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Abstract

A global optimization method is described for identifying the global minimum en-
ergy conformation, as well as lower and upper bounds on the global minimum conformer
of solvated peptides. Potential energy contributions are calculated using the ECEPP/3
force field model. In considering the effects of hydration, two implicit free energy mod-
els are compared. One method is based on the calculation of solvent—accessible surface
areas, while the other uses information on the solvent—accessible volume of hydration
shells. Detailed information on the potential and solvation energy contributions is
presented for the terminally blocked single residue peptides. In addition, based on
a procedure that allows the exclusion of domains of the (¢, ) space, a number of
oligopeptide structure prediction problems are considered, and the role of the solvation

model in defining global minimum conformations is addressed.
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1 Introduction

The protein folding problem is one of the most challenging problems in current biochem-
istry. Advances in genetic engineering already allow us to produce proteins with specific
amino acid sequences. The next step is to understand how these proteins fold, both in the
static and dynamic sense. To do this, we must learn to predict how the information pro-
vided by a particular amino acid sequence controls the formation of the three-dimensional
structure of the biologically active protein. Once the folded structure is known, biological
and chemical properties can be predicted and adjusted. Success in this area would have
important ramifications in both the academic and industrial worlds. Design of proteins and
drugs with specific therapeutical properties motivates a large sector of the biotechnology
industry. Protein folding information would also advance research in the areas related to
the human genome project and understanding the mechanism of hereditary and infectious
diseases.

The native protein conformation is defined by the amino acid sequence and environ-
mental conditions, of which the solvent choice has major importance. By employing the
thermodynamic hypothesis (Anfinsen et al., 1961), the folded conformation can be found
by identifying the structure exhibiting the global minimum free energy. Strictly speaking,
this involves the determination of energetic and entropic contributions to the free energy.
However, at constant temperature the identification of a number of unique low energy con-
formations, along with the global minimum energy conformation, should be sufficient for
identifying the native conformation. That is, proteins in their biologically active state exist
in a well-defined conformation with small fluctuations around this average. The inclusion
of the free energy of solvation in these calculations further defines the correct ensemble of
structures. In addition, it has been demonstrated that solvation free energy models aid in
discerning the native among near—native conformations (Vila et al., 1991).

The identification of the global minimum energy structure, with or without solvation, re-
quires the use of efficient methods to search the nonconvex multi—-dimensional conformation
space. A large number of techniques have been developed, with varying degrees of success,
to treat the multiple-minima problem, including stochastic search methods (e.g. simulated
annealing, genetic algorithms), smoothing methods (e.g. diffusion equation, packet anneal-

ing), and simulation methods (e.g. molecular dynamics, Monte Carlo methods). In most



cases, these techniques have been used to treat only the potential energy terms of the con-
formational energy. When solvation energy is considered, as is the case in many MD and
MC simulations, the search is strictly local. A number of recent review papers have surveyed
the treatment of the protein conformation problem in terms of the global minimization of
nonconvex energy functions (Neumaier, 1997; Pardalos et al., 1996; Vasquez et al., 1994;
Scheraga, 1992).

This work addresses the protein folding problem, including the effects of solvation,
through the use of a deterministic global optimization algorithm. This branch-and-bound
based global optimization algorithm, known as aBB, is applicable to a large class of nonlinear
optimization problems that have twice-differentiable functions (Adjiman et al., 1997b,c,a,
1996; Androulakis et al., 1995). In the protein folding problem the objective function is
defined by the potential energy and solvation models, which are described in Section 2. The
aBB implementation is then detailed in Section 3. The approach identifies an e-global mini-
mum, along with a number of low energy conformers. Furthermore, upper and lower bounds
on the global minimum energy are obtained. In this paper, the aBB algorithm is used to
predict the solvated global minimum conformers of the naturally occurring amino acids, as

well as a selection of larger oligopeptide problems.

2 Mathematical Modeling

2.1 Protein Representation

From a chemical point of view, a protein is essentially a polymer chain composed of a
sequence of various amino acid residues connected by peptide bonds. Naturally occurring
proteins are composed of 20 different amino acid residues, where the form of the side chain
(e.g., methyl, butyl, benzoic, etc.) defines these residues. This basic structure is slightly
different only in the case of proline residues.

The repeating unit -NC*C’- connected by peptide bonds defines the backbone of the
protein. In addition, the protein possesses amino and carboxyl end groups. Covalent bond
angle requirements and interatomic forces bend and twist the chain in a characteristic way
for each protein. The protein chain “curls up” into a unique three-dimensional geometric
conformation called the folded state of the protein. It is this configuration which defines the

shape of the protein surface, as well as the specific chemically active groups present on the



surface, which in turn sets the biological functionality of the protein.

Instead of specifying the coordinate vector for all atoms in a protein molecule, one can
specify all bond lengths, covalent bond angles and dihedral angles. Under biological con-
ditions, the bond lengths and bond angles are fairly rigid and thus can be assumed to be
fixed at their equilibrium values. Using this assumption, the backbone dihedral angles fully
determine the geometric shape of the folded protein.

The names of the dihedral angles of a protein chain follow a standard nomenclature. The
dihedral angle between the normals of the planes formed by atoms C!_; N;C® and N;C*C!
respectively, is called ¢; where ¢+ — 1 and 7 are two adjacent amino acid residues. The angle
defined by the planes R;,C{*C; and C{*C}N,1 respectively, is called t; where 7 and ¢ + 1
are two adjacent amino acid residues. Also, w; is the dihedral angle defined by the planes
C{*CiNit1 and C{N;;1C7 ;. The letter x is utilized to denote the dihedral angles which are
associated with the side groups R;. Finally, the letter # is used to name the dihedral angles

associated with the two end groups.

2.2 Potential Energy Model

In reality, the dynamics of atoms in a molecule are governed by the quantum theory of its
participating electrons. Using the Born-Oppenheimer approximation, one can determine the
energy for fixed atomic nuclei from the smallest eigenvalue of the Hamiltonian of the electron
system. These approximations and their derivatives are calculated using ab-initio methods.
However, due to their computational complexity, such calculations are limited to extremely
small molecules.

As a result, many models have been developed using a classical description of molecules in
terms of atomic bonds and effective interactions. Some of these parameterizations of molec-
ular potential functions include ECEPP (Momany et al., 1975, 1974a,b), AMBER (Weiner
et al., 1986, 1984), CHARMM (Brooks et al., 1983), DISCOVER (Dauber-Osguthorpe et al.,
1988), GROMOS (van Groningen and Berendsen, 1987), MM3 (Allinger et al., 1989), EN-
CAD (Levitt, 1983), ECEPP/2 (Némethy et al., 1983) and ECEPP/3 (Némethy et al.,
1992). In general, these models, also known as force fields, are expressed as summations
of empirically derived potential functions, with the mathematical form of individual energy
terms based on the phenomenological nature of that term. Constants describing molecular

geometry, such as bond lengths and bond angles, are parameterized on empirical structural



information. In addition, thermodynamic data from small molecules and spectroscopic data
are used to derive the parameters describing the relative strengths of particular interatomic
interactions. In most cases, these force fields are atom centered potentials from which the
total molecular energy is computed as a sum over all pairwise interactions.

In this work, the ECEPP/3 (Empirical Conformational Energy Program for Peptides)
potential model is utilized. In this force field, it is assumed that the covalent bond lengths
and bond angles are fixed at their equilibrium values. It has been observed that variations
in bond lengths and bond angles depend mostly on short range interactions; that is, those
between the side chain and backbone of the same residue. Under this assumption, all residues
of the same type have essentially the same geometry in various proteins (Momany et al.,
1975). Therefore, a chain of any sequence can be generated using the fixed geometry specific
to each type of amino acid residue in the sequence.

Based on these approximations, the conformation is only a function of the dihedral angles.
That is, ECEPP/3 accounts for energy interaction terms which can be expressed solely in
terms of the dihedral angles. The total conformational energy is calculated as the sum of
the electrostatic, nonbonded, hydrogen bonded, and torsional contributions. There is also a
pseudo—potential for loop closing if the polypeptide contains two or more sulfur-containing
residues. More recent work by includes a revised treatment of prolyl and hydroxyprolyl
residues (Némethy et al., 1992). For each prolyl or hydroxyprolyl residue contained in the
polypeptide a fixed internal conformational energy for the pyrolidine ring is added. The main
energy contributions (electrostatic, nonbonded, hydrogen bonded) are computed as the sum
of terms for each atom pair (i,j) whose interatomic distance is a function of at least one
dihedral angle. The contributing terms to the total potential energy of ECEPP/3 are shown
in Figure 1, and the development of the appropriate parameters is discussed and reported
in ECEPP/3 (Némethy et al., 1992).

