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Abstract—Global optimization approaches are proposed for addressing both the protein folding and peptide
docking problems. In the protein folding problem, the ultimate goal involves predicting the native protein
conformation. A common approach, based on the thermodynamic hypothesis, assumes that this conformation
corresponds to the structure exhibiting the global minimum free energy. However, molecular modeling of
these systems results in highly nonconvex energy hypersurfaces. In order to locate the global minimum
energy structure on this surface, a powerful global optimization method, aBB, is applied. The approach is
shown to be extremely effective in locating global minimum energy structures of solvated oligopeptides. A
challenging problem related to protein folding is peptide docking. In addressing the peptide docking problem,
the task is not only to predict a macromolecular-ligand structure but to also rank the binding affinities of
a set of potential ligands. Many methods have used qualitative descriptions of the macromolecular-ligand
complexes in order to avoid the need to perform a global search on the nonconvex energy hypersurface.
In this work, a novel decomposition based approach that incorporates quantitative, atomistic-level energy
modeling and global optimization is proposed. This approach employs the aBB global optimization method

and is applied to the prediction of peptide docking to the MHC HLA-DRI1 protein.

INTRODUCTION

Recent advances in genetic engineering have height-
ened the interest in research related to predicting na-
tive protein folding and docking conformations. The
ability to predict these structures is of great theo-
retical interest, especially in the fields of biophysics
and biochemistry. Moreover, the applications of such
knowledge also promise to be exciting. For example,
the ability to predict these structures would greatly
increase our understanding of hereditary and infec-
tious diseases and aid in the interpretation of genome
data. In addition to these advances, the ability to un-
derstand peptide docking would likely revolutionize
the process of de novo drug design.

The use of computational techniques and simula-
tions in addressing the protein folding and peptide
docking problems became possible through the intro-
duction of qualitative and quantitative methods for
modeling these systems. The development of realistic
energy models also established a link to the field of
global optimization, where, based on Anfinsen’s hy-
pothesis, the quantity to be optimized is the free en-
ergy of the system. However, because of the compu-
tational complexity associated with these problems,
only the most efficient global optimization strategies
will be successful.

This work addresses the protein folding and pep-
tide docking problems, including the effects of solva-
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tion, through the use of a deterministic global opti-
mization algorithm. This branch-and-bound based
global optimization algorithm, known as aBB, is
applicable to a large class of nonlinear optimiza-
tion problems that have twice—differentiable func-
tions [1, 2, 3, 4, 5, 6].

MODELING

Potential Models

Many models have been developed using a classical
description of molecules in terms of atomic bonds and
effective interactions. In general, these models, also
known as force fields, are expressed as summations of
empirically derived potential functions. Thermody-
namic data from small molecules and spectroscopic
data are used to derive the parameters describing
the relative strengths of particular interatomic inter-
actions. In most cases, these force fields are atom
centered potentials from which the total molecular
energy is computed as a sum over all pairwise inter-
actions.

In this work, the ECEPP/3 (Empirical Conforma-
tional Energy Program for Peptides) potential model
is utilized [26]. In this force field, it is assumed that
the covalent bond lengths and bond angles are fixed
at their equilibrium values. It has been observed that
variations in bond lengths and bond angles depend



mostly on short range interactions; that is, those
between the side chain and backbone of the same
residue. Under this assumption, all residues of the
same type have essentially the same geometry in var-
ious proteins. Therefore, a chain of any sequence can
be generated using the fixed geometry specific to each
type of amino acid residue in the sequence.

Based on these approximations, the conformation
is only a function of the dihedral angles. That is,
ECEPP/3 accounts for energy interaction terms that
can be expressed solely in terms of the dihedral an-
gles. The total conformational energy is calculated as
the sum of the nonbonded (N B), hydrogen bonded
(HB), electrostatic (ES) and torsional (TOR) con-
tributions, as given by the following expression:
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A full discussion of these terms, and the appropriate
parameters, can be found elsewhere [26].

Solvation Models

A complete description of the total energy of a
polypeptide must also include its interactions with
the solvent. Explicit methods can be used by actually
surrounding the polypeptide with solvent molecules
and calculating solvent-peptide and solvent—solvent
interactions using potentials similar to those previ-
ously described. Although these methods are concep-
tually simple, explicit inclusion of solvent molecules
greatly increases the computational time needed to
simulate the polypeptide system. Therefore, most
simulations of this type are limited to restricted con-
formational searches.

