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Global Optimization Approaches in Protein Folding and
Peptide Docking
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ABSTRACT. The recent advances in genetic engineering, high powered com-
puting and global optimization continue to stimulate interest in the area of
molecular modeling and protein structure prediction. The goal of these efforts
is the ability to correctly predict native protein conformations and the binding
interactions of macromolecules. These two problems currently dominate the
field of computational chemistry and, through the use of detailed molecular
models, they have also greatly influenced research in the area of global opti-
mization. This article examines some aspects related to conformational energy
modeling and reviews a variety of global optimization approaches developed
for the protein folding and peptide docking problems.

1. Introduction

Proteins are undoubtedly the most complex and vital molecules in nature.
This complexity arises from an intricate balance of intra- and inter-molecular in-
teractions which define the native three-dimensional structure of the system, and
subsequently its biological functionality. Anfinsen’s hypothesis [12] suggests that
this native structure is in a state of thermodynamic equilibrium corresponding to
the conformation with the lowest free energy. Experimental studies have since
shown that, under native physiological conditions and after denaturation, globular
proteins spontaneously refold to their unique, native structure [84]. Understanding
the transition of a protein from a disordered state to its native state defines the
protein folding problem.

A natural extension of the protein folding problem is the related problem of pep-
tide docking. Here equilibrium structures must be identified for a macromolecule-
ligand complex. One aspect involves identifying the conformation of the binding
site for the “pocket” molecule, which can be accomplished experimentally or ap-
proached as an independent protein folding problem. Additionally, equilibrium
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structures must be identified for a number of candidate “docking” molecules, and
a measure of their relative binding affinity must be quantified and compared.

Recent advances in genetic engineering have heightened the interest in research
related to predicting native protein folding and docking conformations. The ability
to predict these structures is of great theoretical interest, especially in the fields
of biophysics and biochemistry. Moreover, the applications of such knowledge also
promise to be exciting. For example, the ability to predict these structures would
greatly increase our understanding of hereditary and infectious diseases and aid in
the interpretation of genome data. In addition to these advances, the ability to
understand peptide docking would likely revolutionize the process of de novo drug
design.

The use of computational techniques and simulations in addressing the protein
folding and peptide docking problems became possible through the introduction of
qualitative and quantitative methods for modeling these systems. The development
of realistic energy models also established a link to the field of global optimization,
where, based on Anfinsen’s hypothesis, the quantity to be optimized is the en-
ergy of the system. However, because of the computational complexity associated
with these problems, only the most efficient global optimization strategies will be
successful. In fact, because the number of local minima is vast, the corresponding
problem formulation has earned the simple yet suggestive title of “multiple-minima”
problem. The basis for these difficulties is best summarized by Levinthal’s paradox
[102]. This paradox suggests a contradiction between the almost infinite number
of possible stable states that the system may sample and the relatively short time
scale required for actual protein folding. In contradiction to Anfinsen’s thermo-
dynamic hypothesis, Levinthal’s observations suggest that the native state is the
lowest kinetically accessible free energy minimum, which may be different from the
true global minimum. These principles have been used to develop computational
techniques for predicting protein folding pathways [27, 101, 155]. Such techniques
attempt to map the shape of the energy hypersurface and determine whether this
surface “funnels” a protein towards a dominant conformational basin. By invoking
the thermodynamic hypothesis, the overall shape of the energy hypersurface is ne-
glected and the problem can be formulated in terms of global minimization, which
requires the use of effective global optimization techniques. If this formulation is to
reproduce the behavior of realistic systems, the folding of actual proteins should not
be kinetically hindered. This has been verified for various systems by performing
denaturation-refolding experiments. In addition, by introducing structural char-
acteristics whose formation may act as kinetic barriers, such as the formation of
disulfide bonds, the performance of the thermodynamic equilibrium model should
be improved.

