square well potential using upper (w;"*") and lower (w}°**) bounds on
the variable values. However, due to the periodic nature of these vari-
ables, a scaling parameter must be incorporated to capture the symmetry
of the system. Furthermore, by centering the full periodic region on the
region defined by the allowable bounds, all transformed values will lie
in the domain defined by [w;-ov"er — AHW,,;, w;"*" + AHW,,], where
AHW,, is equal to half the excluded range of dihedral angle values (i.e.,
AHW,,; =7 — (W™ — w}-"wer) /2).

The force field energy term, Eiorcefiera 0f Equation (1.28), models the
nonbonded interactions of the protein, which can consist of simple or
more detailed energy functions. In practice, when considering NMR re-
straints, force field terms are often simplified to include only geometric
energy terms such as quartic Van der Waals repulsions. Such functions
neglect rigorous modeling of energetic terms in order to ensure that
experimental distance violations are minimized. In fact, a basic repre-

sentation for this target function would be :
Es = Edgistance + Edihedral- (1.32)

Here the FEgistance function includes additional distance restraints to
avoid van der Waals contacts. Notice that when all restraints are satis-
fied, the objective function is driven to zero.

A detailed modeling approach is proposed by using the ECEPP/3
force field (Némethy et al., 1992). When considering an unconstrained
minimization, this approach provides the following objective function :

Ep = Egistance + Edihedral + EEcEPP/3- (1.33)

In contrast to Equation (1.32), the detailed energy modeling greatly in-
creases the complexity of the objective function. It should also be noted
that the transformation from Cartesian to internal coordinate space re-
sults in highly nonlinear functions. That is there is not a one-to-one
correspondence between distances and internal coordinates. The advan-
tage for working in dihedral angle space is that the variable set decreases,
with the disadvantage being the increased nonconvexity of the energy
hypersurface.
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5.2 GLOBAL OPTIMIZATION

The determination of a three dimensional protein structure defines an
optimization problem in which the objective function may correspond
to one of the target functions outlined in the previous section. For the
simple case, the formulation becomes :

n;jin Es (Qb) = FEdistance + Edihedral- (1'34)

A standard procedure for addressing this global optimization problem
consists of a combination of simulated annealing and molecular or tor-
sional angle dynamics (Bringer, 1992). Generally, multiple initial con-
formers are generated and optimized to provide a set of acceptable struc-
tures. Typically, a set containing on the order of 100 acceptable con-
formers may be identified, from which a subset of similar structures
(approximately 20) are used to characterize the system. The simulated
annealing protocol is incorporated in an attempt to reduce trapping in
local minimum energy wells.

However, the minimization of complex target functions necessitates
the use of rigorous global optimization techniques. For the detailed tar-
get function, given by Equation (1.33), the unconstrained formulation is
similar to formulation (1.34). Through the use of the constrained opti-
mization approach, the dihedral angle bounds are implicitly included as
box constraints. Furthermore, distance restraints are treated explicitly.
This reformulation removes both Egihedral and Fgistance from the target
function, leaving only Efyrcefield :

rrgn EECEPP/3a (1.35)

subject to Bistance(gy < gref 1 —1 .. Ncon,
oF <pi< @Y, i=1,...,N,.

Here i = 1,..., Ny corresponds to the set of dihedral angles, ¢;, with ¢f
and qﬁZU representing lower and upper bounds on these dihedral angles.
In general, the lower and upper bounds for these variables are set to -7
and 7, although appropriate bounds derived from NMR data are also
suitable.

5.3 TORSION ANGLE DYNAMICS

Standard unconstrained molecular dynamics simulations have been
used extensively to model the folding and unfolding of protein systems
(Duan and Kollman, 1998; Daggett et al., 1998; Caves et al., 1998).



34

In addition, several methods for NMR structure calculation have been
based on molecular dynamics in Cartesian space (Bringer, 1992). Tor-
sion angle dynamics differs from traditional molecular dynamics in that
bond lengths and bond angles are fixed at equilibrium values, thereby
allowing for a transformation from the Cartesian to the internal coordi-
nate system. The constraints on the systems also dampen high frequency
motions, which permits the use of longer time steps during the numer-
ical integration of the equations of motion. The use of TAD in place
of conventional MD has been found to improve the efficiency of NMR
structure prediction (Giintert et al., 1997; Rice and Briinger, 1994).