2.3 Solvation Models

A complete description of the total energy of a polypeptide must also include its interactions
with the solvent. Explicit methods can be used by actually surrounding the polypeptide
with solvent molecules and calculating solvent-peptide and solvent-solvent interactions us-
ing potentials similar to those previously described. Although these methods are conceptu-

ally simple, explicit inclusion of solvent molecules greatly increases the computational time
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Figure 1: Potential energy terms in ECEPP/3 force field. r;; refers to the interatomic
distance of the atomic pair (ij). @; and @), are dipole parameters for the respective atoms,
in which the dielectric constant of 2 has been incorporated. Fj; is set equal to 0.5 for 1-4
interactions and 1.0 for 1-5 and higher interactions. A;;, Cjj, A;j and B;; are nonbonded
and hydrogen bonded parameters specific to the atomic pair. E,; and E,; are parameters
corresponding to torsional barrier energies for a given dihedral angle. 6 represents any
dihedral angle, while x; refers to those dihedral angles involved in cystine loop—closing. ¢, and
c; take the values -1,1, and n; and n; refer to the symmetry type for the particular dihedral
angle. The cystine loop—closing term is calculated as a penalty term of three distances
involved in loop—closing, where r; represents the actual distance and r;, represents the
required distance. B;, the penalty parameter, is set equal to 100. Finally, E, is a fixed

internal energy that is added for each proline residue in the protein.



needed to simulate the polypeptide system. Therefore, most simulations of this type are lim-
ited to restricted conformational searches. In addition, the interactions between the protein
molecule and the surrounding water molecules are not fixed for a given peptide configuration.
In reality, a large number of solvent configurations must be considered, and the free energy
can then be calculated by averaging over these configurations.

Simpler methods for estimating solvent free energies have been developed using both
integral equations and continuum models. Integral equation methods can be used to evaluate
solvent structure and thermodynamic properties. Typically, molecular dynamics and Monte
Carlo simulations are used to calculate ensemble averages from which free energy differences
can be obtained. A number of methods have been proposed to estimate these solvation free
energies from simulations based on molecular dynamics and Monte Carlo averages (Dejaegere
and Karplus, 1996; Kollman, 1993; Straatsma and McCammon, 1992). The integral equation
method has also been used to analyze the solvent structure of a protein system (Kitao
et al., 1993). In contrast, continuum models use a simplified representation of the solvent
environment by neglecting the molecular nature of the water molecules. Calculations of
solvation free energies using electrostatic continuum models rely on numerical solutions to
the Poisson-Boltzmann equation from which dielectric and ionic strength effects are obtained
(Honig et al., 1993). Other continuum models estimate free energies of solvation as a function
of surface areas and volumes.

In this work, solvation contributions are included implicitly using empirical correlations
with both surface area and volume. The main assumption of these models is that, for each
functional group of the peptide, a hydration free energy can be calculated from an averaged
free energy of interaction of the group with a layer of solvent known as the hydration shell.
In addition, the total free energy of hydration is expressed as a sum of the free energies of
hydration for each of the functional groups of the peptide, that is, an additive relationship

i1s assumed.

2.3.1 MSEED — Accessible Surface Area Model

Accessible surface area methods assume that the free energy of hydration is proportional to

the solvent—accessible surface area of the peptide, as described by the following equation:

N

Egyp = Y (Ai)(0i) (1)
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In Equation (1), an additive relationship for N individual functional groups is assumed.
(A;) represents the solvent—accessible surface area for the functional group, and (o;) is an
empirically derived free energy density parameter.

There are a number of ways to define the surface of a peptide. In developing these
surfaces the peptide is represented by a union of spheres, with the radii of the spheres set by
the van der Waals radii of the constituent atoms. A spherical test probe is then rolled over
these spheres, thereby tracing out a surface. The molecular surface is set by direct contact
between the probe sphere and the peptide spheres. In areas where the probe cannot make
direct contact, the closest part of the probe is used. The solvent—accessible surface is defined
by the surface traced by the center of the probe as the probe rolls over the peptide spheres.
Of course, these areas depend on the radius of the probe sphere; when this radius is set
to zero both the molecular and solvent—accessible surface areas become the van der Waals
surface of the peptide.

In this work, solvent—accessible surface areas are calculated using the MSEED (Perrot
et al., 1992) program, which employs algorithms developed by Connolly (Connolly, 1983).
MSEED eliminates many unnecessary computations by considering only those convex faces
that are on the accessible surface. Rigorous implementation of Connolly’s method requires
the calculation of interior surface areas, which are ultimately found to be zero. A full
description of the MSEED algorithm is given by (Perrot et al., 1992). A number of other
methods for calculating surface areas are also available (von Freyberg and Braun, 1993;
Eisenhaber et al., 1995; Eisenhaber and Argos, 1993).

There are some limitations to these surface area calculations. Each convex face on the
surface is defined by the points of intersections for three spheres and by the set of arcs of
intersecting circles for two spheres. These points and arcs define a curvilinear polygon on the
surface of one sphere, and only contiguous polygons are included in the accessible surface
area of the peptide. However, in searching for surface accessible polygons MSEED uses
points of intersection of three spheres (vertices). Obviously, in the case of two intersecting
spheres or a completely free sphere MSEED will not include this solvent—accessible surface
area. It will also not search domains connected by only two overlapping spheres. This could
be overcome by using multiple starting points to search for other domains. Despite these
limitations, it was found that for water, with an effective probe sphere of 1.4 A, the error in
calculating the solvent-accessible area is less than 2 % for a number of test problems (Perrot
et al., 1992).



Another problem may occur during minimization of the total energy. Specifically, due
to conformational changes during minimization, the area of each atomic surface changes
continuously but the gradients may have discontinuities. This occurs when a new vertex or
edge appears on the surface. If the discontinuity is large, minimization techniques requiring
gradients may fail to converge to the local minimum conformation. A full description of all
the situations in which the gradient of the molecular surface area becomes discontinuous has
been reported (Wawak et al., 1994).

Once the solvent—accessible surface areas have been calculated, these values must be mul-
tiplied by the appropriate (o;) parameters as shown in Equation (1). There are a number of
models available, including JRF, OONS, SRFOPT, which provide estimates for these param-
eters based on interactions between water and the functional groups of peptides. It has been
shown that minimum energy solvated conformations predicted by the JRF model provided
the best correspondence to native (crystallographic) structures when compared with other
models (Williams et al., 1992). These parameters were derived from NMR studies of low
energy solvated configurations of 13 tetrapeptides. An ensemble of low energy structures for
these tetrapeptides was also developed using the ECEPP/2 potential function, and a non-
linear least—squares system was optimized for the best set of atomic solvation parameters.
Because it was developed from minimum energy conformations of peptides, the JRF param-
eter set has been shown to produce undesirable perturbations during local minimizations
if the solvation energy contributions are added at every iteration. Therefore, the surface-
accessible solvation energies are only included at local minimum conformations. The JRF
parameters and atomic radii used in computing solvation energies with the MSEED model

are given in Table 1.

2.3.2 RRIGS — Accessible Volume Shell Model

In these models, the free energy of hydration is assumed to be proportional to the water—
accessible volume of a hydration layer surrounding the peptide. This can be represented in
a form very similar to Equation (1):

N

Euyp = Y _(VHS:)(5) (2)

=1

An additive relationship for the N individual atoms of the peptide is assumed, and (VHS;)
represents the solvent—accessible volume of hydration shell for each atom ¢ which is exposed



Table 1: JRF parameters employed in this work. The first column is the atom type. The
JRF solvation parameters in the second column are given in cal/(mol A?), and the last

column corresponds to atomic radii (A).

Atom Type JRF Radii
C C,, CH, CH,, CH; 216 2.00
C carboxyl, carbonyl -732  1.55
C aromatic -678  1.75
N all -312 1.55
O carboxyl, carbonyl -262 140
O other (e.g., hydroxyl) || -910  1.40
S all -281  2.00

to water. Finally, the (d;) are empirically determined free energy of hydration densities for
these atoms.

The hydration shell is defined by the volume inside a sphere of radius R but outside a
sphere of radius R?, with both radii centered on atom i. The larger radius, R?, corresponds
to the radius of the first hydration shell of atom i, while R} is equal to the van der Waals
radius. In order to calculate (VHS;), the volume of a collection of overlapping hard spheres
must be computed using:

VR) = Y aiSi = > bijDij + Y cijiTijr — D dijiiQijr (3)
i ij ijk ijkl
In Equation (3), S; signifies the volume of a single sphere, while D;;, Ty and Q;jx represent
the volume of intersection of two, three and four spheres, respectively. This is sufficient
because all higher order overlaps can be decomposed into the three types of intersections
included in Equation (3). Therefore, the solvent—accessible volume of hydration can be
written as:

(VHS;) = V(R}) = V(R]) (4)

The first term in Equation (4) is calculated using Equation (3) with the radii of all atoms set
equal to their van der Waals radii, while the second term is calculated with the radius of atom
i equal to R! and the van der Waals radii of all the other atoms. Although the calculation
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of the (VHS;) is explicit, the form of Equation (3) is not suitable for force field models using
pairwise intramolecular potential, such as ECEPP/3. Furthermore, direct truncation at the
double—-overlap term would lead to large errors.

In this work, the RRIGS (Reduced Radius Independent Gaussian Sphere) approximation
is used to efficiently calculate the exposed volume of the hydration shell (Augspurger and
Scheraga, 1996). This method uses a truncated form of Equation (3) but also artificially
reduces the van der Waals radii of all atoms other than atom i when calculating (VHS;).
These reductions effectively decrease the contribution of the double overlap terms, leading
to a cancellation of the error which results from neglecting the triple and higher overlap
terms. In addition, the characteristic density of being inside the overlap volume of two
intersecting spheres is not represented as a step function, but as a Gaussian function which
provides continuous derivatives of the hydration potential. Therefore, the solvation energy
contributions can easily be added at every step of local minimizations.