Simpler methods for estimating solvent free en-
ergies have been developed using continuum models,
which use a simplified representation of the solvent
environment by neglecting the molecular nature of
the water molecules. For this study, solvation contri-
butions are included implicitly using empirical cor-
relations with both surface area and volume. The
main assumption of these models is that, for each
functional group of the peptide, a hydration free en-
ergy can be calculated from an averaged free energy
of interaction of the group with a layer of solvent
known as the hydration shell. In addition, the total
free energy of hydration is expressed as a sum of the
free energies of hydration for each of the functional
groups of the peptide; that is, an additive relation-
ship is assumed. These solvation contributions can
be described by the following general equation:

N

Exyp = Z(Si)(w)

i=1

(2)

In Equation (2), an additive relationship for N in-
dividual functional groups is assumed. (S;) repre-
sents either the solvent—accessible surface area, (A;),
or the solvent—accessible volume of hydration layer,
(VHS;), for the functional group, and (o;) are em-
pirically derived free energy density parameters.

In this work, solvent—accessible surface areas are
calculated using the MSEED [31] program, which
employs algorithms developed by Connolly [11].
MSEED eliminates many unnecessary computations
by considering only those convex faces that are on
the accessible surface. Rigorous implementation of
Connolly’s method requires the calculation of inte-
rior surface areas, which are ultimately found to be
zero. A full description of the MSEED algorithm is
given elsewhere [31].

Once the solvent—accessible surface areas have
been calculated, these values must be multiplied by
the appropriate (o;) parameters, as shown in Equa-
tion (2). There are a number of models available,
including JRF, OONS, and SRFOPT, which pro-
vide estimates for these parameters based on inter-
actions between water and the functional groups of
peptides. It has been shown that minimum energy
solvated conformations predicted by the JRF model
provide the best correspondence to native (crystallo-
graphic) structures when compared with other mod-
els [34]. These parameters were derived from NMR
studies of low energy solvated configurations of 13
tetrapeptides. Because it was developed from mini-
mum energy conformations of peptides, the JRF pa-
rameter set has been shown to produce undesirable
perturbations during local minimizations if the sol-
vation energy contributions are added at every it-
eration. Therefore, the surface—accessible solvation
energies are only included at local minimum confor-
mations.

For volume based hydration energies, the RRIGS
(Reduced Radius Independent Gaussian Sphere) ap-
proximation is used to efficiently calculate the ex-
posed volume of the hydration shell [9]. This method
artificially reduces the van der Waals radii of all
atoms other than atom i when calculating (VHS;).
These reductions effectively decrease the contribution
of the double overlap terms, leading to a cancellation
of the error which results from neglecting the triple
and higher overlap terms. In addition, the character-
istic density of being inside the overlap volume of two
intersecting spheres is not represented as a step func-
tion but as a Gaussian function, which provides con-
tinuous derivatives of the hydration potential. There-
fore, the solvation energy contributions can easily be
added at every step of local minimizations.

Peptide Docking

The complexity associated with the prediction of pep-
tide docking conformations complicates the task of
modeling these interactions. First, the binding site
of the target globular protein must be correctly char-
acterized. This task usually requires experimental



structure determination of the binding site. Such in-
formation is invaluable because it can be used to ap-
proximate rigid binding sites, which greatly reduces
the translational space that must be explored in a
conformational search. The second task is to select
potential ligands, dock these ligands to the active site,
and assign a “score” to each complex. These “scores”
may then be used to rank binding affinities for a set
of ligands.

The fundamental feature of the peptide docking
problem is the development of accurate scoring func-
tions. Many methods have relied on qualitative mod-
eling of the peptide docking interactions. In the
case of a rigid binding approximation, the use of
shape complementarity has had some limited success
[20]. These algorithms model the ligand and macro-
molecule according to their surface topology, and at-
tempt to identify which complexes exhibit the best
“fit”. Here scoring functions are based on the com-
plementarity of the molecules, which, in most cases,
is related to their solvent accessible surface areas [11].
The obvious strength of these methods is that they
can be made computationally efficient and used to
screen large databases of potential ligands. How-
ever, studies comparing computational results to ex-
perimentally derived, native complexes indicate that
many non-native low energy structures are identified.