A major disadvantage for employing TAD in place of Cartesian MD
is that the equations of motion become much more complex for the con-
strained system. For unconstrained Cartesian MD the accelerations of
the atoms can be calculated independently due to the decoupled nature
of the equations of motion. The addition of constraints to the Cartesian
system transforms the equations from a system of ODEs to a system of
differential algebraic equations (DAEs). The alternative to solving this
system of DAEs is to transform the equations of motion to the internal
coordinate reference frame. In this case, the solution of a linear matrix
equation in each time step is required, which, due to the highly coupled
structure of the equations, scales as a cubic function of the number of
degrees of freedom (torsion angles). To avoid the potentially prohibitive
computational cost required for the solution of the equations of motion, a
fast recursive algorithm, which scales linearly with the number of torsion
angles, was implemented. The algorithm is based on spatial operator al-
gebra which has been used to simulate the dynamics of astronautical
and robotic equipment (Jain et al., 1993).

5.4 COMPUTATIONAL STUDY

The global optimization algorithm was tested on Compstatin, a syn-
thetic 13-residue (ICVVQDWGHHRCT) cyclic peptide (disulfide bridge
between the Cys? and Cys'? residues) that binds to C3 (third compo-
nent of complement) and inhibits complement activation (Sahu et al.,
1996). Two-dimensional NMR techniques (Morikis et al., 1998) yield a
total of 30 backbone sequential (including HA - backbone), 23 medium
and long range (including disulfide) and 82 intra-residue NOE restraints.
In addition, 7 ¢ angle and 2 y; angle dihedral restraints are available.
In previous work (Morikis et al., 1998), traditional distance geometry—
simulated annealing protocol was utilized to minimize the associated
target function in the Cartesian coordinate space using the program X-
PLOR (Briinger, 1992). NOE distance and dihedral angle restraints were
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modeled using a quadratic square well potential, while van der Waals
overlaps were prevented through the use of a simple quartic potential
function.

The NMR refinement protocols resulted in a family of 21 structures
with similar geometries for the Gln®-Gly® region. A representative struc-
ture was obtained by averaging the coordinates of the individually re-
fined structures and then subjecting this structure to further refinement
to release geometric strain produced by the averaging process. The for-
mation of a type I S-turn was identified as a common characteristic for
these structures.

The constrained global optimization approach was first applied to
Compstatin structure prediction without the use of TAD. A subset of
26 (all ¢ and 7)) torsion angle, from a total of 73, were treated globally,
while the remaining were allowed to vary locally. As was the case for local
minimization, the same set of restraints were used to formulate the non-
linear constraint, with a constant 50 kcal/mol/A weighting factor and
a constraint parameter equal to 200 kcal/mol. The lowest energy struc-
ture satisfying the constraint functions provided an ECEPP/3 energy
of -85.71 kcal/mol, an energy value more than 15 kcal/mol lower than
those values provided by local minimization. The global minimization
required approximately 40 CPU hours on a HP C160. The total distance
violation equaled 6.690 A which is near the average distance violation

for the local minimum structures. Plots for superpositioning (backbone

atoms) of the average local minimum energy structure CompstatinLocal

and the global minimum energy structure are given in Figure 1.5.

5.5 GLOBAL OPTIMIZATION AND
TORSION ANGLE DYNAMICS

A modified constrained global optimization was also applied to the
Compstatin structure prediction problem using the same constraint func-
tion and parameters (Klepeis and Floudas, 2000). The goal of introduc-
ing TAD as a component of the upper bound solution approach is to
increase the number of feasible points available for initialization of the
constrained local minimization. Initially TAD is used in combination
with simple van der Waals overlap restraints to drive the distance vio-
lations to zero. Taken independently, this methodology is comparable
to the typical implementation of TAD for NMR structure prediction
(Guntert et al., 1997).

To gauge the performance of the combined aBB and TAD constrained
approach, a comparison was made to an independent TAD method
(DYANA (Giintert et al., 1997)) for solving distance restraint prob-
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Figure 1.5 Superposition of global minimum (in black) and CompstatinLowl (in
light grey) structures. The left panel shows the full (backbone atom) structure, while
the right panel compares only the S-turn region.

lems. The same dihedral angle and 53 medium and long range distance
restraints were considered, along with additional distance restraints to
prevent van der Waals overlaps. The coupled simulated annealing / TAD
protocol was applied to a starting sample of 1000 randomly generated
structures, from which a subset consisting of 20 conformers exhibiting
the best target values were used to initialize a second set of runs. The five
conformations with the best target function values were selected for fur-
ther analysis, including initialization for constrained local minimizations
with Egcgpp/s- The DYANA conformers satisfy the corresponding con-
straint, although their energy values are more than 70 kcal/mol higher
than that of the global minimum energy structure. An analysis of the
structural characteristics also indicates that the type I S-turn does not
form along the GIn5-Gly® b backbone for these structures. These results
reflect the potential deficiencies of the independent TAD algorithm; that
is, the simplified force field term is insufficient for sparse sets of distance
restraints.