Based on the complexity of the energy hypersurface, there is an obvious need for
the development of efficient global optimization techniques. Although the energy
can be expressed analytically, exhaustive searches are possible for only the smallest
of systems. These observations, and the importance of the protein folding and
peptide docking problems, have propelled the introduction of new global search
strategies specifically designed for these problems. In addition to describing the
fundamental modeling issues for the protein folding and peptide docking problems,
this review critically assesses a variety of global optimization approaches applied to
these problems. A number of proceedings and reviews have also focused on global
optimization issues in molecular systems [95, 132, 138, 139, 156, 177]
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2. Energy Modeling

2.1. Potential Energy. In a rigorous sense, the dynamics of molecular mo-
tion are represented by Schrodinger’s equation, which, when solved, yields an exact
description of the energy as a function of structure. This complexity can be re-
duced by invoking the Born-Oppenheimer approximation, under which nuclear and
electron motions can be considered separately. In addition, because molecular con-
figuration problems require only relative energies, a further simplification has been
the development of empirical models. However, in cases where experimental data is
lacking, quantum mechanical ab-initio calculations must be performed and used in
combination with experimental results to effectively describe the molecular system.

A number of empirically-based molecular mechanics models have been devel-
oped for protein systems, including AMBER [74, 187, 188], CHARMM [19], DIS-
COVER [37], ECEPP [121, 122, 123], ECEPP/2[130], ECEPP/3 [131], ENCAD
[36, 103], GROMOS [175], MM2 [7], and MM3 [8, 106, 107]. These models, also
known as force fields, are typically expressed as summations of several potential
energy components, with the mathematical form of individual energy terms based
on the phenomenological nature of that term. A general total energy equation, such
as Equation 2.1, should include terms for bond stretching (Epond), angle bending
(Eqngie), torsion (Eyor), nonbonded (Epp) and coupled (Eeross) interactions.

(21) Etot = Ebond + Eangle + Etor + Enb + Ecross

Bond stretching and angle bending energies are included in those force fields
that allow flexible geometries. A simple representation for both terms is based on
the harmonic approximation, which corresponds to the classical description of the
movement of a spring (by Hooke’s law). The simplest approach, based on the fact
that most bonds are near the minimum of their respective energy well, employs a
quadratic term to model bond stretching and angle bending energies, as shown in
Equations 2.2 and 2.3.

(2.2) Epond = kb;"d (I -1,)?
kangle 2
(23) Eangle = T(e - 00)

These equations act as penalty functions to force bond distances and bond angles,
I and 6, to reference bond lengths and distances, [, and §,, whose values depend on
the specific atoms involved. In actuality, these energy terms are more complicated.
For bond energies cubic terms are often introduced, and angle energy terms usually
include higher power expansions.

Torsional terms are used to describe the internal rotation energy of torsion
angles, which exist between all atoms with a 1-4 relationship (separated by two
atoms). For rigid geometry force fields, these torsion angles can be used to define a
set of independent variables that effectively describe any protein conformation. This
approximately reduces the number of variables by a factor of 3 over those force fields
that use a Cartesian coordinate system to describe flexible molecular geometries. In
addition, bond and angle energies can be neglected for rigid geometry force fields.
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The torsion energy expression is typically represented by a Fourier series expansion
which, as shown in Equation 2.4, includes three terms.

(2.4) Eior = E1(1 — cosd) + E2(1 — cos2¢) + E3(1 — cos3¢)

The parameters involved in this expansion, namely F;, E, and Ej3, are torsional
barriers that are usually specified for the pair of atoms around which the torsion
occurs. Each term can be interpreted physically. The 1-x (cos¢) symmetry term
accounts for those nonbonded interactions not included in general nonbonded terms.
The 2-x (cos2¢) symmetry term is related to the interactions of orbitals, while the
3-x (cos3¢) symmetry term describes steric contributions.

Nonbonded energy terms attempt to model electrostatic and van der Waals
interactions between those atoms that are not connected to each other or through
a common atom. Typically, a Coulombic term is used to represent electrostatic
energies based on atomic point charges, as shown in Equation 2.5.

Q:iQ;

2. E, =
( 5) elec 5Rz’j

Here @); and @; represent the two point charges, while R;; equals the distances
between these two points. In some force fields, Coulombic interactions are modified
by changing the dependence of the dielectric constant, €. In general, van der Waals
interactions are modeled using a 6-12 Lennard-Jones potential energy term. This
expression, shown in Equation 2.6, consists of a repulsion and attraction term.