On the other hand, it has been demonstrated that
exact modeling of binding free energies provides re-
sults in nearly exact quantitative agreement with ex-
perimental results [15]. In contrast to the rigid de-
scription of docking, these methods allow for flex-
ibility of both the ligand and receptor molecules.
However, for general peptide docking problems, ther-
modynamic integration and free energy perturbation
methods are computationally infeasible with current
computing power.

A more universal approach, applicable to flexi-
ble ligands, is to base energy calculations on poten-
tial energy models. In this study, a full quantitative
model is used by employing the the ECEPP/3 force
field. The proposed binding energy function also ac-
counts for solvation energy, which is calculated using
the MSEED solvent—accessible surface area model.

PROBLEM FORMULATION

Protein Folding

For protein folding, the energy minimization problem
can be formulated as a nonconvex nonlinear global
optimization problem in which the energy, Erqq4,
must be globally minimized with respect to the di-
hedral angles of the protein. The energy, Epgq4, rep-
resents the total potential energy function, EUms°,
plus the free energy of solvation, E5°. For accessi-
ble volume shell hydration (RRIGS) this is the ex-
act formulation because both energetic and gradient
contributions can be added at each step of the mini-
mization. However, in the case of surface—accessible
hydration (MSEED and JRF parameters), the poten-
tial energy function is minimized before adding the

hydration energy contributions. In other words, gra-
dient contributions from solvation are not considered.
This approach is represented by the following equa-
tion:

_ mUnsol Sol
Erotar = Epfin + E°°
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Peptide Docking

The peptide docking methodology is more complex
when compared to the protein folding formulation.
To begin with, the dimensionality is inherently larger
due to the need to consider translational and rota-
tional degrees of freedom. For this study, the prob-
lem is simplified somewhat by assuming rigid binding
sites, although the ligands are considered to be fully
flexible. In addition, a novel decomposition scheme
is proposed for modeling complex formation between
HLA-DR1 and binding peptides. The key ideas of
the decomposition approach are: (i) to consider the
binding at each pocket separately, (ii) to study the
binding of each naturally occurring amino acid to
each pocket, and (iii) to create a rank ordered list
of the bound amino acids for each pocket based on
an energetic criterion that reflects binding affinity.
This approach is justified by experimental observa-
tions which conclude that the binding specificity of
the HLA-DR1 molecule is mainly determined by the
binding characteristics of its five pockets [32].

The details of the peptide docking approach are
as follows:

(1) Using experimental information [32], the HLA-
DR1 pocket is characterized by a set of fixed
atomic coordinates which describe the relevant
residues in a given pocket.

(2) For each naturally occurring amino acid, a
mathematical model is formulated that rep-
resents all the energetic atom-to-atom inter-
actions. These interactions are classified as
(i) inter-interactions between the atoms that
define the HLA-DR1 pocket and the atoms
of amino acid, and (ii) intra-interactions be-
tween the atoms within the amino acid. Poten-
tial energy contributions are modeled by the
ECEPP/3 force field, and solvation energy is
calculated using the solvent accessible surface
area model (MSEED and JRF parameters).
(3) Each subproblem results in a global optimiza-
tion problem in which the total energy, Epock,
must be globally minimized with respect to the
dihedral angles of the ligand, and the transla-
tional and rotational degrees of freedom. The
inclusion of solvation is analogous to the protein
folding formulation for the surface accessible
solvation model. The formulation also includes
additional constraints for the placement of the
ligand backbone to ensure that the residue fits
within the structure of an overall binding pep-
tide.



(4) Once the global minima are identified, an
energetic-based criterion is used to compare the
binding affinities of each naturally occurring
amino acid in a given pocket. This measure,
which is denoted as AFEpgck, corresponds to
the difference of the global minimum energy
for the bound complex, Epyynd, and the global
minimum energy of the unbound amino acid,
Eynbound:

(4)

This criterion quantifies the tendency of an
amino acid to bind with the pocket of the HLA-
DR1 molecule so that the complex that exhibits
the minimum value of AEp,¢r, corresponds to
the amino acid with the highest binding affinity
to the HLA-DR1 pocket.

AEDock: = EBound — Evunbound

GLOBAL OPTIMIZATION

The problems associated with both protein folding
and peptide docking can be formulated as global op-
timization problems in which global minimum energy
structures must be identified. A large number of
techniques have been developed to search the non-
convex conformational space. Many methods employ
stochastic search procedures, while others rely on
simplifications of the potential model and/or math-
ematical transformations. The major limitation is
that there is no guarantee for convergence to the
global minimum energy structure. A number of re-
cent reviews have focused on global optimization is-
sues for these systems [13, 28, 30, 33].