The use of TAD in the context of the global optimization approach
surmounts this difficulty by using an iterative TAD scheme with two
forms of the target function. The first set of TAD runs focuses on the re-
duction of the distance violations, while employing a simplified forcefield
in the form of additional distance restraints to avoid atomic overlaps.
This approach mimics the effects of a typical TAD approach for struc-
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ture prediction. To ensure that these conformers provide low energy,
this step is then followed by unconstrained minimization with a hybrid
distance and ECEPP/3 energy objective function. If the ECEPP/3 en-
ergy is acceptably low, the algorithm proceeds to the constrained local
minimization step, otherwise an iterative set of TAD runs are performed
with readjustment of the relative weight of the distance and ECEPP/3
terms.

The results of the combined constrained global optimization and TAD
algorithm can be assessed by examining the sequence of ECEPP /3 ener-
gies obtained from the solution of the upper bounding problems. When
compared to the original algorithm, the TAD implementation augments
the number of feasible starting points by more than a factor of two. This
enhancement leads to earlier identification of low energy conformers. In
particular, conformers with energies less than -70 kcal/mol, and thus
lower in energy than the locally minimized PDB structures, are identified
within the first 10 iterations of the global optimization approach. This
property has important algorithmic implications, including the ability to
fathom regions based on the current estimate of the global minimum. In
general, the TAD enhanced search provides more consistent and denser
population of low energy conformers.

Both experimental and theoretical methods exist for the prediction of
protein structures. In both cases, additional restraints on the molecular
system can be derived and used to formulate a nonconvex optimiza-
tion problem. Here, the traditional unconstrained problem was recast
as a constrained global optimization problem, and applied to protein
structure prediction using NMR data. Both the formulation and solu-
tion approach of this method differ from traditional techniques, which
generally rely on the optimization of penalty-type target function using
SA/MD protocols.

As a first step, the penalty type restraint functions were replaced
by nonlinear constraints, which can be individually enumerated for all
or subsets of the distance restraints. In addition, the objective func-
tion was transformed to a full atom force field potential, a modification
that should be particularly useful for systems possessing sparse set of
restraints. To solve this reformulated molecular structure prediction
problem the concepts of a deterministic global optimization approach,
aBB, were applied. This methodology can be used to develop theo-
retical guarantees for convergence to the global minimum of nonconvex
constrained problems. The algorithm was further enhanced by modify-
ing the upper bounding solution approach to include an iterative scheme
involving TAD.
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The approach was applied to the Compstatin structure prediction
problem using both the original TAD approach and the coupled oBB-
TAD approach. When considering basic structural features, such as
the formation of a type I 8-turn, the predicted structure was found to
agree with results based on X-PLOR (Briinger, 1992). However, con-
strained global optimization was able to identify conformers with signifi-
cantly lower energies than those obtained from either local minimization
or independent TAD algorithms. In particular, the coupled aBB-TAD
implementation consistently produced dense populations of low energy
conformers.

6. CONCLUSIONS

The importance of the protein folding is evidenced by the large amount
of experimental and theoretical research conducted in these areas. Al-
though experimental studies of protein systems are necessary and in-
sightful, the ability to computationally predict and understand the fold-
ing of proteins would greatly aid the advancement of the biological and
chemical sciences. We have shown that both molecular modeling and
global optimization are the dominant factors in the overall equation that
will eventually provide a solution to these problems.

In particular, this chapter has focused on the use of ab-initio models,
which give rise to a series of complex mathematical problems. The es-
sential component has been the application of deterministic global opti-
mization, namely the BB algorithm, for solving the resulting problems.
Many issues related to the modeling of protein folding have been ana-
lyzed and discussed. These observations have highlighted the extreme
difficulty of these problems and the crucial interdependence of ab initio
modeling and deterministic global optimization approaches.
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