The reduced van der Waals radii are fixed and do not need to be recalculated for every
configuration because the fixed geometry assumption was used (as in ECEPP/3). The
contribution of covalently bonded atoms to (VHS;) is also fixed because of these assumptions.
Therefore, the RRIGS approximation has the same set of interactions as the ECEPP/3
potential. Finally, using the exact (VHS;) expressions, values for the empirical free energy
densities, (d;), were developed by a least square fitting of experimental free energy of solvation
data for 140 small organic molecules (Augspurger and Scheraga, 1996). The empirical free
energy density of solvation parameters and the corresponding van der Waals and hydration

radii are given in Table 2.

3 Global Optimization

The energy minimization problem can be formulated as a nonconvex nonlinear optimization
problem. Let ¢ = 1,..., Nggs be an indexed set describing the sequence of amino acid
residues in the peptide chain. There are ¢;, v, w;, ¢ = 1,..., Nggg dihedral angles along the
backbone of this peptide. In addition, let £ = 1,..., K* denote the dihedral angles of the
side chains for the i"* residue and j = 1,..., JV denote the dihedral angles of the amino end
group and j = 1,...,J¢ of the carboxyl end group, respectively. Therefore, these angles
can be defined in following manner : x¥, i =1,..., Nggs, k = 1,..., K* for the side chain
dihedral angles; Y, j =1,...,J" and 6, j = 1,...,J for the amino and carboxyl end

11



Table 2: Free energy density of solvation parameters employed in the RRIGS solvation
model. The first column describes the atom type, and the second column provides the
solvation parameters in cal/(mol A?). The last two columns correspond to the van der
Waals and hydration radii (A), respectively.

Atom Type 0 R’ Rh
H hydroxyl, amino -10.35  1.415 4.17
H acid -3.206 1.415 4.17
H amide -7.714  1.415 4.7
H thiol 2709  1.415 4.17
C aliphatic CHj 1.319 2125 5.35
C aliphatic CH, 0.2374 2.225 5.35
C aliphatic CH -1.271 2.375 5.35
C other aliphatic -2.297  2.060 5.35
C cyclic CH 0.2890 2.375 5.35
C aromatic CH -0.2137 2.100 5.35
C aromatic CR -1.713  1.850 5.35
C branched aromatic C | -1.910 1.850 5.35
C aromatic COH -0.6063 1.850 5.35
C carbonyl 2.696 1.870 5.35
N primary amine -1.149  1.755 5.05
N secondary amine -10.28 1.755 5.05
N aromatic -10.48 1.755 5.05
N amide -7.332 1.755 5.05
O hydroxyl, ether -7.396  1.620 4.95
O acid, ester 0.07897 1.620 4.95
O ketone, carbonyl -15.70  1.560 4.95
O acid, amide carbonyl | -15.56 1.560 4.95
S thiol, disulfide -4.706  2.075 5.37
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group dihedral angles, respectively. Using these definitions the optimization problem takes
the following form:

min E (¢, ¥, wi, X5, 9§va GJC) (5)
subject to —7m < ¢ < 7w, i=1,...,Nggs

-1 < ¥ <@, i=1,...,Nggs

—Tr S w; S T, Z:l, --;NRES

—T S X']L?Sﬂ-a 7’:1: "aNRESakzl,""Kz'

- < 0;.\7 <m j=1...,Jn

C L
-1 < 6’j <m j=1,...,Jc

In general, E represents the total potential energy function and the free energy of solvation.
For accessible volume shell hydration (RRIGS) this is the exact formulation because both
energetic and gradient contributions can be added at each step of the minimization. However,
in the case of surface—accessible hydration (MSEED and JRF parameters), the potential
energy function is minimized before adding the hydration energy contributions. In other
words, gradient contributions from solvation are not considered (see Section 2.3.1). This

approach is represented by the following equation:
ETotal - E%I?:LOI + ESOl (6)

Even after reducing this optimization problem to a function of internal variables (dihe-
dral angles), the multidimensional surface that describes the energy function has an astro-
nomically large number of local minima. This has become known as the multiple-minima
problem. In addition, evaluation of the potential, especially with the addition of solvation,
is computationally expensive, which makes even local minimization slow. Because the ob-
jective function has many local minima, using local optimization techniques depends on the
initial points selected. Therefore, global optimization algorithms are needed to effectively
locate the global minimum corresponding to the native state of the protein. A large number
of techniques have been developed to search this nonconvex conformational space. Many
methods employ stochastic search procedures, while others rely on simplifications of the po-
tential model and/or mathematical transformations. In addition, the use of statistical and/or
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heuristic conformational information is often required. In general, the major limitation is
that these methods depend heavily on the supplied initial conformation. As a result, many
initial points are necessary to search the conformational space, and there is also no guarantee
for global convergence because large sections of the domain space may be overlooked.

In this work, the global optimization approach aBB has been extended to identifying
global minimum energy conformations of solvated peptides. The development of this branch
and bound method was motivated by the need for an algorithm that could guarantee conver-
gence to the global minimum of nonlinear optimization problems with twice-differentiable
functions (Floudas, 1997). The application of this algorithm to the minimization of potential
energy functions was first introduced for microclusters (Maranas and Floudas, 1993, 1992),
and small acyclic molecules (Maranas and Floudas, 1994a,b). The aBB approach has also
been extended to constrained optimization problems (Adjiman et al., 1997c,a, 1996; An-
droulakis et al., 1995). In more recent work, the algorithm has been shown to be successful
for isolated peptide systems using the realistic ECEPP/3 potential energy model (Maranas
et al., 1996; Androulakis et al., 1997).

3.1 Minimization of Potential Energy using BB

The aBB global optimization algorithm effectively brackets the global minimum solution
by developing converging lower and upper bounds. These bounds are refined by iteratively
partitioning the initial domain. Upper bounds on the global minimum are obtained by
local minimizations of the original energy function, E. Lower bounds belong to the set of
solutions of the convex lower bounding functions, which are constructed by augmenting E
with the addition of separable quadratic terms. The lower bounding function (L) of the

energy hypersurface can be expressed in the following manner:

NrEs

L=E+{ Y ap(eF—a)(sV—oi)+ (7)
=1
NRrEs

Y (%L - ¢z’) (1/11[] - %’) +
i=1
NRrEs

z Qi (wZL — wi) (wZU — w,-) +

=1
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Here wl,xi 077,077 and o WP wl, xi?", 0", 07" represent lower and upper

bounds on the dihedral angles ¢;, v;,ws, xF, 07, 65. The o represent nonnegative parameters
which must be greater or equal to the negative one—half of the minimum eigenvalue of the
Hessian of E over the defined domain. These parameters can be estimated by the solution
of an optimization problem or by using the concept of the measure of a matrix (Adjiman
et al., 1997b,c; Adjiman and Floudas, 1996; Maranas and Floudas, 1994a). The overall effect
of these terms is to overpower the nonconvexities of the original nonconvex terms by adding
the value of 2« to the eigenvalues of the Hessian of E. The convex lower bounding functions,

L, possesses a number of important properties which guarantee global convergence (Maranas
and Floudas, 1994b):

(i) L is a valid underestimator of E;
(ii) L matches E at all corner points of the box constraints;
(iii) L is convex in the current box constraints;

(iv) the maximum separation between L and E is bounded and proportional to o and to
square of the diagonal of the current box constraints. This property ensures that an
¢s feasibility and e, convergence tolerances can be reached for a finite size partition

element;

(v) the underestimators L constructed over supersets of the current set are always less
tight than the underestimator constructed over the current box constraints for every

point within the current box constraints.

Once solutions for the upper and lower bounding problems have been established, the
next step is to modify these problems for the next iteration. This is accomplished by suc-
cessively partitioning the initial domain into smaller subdomains. The default partitioning
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strategy used in the algorithm involves successive subdivision of the original hyper-rectangle
by halving on the midpoint of the longest side (bisection). In order to ensure non-decreasing
lower bounds, the hyper-rectangle to be bisected is chosen by selecting the region which
contains the infimum of the minima of lower bounds. A non-increasing sequence for the
upper bound is found by solving the nonconvex problem, E; locally and selecting it to be the
minimum over all the previously recorded upper bounds. Obviously, if the single minimum
of E for any hyper-rectangle is greater than the current upper bound, this hyper-rectangle
can be discarded because the global minimum cannot be within this subdomain (fathoming
step).

The computational requirement of the BB algorithm depends on the number of variables
(global) on which branching occurs. Therefore, these global variables need to be chosen
carefully. Obviously, in a qualitative sense, the branching variables should correspond to
those variables which substantially influence the nonconvexity of the surface and the location
of the global minimum. With this in mind, principles have been developed to help identify
the important variables (Adjiman et al., 1997c,a, 1996).

In terms of the protein folding problem, it is generally accepted that the back-bone
dihedral angles (¢ and 1) are the most influential variables. Therefore, in larger problems
involving oligopeptides, the global variable set includes only the ¢ and 1) variables. In this
formulation, the dihedral angles associated with the peptide bond (w) and the side chains
(x) are treated as local variables.