In this work, the global optimization approach
aBB has been extended to identifying global mini-
mum energy conformations of solvated peptides and
peptide docking complexes. The development of this
branch and bound method was motivated by the need
for an algorithm that could guarantee convergence to
the global minimum of nonlinear optimization prob-
lems with twice—differentiable functions [12]. The
application of this algorithm to the minimization of
potential energy functions was first introduced for
microclusters [21, 22], and small acyclic molecules
[23, 24]. The aBB approach has also been extended
to constrained optimization problems [2, 3, 4, 6]. In
more recent work, the algorithm has been shown to
be successful for isolated peptide systems [7, 25].

Minimization of Energy using «BB

The aBB global optimization algorithm effectively
brackets the global minimum solution by developing
converging lower and upper bounds. These bounds
are refined by iteratively partitioning the initial do-
main. Upper bounds on the global minimum are ob-
tained by local minimizations of the original energy
function, E. Lower bounds belong to the set of solu-
tions of the convex lower bounding functions, which
are constructed by augmenting E with the addition of

separable quadratic terms. The lower bounding func-
tion (L) of the energy hypersurface can be expressed
in the following manner:

Ny
L =E+) asi(sf—a) (¢ — i) (5)
=1

The ¢F and ¢V values correspond to lower and up-
per bounds, for the given domain, on each of the ¢;
variables. In the protein folding problem the ¢; corre-
spond to the independent torsion angles (dihedral an-
gles) of the peptide, whereas in peptide docking this
variable list must also include the relative translation
vector and Euler angles. The oy ; represent nonneg-
ative parameters which must be greater or equal to
the negative one-half of the minimum eigenvalue of
the Hessian of E over the defined domain. These
parameters can be estimated by the solution of an
optimization problem or by using the concept of the
measure of a matrix [1, 2, 5, 23]. The overall effect
of these terms is to overpower the nonconvexities of
the original nonconvex terms by adding the value of
2a to the eigenvalues of the Hessian of E. The con-
vex lower bounding functions, L, possess the following
important properties which guarantee global conver-
gence [24] : (i) L is a valid underestimator of E; (ii)
L matches E at all corner points in the current box
constraints; (iii) L is convex in the current box con-
straints; (iv) the maximum separation between L and
FE is bounded and proportional to a: and to the square
of the diagonal of the current box constraints, which
ensures that ey feasibility and e, convergence toler-
ances can be reached; (v) the underestimators con-
structed over supersets of the current set are always
less tight than the underestimator constructed over
the current box constraints for every point within the
current box constraints.

Once solutions for the upper and lower bounding
problems have been established, the next step is to
modify these problems for the next iteration. This is
accomplished by successively partitioning the initial
domain into smaller subdomains. The default parti-
tioning strategy involves successive subdivision of the
original hyper-rectangle by halving on the midpoint
of the longest side (bisection).

COMPUTATIONAL STUDIES

The implementation of these approaches within the
aBB framework has resulted in two global optimiza-
tion packages : GLO-FOLD [19] for protein folding
and GLO-DOCK [29] for peptide docking. These
packages are flexible and provide a variety of options
through the interfacing of several local optimization
and energy modeling programs. In the case of protein
folding, a comparative study of the two aforemen-
tioned solvation approaches has been performed for
the set of 20 naturally occurring residues and a num-
ber of oligopeptides, including Ac-Alay;—Pro-NHMe,
met—enkephalin, leu—enkephalin, and decaglycine [16,
17]. For the peptide docking problem, computational
and experimental results are available for peptide



binding in pocket 1 of HLA-DRI1 [8]. The next sub-
section presents results for the met—enkephalin exam-
ple, and the second subsection summarizes the results
obtained for the binding in pocket 1 of HLA-DRI1.

Protein Folding : Met—Enkephalin

Met-enkephalin (H-Tyr—Gly—Gly-Phe-Met—OH) is
an endogenous opioid pentapeptide found in the hu-
man brain, pituitary, and peripheral tissues. Its bio-
logical function involves a large variety of physiologi-
cal processes, most notably the endogenous response
to pain. The peptide consists of 24 dihedral angles
and a total of 75 atoms, and has played the role of
a benchmark molecular conformation problem. The
energy hypersurface is extremely complex with the
number of local minima estimated on the order of
10*!. The unsolvated global minimum energy confor-
mation has been shown to exhibit a type I’ 8—bend
along the N-C’ peptidic bond of Gly® and Phe? [7].

