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Abstract

The ability to analyze large molecular structures by NMR techniques requires ef-
ficient methods for structure calculation. Currently there are several widely available
methods for tackling these problems, which, in general, rely on the optimization of
penalty-type target functions in order to satisfy the conformational restraints. Typi-
cally, these methods combine simulated annealing protocols with molecular dynamics
and local minimization, either in distance or torsional angle space. In this work, both
a novel formulation and algorithmic procedure for the solution of the NMR structure
prediction problem is outlined. First, the unconstrained, penalty-type structure pre-
diction problem is reformulated using nonlinear constraints, which can be individually
enumerated for all, or subsets, of the distance restraints. In this way, the violation
can be controlled as a constraint, in contrast to the usual penalty-type restraints. In
addition, the customary simplified objective function is replaced by a full atom force
field in the torsional angle space. This guarantees a better description of atomic in-
teractions, which dictate the native structure of the molecule along with the distance
restraints. The second novel portion of this work involves the solution method. Rather
than pursue the typical simulated annealing procedure, this work relies on a determin-
istic method, which theoretically guarantees that the global solution can be located.
This branch and bound technique, based on the BB algorithm, has already been suc-
cessfully applied to the identification of global minimum energy structures of peptides
modeled by full atom force fields. Finally, the approach is applied to the Compstatin
structure prediction and it is found to possess some important merits when compared

to existing techniques.
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1 Introduction

The use of nuclear magnetic resonance (NMR) data has become a widely developed tech-
nique for determining protein structures. The data obtained from NMR studies consist of
distance and angle restraints. Once resonances have been assigned, nuclear Overhauser effect
(NOE) contacts are selected and their intensities are used to calculate interproton distances.
Information on torsional angles are based on the measurement of coupling constants and
analysis of proton chemical shifts. Together, this information can be used to formulate a
nonlinear optimization problem, whose solution should provide the correct protein structure.

However, the structure prediction problem is extremely complex for several reasons. The
major difficulty is the imprecision of distance information due to the influence of spin diffusion
and internal dynamics on the relationship between the NOE intensity and the interproton
distance. Even if this distance information is consistent, the number of distance limits is
generally much smaller than needed to determine a unique structure. Therefore, a simple
distance geometry approach is not sufficient.

In order to address these problems, the structure prediction problem is transformed to

an optimization problem based on a hybrid energy function of the following form:
E = Eforcefield + anrEnmr- (1)

The energy, E, specified by this target function now includes a chemical description of the
protein conformation through the use of an empirical force field, Eforceficia. However, these
force field potentials are generally much simpler representations of typical all atom force
fields. The distance and dihedral angle restraints are included (as in pure distance geometry
problems) in the objective function, although they now appear as weighted (with weight
Whme) penalty terms that should be driven to zero. Both terms are complicated functions
of the atomic coordinates, and this problem has generally been referred to as the multiple-
minima problem. That is, the prediction of the global minimum energy structure, which
should correspond to the correct structure, is hindered by the presence of many local energy
minima with relatively high energy barriers.

Calculating three-dimensional structures using NMR data is therefore dependent on the

development of efficient optimization methods. Typically, one of two optimization methods



have been employed. The first is based on the minimization of a variable target function of
distance restraints and nonbonded contacts in torsional angle spacel’2’3. The second relies
on optimization of a hybrid energy function by coupling simulated annealing with molecular
dynamics in Cartesian coordinate space2’4. For large proteins, these methods require rela-
tively long computation times and generally provide a low yield of acceptable conformations.
This is mainly a result of the multiple-minima of the objective function, and the difficulty of
escaping local minima using molecular dynamics in Cartesian space. More recent methods
have implemented torsion angle dynamics (TAD) and have been shown to be more effective
than Cartesian coordinate dynamics5’6. In this case, the degrees of freedom are rotations
around single bonds, which reduces the number of variables by approximately tenfold be-
cause bond lengths, bond angles, chirality and planarities are kept fixed at optimal values
during the calculation. An overview of available methods for predicting three-dimensional
protein structures can be found elsewhere /8.9,

In this work, a novel formulation and global optimization approach are proposed for the
three-dimensional structure prediction problem using NMR data. The proposed method
is based on a constrained formulation, which differs from the traditional formulations that
employ penalty function methods. In addition, the nonlinear objective function is represented
by a detailed full atom force field, rather than simplified nonbonded potential terms. The
solution of this novel NMR based formulation is accomplished by developing an algorithm
based on the ideas of the BB deterministic global optimization approach10’11’12’13’14.
In the next two sections the development of this novel method is presented, which is then
followed by a detailed case study for the prediction of the three-dimensional structure of the

13-residue synthetic peptide, Compstatin15.

2 Theory

2.1 Energy Modeling

The target function shown in Equation (1) can rewritten in the following form:

E = Ebonds + Eangles + Echiral,planar + Edistance + Edihed’ral + Eforcefield- (2)



In this equation, the E,,,, term is expanded and the weighting factor (W, ) is incorporated
separately into each individual term. The first three terms (Eponds, Fangies and Echiral pianar)
are typically treated as quadratic harmonic potentials for bond lengths, bond angles and

chirality and planarity. For example :

Ebonds = Z kr (T - 7'0)25 (3)
bonds

Eangles = Z kﬂ(e - 90)27 (4)
angles

Echiral,planar = Z k¢(¢ - ¢0)2' (5)

chiral,planar

Here r,, 6, and ¢, represent reference values for the bond lengths, angles and dihedral
angles, respectively. The k,, kg and k4 are the corresponding force constants.

The fourth term of Equation (2) accounts for the objective function contribution corre-
sponding to experimental distance restraints. This function can take several forms, although
the most general form corresponds to a simple square well potential, which includes a sum-
mation over both upper and lower distance violations (i.e., Egstance = Eyrhar .. + B2 ).

When considering upper distance restraints this becomes:

Aj(d; — dPPTY? i dy > dUPT

0 otherwise.

Egitance = 2 { (6)

upper
The squared violation energy is considered only when the calculated distance d; exceeds the

upper reference distance d;”"*

. This squared violation is then multiplied by a weighting fac-
tor A;. A similar contribution is calculated for those distances that violate a lower reference

distance, d{"°":

A](dj _ déower)Z if d] < dé_ower’

0 otherwise.

Egistance = 2_ { (7)

lower

It should be noted that, in general, penalty terms enforcing both upper and lower distance
bounds are used. In this case the condition dé-m”e’" < dj < d;"™" must be enforced.

When considering dihedral angle restraints, represented by term 5 in Equation (2), a

form similar to Equations (6) and (7) is often used. The total violation, Egpedras, iS a sum



over upper and lower violations (i.e., Fgnearaa = Egtama + B2 ). A dihedral angle

w; can be restrained by employing a quadratic square well potential using upper (w;**)

and lower (w{*¢") bounds on the variable values. However, due to the periodic nature of

these variables, a scaling parameter must be incorporated to capture the symmetry of the
system. Furthermore, by centering the full periodic region on the region defined by the
allowable bounds, all transformed values will lie in the domain defined by [wé-"wer —AHW,,,
w;™" + AHW,,], where AHW,,, is equal to half the excluded range of dihedral angle values
(i.e., AHW,, = pi — (w;" — wlower) /2). This results in the following equations:

upper 2
) wj—wj ) uppery2 ) upper
EUppeT o A] (1 - 2 2ﬂ_(wypper _wl'ou)eT') ) (w] - w] ) lf wj > w‘] Pl
dihedral — - J 7 - (8)
upper 0 0therw1se,
- 12
Al1=29 Wi *“’;'ower (w _ wlower)2 if w: < wlowe’r
lower — __ J 21— (wYPPET —ylower) J J J J ’
Egihedra = Z - J J - (9)

lower 0 otherwise.