3.2 Algorithmic Description

The determination of the global minimum energy conformation, and thus the native confor-
mation, for a given peptide using aBB requires the interfacing of several programs: aBB,
PACK (Scheraga, 1996), NPSOL (Gill et al., 1986) and the potential and solvation energy
modules. PACK, a peptide generation program, is called once directly by aBB in order to ini-
tialize the current problem. In subsequent steps PACK is called through NPSOL (Gill et al.,
1986), a local nonlinear optimization solver used to solve both the upper and lower bounding
problems. PACK internally transforms to and from Cartesian and internal coordinate sys-
tems, and provides potential energy and gradient contributions for the ECEPP /3 potential
model at every step of the local minimizations. When considering surface—accessible solva-

tion, surface—areas, and thus the JRF solvation energy, are calculated using MSEED (Perrot
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et al., 1992). This module is called from aBB, through PACK, once a local minimum has
been found. The accessible volume shell model for solvation, RRIGS (Augspurger and Scher-
aga, 1996), which has been interfaced with PACK, is also called from aBB through PACK.
In this case solvation energy and gradient contributions are provided at every step of the

local minimizations. Finally, an additional module, UBC (Upper Bound Check), is used to

verify the quality of the upper bound solutions. The overall interface is shown schematically

in Figure 2.

The basic steps of the algorithm are as follows:

(1) The initial best upper bound is set to an arbitrarily large value (e.g., +00). The original

(2)

(3)

(4)

domain is partitioned (e.g., bisection) along one of the global variables.

A convex function (L) is constructed in each hyper-rectangle and minimized using
NPSOL, with calls (through PACK) to both ECEPP/3 and one of the two solvation
modules. For the accessible volume shell model, both ECEPP/3 and RRIGS energy
and gradient contributions are provided at every step of the local minimizations. In
the case of surface—accessible solvation, the MSEED hydration energy is added only
at the corresponding minima. If a solution is greater than the best upper bound the
entire subregion can be fathomed, otherwise the solution is stored.

The local minima solutions for L are used as initial starting points for local mini-
mizations of the upper bounding function (E) in each hyper-rectangle. Again, the
appropriate calls are made to PACK and the potential and solvation energy mod-
ules. In solving the upper bounding problems, all variable bounds are expanded to
[-180,180]. These solutions are upper bounds on the global minimum solution in each

hyper-rectangle.

The current best upper bound is updated to be the minimum of those thus far stored.
If a new upper bound (from step 3) is selected, the upper bound check, UBC, module
is called. UBC checks that the absolute value of each gradient in the objective function
gradient vector is below a specified tolerance (kcal/mol/deg). If a gradient does not
satisfy this check the corresponding variable bounds are incrementally increased and
the problem is resolved with the previous point used as the initial starting point. This
process is repeated until the gradient constraints are satisfied or an iteration limit

is exceeded. UBC also employs algorithms to calculate the second derivative matrix
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Figure 2: Interface for global optimization
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(Noguti and Go, 1983) which is used to verify that the upper bound solution is a
local minimum, that is the Hessian matrix is positive semi-definite. If the matrix is
not positive semi-definite or the gradient checks are not satisfied, the upper bound
solution is rejected.

(5) The hyper-rectangle with the current minimum value for L is selected and partitioned
along one of the global variables.

(6) If the best upper and lower bounds are within € the program will terminate, otherwise
it will return to Step 2.

3.3 Probability-Based Partitioning

In the original problem formulation the dihedral angles were allowed to vary over the en-
tire [—m, 7] domain. However, as the issue of unsolvated oligopeptide conformations was
addressed, it was found that the problem required more intensive computational effort (An-
droulakis et al., 1997). Therefore, a reduction of the domain space was proposed based on
dihedral angle distributions. Obviously, for the algorithm to be successful these reductions
must not exclude the region of the global minimum conformation.

The analysis of ¢,1) space of amino acids was first proposed by (Ramachandran and
Saisekharan, 1968). Using a hard—sphere potential model, plots of allowable ¢,1) space exhibit
similar patterns for all naturally occurring amino acids. Similar results were obtained when
considering low energy amino acid conformations using the ECEPP/3 force—field (Vasquez
et al., 1983). In order to extend this analysis to polypeptide conformations, ¢,i plots were
also obtained using experimentally obtained conformational data of polypeptides (Lambert
and Scheraga, 1989). The results were similar to the original Ramachandran plots, but
the plots also identified reduced subdomains which in turn identified specific patterns of
polypeptide configurations.

A similar approach was followed when defining reduced subdomains for the initialization
of the aBB algorithm (Androulakis et al., 1997). Specifically, an analysis of 98 proteins
from the Brookhaven X-ray data bank provided dihedral angle distributions in the form of
histograms from —7 to 7 for each dihedral angle of each of the naturally occurring amino
acids. Based on these one—dimensional distributions, a number of reduced multi—-dimensional

domains were identified.
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Table 3: Bounds on dihedral angles. 1: The ¢ value for the down puckering of proline that
ECEPP/3 uses is -68.8

Res ¢ (0 w X1 X2 X3 X4
Ala | -180,-50 -75,-25 160, 200 -180, 180

-180,-50 50,175 160, 200 -180, 180

Gly || -180,-30 -180,0 160,200

30,180 0,180

Leu | -180,-50 -75,50 160,200 -180,180 -180,180 -180,180 -180,180
50,175

Tyr -180,0  -75,50 160,200 -180,180 -180,180 -180,180
50,175

Met || -180,-50 -75,50 160,200 -180,180 -180,180 -180,180 -180,180
50,175

Phe | -180,-50 -75,50 160,200 -180,180 -180,180
50,175

Pro | -68.8'  -75,0 160, 200
150,200 160, 200
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Based on this procedure, a set of reduced domains can be defined for every dihedral
angle of every residue in the oligopeptide sequence. The original optimization problem can

be reformulated as:

min E(¢i, i, wi, X5, ‘95\], 9]0) (8)
subject to ¢; € q)i¢, ’i¢:1,...,Ni¢, 1=1,..., Nggs

v, € \I/Zu(p, ’iwIl,...,Nw, 1=1,..., Nrgs

wi € i, tw=1,..., N, 1=1,..., Nrgs

xf € Xk, i =1,...Nf,i=1,... Nggs, k=1,.... K’

AR O, =1, .. N, i=1,...,Jx
07 € O, j§=1,....Njo, j=1,...,Jc

Here ®;4, ¥y, in,XikX define the reduced subdomains of each dihedral angle for residue i.
The number of subdomains are indicated by N4, Ny, Niw, Ni’;. The allowable dihedral angles

for each residue must belong to one of the following domains:

_ k
Dji = (I)i¢X\I/i¢XinXXiX (9)
ji = 1,...,N
Ni = |ig|[ Vi ||| X5

Using these definitions, the total number of initial domains is given by:

NrEs
N = ( H1 Ni)‘@jg“@jﬂ (10)
i=
These domains correspond to the Cartesian products of all the sub-domains Dj;, ji =
1,...,N;. The reduced domains for the residues in the studied oligopeptides, namely met—
enkephalin, leu—enkephalin, Ac-Ala,—Pro-NHMe, and decaglycine are defined in Table 3.
For example, the partitioning for met—enkephalin results in 128 subdomains. Each of these
domains is included in the BB implementation.
This approach maintains the guarantee of global optimality over the considered search
space of the reduced domains, and is deterministic in those subdomains that possess convex
underestimators. In addition, all variable bounds are expanded to the [-180,180] when solving
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the upper bounding problem. Although the initial point of an upper bounding minimization
is restricted to the search space of the corresponding lower bounding problem, the solution

may lie outside the original subdomain.

4 Computational Studies

The proposed approach was first tested on the set of 20 uncharged, naturally occurring
residues. A number of oligopeptides, including Ac—Ala,—Pro-NHMe, met—enkephalin, leu—
enkephalin, and decaglycine, were then tested using the partitioning scheme of Section 3.3.

In these cases, the effects of both hydration models are reported.

4.1 Terminally—-Blocked Residues

The single residue examples were defined as terminally blocked by using acetyl (amino)
and methyl (carboxyl) end groups. All dihedral angles were treated as global variables,
excluding the three # angles of the end groups. The relative convergence was set to 1072,
and the computational requirements are reported in seconds for a HP-C110. The results for
MSEED and RRIGS are summarized in Tables 4 and 5, respectively.

A comparison of computational efficiency indicates that the number of required iterations
and overall computational times are generally similar for both models. One would expect
the overall computational effort for the RRIGS model to be greater than for the MSEED
model because function and gradient evaluations are used at each step of local minimization.
However, because the MSEED solvation energy is added only at local minima, the UBC
routine is performed for all upper bound solutions within 10 kcal/mol of the current best
upper bound. In the RRIGS model the UBC is performed only for those upper bounds that
are new candidates for the best upper bound. This results in a increase in the average CPU
time required for each iteration, especially for the smaller residues. As the residues become
larger, and the number of total iterations increase, the computational effort (overall CPU
times and CPU /iter) of the two methods are similar.

For a number of residues, the MSEED global minimum solutions listed in Table 4 possess
w angles in the range of [-30,30] with the corresponding ¢ and 1 angles near the [-150,80]
region. Additional results in which the w angles were constrained to the range of [160,200],

are presented in Table 6. In all cases, with the exception of serine, this constraint led to
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Table 4: Global minimum energies of terminally blocked peptides using the MSEED solva-
tion model. The amino end group is specified as N-Acetyl-amino; the carboxyl end group
is specified as Carboxyl - CONHCHj3. The total energy, Eror, is provided along with the
contributions from hydration, Egyp, nonbonded interactions (including hydrogen bonding),

En s, electrostatic interactions, Erg, and torsion, Ergg.