Experimental results have indicated that met—
enkephalin in aqueous solution does not possess an
unique structure [14]. In general, the experimen-
tally determined aqueous conformations were found
to exhibit characteristics of extended random-—coil
polypeptides with no discernible secondary structure.
When considering the effects of hydration, the com-
petition for backbone hydrogen bonding (with wa-
ter), which contributes to the bending of the un-
solvated conformation, should result in a more ex-
tended structure. These qualitative arguments have
been confirmed by the analysis of hydrated met—
enkephalin using the MSEED model. For the global
minimum energy structure, residues near the N-—
terminus are almost fully extended, although there is
slight bending near the C—terminus. This bending is
stabilized by the formation of 2.10 A hydrogen bond
between the CO of the second glycine residue and the
NH proton of the methionine residue. In addition, the
structure displays a large 17.00 A separation between
the centroids of the Phe and Tyr aromatic rings.. A
plot of the conformation corresponding to the global
minimum energy of -283.76 kcal/mol is given in Fig-
ure 1. Locating this solution required 1033 iterations
and 5,082 seconds (HP-C110).

Figure 1: Global minimum energy conformation
using MSEED model for hydration.

The RRIGS method also predicts a more ex-
tended structure than the global minimum structure
reported for the unsolvated case [7]. In fact, al-
though a slight bend occurs near the N—terminus,
the structure possesses no hydrogen bonds (< 2.3
A). In addition, unlike the MSEED structure, there
exists close proximity of the Tyr and Phe aromatic
rings. The centroids of these rings are separated by
4.16 A, which is slightly closer than the preferential
aromatic—aromatic interaction distance of 4.5 to 7 A
[10]. Furthermore, the aromatic rings are essentially
in a parallel, as opposed to the more common or-
thogonal, orientation. This suggests an attempt to
substantially reduce the hydrophobic exposure of the
aromatic side chains. The global minimum conforma-
tion, with an energy of -50.01 kcal/mol, was located
in 1058 iterations and 8,695 seconds (HP-C110). A
plot of this structure is given in Figure 2.

Figure 2: Global minimum energy conformation
using RRIGS model for hydration.

It is also interesting to compare energy evalu-
ations at corresponding global minimum solutions.
This information is given in Table 1. It is appar-
ent that the MSEED model predicts large stabilizing
hydration free energies. In addition, these contribu-
tions tend to dominate the prediction of the global
minimum structure. Specifically, energy evaluations
at the RRIGS and unsolvated solutions indicate a
substantial increase in overall energy, which can be
directly correlated to the increase in hydration free
energy. In contrast, this correlation does not hold for
the RRIGS model. In fact, the RRIGS model, like the
MSEED model, predicts a more stabilizing hydration
free energy at the MSEED solution. However, non-
bonded interactions are less favorable at this solution,
resulting in an overall energy increase. In addition,
although the solvation free energy becomes less sta-
bilizing at the unsolvated solution, an increase in the
number of favorable nonbonded interactions causes
the overall energy to be near the global minimum so-
lution.

It should also be noted that the BB algorithm is
able to identify low energy conformers, along with the
global minimum energy conformation. Table 2 lists
five local minimum energy conformations within 0.5
kcal/mol of the RRIGS global minimum energy. The
structures are related to the global minimum energy



Table 1: Comparison of energies for met—enkephalin. Functions evaluations, using both the MSEED and
RRIGS models, are performed at the RRIGS, MSEED and UNSOL (unsolvated [7]) global solutions. The
total energy, Eror, is provided along with the contributions from hydration, Egy p, nonbonded
interactions, Exp, electrostatic interactions, Egg, and torsion, Erorg.