Finally, the last term in Equation (2) refers to the force field energy expressions used
to model the nonbonded interactions of the protein. These often correspond to simple
Van der Waals repulsion terms. More detailed force fields employ 6-12 Lennard-Jones and
modified 10-12 Lennard-Jones terms to model nonbonded and hydrogen bonded interactions,
respectively. An additional Coulombic electrostatic term may also be included.

In practice, when considering NMR, restraints, force field terms are often simplified to
include only simple geometric energy terms, such as quartic Van der Waals repulsions. Such
objective functions neglect rigorous modeling of energetic terms in order to ensure that
experimental distance violations are minimized. In fact, a simple representation for the

objective function using torsional angle dynamics would be :

Esimple = Ejistance + Edinedral- (10)

In this case, the target function does not include bond, angle or chirality /planarity violation
energies. Notice that when all restraints are satisfied, the objective function is driven to
ZETo.

In this work, a more detailed modeling approach is proposed by using the ECEPP/3
force field 16. For this force field, it is assumed that the covalent bond lengths and bond



angles are fixed at their equilibrium values. Then, the conformation is only a function of
the independent torsional angles of the system. That is, Eyonds, Fangies and Echiral planar are
inherently equal to zero. The total force field energy, Eyorceficia, is calculated as the sum
of the electrostatic, nonbonded, hydrogen bonded, and torsional contributions. The main
energy contributions (electrostatic, nonbonded, hydrogen bonded) are computed as the sum
of terms for each atom pair (i,j) whose interatomic distance is a function of at least one
dihedral angle. The general potential energy terms of ECEPP/3 are shown in Figure 1,
while the development of the appropriate parameters is discussed and reported elsewhere 16

When considering a simple unconstrained minimization, this approach corresponds to an

objective function defined by:

FEaetaited = Edistance + Fainedra + Frcepp)3- (11)

This formulation is similar to Equation (10) in that the Eyonas, Eangtes a0d Echirat pianar €an
be neglected. However, the detailed energy modeling greatly increases the computational
complexity of the objective function. It should also be noted that although distances cor-
respond to quadratic terms in Cartesian coordinate space, their transformation to internal
coordinate space results in complex, highly nonlinear functions. That is there is not a one-to-
one correspondence between distances and internal coordinates. The advantage for working
in dihedral angle space is that the variable set decreases, with the disadvantage being the

increased nonconvexity of the energy hypersurface.

2.2 Global Optimization

The determination of a three dimensional protein structure defines an optimization problem
for which the objective function is defined by the target functions outlined in the previous
section. Methods for addressing this optimization problem are outlined in the following
sections. The first section presents the standard penalty function approach used in structure
determination problems. This is followed by a section describing a deterministic global
optimization method for solving these (unconstrained) problems. This approach, based

10,11,12,13,14

on the aBB branch and bound algorithm , can deterministically locate global

minimum energy structures without the bias of initial structure selection usually associated



with stochastic searches. The third section introduces a novel constrained formulation which
is easily incorporated within with the BB global optimization procedure, while the final

section provides some details regarding this constrained formulation.

2.2.1 Penalty Function Formulation

A standard procedure for addressing the global optimization problem involving NMR, and
dihedral angle restraints consists of a combination of discrete geometry (metric method)
optimization using a simulated annealing protocol coupled with molecular or torsional angle
dynamics. Generally, multiple initial conformers are generated and optimized to provide
a set of acceptable structures. Typically, a set containing on the order of 100 acceptable
conformers may be identified, from which a subset of similar structures (approximately 20)
are used to characterize the system. The simulated annealing protocol is incorporated in
order to avoid trapping in local minimum energy wells.

However, the minimization of complex target functions necessitates the use of rigorous
global optimization approaches. In this work, a detailed force field potential is employed in
the context of a conformational energy search using NMR restraints. This typical penalty

type formulation (for distance restraints) can be written as:

min  Egeraitea(Bi, Vi, wi, X35 07 ,05) = Eaistance + Edinearas + Ercrpreys, (12)
. L U .
subject to ¢; < ¢ < i, t=1,..., Nrgs,
1/1111 S wz S sza izla"':NRESa
wf < w < WY, i=1,..., Nggs,
k,L kU ;
X S Xic S Xi ’L:la"'aNRESak:L"'aKZ,
N,L NU .

o7t < 6F < 7 =10

Here 1 = 1,..., Nggs is an indexed set describing the sequence of amino acid residues in the
peptide chain. There are ¢;, ¥;,w;, @ = 1,..., Ngpgs dihedral angles along the backbone of
this peptide. In addition, K’ denotes the number of dihedral angles for the side chain of the



i residue, and JV and J¢ denote the number of dihedral angles for the amino and carboxyl
end groups, respectively. Also, ¢F, ¢vF, wF, xPF, HJN’L, QJG’L and ¢V, 7wV, xPY, 0§V’U, GJC’U
represent lower and upper bounds on the dihedral angles ¢;, v, ws, xF, 05,05 In the simplest
case, the energy function corresponds to a target function of the form given in Equation (10).
However, in this work, Fgeqireq includes both a complex force field modeled by ECEPP/3, and
NMR distance and dihedral angle restraints, as shown in Equation (11). The solution of (12)
using either objective function constitutes an unconstrained global minimization problem.
A deterministic method for solving such problems is given in the next section. As will be
shown, a novel reformulation can also be used in order to effectively treat this problem as a

constrained global conformational energy search.

2.2.2 aBB Deterministic Global Optimization

When NMR restraints are not considered, the formulation given by Equation (12) corre-
sponds to the traditional protein folding problem”. That is, the problem involves the
global minimization of conformational energy with respect to the independent dihedral an-
gles. Typically, the lower and upper bounds for these variables are set to -m and 7, respec-
tively. In this case, a detailed atomistic-level energy produces a multidimensional surface
with an astronomically large number of local minima. Because the objective function has
many local minima, using local optimization techniques necessarily depends on the initial
points selected. Therefore, rigorous global optimization algorithms are needed to effectively
locate the global minimum corresponding to the native state of the protein. A large num-
ber of techniques have been developed to search this nonconvex conformational space. In
general, the major limitation is that these methods also depend strongly on the supplied
initial conformations. As a result, there is no guarantee for global convergence because
large sections of the domain space may be bypassed. In order to overcome these difficulties,
the BB global optimization approach10’11’12’13’14 has been extended to identifying global
minimum energy conformations of peptides. The development of this branch and bound
method was motivated by the need for an algorithm that could guarantee convergence to the
global minimum of nonlinear optimization problems with twice-differentiable functions®.