Rf' 12 R:f' 6
2. Eygw = €ii | =2) —2 24
(2.6) I ej[(Rz’j) (Rn‘)]

The energy minimum for a given atomic pair is described by the potential depth, €;;,
and position, R};. Other force fields model van der Waals interactions using a mod-
ified Hill equation, which replaces the twelfth power term in Equation 2.6 with an
exponential term [7, 8]. Different approaches are also used to describe nonbonded
interactions between those atoms that may form hydrogen bonds. Some force fields
model these interactions using only Coulombic terms, while other force fields em-
ploy special functions, such as a modified 10-12 Lennard-Jones type potential term
[113], as shown in Equation 2.7.

(2.7) Ehbond €ij [5 (Rij 6 Rij

The cross term, shown in Equation 2.1, accounts for interactions due to the
inherent coupling between bonds, angles and torsions. Generally, these terms are
small, and in many force fields they are neglected. Correction terms, which vary
for each force field, are also typically added to the general energy equation. For
example, the formation of disulfide bridges can be enforced by adding a penalty
term to constrain the values of specified bond angles and bond lengths. Correc-

tion terms have also been used to adjust conformational energies according to the
configurations of proline and hydroxyproline residues [131].
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2.2. Solvation Energy. In general, the energetic description of a protein
should also include solvent effects. A theoretically simple approach would be to
explicitly surround the peptide with solvent molecules and compute potential en-
ergy contributions for intra- and inter-molecular interactions. Although several
methods have been developed to model hydration (water) effects, each simulation
is valid only for specific conditions. Explicit calculations also tend to greatly in-
crease the computational cost of the simulation. In addition, solvent configurations
are not rigid, so these calculations must consider an average solvent-peptide configu-
ration, which is typically generated by a number of Monte Carlo (MC) or Molecular
Dynamics (MD) simulations [20, 90, 168].

An alternative way for effectively considering average solvent effects is to use im-
plicit solvation models. Some applications of the Reference Interaction Site Model
(RISM) theory have been used to estimate these interactions for hydrated groups
[25, 85]. One complication involves the solvent’s influence on electrostatic interac-
tion energies because of the implicit relationship between dielectric constants and
solvation. In some cases this problem has been addressed by modifying the repre-
sentation of the dielectric constant. In reality, however, the rigorous treatment of
electrostatic interactions involves the solution of the Poisson-Boltzmann equation
[53, 183]. A number of reviews consider the treatment of electrostatic terms and
solvation effects [38, 186].

Other simple and computationally feasible implicit solvation models are based
on empirical representations of the solvation energy. For these models the solvation
energy of each functional group is related to the interaction of the solvent with a
hydration shell for the particular group. These terms are then summed together
to provide a total solvation energy for the system. One form of such an empirical
model is based on the assumption that the solvation energy is proportional to the
solvent accessible surface of each functional group, as shown in Equation 2.8.

N
(28) Eyorn = ZAza'z
i=1

The solvent accessible surface area, A;, is multiplied by a free energy density pa-
rameter, o;, to give the solvation energy. A number of algorithms have been de-
veloped for calculating these surface areas [29, 44, 45, 141, 181]. Although
several of these are relatively efficient, the appearance of discontinuities has been
one complication in considering solvent accessible surface areas. In addition, a
large number of parameterization strategies have been used to derive appropri-
ate o; [43, 136, 182, 190, 191]. Some generalized Born models are also based
on solvent accessible surface area calculations, although electrostatic and solvent
contributions are subsequently adjusted [1].

A second method, given in Equation 2.9, assumes that the solvation energy is
proportional to the solvent accessible volume of a hydration layer.

N
(29) Egory = Z ‘/;51
i=1

Several methods have been developed for calculating the hydration volumes, V;,
and the free energy parameters, d; [13, 68, 77, 78, 79, 80]. A recent and com-
putationally inexpensive method has been based on a Gaussian approximation for
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the volume of a hydration layer [13]. This method also inherently avoids numerical
problems associated with possible discontinuities. It should be noted that when
any of these empirical methods are used in conjunction with other force field com-
putations, free energy parameters should be based on experimental free energies for
gas to aqueous solution transfer, rather than for transfer between organic solvent
and aqueous solution.