MSEED RRIGS
Energy at Global of at Global of
Term | MSEED RRIGS UNSOL || RRIGS MSEED UNSOL
Eror || -283.77 | -139.35 | -170.88 || -50.01 -41.63 -47.49
Epyp || -288.83 | -130.75 | -159.17 | -41.41 -46.69 -35.78
Eng -19.13 | -31.47 | -35.26 -31.47 | -19.13 -35.26
Egs 23.29 21.84 21.46 21.84 23.29 21.46
Eror 0.90 1.03 2.09 1.03 0.90 2.09
conformation as evidenced by their similar confor- or
mational codes [35]. Such information has important B ash)
ramifications for more detailed free energy calcula- 55l g
tions [18]. > i
85| i
Table 2: Low energy conformers (within 0.5 kcal of g 95} ]
global minimum energy) for RRIGS model. Total % 122 i L —aa oy i
energies and conformational codes [35] are given. = sy e ™ v ]
Conformer | Eror Code < st et asn 1 i
1 -49.97 BC*G*AG el o ]
2 -49.89 BC*H*EG sl e )
3 -49.67 BC*H*EB aes || g
4 -49.61 BC*H*EA 208 Ty
5 -49.57 BC*GEF

Peptide Docking : HLA-DR1 Pocket 1

Crystallographic studies have shown that HLA-DR1
binding is accommodated by five polymorphic pock-
ets on the surface of the HLA-DR1 molecule. Of
these, pocket 1 is the largest and deepest pocket,
with an estimated contact area of 200 A2. It has
also been postulated that the binding in this pocket
acts as an “anchor” for the overall binding peptide.
In modeling the rigid structure of this binding site,
the crystallographic structure of an influenza virus
bound to HLA-DR1 was used [32]. Specifically, all
residues in the pocket within a distance of 5 A from
the experimental binding residue were considered in
the atomistic energy modeling. This pocket defini-
tion consists mainly of hydrophobic residues, which
account for its preference to accommodate other hy-
drophobic residues [32].

Computational results for pocket 1 are summa-
rized in Figure 3, in which a rank ordered list is de-
veloped based on the AEp,. energy criterion. Ex-
perimental results, shown in Figure 4, are based on a
series of competitive binding assays involving analogs
of the HA peptide (306-318) and the DRB1*0101
molecule [27]. In order to simulate different binding
residues, analog peptides were synthesized in which
the Y(308) residue of the HA peptide (306-318) was
substituted with 11 different amino acids. The rela-
tive binding affinities were derived from the recipro-
cal of 50% inhibitory concentration (IC50) for each
analog peptide.

Figure 3: AEp,cr (kcal/mol) of the naturally
occurring amino acids.
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trp tyr leu val
Figure 4: Experimental data for the naturally

occurring amino acids.
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Based on results from the experimental binding
assays, three residue groupings can be identified. The
first group includes the amino acids Tyr, Phe, and
Trp, which exhibit the highest binding affinity to
DR1. The second group includes the amino acids
Tle, Leu, and Val, and can be characterized by an in-
termediate level of affinity to DR1. The third group
consists of low level affinity amino acids. This group
includes the charged residues Asp-, Glu-, Arg+, His+
and the neutral Ser and Thr residues.

The theoretical results, shown in Figure 3, are in
excellent agreement with those obtained by experi-
ment. The hydrophobic residues, Tyr, Phe and Trp
occupy the top positions of the rank ordered list. This



result is also qualitatively supported by this pocket’s
preference to accommodate hydrophobic side chains.
The amino acids Leu, Ile, and Val are characterized
by AEpecr that correspond to 8th, 9th and 12th posi-
tion on the ordered list, respectively. Similarly, bind-
ing assays resulted in intermediate affinities for these
amino acids. The prediction of low binding affinities
for charged residues is also in agreement with exper-
imental data.

For both serine and threonine, intermediate bind-
ing affinities would be expected due to weak inter-
actions between their hydroxyl groups and the hy-
drophobic pocket. Although not as apparent as ex-
perimental results, the theoretical predictions quali-
tatively support these observations.

Theoretical and experimental agreement was also
found when comparing the structures of the bound
complexes. For example, Figure 5 shows the tyrosine
conformation for the HA peptide binder, Y(308), and
the predicted global minimum energy conformation of
tyrosine in pocket 1. Almost identical orientations,
with a 1.28 A RMS deviation, are observed.

Figure 5: Comparison of tyrosine amino acid
binding to Pocket 1.

CONCLUSIONS

In this study, the related problems of protein folding
and peptide docking were formulated as global opti-
mization problems. In the case of protein folding, sol-
vation effects were included in the context of a global
search, and results for met—enkephalin were presented
and compared for two solvation models. For peptide
docking, a novel decomposition approach, applicable
to general docking problems, was presented and re-
sults for pocket 1 of HLA-DR1 were discussed. In
both cases, the computational results were shown to
be consistent with experimental studies. In addition,
the deterministic branch and bound algorithm, aBB,
was shown to be an effective framework for locating
global minimum energy structures.
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