The application of this algorithm to the minimization of potential energy functions was first



19’20, and small acyclic molecules2122, The oBB approach has

introduced for microclusters
also been applied to general constrained optimization problemslo’12’13’14. In more recent
work, the algorithm has been shown to be successful for isolated peptide systems using the
realistic ECEPP/3 potential energy mode123’24, and including several solvation effects 2226,

The aBB global optimization algorithm effectively brackets the global minimum solution
by developing converging sequences of lower and upper bounds. These bounds are refined
by iteratively partitioning the initial domain. Upper bounds on the global minimum are
obtained by local minimizations of the original energy function, E. Lower bounds belong
to the set of solutions of the convex lower bounding functions, which are constructed by
augmenting E with the addition of separable quadratic terms. The lower bounding functions,
L, of the energy hypersurface can be expressed in the following manner:

NgrEs

L=FE+ ) ay (@L - ¢i) (¢1U - </5z') + (13)
i=1

NgrEs
> ay (v =) (vf —wi) +
i=1
3 (o ) (o )+
i=1

Nges K'

S e (0= xE) (B - xF) +

JN

_Zlaaj_v (02" — o)) (007 — o)) +
e

:éaeg (65" —0F) (65" — 65 .

Again, ¢F, Z-L,wz-’:,xf’L, oMt HJ-C’L and o7, 7 Wl Xf’U, QJN’U, Qf’U represent lower and upper
bounds on the dihedral angles ¢;, ¥;, w;, X*, va , 0](-7. The « parameters represent nonnegative
parameters which must be greater or equal to the negative one-half of the minimum eigen-
value of the Hessian of E over the defined domain. Rigorous bounds on the a parameters
can be obtained through a variety of approachesQ7’12’13’21. The overall effect of these terms
is to overpower the nonconvexities of the original nonconvex terms by adding the value of

2« to the eigenvalues of the Hessian of E.
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Once solutions for the upper and lower bounding problems have been established, the
next step is to modify these problems for the next iteration. This is accomplished by succes-
sively partitioning the initial domain into smaller subdomains. For the protein conformation
problems, it has been found that an effective partitioning strategy involves bisecting the
same variable dimension across all nodes at a given level. In order to ensure non—decreasing
lower bounds, the hyper—-rectangle to be bisected is chosen by selecting the region which
contains the infimum of the minima of lower bounds. A non-increasing sequence for the
upper bound is found by solving the nonconvex problem, E, locally and selecting it to be the
minimum over all the previously recorded upper bounds. Obviously, if the single minimum
of L for any hyper-rectangle is greater than the current upper bound, this hyper-rectangle
can be discarded because the global minimum cannot be within this subdomain (fathoming
step). The computational requirement of the aBB algorithm depends on the number of
variables (global) on which branching occurs. Therefore, these global variables need to be
chosen carefully.

An important implication of the BB branch and bound approach is the implicit treat-
ment of dihedral angle restraints. Specifically, since partitioning of the dihedral angle space
represents an inherent part of the BB problem formulation, these bounds can be easily
satisfied by defining appropriate upper and lower bounds on these variables. Therefore, the
dihedral angle restraint energy, Fginedarar, Of the target function given in Equation (11) is

always driven to zero.

2.2.3 Novel Constrained Formulation

Since the aBB approach implicitly handles dihedral angle restraints, the objective func-
tion given in (12) only effectively includes the forcefield, Excgpp/s, and distance restraint,
Egistance, energies. The objective function can also be reformulated by treating distance
restraints as a set of general nonlinear constraint(s); that is, the distance restraint energy,
Eistance, 18 not a required part of the objective function. This constrained formulation be-

comes:

11



min Eforcefield ((bu wi: Wy, Xi’ca ejNa 0]6’), (14)

subject to  Efstence (¢, api wi x¥ 0N, 09) < Elref l=1,...,Ncon,

RRS
¢F < ¢ < ¢, i=1,..., Nggs,
szS wz S ¢1Ua izl:"'aNRESa
szS Ws S wz'Ua izla"':NRESa
kL k kU -
x; < Xi < xi, t=1,...,Nggs, k=1,..., K",

o< oY < oY j=1,...,J"Y,

o< 09 <00 j=1,...,JC

The lower and upper variable bounds (¢, ¥F, w?, x**, 0§V’L, HJ-C’L and ¢V, UV, WV XY, GJN’U, GJ-C’U)
are first modified to correspond to upper and lower dihedral angle restraints, rather than the
entire domain of -7 to 7. Distance restraints, E{*""¢ are now constrained to be below a
total reference energy, E; “/ . These distance constraints are typically identical in form to the
summation of the square well violation energies, as given in Equations (6) and (7), although
other functional forms may be used. In addition, note that formulation (14) may include a
full enumeration of all distance restraints or a selected subset of these restraints. In general,
the constrained formulation is more rigorous than a penalty function approach because the
choice of Efef strictly determines the extent to which each set of restraints must be satisfied.
In addition, in the limit that Ej °/ approaches zero, all restraints are implicitly enforced.
Since this violation energy is imposed as a set of constraints, all local solutions are also
required to meet this specification. As a result, the proposed constrained formulation has
the advantage of not requiring the specification of penalty coefficients, which are typically
updated through variable target function methods fashion when using the unconstrained

penalty-type approaches.

2.2.4 Lower Bounding via the «BB

In order to treat the NMR structure prediction problem via the constrained formulation,

a number of modifications must be made to the BB methodology previously outlined. In

12



particular, the identification of valid lower bounds on the global solution of the nonconvex
problem relies on the fact that the underestimating problem generated in each subdomain
must be convex. The development of the appropriate convex lower bounding function for
the objective function has already been discussed. In addition, all inequality constraints in
the lower bounding problem must be convex, which implies that all inequality constraints
appearing in Equation (14) must be replaced by their convex relaxation. For each constraint
the following expression is used :

NRrEs

L;listance — Eldistance + Z ag:?ltance (d)L sz) (QszU — sz) + (15)
i=1

NgEgs

> agistenee (yl — o) (v — i) +
=1
NRrES

distance L U
Z Ol (wl — w,) (wi — wi) +

=1

Ngps K?

Z Z adzstance ( ;c,L _ Xic) <Xi’C,U _ Xic) +

zlkl

e (07— o) (017 ) +

Jc

St (74 - ) (067 7).
The offi*"*" represent nonnegative parameters which must be greater or equal to the negative
one-half of the minimum eigenvalue of the Hessian of Efs!ac¢ over the defined domain.
These functions must be developed for each constraint belonging to the set [ = 1,..., Ncon-
Rigorous bounds on these o parameters can be obtained via several methods2712:13.21,
Therefore, the full lower bounding formulation for the constrained NMR problem can be

expressed as :

min Lforcefield (¢z> wu Wi Xz ’ 05\/" 090) (16)

13



subject to ~ Lstance (¢i,wi,wi,xf,0§\7,ﬁf) < E 1=1,...,Ncon,

gF < ¢i < ¢7, i=1,..., Nggs,
¢71L§ 17[)1 S ’(/JzUv 7;:17'--7NRE57
szS Wy S wz’Ua Z':15"':]\]RE55
X;C,LS Xf S Xf’U’ izla'--aNRESakzla"'aKia

OJ'C,LS 090 SejcyU: j:l,___’JC,

In this formulation, variable bounds are specific to the subdomain for which the lower bound-
ing functions are constructed. L forcefiera Tefers to the convex representation of the objective
function (Equation (13)), while L{s!ane¢ denotes the convex relaxation of the inequality con-
straints as given in Equation (15). As before, a converging sequence of upper and lower
bounding values are developed, although these values now depend on the solution of the

problems given by Equations (14) and (16), respectively.