2.3. Free Energy. From a thermodynamic point of view, the calculation of
the minimum free energy must include potential energy, as well as entropic con-
tributions. This can be accomplished through detailed MD simulations. However,
these search methods are not feasible for full global optimization searches of peptide
systems. An alternative treatment of this problem has been based on the devel-
opment of classical statistical mechanical partition functions. Although there has
been some debate related to the development of the appropriate partition function
[46, 54, 55], it is generally accepted that, for small fluctuations, the free energy
contribution can be represented by a harmonic approximation [24, 81]. Using this
approximation, the normalized statistical weight of a given conformation, w;, can
be calculated using Equation 2.10.

(2IIRT)*/? exp =2

w; = :

Here k refers to the dimensionality of the problem, R is the gas constant, T is
the temperature, |F;| is the matrix of second derivatives of the potential energy
evaluated at the " minimum, and AU; is the difference in energy between the
it" and the global minimum potential energy conformation. A statistical weight,
w; can be associated with a conformational free energy (of the i** minimum), G;,
using the following equation:

(2.11) G; = —RT Inw;

The rigorous evaluation of Equations 2.10 and 2.11 requires the identification
of an ensemble of low energy conformers within a given AU of the global minimum
conformer. Once this ensemble has been identified, relative free energies can be
calculated using Equation 2.12.

(2.10)

(2.12) AG; =G; — G, = —RTln <2>
Wo
Here G, and w, represent the free energy and statistical weight of the global min-

imum potential energy conformation.

2.4. Peptide Docking. The complexity associated with the prediction of op-
timum macromolecular-ligand conformations also complicates the task of modeling
these interactions. First, the binding site of the target globular protein must be
correctly characterized, along with the general orientation of the potential ligands.
The second task is to select potential binders (ligands), dock these ligands to the
active site, and assign a “score” to each complex. These “scores” may then be used
to rank binding affinities for a given list of ligands.

The first task usually requires experimental structure determination of the bind-
ing site. One particular example that has received much attention has been the
major histocompatibility complex (MHC), which plays a major role in immune
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response [171]. Crystallographic studies have been performed for the two major
classes of MHC molecules, class I [51, 163] and II [166]. This information is in-
valuable because it can be used to approximate rigid binding sites, which greatly
reduces the translational space that must be explored in a conformational search.

The other fundamental feature of the peptide docking problem is the devel-
opment of accurate scoring functions. Due to the computational complexity of
rigorous energy calculations, many methods have relied on qualitative modeling of
the peptide docking interactions. In the case of a rigid binding approximation, the
use of shape complementarity has had some limited success [93]. These algorithms
model the ligand and macromolecule according to their surface topology, and at-
tempt to identify which complexes exhibit the best “fit”. Here scoring functions
are based on the complementarity of the molecules, which, in most cases, is related
to their solvent accessible surface areas [29, 30, 97]. The obvious strength of these
methods is that they can be made computationally efficient and used to screen
large databases of potential ligands. However, studies comparing computational
results to experimentally derived, native complexes indicate that many non-native
low energy structures are identified. Other methods attempt to refine the scoring
function by adding additional criteria, such as conformational energy and solvation
energy.

On the other hand, it has been demonstrated that exact modeling of binding
free energies provides results in nearly exact quantitative agreement with experi-
mental results [59, 74, 162]. In contrast to the rigid description of docking, these
methods allow for flexibility of both the ligand and receptor molecules. However,
for general peptide docking problems, these thermodynamic integration and free
energy perturbation methods are computationally infeasible with current comput-
ing power. These problems are only tractable when approximate structures are
known and relatively small. More detail on these methods can be found elsewhere
[120, 148]. A comprehensive theoretical treatment of the thermodynamics of bind-
ing processes in macromolecules is also available [41].

More computationally feasible methods are based on calculating binding free
energies using empirically derived free energy functions. Some methods of ap-
proximating free energy functions involve structure based potentials [184]. Other
approximations utilize parameterization of experimental data to construct scoring
functions based on conformational energy, hydrophobic and hydrophilic surface ar-
eas, and hydrogen bonding geometries [66, 179]. However, these methods are gen-
erally nontransferable. A general scoring function is simply represented in Equation
2.13.