Residue | #£ DA Eror | Egvp | Enxs Ezs | Eror | Iter | CPU
Pro 5 28.48 4798 | -4.48 | -15.36 | 0.34 22 8.0
Gly 6 15.99 14.29 | 3.01 | -1.54 | 0.23 37 9.1
Ala 7 29.71 24.81 | 2.36 | -0.24| 2.78 82 | 23.7
Cys 7 0.26 -4.22 | 251 | -0.21 | 2.18 | 105| 32.6
His 8 -50.22 | -42.99 | -6.87 | -0.46 | 0.10| 109 | 60.0
Phe 8 -83.47 | -86.53 | 0.12 | -0.82| 3.76 | 155 | 93.8
Ser 8 -5.72 -9.62 | 268 | -1.39| 261 | 315| 984
Trp 8 -105.88 | -98.00 | -7.91 0.03 | 0.00| 193 | 145.5
Asn 9 -20.76 | -20.86 | 8.13 | -16.55 | 8.52 | 412 | 170.1
Asp 9 -41.14 | -31.91 | 2.31 | -12.95| 1.41 | 342 | 133.8
Thr 9 6.56 282 0.31| -2.16 | 5.59 | 387 | 173.0
Tyr 9 -102.43 | -105.52 | 1.02 | -1.43 | 3.50 | 425 | 254.7
Val 9 46.54 39.84 | 2.53 | -0.86| 5.03| 505 | 221.0
Gln 10 -13.89 -6.55 | 1.93 | -12.69 | 3.42| 437 | 237.0
Glu 10 -33.55 | -19.61 | -5.18 | -8.93 | 0.17| 402 | 230.4
Ile 10 53.61 56.15 | -2.80 | -0.52 | 0.78 | 458 | 279.7
Leu 10 47.62 29.61 | 8.37| -0.54| 10.18 | 526 | 301.5
Met 10 26.33 21.35 | 2.10| -1.61| 4.49| 457 | 251.0
Lys 11 26.65 22.85 | 0.40 | -1.45| 4.85| 534 | 379.1
Arg 13 -34.88 -4.57 1 -6.12 | -24.39 | 0.20 | 535 | 473.9

23



Table 5: Global minimum energies of terminally blocked peptides using the RRIGS solva-
tion model. The amino end group is specified as N-Acetyl-amino; the carboxyl end group
is specified as Carboxyl - CONHCHj3. The total energy, Eror, is provided along with the
contributions from hydration, Eyy p, nonbonded interactions (including hydrogen bonding),
EnB, electrostatic interactions, Egg, and torsion, Ergg.

Residue | # DA | Eror | Egyp | Ens Egs | Eror | Iter | CPU
Pro ) -32.76 | -12.96 | -3.73 | -16.47 | 0.40 16 2.8
Gly 6 -22.46 | -16.14 | -3.71 | -2.62 | 0.01 73 8.8
Ala 7 -20.82 | -15.64 | -3.92 | -1.28 | 0.02 | 124 | 194
Cys 7 -23.51 | -17.67 | -4.66 | -1.21 | 0.03 | 143 | 26.3
His 8 -34.47 | -25.57 | -6.78 | -2.21 | 0.09 | 183 | 59,9
Phe 8 -24.72 | -16.55 | -7.23 | -0.94 | 0.00 | 248 | 108.9
Ser 8 -28.32 | -20.47 | -5.40 | -2.49 | 0.04| 253 | 58.1
Trp 8 -31.48 | -21.92 | -8.99 | -0.59 | 0.02 | 239 | 112.5
Asn 9 -49.07 | -26.47 | -5.16 | -17.47 | 0.03 | 241 78.5
Asp 9 -39.96 | -20.94 | -6.29 | -12.74 | 0.01 | 298 | 96.23
Thr 9 -29.18 | -19.59 | -5.74 | -4.19 | 0.34 | 324 | 116.0
Tyr 9 -30.11 | -21.90 | -6.65 | -1.57 | 0.01 | 297 | 133.9
Val 9 -18.92 | -14.74 | -3.11 | -1.16 | 0.09 | 271 | 109.9
Gln 10 -46.49 | -27.70 | -5.38 | -13.49 | 0.08 | 373 | 173.1
Glu 10 -36.11 | -20.92 | -5.42 | -9.85| 0.08 | 337 | 138.5
Ile 10 -17.11 | -14.57 | -2.80 | -0.52 | 0.78 | 345 | 162.0
Leu 10 -20.22 | -14.53 | -4.16 | -1.88 | 0.35 | 530 | 223.5
Met 10 -23.93 | -17.02 | -4.62 | -2.40 | 0.11 | 510 | 210.3
Lys 11 -28.15 | -20.17 | -5.91 | -2.17 | 0.10 | 572 | 365.9
Arg 13 -63.84 | -32.38 | -6.21 | -25.36 | 0.11 | 602 | 544.8
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Table 6: Local minimum energies of terminally blocked peptides using the MSEED solvation
model with constrained w bounds [160,200]. The amino end group is specified as N—Acetyl—
amino; the carboxyl end group is specified as Carboxyl-CONHCHj3. The total energy, Eror,
is provided along with the contributions from hydration, Egxyp, nonbonded interactions

(including hydrogen bonding), Eyp, electrostatic interactions, Egg, and torsion, Eror.

Residue | # DA | Eror | Egyvp | Eng | Egs | Eror
Ala 7 3297 | 37.44 | -4.00 | -0.47 0.00
Cys 7 2.34 7.27 | -5.17 0.24 0.00
Ser 8 -4.75 |1 -11.02 | 0.69 | -0.28 5.86
Asn 9 -19.13 3.43 | -6.13 | -16.43 0.00
Asp 9 -39.35 | -20.76 | -6.13 | -12.47 0.01
Val 9 46.71 | 50.62 | -3.26 | -0.77 0.12
Gln 10 -13.51 4.20 | -5.17 | -12.74 0.20
Leu 10 49.68 | 41.57 | 1.58 | -0.66 7.19
Met 10 27.04 | 32.32 | -4.41| -1.65 0.78
Lys 11 26.96 | 33.71 | -5.51 | -1.34 0.10
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increases in solvation energies and decreases in potential energy terms while the structures
became either F-sheet-like or a—helical. Without exception the w angles for the RRIGS
global minimum energy solutions in Table 5 were within the [160,200] range. The remaining
analysis in this section refers to the constrained (w) minima. This is appropriate not only in
comparing the MSEED and RRIGS results, but it also makes the analysis relevant for the
oligopeptide studies because the same w bounds are used.

The disparate results of the two solvation models are more clearly evaluated in Table 7.
AEFPOT refers to the change in potential energy of the MSEED and RRIGS global minimum
solutions. This difference is positive in all cases, which indicates that the potential energy of
the RRIGS structure is always lower and provides more stabilization at the global minimum
solution. For five peptides, namely phenylalanine, serine, threonine, tyrosine and leucine,
the MSEED potential energy is more than 10 kcal/mole less stabilizing. The response of
AEHYD which refers to the change in hydration energy of the MSEED and RRIGS global
minimum solutions, is more varied. This difference is also positive for most examples, which
again indicates that the hydration energy of the RRIGS structure is lower. However, AE#YD
is negative for four examples, namely histidine, phenylalanine, tryptophan and tyrosine. Ex-
cluding the special case of proline, these four residues correspond to the naturally occurring
residues which possess ringed side chain structures. The indole, aromatic side chain of
tryptophan is the largest side chain of proteins, and this residue provides the second most
negative value (-76.08 kcal/mole) for AE#YP  The other two aromatic residues, tyrosine
and phenylalanine, have AE#Y? of -83.62 and -69.98 kcal /mole, respectively. The imidazole
ring of histidine provides the least negative AEZYP of the four residues, with a value of
-17.42 kcal/mole. Other trends are also apparent. The most positive AE#YP values are
provided by the aliphatic residues; that is, isoleucine, valine, leucine and alanine have values
of 70.72, 65.36, 56.10 and 53.08 kcal/mole respectively. The acidic residues, glutamic and
aspartic acid, have comparable values of AE#Y? (1.31 and 0.18 kcal/mole, respectively). In
addition, the AE#YP for the amide forms of these residues, glutamine and asparagine, are
also comparable (31.90 and 29.90 kcal/mole, respectively).

A more detailed analysis was performed by calculating adiabatically relaxed ¢— maps.
The maps for N-acetyl-N’-methyl-alanineamide are shown in Figures 3-5. The adiabatic
curves define regions within a given energy of the global minimum value. The first map
corresponds to an adiabatically relaxed map for the unsolvated peptides. This was calculated

by fixing the ¢ and 1) angles at 3 degree increments and using the NPSOL local minimization
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Table 7: Comparison of unsolvated and hydration components for MSEED and RRIGS

global minimum solutions of terminally blocked peptides. AEFOT = EPQL, . - EEOT. . and

HYD _ pHYD HYD : . :
AE = Eyiseep - Eriics, at the corresponding global minimum solutions.