3 Algorithmic Steps

A description of the steps involved in the solution of the NMR structure prediction problem
using the constrained BB approach can be generalized to any force field model and any
routine for locally solving constrained optimization problems. In this work, the BB ap-
proach is interfaced with PACK 28 and NPSOL?2Y. PACK is used to transform to and from
Cartesian and internal coordinate systems, which is needed to obtain function and gradient
contributions for the ECEPP/3 force field and the distance constraint equations. NPSOL is
a local nonlinear optimization solver that is used to locally solve the constrained upper and
lower bounding problems in each subdomain.

The implementation can be broken down into two main phases : initialization and com-

putation. The basic steps of the initialization phase are as follows :

(1) Choose the set of global variables. Since the bounds on these variables will be refined

during the course of global optimization, they should be selected based on their overall

14



(2)

(3)

(4)

(5)

(6)

effect on the structure of the molecule. In this work (and in general) the ¢ and
dihedral angles provide the largest structural variability, and are chosen to constitute

the global variable set.

Set upper and lower bounds on all dihedral angles (variables). If information is not
available for a given dihedral angle, the variable bounds are set to [-m,7]. Since a

constrained local optimization solver is used, these bounds are strictly enforced.

Identify the set of NOE derived distance restraints to be used in the constraints. In
general, this set can include all intra- and inter-residue restraints. In this work, only
backbone sequential and medium/long range information was used in developing the
constraints, because intra-residue restraints are less likely to affect the overall fold.
In addition, although multiple constraints with varying weights can be handled, all
distance information was formulated as one constraint (Ngoy = 1) with constant

weighting for simplicity.

Choose the value of E/“/ to be used in constraints. This can be determined by simply
performing several local constrained optimizations or possibly a short global optimiza-
tion run with simplified energy models. In this work, information based on X-PLOR4

results was used to define the E™¢/ parameter (see below).

Identify initial a values for both the objective function and constraints, as defined in

sections 2.2.2 and 2.2.4, respectively.

Set initial best upper bound to an arbitrarily large value.

The computation phase of the algorithm involves an iterative approach, which depends

on the refinement of the original domain by partitioning along the global variables. In each

subdomain, upper and lower bounding problems based on the formulations given in (14) and

(16), respectively, are solved locally and used to develop the sequence of converging upper

and lower bounds. The basic steps are as follows:

(1)

The original domain (defined above) is partitioned along one of the global variables.

15



(2) Lower bounding functions for both the objective (Equation (13)) and constraints
(Equation (15)) are constructed in both subdomains. A constrained local minimization

(with NPSOL) is performed using the following procedure :

(A) 100 random points are generated and used for evaluation of the lower bounding

objective function and constraints.

(B) The point with the minimum objective function value is used as a starting point

for local minimization (of formulation (16)) using NPSOL.

(C) If the minimum value found is greater than the current best upper bound the
subdomain can be fathomed (global minimum is outside region), otherwise the

solution is stored.

(3) The upper bounding problems (original constrained formulation) are then solved in

both subdomains according to the following procedure :
(A) 100 random points are generated and used for evaluation of the objective function
and constraints.

(B) The point with the minimum objective function value and feasible constraints is
used as a starting point for local minimization (of formulation (14)) using NPSOL.

If a feasible starting point is not found, local minimization is not performed.

(C) All feasible solutions are stored.
e current best upper bound 1s updated to be the minimum of those thus far stored.
4) Th b bound i dated to be the mini f th hus f: d

(5) The subdomain with the current minimum value of L fce fierq is selected and partitioned

along one of the global variables.

(6) If the best upper and lower bounds are within a defined tolerance the program will

terminate, otherwise it will return to Step 2.

The location of the global minimum relies on effectively solving the upper bounding
problem locally. In addition, convergence to this global minimum can be enhanced by con-

sistently identifying low energy solutions. Although this property is not required to prove

16



convergence to the global minimum (because subsequent partitioning revisits regions contain-
ing the global solution), it can have important practical implications for high dimensional
problems. These observations illustrate the need for reliably locating low energy feasible
points. For the Compstatin example, the approach outlined above proved to be sufficient;
however, this performance may not be expected for all examples. Along these lines, we are
developing methods that combine aspects of torsion angle dynamics (TAD) and constrained

local minimization, within the framework of the constrained BB approach 30,

4 Results and Discussion

4.1 Compstatin Case Study : Traditional Solution Structures

Compstatin is a synthetic 13-residue (ICVVQDWGHHRCT) cyclic peptide that binds to
C3 (third component of complement) and inhibits complement activation31. The synthetic
peptide is cyclic, with a disulfide bridge between the Cys? and Cys!'? residues. The solution
structure was previously identified using two-dimensional NMR, techniquesl5. A total of
30 backbone sequential (including H® — backbone), 23 medium and long range (including
disulfide) and 82 intra-residue NOE restraints were identified. In addition, 7 ¢ angle and 2 x;
angle dihedral restraints were provided. In previous Work15, a traditional distance geometry—
simulated annealing protocol was utilized to minimize the associated target function (as in
Equation (2)) in the Cartesian coordinate space using the program X-PLOR#. This target
function consisted of quadratic harmonic potential terms for bonds, angle, planarity and
chirality. The force field energy, Eforcefield, Was simplified to account for only quartic Van
der Waals repulsion of non—bonded contacts. That is, no hydrogen bonding, electrostatic
or Lennard-Jones type empirical potential energy terms were included. NOE distance and
dihedral angle restraints were modeled using a quadratic square well potential, similar to
those of Equations (6) and (7). In addition 3Jyy g, coupling constant restraints were
included as harmonic potentialsl5.

Employing typical NMR refinement protocols resulted in a family of structures with
similar geometries in the GIn®-Gly® region. Using an ensemble of 21 refined structures,

an average structure was obtained by averaging the coordinates of the individually refined
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structures and then subjecting this structure to further refinement to release geometric strain
produced by the averaging process. The formation of a type I B-turn was identified as a

common characteristic for these structures. This information is displayed in Table I.

4.2 Local Minimization

The consistency of the ensemble of Compstatin solution structures was determined by eval-
uating distance restraints for each of the original 21 structures (accession number lalp
at the Brookhaven Protein Data Bank, http://www.pdb.bnl.gov), as well as the average
Compstatin conformation. In considering distance restraints, only backbone sequential and
medium/long range NOE were considered. That is, the 82 intra-residue restraints were ne-
glected since they are less likely to effect the overall fold of the Compstatin peptide. This
results in a total of 52 restraints, with an additional restraint on the distance between the
sulfur atoms forming the disulfide bridge (a total of 53 distance restraints). In order to
quantify these results the sum of distance violations (Dy o) and a violation energy (Ey o) is
reported for each of the original PDB structures. The sum of distance violations corresponds
to the sum of the absolute values of the upper and lower violations based on Equations (6)
and (7). When all restraints are satisfied, this summation goes to zero. The violation energy

is calculated by combining Equations (6) and (7):

Bvio = EWEET  + Elover (17)

distance distance*

In these calculations, the value of the weighting factor (A,) is assumed to be constant and
set equal to 50 kcal/mol/A2. Table IT summarizes this information.

The results shown in Table IT indicate that the average structure (Compstatin) possesses
the largest value of Dy o, as well as the third largest violation energy. The smallest distance
violation and energy is given by structure number 8 (< Compstatin >g). These results
provide a range of comparison for total distance violations and violation energies. In addition,
the analysis is used to set the value of E™®/ (from Equation (14)) to 200 kcal /mol. This value
is chosen so that the sum of the violation energies will necessarily result in an improvement
over the violation energy for the average Compstatin structure, Compstatin.

In order to measure the performance of the proposed global optimization approach,

the ensemble and average Compstatin structures (< Compstatin > and Compstatin) were
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used as starting points for local minimization, as defined by (14). Since PACK (and thus
ECEPP/3) builds peptide structure with fixed bond lengths and bond angles (in the in-
ternal coordinate, rather than Cartesian coordinate space), the corresponding Compstatin
PDB structures could only be used to derive dihedral angle values. These dihedral angles
were then used as input to directly evaluate the corresponding force field energy. Because
the differences in bond lengths and bond angles propagates through the generation of the
corresponding ECEPP/3 structure, an inherent RMSD exists between the PDB structure
and the ECEPP/3 generated structure. For example, when using the set of dihedral an-
gles calculated from the Compstatin PDB, the ECEPP/3 structure possesses a 0.581 A
all atom RMSD (all heavy atoms in backbone and side chains) with respect to the origi-
nal Compstatin structure. The corresponding ECEPP/3 energy equals 519.2 kcal/mol. In
addition, due to the differences in bond lengths and angles, the distance violation for the
ECEPP/3 structure (Compstatin o ppp) increases from 6.9 to 8.7 A, which results in a sub-
sequent increase in violation energy to 315 kcal/mol. The superposition of the original and
ECEPP/3 Compstatin conformations is shown in Figure 2.

Due to the relatively large distance violations and energies obtained after direct transfor-
mation of PDB to PACK (ECEPP/3) structures, the 22 structures (21 < Compstatin >; and
Compstatin) were then subjected to local minimization. The problem formulation uses the
same set of 53 restraints, a constant 50 kcal/mol/A weighting factor (4;) and a constraint
parameter (E"¢/) equal to 200 kcal/mol. The energy values and distance violations (Dy o)
for these local minima are given in Table III. In all cases, the corresponding violation energy
reached the upper bound value of 200 kcal/mol. The corresponding total distance violations
increased, with an average value of 6.766 A. The smallest distance violation (5.873 A) was
reported for structure number 10 (< Compstatin >19°) whereas the corresponding energy
for this structure (-41.685 kcal/mol) was only slightly above the average energy of -47.75
kcal/mol. The lowest energy structures (-71.613 for < Compstatin >L°¢ -68.704 kcal/mol
for < Compstatin >E2ed, 67.653 kcal/mol for < Compstatin >§°°*) provided above aver-
age values for total distance violation (6.963 A, 6.832 A, 7.120 A, respectively). In addition,
the conformation obtained from the average Compstatin structure (Compstatin) exhibited

near average values for energy (-52.283 kcal/mol) and total distance violations (6.392 A).
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Structural comparisons between these structures were also quantified using RMSD cal-
culations. These results are shown in Tables IV through VII. The first two tables in-
clude all atom and backbone RMSD values between the original (PDB) average Comp-
statin structure (Compstatin) and the ensemble of 21 original Compstatin PDB structures
(< Compstatin >;). When considering all heavy atoms, these values (see column 2, Ta-
ble IV) are all clustered near a value of 2 A. When considering only backbone atoms (see
column 2, Table V) the range of values generally fall between 1 - 2 A. The third column
(see both Tables IV and V) reports RMSD values between the original PDB structures and
their locally minimized counterparts. In general, these values are larger, which indicates a
significant conformational change during local minimization. Finally, the fifth column (see
both Tables IV and V) provides a comparison similar to that given by the corresponding sec-
ond columns, except the structures correspond to local minimum rather than original PDB
structures. In general, these RMSD values follow the same trends as the second column (see
both Tables IV and V), and in some cases the backbone RMSD are smaller than for the
original structures. This indicates that local minimization is providing structural differences
that are on the same order as those provided by the original structures. The second set
of tables (Tables VI and VII) repeats this analysis, but for the reduced sequence involving
residues 5 to 8 (the B-turn region). When considering all heavy atoms, the RMSD values are
similar, with most values falling within the 0.5 to 1 A range. These results indicate that the
B-turn is a common structural feature, even when comparing the original PDB structures
to their locally minimized counterparts. A similar trend is observed for the backbone atom
RMSD values. The effect of local minimization on conserving the (-turn structure is even
more apparent when considering the relatively low and consistent RMSD values of the last
column, which compares (residues 5 to 8) the local minimum of the average Compstatin

Ocal) to the local minimum of the individual Compstatin structures

structure (CompstatinL
(< Compstatin >L°ca!). Plots for the superpositioning (all atom) of < Compstatin >Lgeal
and the average local minimum structure (CompstatinLocal) are given in Figure 3. The su-
perpositioning of these two structures results in two of the smallest RMSD values, as given

in Tables IV and VI.
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4.3 Global Minimization

A full global minimization of the Compstatin structure was then performed according to the
constrained implementation outlined in section 3. In total, Compstatin possesses 73 inde-
pendent torsion angles, of which 26 (all ¢ and 1) were treated globally, while the remaining
were allowed to vary locally. As with the local minimizations, the same set of restraints were
used to formulate the nonlinear constraint, with a constant 50 kcal /mol/A weighting factor
(A;) and a constraint parameter (E"¢/) equal to 200 kcal/mol. The lowest energy structure
satisfying the distance constraint and dihedral angle bounds provided an ECEPP/3 energy
of -85.71 kcal /mol, which is lower in energy than any of the local minimum structures given
in Table III. The global minimization required approximately 40 CPU hours on a HP C160.
As with the local minimizations, the global minimum structure reached the 200 kcal /mol
bound on the violation energy constraint. The total distance violation (Dy o) equaled 6.690
A, which is near the average distance violation form those local minimum structures given
in Table III.

A number of RMSD calculations were performed to further quantify the structural dif-
ferences between the global minimum energy structure and the other Compstatin structures.
These results are given in Tables VIII and IX. Table VIII provides (all atom and backbone

Local
%

atom) RMSD values between the full local minimum energy structures (< Compstatin >
and mLoml) and the global minimum energy structure. When comparing back-
bone RMSDs, the < Compstatin >k < Compstatin >Lecd < Compstatin >1¢e and
< Compstatin >1¢°® structures offer the best correspondence with the global minimum en-
ergy structure. These structures also correspond to four of the lowest energy local minimum,
as given in Table III. This indicates that some of the lowest energy conformers exhibit sim-
ilar backbone structural characteristics. However, it is interesting to note that the lowest
energy local minimum, < Compstatin >§"c‘”, is less similar to the global minimum energy
structure. Table IX provides RMSD values comparing only the g-turn section of the Comp-
statin structure. In this case, the lowest energy local minima do not necessarily provide the
best correspondence with the global minimum energy structure. This observation, coupled
with the relatively low RMSD values between all structures, indicates that the S-turn struc-

ture is a dominant characteristic for all conformers, including the global minimum energy
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structure. Plots for superpositioning (backbone atoms) of the average local minimum energy
structure Compstatin " and the global minimum energy structure are given in Figure 4.
The superpositioning of these two structures results in characteristic RMSD values, as given
in Tables VIII and IX.