Residue | AEPOT | AEHYD
Pro 0.30 60.94
Gly 8.02 30.43
Ala 0.71 53.08
Cys 0.91 24.94
His 1.67 | -17.42
Phe 11.23 -69.98
Ser 14.12 9.45
Trp 1.68 -76.08
Asn 0.04 29.90
Asp 0.43 0.18
Thr 13.33 22.41
Tyr 11.30 -83.62
Val 0.27 65.36
Gln 1.08 31.90
Glu 1.25 1.31
Ile 0.00 70.72
Leu 13.80 56.10
Met 1.63 49.34
Lys 1.23 53.88
Arg 1.15 27.81
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Table 8: Approximate dihedral angles and nomenclature for ¢— regions.

Conformer lOR Y Protein structure
Cs -150, 150 [3-sheet
Pyr -80, 150  polyproline II
Cy -80, 80  y-turn
QR -80, -50  a-helix (right)
oy 80, 50  a-helix (left)

solver to minimize the ECEPP /3 potential energy by varying the remaining dihedral angles.
The second map was constructed by a similar procedure, although the minimized energy now
included both ECEPP/3 and the hydration free energy of the RRIGS model. In the third
case, the ECEPP/3 energy was first minimized in the absence of solvent at each point and
the map was generated by adding the solvation free energy of MSEED (JRF parameters) for
the minimized conformation.

Comparison of these maps reveals several important effects of including solvation (nota-
tion for the peptide regions are given in Table 8). Experimental data for this peptide suggests
that more than one conformation is present in solution, and NMR coupling constants indicate
a large population of conformations with -70 > ¢ > -80 (Madison and Kopple, 1980). It is
also expected that hydration weakens intrapeptide hydrogen bonding. The unsolvated map,
shown in Figure 3, indicates well defined regions for intramolecular hydrogen bonding (Cy)
and for right-handed a—helices (ag). The global minimum occurs within the C; region. The
RRIGS map (Figure 4) is strongly dominated by the ECEPP/3 potential, with the global
minimum in the C; region and a very strong ag region. However, there is a broadening of
the 3—sheet (Cs) region as well as a less distinct C; minimum. The MSEED map (Figure 5)
shows a considerable shift away from the C; minimum towards the Cs region, which contains
the global minimum. However, there is also a decreased dominance of the a region, which
contradicts the prediction of NMR coupling constants. This is also evidenced by the ¢
distribution of the global minimum energy structures for all terminally blocked peptides,

which is shown in Figure 6.
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Figure 3: Adiabatic ¢— map for unsolvated N—acetyl-N’-methyl-alanineamide. The adia-
batic curves define regions within a given energy (1, 2, 5, 9 kcal/mole) of the global minimum
value, and the (*) represents the location of the global minimum.

29



4 150

-1 100

10y

L9 44100

/’9"\——'~§_§_ //-9
5 AN Y 9'7 -150
24 | K | Il ] »

Figure 4: Adiabatic ¢— map for solvated N-acetyl-N’-methyl-alanineamide, using the
RRIGS solvation model. The adiabatic curves define regions within a given energy (1, 2, 5,

9 kcal/mole) of the global minimum value, and the (*) represents the location of the global
minimum.
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Figure 5: Adiabatic ¢— map for solvated N-acetyl-N’-methyl-alanineamide, using the
MSEED solvation model. The adiabatic curves define regions within a given energy (1, 2, 5,
9 kcal/mole) of the global minimum value, and the (*) represents the location of the global

minimum.
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Figure 6: ¢ distribution map for terminally blocked peptides. (o) identifies the location
of the MSEED global minima, w bounded by [160,200]. (z) identifies the location of the
RRIGS global minima.
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Table 9: Global minimum for Ac-Alay,~Pro-NHMe using the MSEED model for hydration.

¢ ( w X1
Ac 62.52 179.13
Ala -158.45 -56.49 173.38 51.70
Ala -155.49 -67.74 179.78 49.37
Ala -164.24 -64.18 180.10 49.42
Ala -63.63 -59.04 172.51 32.77
Pro -68.80 -23.79 177.30

NHMe | 54.50

4.2 Oligopeptides
4.2.1 N-Acetyl-N’-methylamide of Ala,—Pro

This example, which was first proposed for evaluating the performance of the ECEPP/3
force field, involves 5 residues and 21 dihedral angles. The peptide was modeled using the
acetyl terminal group (CH3CO-) on the N-terminus and the methylamide group (-NHCH3)
on the C—terminus. As described in Section 3.3 single residue patterns were considered in
partitioning the domain space, which resulted in an initial partitioning of 32 domains.

Using MSEED, a global minimum energy of 48.23 kcal/mole was located after 592 itera-
tions and 2,503 seconds (HP-C110). The structure, defined by the GGGAA conformational
code (Zimmerman et al., 1977), possessed no hydrogen bonds. That is, no potential hydro-
gen bonding pairs were closer than 2.3 A. Table 9 summarizes the values of the 21 dihedral
angles. A plot of the global minimum structure is given in Figure 7.

The RRIGS model predicted a partially right-handed a—helical conformation, with the
first three alanine residues within the A region of the ¢-1) map (Zimmerman et al., 1977).
It should be noted that the hydration free energy was more stabilizing (as compared to the
MSEED predictions), resulting in a contribution of -33.03 kcal/mole to the overall global
minimum energy of -51.88 kcal/mole. In addition, nonbonded interactions at the global
minimum provided an additional 8 kcal/mole of stabilization, when compared to MSEED
contributions at its corresponding global minimum. This is in part due to the formation of
a strong hydrogen bond (1.9 ;1) between the CO of the acetyl end group and the NH proton
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Figure 7: Plot of Ac-Ala;—Pro-NHMe conformation. Global minimum energy of 48.23
kcal /mole using the MSEED model for hydration. The structure corresponds to the confor-
mational code of GGGAA (Zimmerman et al., 1977). A C* worm is used to highlight the

backbone structure.
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Table 10: Dihedral angles at global minimum for Ac-Ala;—Pro-NHMe, using the RRIGS
model for hydration.

¢ () W X1
Ac -61.20 -178.23
Ala -71.68 -30.23 180.26 -178.39
Ala -75.26 -32.00 184.21 61.77
Ala -79.89  -40.23 184.95 -58.00
Ala -135.70  71.54 176.92  59.09
Pro -68.80 -25.20 180.10

NHMe || -60.14

of the fourth alanine residue. The algorithm required 623 iterations and 3,233 seconds (HP-
C110) to converge to the global minimum structure plotted in Figure 8. The values of the
corresponding dihedral angles are given in Table 10.

Although an experimentally derived structure does not exist for this test molecule, com-
parisons can be made between the two solvated and a previously determined unsolvated
global minimum energy structure (Androulakis et al., 1997). When considering C* carbons,
the (rms) deviation between the MSEED and unsolvated structures is calculated to be 1.429.
In contrast, the unsolvated structure, which also exhibits a distorted right-handed o helical
structure, has a (rms) deviation of only 0.096 from the RRIGS global minimum structure.
This difference is also illustrated by comparing energy contributions for the MSEED and
RRIGS global minimum structures, as given in Table 11. In addition, a number of func-
tion evaluations were performed at the global solution of the other hydration model and
the unsolvated global minimum. For both cases, the hydration energy is more stabilizing at
the MSEED solution. Although the RRIGS solution provides more stabilizing nonbonded
interactions, the change in hydration energy dominates the MSEED model. In contrast, the
difference in hydration free energies is smaller when using the RRIGS model, which causes
the large difference in nonbonded energies to set the global solution. The correspondence
between the RRIGS and unsolvated global minimum energy conformations also become ap-

parent through these function evaluations.
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Figure 8: Plot of Ac-Ala;—Pro-NHMe conformation. Global minimum energy of -51.88
kcal/mole using the RRIGS model for hydration. The structure corresponds to the confor-
mational code of AAADA (Zimmerman et al., 1977) A C* worm is used to highlight the

backbone structure.
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Table 11: Comparison of hydration energies for Ac-Ala,~Pro-NHMe. The first column refers
to the hydration model used in the function evaluations, which are performed at the global
solutions given in the second column. The total energy, Eror, is provided along with the
contributions from hydration, Egyp, nonbonded interactions (including hydrogen bonding),

En B, electrostatic interactions, Egg, and torsion, Erog.

Global of Egror Epyp Epnp Egs Eror
MSEED MSEED 48.23  52.68 -18.53 11.41 2.67
RRIGS 73.50 9235 -26.78 7.24 0.69
UNSOL 73.97 93.02 -26.70 7.01 0.64
RRIGS RRIGS -51.88 -33.03 -26.78 7.24  0.69
MSEED  -39.12 -34.67 -18.53 11.41 2.67
UNSOL  -51.69 -32.64 -26.70 7.01 0.64

4.2.2 Met—enkephalin

Met—enkephalin (H-Tyr-Gly-Gly-Phe-Met—OH) is an endogenous opioid pentapeptide found
in the human brain, pituitary, and peripheral tissues. Its biological function involves a large
variety of physiological processes, most notably the endogenous response to pain. The pep-
tide consists of 24 dihedral angles and a total of 75 atoms, and has played the role of a
benchmark molecular conformation problem. The energy hypersurface is extremely complex
with the number of local minima estimated on the order of 10'! (Li and Scheraga, 1988).
Based on a previous study, the unsolvated global minimum potential energy conformation
was shown to exhibit a type II’ 3~bend along the N-C’ peptidic bond of Gly? and Phe*
(Androulakis et al., 1997).