4.4 Comparison with TAD: DYANA

A comparison to an independent method for solving distance restraint problems was also
made in order to gauge the performance of the proposed aBB constrained formulation.
Specifically, a torsional angle dynamics (rather than a Cartesian coordinate dynamics such
as X-PLOR) package was used®. The coupled simulated annealing / TAD protocol from
DYANA was applied to a starting sample of 1000 randomly generated structures. The same
dihedral angle constraints and 53 medium and long range distance constraints were consid-
ered; that is, no heuristic methods for reducing the variable space were employed. In the case
of unspecified symmetric hydrogens, a pseudoatom approach, in which the restraint is based
on a pseudoatom central to the symmetric hydrogen atoms, was used. A subset consisting
of the 20 conformers exhibiting the best target values were then used as starting points for a
second set of runs. Finally, a set of 5 conformations (with the smallest violations) were used
for further analysis. Since each method (DYANA vs. ECEPP/3) employed different struc-
tural definitions, based on fixed bond lengths and bond angles, a direct comparison was not
sufficient. Instead, the DYANA generated structures were used as starting points for local
minimizations using the local constrained formulation. In all cases, the violations reached
the upper bound of 200 kcal/mol for E™/. The corresponding violation values, including
final local minimum energy values (EECEPP/g) are given in Table X.

The results given in Table X indicate that although the DYANA conformers satisfy the
corresponding constraint, their energy values are significantly higher than that of the global
minimum energy structure (more than 70 kcal/mol). This can be anticipated because the
goal of the DYANA algorithm is to minimize distance restraint violations via penalty term
optimization, while neglecting any detailed force field terms. In fact, an analysis of the
structural characteristics indicate that the type I S-turn does not appear along the Gln®-
Gly® backbone in these structures. This is verified by the data in Table XI, which gives the
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¢ and 1 dihedral angle values for the central S-turn residues. The problem is evidenced by
the Asp® residue, which has ¢-1/ values in a forbidden region of the Ramachandran plot. It
appears that this may be related to clustering of the side chains in the DYANA predicted

structures.

4.4.1 Including Intra-residue Restraints with DYANA

In order to further examine this deviation from the previous results (which define a type I
B-turn) the DYANA protocol was also tested on the full set of restraints, including intra-
residue distances. The 5 DYANA predicted structures exhibiting the lowest target function
values were then subjected to local minimization using the constrained formulation. As
before, only the 53 medium and long range distance restraints were included during the local
minimizations. As the results in Table XII show, the average energy has decreased for this
set of conformers. However, the structural analysis of the GIn®>-Gly® region, given in Table
XIII still indicates that a type I B-turn is not preferred.

An additional comparison between the structural characteristics of these (DYANA) local
minima and the global minimum was also performed using RMSD calculations, as given in
Tables XIV and XV. These values are consistently larger than those between the average

! . : .
*“) and local minimum solutions structures (< Compstatin >L° ), and

(Compstatin” Z.
global minimum energy structure. The RMSD values not only indicate that there is signif-
icant structural difference over the entire structure (Table XIV), but also that the S-turn
region (Table XV) is not a structural characteristic of the DYANA local minima. This is
evidenced by the superpositioning of the lowest energy DYANA structure and the global

minimum energy structure, given in Figure 5.

5 Concluding Remarks

In this work a novel and completely general method was outlined for solving the three-
dimensional protein and nucleic acid structure prediction problem using conformational
restraints derived from NMR data. In several ways, the method contrasts strongly with

typical techniques that generally rely on the optimization of penalty-type target function
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using simulated annealing and molecular dynamics (plus local minimization) protocols.

One difference involves a novel reformulation of the structure prediction problem. A
common characteristic of most current methods is their dependence on a penalty-type, un-
constrained problem formulation, in which the objective is to minimize the sum of violation
energies. In this work, the problem is formulated using nonlinear constraints, which can
be individually enumerated for all or subsets of the distance restraints. In addition, the
simplified potential function used by many techniques, is replaced by a full atom force field,
which aids in defining the correct conformational details.

Finally, the solution technique represents another enhancement over existing methods.
Rather than rely on stochastic methods for finding low energy minima, this work utilizes a
deterministic method, which theoretically guarantees that the global solution will be located.
This branch and bound technique, based on the aBB algorithm, has already been successfully
applied to the identification of global minimum energy structures of peptides modeled by
full atom force fields.

The application of this technique to the Compstatin structure prediction problem em-
phasizes the merits of the approach. The globally predicted structure agrees with previous
results based on X-PLOR? when considering structural characteristics, such as the forma-
tion of a type I S-turn. However, the overall structure exhibits an improved energy, which
indicates better definition of structural details. In contrast, results obtained from TAD fail
to identify a type I B-turn. This is most likely attributable to the simplistic form of energy

modeling and the difficulties in searching the conformational space.
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Table I: Type I S—turn for GIn®-Asp®-Trp’-Gly® segment. The first entry provides the
criteria for a classic Type I § turn. < Compstatin > refers to the ensemble of 21 refined

structures and Compstatin refers to the average structure.

¢2 (°) P2 (%) ¢s (°) ¥s (°)  Cg-Cf (A) =041-Ny (4)

Classic TypeI f -60+30 -30+£30 -90+30 0+ 30 <7 2-5
< Compstatin > -65+13 -26+8 -108+12 -14+3 4.7+ 0.2 3.3 +04
Compstatin -76 -23 -100 -14 4.8 3.4
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Table II: Summation of distance violations Dyjo (column 2) and violation energy Ey o
(column 3) for each of the original 21 < Compstatin > structures and the average structure

Compstatin for backbone sequential and medium/long range NOE restraints

Structure Dyio (A) Evro (kcal/mol)

< Compstatin > 5.290 129.00
< C'ompstatin >9 6.686 189.77
< Compstatin >3 5.745 145.83
< Compstatin >4 4.749 100.21
< Compstatin > 4.569 114.70
< Compstatin >¢ 6.545 176.63
< Compstatin >z 5.154 129.33
< Compstatin >g 4.269 92.14
< Compstatin >q 5.708 150.63
< Compstatin > 5.492 152.89
< Compstatin >1; 5.565 163.72
< Compstatin >19 5.204 129.98
< Compstatin >3 6.000 169.76
< Compstatin >14 5.679 164.39
< Compstatin >15 5.036 107.97
< Compstatin >4 5.298 137.34
< Compstatin >17 6.848 211.47
< Compstatin >1g 6.349 206.90
< Compstatin >1q 4.278 113.85
< Compstatin > 5.160 114.31
< Compstatin >o; 6.589 173.11

Compstatin 6.919 205.90
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Table III: Local minimization results for the ECEPP/3 < Compstatin > and Compstatin

starting structures

Local minimum Dyro (4) Egcrppss (keal/mol)
< Compstatin >Local — 6.547 -37.230
< Compstatin >Loc 6.963 -71.613
< Compstatin >0 6.293 -17.120
< Compstatin >t 6.727 -17.927
< Compstatin >kt 7.343 -41.558
< Compstatin >kt 6.622 -58.095
< Compstatin >kocal  6.481 -54.068
< Compstatin >Foct  7.064 -36.832
< Compstatin >foct 7120 -67.653
< Compstatin > 5.873 -41.685
< Compstatin >Lecal 7185 -61.843
< Compstatin >1geal 7.056 -42.540
< Compstatin >1gel 6.510 -43.081
< Compstatin >Lgeal 6.847 -47.396
< Compstatin > 6.789 -35.095
< Compstatin > 6.035 -41.594
< Compstatin >I2et  6.540 -62.537
< Compstatin > 6.764 -54.813
< Compstatin >1geal 7.158 -65.825
< Compstatin > 7.348 -35.491
< Compstatin >kecal 6.832 -68.704

Compstatin”*" 6.392 -52.283
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Table IV: RMSD values for full Compstatin structures using all heavy atoms. Column 2 com-
pares the original PDB structure (< Compstatin >;) to the average Compstatin PDB struc-
ture (Compstatin). Column 3 compares the original PDB structure (< Compstatin >;) to
the ECEPP/3 local minimum using this structure as a starting point (< Compstatin >0,

Column 4 compares this local minimum structure (< Compstatin >°) to the local mini-

mum for the average Compstatin structure (Compstatin ).
Structure Compstatin-Original  Original-Local Local-Compstatin

< Compstatin >4 2.372 1.988 2.844
< Compstatin >9 1.979 3.671 2.021
< Compstatin >3 2.445 3.415 2.865
< Compstatin >4 1.910 2.235 2.249
< Compstatin >5 2.185 3.162 2.386
< Compstatin >¢ 2.438 3.317 2.513
< Compstatin >z 1.934 5.074 4.472
< Compstatin >g 2.268 3.058 3.047
< Compstatin >q 2.030 3.756 2.433
< Compstatin >1g 2.387 4.176 3.363
< Compstatin >11 2.567 3.275 2.662
< Compstatin >19 2.314 3.737 2.509
< Compstatin >13 2.000 3.092 2.083
< Compstatin >14 2.148 3.314 2.915
< Compstatin >15 1.847 2.332 2.024
< Compstatin >14 2.089 2.421 2.349
< Compstatin >17 2.438 3.849 3.073
< Compstatin >1g 2.480 3.422 2.211
< Compstatin >1q 2.142 4.104 2.561
< Compstatin > 2.145 2.315 2.547
< Compstatin >o; 2.305 3.596 2.257

Compstatin — 2.773 —

31



Table V: RMSD values for full Compstatin structures using only backbone atoms (N,C*,C’).
Column 2 compares the original PDB structure (< Compstatin >;) to the average
Compstatin PDB structure (Compstatin). Column 3 compares the original PDB struc-

ture (< Compstatin >;) to the ECEPP/3 local minimum using this structure as a

Local) .

starting point (< Compstatin > Column 4 compares this local minimum struc-

ture (< Compstatin >°%!) to the local minimum for the average Compstatin structure
(mLocal).
Structure Compstatin-Original Original-Local Local-Compstatin

< Compstatin >4 1.510 1.442 2.301
< Compstatin >q 1.229 2.976 1.681
< Compstatin >3 1.740 2.820 2.496
< Compstatin >4 0.978 1.625 1.192
< Compstatin >5 1.379 2.361 1.008
< Compstatin >¢ 1.354 2.832 2.297
< Compstatin >7 1.144 3.938 3.331
< Compstatin >g 1.662 1.565 1.860
< Compstatin >g 1.437 2.782 1.394
< Compstatin >1g 1.968 3.052 2.500
< Compstatin >1; 1.427 2.366 1.746
< Compstatin >1o 1.542 2.757 1.576
< Compstatin >13 1.539 2.072 0.898
< Compstatin >14 1.561 2.833 1.728
< Compstatin >15 1.151 1.569 1.249
< Compstatin > 1.420 2.058 1.440
< Compstatin >17 1.458 3.176 1.732
< Compstatin >1g 1.970 2.366 1.071
< Compstatin >1g 1.662 2.898 1.553
< Compstatin >q 1.560 1.901 1.465
< Compstatin >o1 1.911 2.608 1.165

Compstatin — 1.633 —
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Table VI: RMSD values for the (-turn regions (Residues 5 through 8) using all heavy
atoms. Column 2 compares the original PDB structure (< Compstatin >;) to the av-
erage Compstatin PDB structure (Compstatin). Column 3 compares the original PDB

structure (< Compstatin >;) to the ECEPP/3 local minimum using this structure as a

Local) .

starting point (< Compstatin > Column 4 compares this local minimum struc-

ture (< Compstatin >°%") to the local minimum for the average Compstatin structure
(mLocal).
Structure Compstatin-Original Original-Local Local-Compstatin

< Compstatin >4 0.995 0.531 0.865
< Compstatin >, 0.765 0.718 0.617
< Compstatin >3 0.876 0.556 0.990
< Compstatin >4 0.759 0.715 0.827
< Compstatin >5 0.711 0.520 0.800
< Compstatin >¢ 0.813 0.918 1.039
< Compstatin >7 0.437 1.693 1.755
< Compstatin >g 1.025 0.626 0.825
< Compstatin >q 0.633 0.547 0.394
< Compstatin >1g 0.521 0.579 0.922
< Compstatin >1; 0.835 0.625 0.590
< Compstatin >19 0.941 0.638 0.933
< Compstatin >13 0.728 0.767 0.542
< Compstatin >14 0.814 0.780 0.813
< Compstatin >15 0.713 0.630 0.569
< Compstatin > 0.818 1.003 0.515
< Compstatin >17 0.830 0.595 0.901
< Compstatin >1g 0.667 0.704 0.564
< Compstatin >1g 0.786 0.492 0.657
< Compstatin > 0.668 0.771 0.662
< Compstatin >o1 1.062 1.318 0.660

Compstatin — 0.758 —
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Table VII: RMSD values for the 3-turn regions (Residues 5 through 8) using only backbone
atoms (N,C*,C’). Column 2 compares the original PDB structure (< Compstatin >;) to
the average Compstatin PDB structure (Compstatin). Columns 3 compares the original
PDB structure (< Compstatin >;) to the ECEPP/3 local minimum using this structure

Local

as a starting point (< Compstatin >;°°*). Column 4 compares this local minimum struc-

ture (< Compstatin >°%!) to the local minimum for the average Compstatin structure
(mLocal).
Structure Compstatin-Original Original-Local Local-Compstatin

< Compstatin >4 0.189 0.235 0.170
< Compstatin >, 0.231 0.235 0.106
< Compstatin >3 0.106 0.239 0.183
< Compstatin >4 0.266 0.313 0.080
< Compstatin >5 0.180 0.172 0.159
< Compstatin >¢ 0.355 1.322 0.375
< Compstatin >7 0.210 1.026 1.059
< Compstatin >g 0.194 0.142 0.092
< Compstatin >g 0.062 0.222 0.094
< Compstatin >1g 0.254 1.221 0.335
< Compstatin >1; 0.433 0.368 0.074
< Compstatin >19 0.215 0.376 0.388
< Compstatin >13 0.291 0.306 0.079
< Compstatin >14 0.263 0.418 0.515
< Compstatin >15 0.167 0.266 0.116
< Compstatin > 0.115 0.414 0.384
< Compstatin >17 0.173 0.199 0.199
< Compstatin >1g 0.193 0.158 0.067
< Compstatin >1q 0.185 0.248 0.143
< Compstatin > 0.202 0.361 0.318
< Compstatin >o1 0.336 0.480 0.172

Compstatin — 0.197 —
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Table VIII: RMSD values for full Compstatin structures. Column 2 reports RMSD using all
heavy atoms, while 3 accounts for only backbone atoms (N,C*,C’). Both columns compare
the ECEPP/3 local minimum structures (< Compstatin >E°¢ and C’ompstatinLoml) to the

global minimum Compstatin PDB structure (Compstatin©ebal).
Structure Heavy Atoms Backbone Atoms