Experimental results have indicated that met—enkephalin in aqueous solution does not
possess an unique structure (Graham et al., 1992). In general, the experimentally deter-
mined aqueous conformations were found to exhibit characteristics of extended random—coil
polypeptide with no discernible secondary structure. When considering the effects of hydra-
tion, the competition for backbone hydrogen bonding (with water), which contributes to the
bending of the unsolvated conformation, should result in a more extended structure. These
qualitative arguments have been confirmed by the analysis of hydrated met-enkephalin us-

ing the MSEED model. The plot of the global minimum energy structure, given in Figure

37



Table 12: Dihedral angles at the global minimum energy conformation of met—enkephalin,
using the MSEED model for hydration.

¢ () w X1 X2 X3 X4
Tyr | -84.96 160.74 179.09 -59.83 100.80 -179.29

Gly || -160.26 151.83 -177.53

Gly || 159.50 -157.94 178.71

Phe || -76.55 76.23 -178.05 -61.87 108.68

Met || -132.90 147.47 -179.83 -65.17 -175.99 -84.91 59.38

9, shows that the residues near the N-terminus are almost fully extended, although there
is slight bending near the C-terminus. This bending is stabilized by the formation of 2.10
A hydrogen bond between the CO of the second glycine residue and the NH proton of the
methionine residue. In addition, the structure displays a large 17.00 A separation between
the centroids of the Phe and Tyr aromatic rings.. The values of dihedral angles correspond-
ing to the global minimum energy of -283.76 kcal/mole are given in Table 12. Locating this
solution required 1033 iterations and 5,082 seconds (HP-C110).

The RRIGS method also predicts a more extended structure than the global minimum
structure reported for the unsolvated case (Androulakis et al., 1997). In fact, although a
slight bend occurs near the N—terminus, the structure possesses no hydrogen bonds (< 2.3
A). In addition, unlike the MSEED structure, there exists close proximity of the Tyr and
Phe aromatic rings, as shown in Figure 10. The centroids of these rings are separated by
4.16 A, which is slightly closer than the preferential aromatic—aromatic interaction distance
of 45t07 A (Burley and Petsko, 1985). Furthermore, the aromatic rings are essentially in a
parallel, as opposed to the more common orthogonal, orientation. This suggests an attempt
to substantially reduce the hydrophobic exposure of the aromatic side chains. The global
minimum conformation, with an energy of -50.01 kcal/mole, was located in 1058 iterations
and 8,695 seconds (HP-C110). The values of the dihedral angles are given in Table 13.

Additional analysis was performed by calculating (rms) deviation values between both
the MSEED and RRIGS global minimum structures and experimentally determined con-
formations. C“ positions for 5 structures of met—enkephalin in aqueous solution (Graham

et al., 1992) were generated and compared to both global minima. Average values for the
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Figure 9: Plot of met—enkephalin conformation. Global minimum energy of -283.76

kcal /mole using the MSEED model for hydration. The structure corresponds to the confor-
mational code of FEE*CE (Zimmerman et al., 1977) A C® worm is used to highlight the
backbone structure.

Table 13: Dihedral angles at the global minimum energy conformation of met—enkephalin,
using the RRIGS model for hydration.

0 () w X1 X2 X3 X4
Tyr || -168.32 -30.81 178.52 -173.58 -101.26 -171.75
Gly 78.83 -86.96 182.73
Gly || 162.94 91.72 172.83
Phe || -150.72 162.32 181.50 66.66 92.68
Met || -77.80 106.79 181.63 -67.82 17891 180.01 -60.01
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Figure 10: Plot of met-enkephalin conformation. Global minimum energy of -50.01

kcal/mole using the RRIGS model for hydration. The structure corresponds to the con-
formational code of BC*H*EC (Zimmerman et al., 1977) A C* worm is used to highlight
the backbone structure.
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Table 14: Comparison of hydration energies for met—enkephalin. The first column refers to
the hydration model used in the function evaluations, which are performed at the global
solutions given in the second column. The total energy, Eror, is provided along with the
contributions from hydration, Egyp, nonbonded interactions (including hydrogen bonding),

En B, electrostatic interactions, Egg, and torsion, Erog.

Global of Eror Envp Enp Egs Eror
MSEED MSEED  -283.77 -288.83 -19.13 23.29 0.90
RRIGS -139.35 -130.75 -31.47 21.84 1.03
UNSOL  -170.88 -159.17 -35.26 21.46 2.09
RRIGS RRIGS -50.01  -41.41 -31.47 21.84 1.03
MSEED -41.63  -46.69 -19.13 23.29 0.90
UNSOL -47.49  -35.78 -35.26 21.46 2.09

(rms) deviations from the 5 experimentally determined structures were 1.534 and 1.139 for
the MSEED and RRIGS global minimum energy structures, respectively. Although these
values do not reflect extremely good correspondence, the results suggest that the RRIGS
structure may be more “extended”. Qualitatively, this agrees with the absence of hydrogen
bonding in the RRIGS structure.

It is also interesting to compare energy evaluations at corresponding global minimum
solutions. This information is given in Table 14. It is apparent that the MSEED model
predicts large stabilizing hydration free energies. In addition, these contributions tend to
dominate the prediction of the global minimum structure. Specifically, energy evaluations
at the RRIGS and unsolvated solutions indicate a substantial increase in overall energy,
which can be directly correlated to the increase in hydration free energy. In contrast, this
correlation does not hold for the RRIGS model. In fact, the RRIGS model, like the MSEED
model, predicts a more stabilizing hydration free energy at the MSEED solution. However,
nonbonded interactions are less favorable at this solution, resulting in an overall energy
increase. In addition, although the solvation free energy becomes less stabilizing at the
unsolvated solution, an increase in the number of favorable nonbonded interactions causes
the overall energy to be near the global minimum solution.

It should also be noted that the aBB algorithm is able to inherently identify low energy
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Table 15: Low energy conformers (within 0.5 kcal of global minimum energy) for RRIGS
model. Total energies and conformational codes (Zimmerman et al., 1977) are given.

Conformer | Eror Conformational Code
1 -49.97 BC*G*AG
2 -49.89 BC*H*EG
3 -49.67 BC*H*EB
4 -49.61 BC*H*EA
5 -49.57 BC*GEF

conformers, along with the global minimum energy conformation. Table 15 lists five local
minimum energy conformations within 0.5 kcal of the RRIGS global minimum energy. The
structures are related to the global minimum energy conformation as evidenced by their
similar conformational codes (Zimmerman et al., 1977). Such information has important
ramifications for more detailed free energy calculations, and work along these lines is cur-
rently in progress.

4.2.3 Leu—enkephalin

Like met—enkephalin, leu—enkephalin (H-Tyr—-Gly—Gly—Phe-Leu-OH) is an endogenous pen-
tapeptide in which the methionine residue has been replaced by a leucine residue. The un-
solvated global minimum conformation exhibits a type II’ 3-bend around the Gly* Phe*
backbone region (Androulakis et al., 1997). As expected, the inclusion of hydration effects,
using the MSEED model, produces an extended solvated conformation. Again, as the plot
in Figure 11 shows, the residues near the N-terminus are almost fully extended with a slight
bend near the C-terminus. This bending is also stabilized by a hydrogen bond; in this case
a 2.13 A hydrogen bond between the CO of the second glycine residue and the NH proton
of the leucine residue. The aromatic rings are also widely separated with a distance of 14.44
A between the two centroids. The values of the 24 dihedral angles, resulting in a global
minimum energy of -263.14 kcal/mole, are given in Table 16. This solution was found after
1131 iterations and 5,597 seconds (HP-C110). A plot of this structure is shown in Figure 11.

The RRIGS model also predicted a global minimum structure that was more extended
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Table 16: Dihedral angles at the global minimum energy conformation of leu-enkephalin,
using the MSEED model for hydration.

¢ (0 w X1 X2 X3 X4
Tyr | -84.88 160.00 178.30 -60.54 100.49 -179.21

Gly || -160.78 140.99 -178.01

Gly | 144.14 -152.83 177.03

Phe || -79.95 71.30 -176.06 -60.97 108.26

Leu | -83.99 138.62 -179.24 -53.91 176.56 -178.84 69.81

Figure 11: Plot of leu—enkephalin conformation. Global minimum energy of -263.14

kcal /mole using the MSEED model for hydration. The structure corresponds to the confor-
mational code of FEE*CF (Zimmerman et al., 1977) A C* worm is used to highlight the
backbone structure.
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Table 17: Dihedral angles at the global minimum energy conformation of leu-enkephalin,
using the RRIGS model for hydration.

¢ (0 w X1 X2 X3 X4
Tyr || -168.37 -30.66 178.49 -173.40 78.69 -161.13

Gly | 78.92 -87.17 182.69

Gly || 163.20 91.51 172.72

Phe || -150.66 161.54 181.57 66.75 -86.85

Leu | -75.45 105.32 181.75 179.5 63.84 172.22 179.31

than the unsolvated global minimum structure. The backbone structure is essentially iden-
tical to the met—enkephalin global minimum energy conformation, with a (rms) deviation of
only 0.005. As with met—enkephalin the structure exhibits a bending near the N-terminus
with no significant hydrogen bonding (< 2.3 A). The centroid separation distance of the
two aromatic rings is 4.15 A with a nearly parallel orientation. This conformation, shown
in Figure 12, corresponds to an energy value of -46.57 kcal/mole, and was found after 1137
iterations and 9,243 seconds (HP-C110). The corresponding values of the dihedral angles
are given in Table 17.