< Compstatin > 4.106 3.352
< Compstatin >q 2.205 1.220
< Compstatin >3 2.742 2.265
< Compstatin >4 2.579 1.988
< Compstatin >5 2.925 1.541
< Compstatin >¢ 2.513 2.080
< Compstatin >z 4.866 3.314
< Compstatin >g 2.906 2.584
< Compstatin >g 1.287 0.953
< Compstatin >1g 2.609 2.317
< Compstatin >, 1.365 1.156
< Compstatin >19 1.824 1.376
< Compstatin >3 2.497 1.638
< Compstatin >14 2.676 2.110
< Compstatin >15 3.475 2.359
< Compstatin >14 3.089 2.239
< Compstatin >17 1.385 1.074
< Compstatin >1g 1.898 1.651
< Compstatin >19 1.304 1.046
< Compstatin >q 3.593 2.346
< Compstatin >o; 1.565 1.086

Compstatin 2.778 1.625
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Table IX: RMSD values for the (-turn regions (Residues 5 through 8). Column 2 re-
ports RMSD using all heavy atoms, while 3 accounts for only backbone atoms (N,C*,C’).
Both columns compare the ECEPP/3 local minimum structures (< Compstatin > and

Compstatin”™") to the global minimum Compstatin PDB structure (CompstatinClebal).
Structure Heavy Atoms Backbone Atoms

< Compstatin >, 1.061 0.288
< Compstatin >9 0.510 0.271
< Compstatin >3 1.114 0.244
< Compstatin >4 1.214 0.259
< Compstatin >5 0.771 0.317
< Compstatin >¢ 1.160 0.358
< Compstatin >y 1.766 0.854
< Compstatin >g 1.267 1.185
< Compstatin >g 0.792 0.271
< Compstatin >1g 0.952 0.268
< Compstatin >11 0.579 0.325
< Compstatin >19 1.243 0.391
< Compstatin >3 0.535 0.284
< Compstatin >14 1.147 0.526
< Compstatin >15 0.565 0.298
< Compstatin > 0.974 0.211
< Compstatin >17 0.918 0.284
< Compstatin >1g 0.607 0.295
< Compstatin >1g 0.543 0.288
< Compstatin > 0.763 0.194
< Compstatin >o; 0.528 0.306

Compstatin 0.774 0.295
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Table X: Local minimization results for the best DYANA (TAD) generated conformations.
Dy o refers to the total distance violation, Ey ;o is the corresponding violation, and energy

and Egcpppys is the force field energy at the local minima.

Local minimum Dyro (A) Eyio (kcal/mol) Epcrpess (keal/mol)
CompstatinPYAN4 6,234 200.0 -11.945
CompstatinDYANA 6538 200.0 6.782
CompstatinDYAN4  6.163 200.0 -10.208
CompstatinPYAN4 5476 200.0 -14.516
CompstatinPYAN4 6,927 200.0 5.006
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Table XI: ¢ and 1) values for central residues (Asp® and Trp”) for anticipated 3-turn region.

The subscripts refer to the second and third residues in the Gln3-Gly® sequence.

Local minimum b2 (°) ¥y (%) #3 (%) Y3 (%)

CompstatinPYANA 166.9 -66.07 -80.00 -40.40
CompstatinDY AN4 165.9 -65.55 -81.02 -33.99
CompstatinDY ANA 180.0 -60.94 -81.76 -42.43
CompstatinPY ANA 168.8 -50.32 -80.00 -42.22
CompstatinDY AN4 165.4 -72.75 -97.79 -39.86
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Table XII: Local minimization results for the best DYANA (TAD) generated conformations
using all restraints. Dy o refers to the total distance violation, Ey ;o is the corresponding

violation, and energy and Egcrpp/s is the force field energy at the local minima.

Local minimum Dyro (A) Eyio (kcal/mol) Epcrpess (keal/mol)
CompstatinPYAN4 6,222 200.0 24.714
CompstatinDYAN4 5643 200.0 -31.216
CompstatinDYAN4 6,527 200.0 -17.569
CompstatinPYAN4 7135 200.0 -27.110
Compstatin2YAN4 5926 200.0 -14.656
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Table XIII: ¢ and 1) values for central residues (Asp® and Trp”) for anticipated -turn region.
The subscripts refer to the second and third residues in the Gln3-Gly® sequence.

Local minimum b2 (°) ¥y (%) #3 (%) Y3 (%)

CompstatinPYAN4  _180.0 -58.61 -80.00 -47.72
CompstatinDY AN4 177.5 -63.77 -82.74 -33.53
CompstatinDY AN4 180.0 -63.98 -82.18 -23.32
CompstatinDY AN4 163.0 -58.56 -109.2 -4.53
CompstatinDYAN4  _180.0 -70.46 -92.40 -41.22
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Table XIV: RMSD values for full Compstatin structures. Column 2 reports RMSD using

all heavy atoms, while 3 accounts for only backbone atoms (N,C*,C’). Both columns com-

DY ANA
1

pare the DYANA local minimum structures (Compstatin ) to the global minimum

Compstatin PDB structure (Compstatin©obal).

Local minimum  Heavy Atoms Backbone Atoms

CompstatinPY ANA 4.117 2.812
CompstatinDY AN4 4.866 3.893
CompstatinDY AN4 5.243 3.943
CompstatinDY ANA 4.892 2.654
CompstatinDY ANA 4.506 3.180
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Table XV: RMSD values for the f-turn regions (Residues 5 through 8). Column 2 reports
RMSD using all heavy atoms, while 3 accounts for only backbone atoms (N,C* C’). Both
columns compare the DYANA local minimum structures (CompstatinP?Y4¥4) to the global

minimum Compstatin PDB structure (Compstatin©'o®e).

Local minimum  Heavy Atoms Backbone Atoms

CompstatinPY ANA 1.163 0.625
CompstatinDY ANA 1.473 0.732
CompstatinDY AN4 1.607 0.721
CompstatinDY AN4 1.327 0.721
CompstatinDY AN4 1.277 0.781
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Figure legends

Figure 1: Potential energy terms in ECEPP/3 force field. r;; refers to the interatomic
distance of the atomic pair (ij). @; and @), are dipole parameters for the respective atoms,
in which the dielectric constant of 2 has been incorporated. Fj; is set equal to 0.5 for 1-4
interactions and 1.0 for 1-5 and higher interactions. A;;, Cjj, A;j and B;; are nonbonded and
hydrogen bonded parameters specific to the atomic pair. £, are parameters corresponding
to torsional barrier energies for a given dihedral angle. 6 represents any dihedral angle. ¢

takes the values -1,1, and ny refers to the symmetry type for the particular dihedral angle.

Figure 2: Superposition of Compstating,;, structure (in light grey) and corresponding

ECEPP/3 structure (in black) using calculated dihedral angles (Compstatingegpp)-

Figure 3: Superposition of < Compstatin > (in black) and Compstatin” " (in light
grey) structures. The left panel shows the full (all atom) structure, while the right panel

compares only the G-turn region.

Figure 4: Superposition of global minimum (in black) and CompstatinLocal (in light grey)
structures. The left panel shows the full (backbone atom) structure, while the right panel

compares only the S-turn region.

Figure 5: Superposition of global minimum (in black) and CompstatinPYAN4 (in grey)

structures. The left panel shows the full (backbone atom) structure, while the right panel

compares only the S-turn region.
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