Experimental evidence suggests that leu—enkephalin conformations also possess extended
peptide backbones (Camerman et al., 1983). Using the same set of experimentally deter-
mined conformations, average C® (rms) deviations were found to be 1.440 and 1.137 for the
MSEED and RRIGS minima, respectively. The average MSEED deviation is slightly bet-
ter than for met—enkephalin, although the RRIGS deviation remains essentially unchanged
because of the similarities of the two RRIGS minimum energy structures. It should also be
noted that the MSEED global minimum structures of the two enkephalins are very similar
with a (rms) deviation of only 0.516.

Information on energy evaluations is provided in Table 18. The conclusions are quali-
tatively similar to those made for met—enkephalin. That is, the MSEED model produced
hydration free energies which dominated the overall energy. In contrast, although the RRIGS
model provided relatively more stabilization at the MSEED global solution, its contribution
did not dominate the energy landscape because of the unfavorable nonbonded interactions.

Similarly, favorable interactions at the unsolvated global minimum caused its overall energy

44



Figure 12: Plot of leu-enkephalin conformation. Global minimum energy of -46.57 kcal /mole

using the RRIGS model for hydration. The structure corresponds to the conformational
code of BC*H*EC (Zimmerman et al., 1977) A C* worm is used to highlight the backbone
structure.
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Table 18: Comparison of hydration energies for leu-enkephalin. The first column refers to
the hydration model used in the function evaluations, which are performed at the global
solutions given in the second column. The total energy, Eror, is provided along with the
contributions from hydration, Egyp, nonbonded interactions (including hydrogen bonding),

En B, electrostatic interactions, Egg, and torsion, Erog.

Global of Eror Envp Enp Egs Eror
MSEED MSEED  -263.14 -268.30 -19.07 23.77 0.46
RRIGS -112.60 -105.03 -30.95 22.31 1.07
UNSOL  -142.84 -133.51 -33.26 20.76 3.17
RRIGS RRIGS -46.57  -39.00 -30.95 22.31 1.07
MSEED -39.10 -44.26 -19.07 23.77 0.46
UNSOL -43.37  -34.04 -33.26 20.76 3.17

to be within a few kcal/mole of the global value.

4.2.4 Decaglycine

Decaglycine is a larger oligopeptide consisting of 30 dihedral angles. This peptide was first
modeled using a NHy group at the a—amino end and a -COOH group at the a—carboxyl end.
In general, energy minimizations for the unsolvated peptide indicate an enormous number
of local minima which represent metastable structures corresponding to partially right—hand
and left-hand a-helices. In initializing the algorithm the information in Table 3 provides
4 initial regions for each glycine residue, or a total of 10* initial subdomains for the entire
decapeptide. This was modified to 32 initial subdomains by combining the ¢ subdomains
for each residue, and searching the entire ¢ space (-180,180) for every other glycine residue.
A global minimum energy of -63.87 kcal/mole was located using the MSEED model . Unlike
the unsolvated structure (Androulakis et al., 1997), the configuration does not exhibit a
helicoidal three-dimensional pattern, but a rather extended conformation with an end-to—
end C* distance of 19.02 A. The global minimum energy conformation, which was located
after 1331 iterations and 10,307 seconds (HP-C110), is plotted in Figure 13.

The RRIGS model was then tested on decaglycine using the acetyl terminal group
(CH3CO-) on the N—terminus and methylamide group (-NHCHj3;) on the C—terminus. It
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Figure 13: Plot of decaglycine conformation, using NH,; amino and ~-COOH carboxyl end

groups. Global minimum energy of -63.87 kcal/mole using the MSEED model for hydration.
A C* worm is used to highlight the backbone structure.
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Table 19: Energy contributions at global minimum solutions of solvated decaglycine. The
NH; and -COOH end groups were used for the MSEED example, while the CH;CO- and
~NHCHj; end groups were used for the RRIGS example. The total energy, Eror, is provided
along with the contributions from hydration, Egyp, nonbonded interactions (including hy-

drogen bonding), Exp, electrostatic interactions, Egg, and torsion, Erog.

Eror Emyp Ens Egrs Eror
MSEED || -63.87 -109.90 2.32 43.49 0.22
RRIGS | -87.23 -65.71 -52.93 31.38 0.03

has been shown that these end groups stabilize the formation of a-helical structures for
unsolvated decaglycine (Ripoll et al., 1991). The same modified partitioning scheme was
employed, and the 3 additional end group dihedral angles were allowed to vary over the
entire [-180,180] domain. The global minimum structure, which is plotted in Figure 14, was
found to be fully a—helical with an energy of -87.23 kcal/mole. This structure has a 0.136
C® (rms) deviation from the unsolvated global minimum structure, which was also found
to be fully a—helical. The solvated a—helical structure was found after 1402 iterations and
13,003 seconds (HP-C110). A breakdown of the individual energy contributions for both

decaglycine examples is given in Table 19.

5 Conclusions

In this paper, a procedure was presented for identifying the global minimum energy of
solvated peptides. In general, global minimum energy structures have been identified by
considering only the potential energy contributions. With one recent exception (Meirovitch
and Meirovitch, 1996), considering the effects of solvation through the use of continuum
models has been limited to local search techniques. The proposed global search procedure
based on the BB algorithm has been shown to be efficient for both the MSEED and RRIGS
implementations. For illustrative purposes, the method was tested using the ECEPP/3
force field and two independent solvation models. The MSEED solvation model is based on
solvent—accessible surface areas and, using the JRF parameter set, its hydration free energy is

added at local minima only. In contrast, implementing the RRIGS solvent—accessible volume
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Figure 14: Plot of decaglycine conformation, using CH3CO— amino and -NHCHj3 carboxyl

end groups. Global minimum energy of -87.23 kcal/mole using the RRIGS model for hydra-
tion. A C* worm is used to highlight the backbone structure.
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of hydration shell model requires function and gradient information at each step of the local
minimizations. The procedure was tested on the 20 naturally occurring amino acids, three
pentapeptides and the decapeptide decaglycine. In treating the oligopeptides, distribution
patterns of the dihedral angles of the naturally occurring amino acids were used in excluding
parts of the domain space.

A comparison of the two solvation models was made based on identifying global min-
imum energy conformations. In all cases, the MSEED model was found to predict more
extended conformations than those predicted by considering only potential energy terms.
In contrast, both Ac-Ala,—Pro-NHMe and decaglycine, whose unsolvated structures exhibit
helical regions, retained those features when modeled using RRIGS. On the other hand, as
with MSEED, the RRIGS predicted enkephalin structures were found to have extended con-
formations, with the proximity of the aromatic side chains a central difference between the
two solvated conformations. A close correspondence between the met— and leu-enkephalin
peptides for both models was also found, along with reasonable agreement with experimental
observations. Obviously, in cases where regular secondary structure is expected to dominate,
the RRIGS model proves to be a suitable hydration model. For other proteins, such as the
two enkephalins, the choice of solvation model can only be validated by experimental infor-
mation, which, unfortunately, has low accurracy for short linear peptides.

Other important comparisons can be made using the terminally blocked single residue
analysis. In general, these results indicated that the RRIGS model was more strongly dom-
inated by the ECEPP/3 potential model. This was evidenced by the dominance of the C;
minima. In contrast, the low energy regions of the MSEED energy landscape were shifted
towards the Cs region. This shift was also apparent in the oligopeptide examples, where
the MSEED hydration energy dominated the location of the global minimum. That is, the
change in nonbonded energy between local minima was overshadowed by the change in hy-
dration energy. This can be seen in the global minimum structures of met—enkephalin and
leu—enkephalin which exhibit extended conformations and wide separation between aromatic
side chains. In contrast, for the RRIGS model the nonbonded energies play an important
role. The enkephalins are again extended, but favorable interactions of the aromatic side
chains result in more short range interactions. The prediction of partial a—helical structure
for Ac-Ala,~Pro-NHMe and full a—helical structure for both forms of decaglycine using the
RRIGS model also displays the importance of short range interactions in this model.

The analysis of the terminally blocked peptides also qualitatively predicted the trends of
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the values for hydration energies in the oligopeptide examples. Specifically, the single residue
analysis showed that four residues caused the MSEED hydration energy to be more stabilizing
than the RRIGS hydration energy at their corresponding global minimum. Those residues
included the three aromatic residues, tryptophan, tyrosine and phenylalanine, and the ringed
imidazole residue, histidine. In addition, the aliphatic residues, isoleucine, valine, leucine and
alanine, were shown to be the least stabilizing in terms of the difference in hydration energies.
Therefore, the Ac-Ala,~Pro-NHMe example, which has a large aliphatic content, possesses a
less stabilizing MSEED hydration energy at the corresponding global minimum. In contrast,
the met—enkephalin and leu—enkephalin examples, which both contain two aromatic residues
(tyrosine and phenylalanine), have much more stabilizing MSEED hydration energies at their

corresponding global minima.
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