(2'13) AG = AGcomplem - AGligand - AGpocket

Here AG compies; AGhinder ad AG pocrer are the free energies of the peptide docking
complex, the free ligand and the free pocket. A more universal approach, applicable
to flexible ligands, is to base the free energy calculation on general force field models,
which involve potential energy functions similar to those described in the preceding
sections. This free energy function must also account for solvation energy, which
can be calculated from structure based solvation terms or continuum based models
of solvation. Rigorously, entropic effects of side chain rotations should also be
considered. Reviews of methods used to evaluate binding free energies can be
found elsewhere [71, 174].
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3. Global Optimization

Before exploring global optimization approaches for the protein folding and
peptide docking problems, it is helpful to review some general local optimization
methods used in optimizing conformational energy functions. By far, energy min-
imization techniques have been the most successful in identifying local minima.
Nonderivative minimization techniques are appealing because they can be easily
implemented and do not require derivative computations; however, they are gener-
ally inefficient and not reliable. Gradient methods, which provide detailed objective
function information through first and second derivative information, are very suc-
cessful in identifying local minima. These methods include steepest descent, conju-
gate gradient, and a number of modified Newton’s methods. A detailed review of
these techniques is available [157].

Other local optimization methods include molecular dynamics and Monte Carlo
searches [117]. Although molecular dynamics theoretically can provide all accessi-
ble states, the need for small time scales limits the applicability of this technique
for computing global minima. However, it has been used extensively for refinement
of crystal structures. Similarly, Monte Carlo methods are typically more successful
when used in combination with energy minimization techniques.

Since a local minimum can be effectively identified using the aforementioned lo-
cal minimization techniques, the problem becomes one of locating the conformation
with global minimum free energy. Complete exploration of the complicated energy
hypersurface is only feasible for small systems. For example, it has been estimated
that the conformational space of the five residue oligopeptide met-enkephalin ex-
hibits 10! local minima [104]. This illustrates the need for global optimization
algorithms that efficiently search this space and/or identify low energy regions. In-
formation on the application of global optimization techniques to solve NP-hard
problems can be found elsewhere [48, 69].

Fundamentally, global optimization approaches can be classified as being deter-
ministic or stochastic. Stochastic methods rely on probabilistic descriptions to aid
in locating the global minimum energy, whereas deterministic techniques provide
a certain level of assurance in locating the global minimum. With few exceptions,
the methods used to address protein folding and peptide docking problems can be
classified as stochastic. Two smoothing methods, namely the diffusion equation and
packet annealing techniques, claim to be deterministic. However, as will be shown,
a number of approximations must be made to practically implement these methods.
Another exception, the BB (branch and bound) approach [2, 3, 4, 5, 6, 9], has
specifically been developed to deterministically treat global optimization problems
such as those found in protein folding and peptide docking.

The following discussion is based on a classification of the global optimization
approaches into five areas - combinatorial, genetic algorithms, simulated annealing
and sampling, smoothing/deformation and branch and bound. The first subsec-
tions focus on the application of these approaches to the area of protein folding,
while the sixth subsection provides a summary of computational requirements for
a sampling of these approaches. The seventh subsection comments on the use of
global optimization techniques when considering solvation and entropic effects. Fi-
nally, the last section concentrates on the use of global optimization approaches in
the area of peptide docking.
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3.1. Combinatorial Methods. A number of approaches decompose the over-
all large scale protein folding problem into smaller subproblems. The basic idea is
similar to fragment assembly; that is, an ensemble of structures is identified for
small fragments of the original protein and then joined to form overall conforma-
tions which can be minimized. In many cases fragment conformations are chosen to
be local minima or low energy conformers of the particular fragment. For example,
a fragment may consist of a single amino acid residue for which the number and
location of minima can easily be identified [195].

A basic implementation of this fragment assembly methodology has been re-
ferred to as the build-up method [52, 176]. The basic idea relies on successively
combining smaller fragments into larger ones after retaining and minimizing a num-
ber of low energy conformers for each smaller fragment. Even this simplification
results in a combinatorial explosion of possible conformations, and an appropri-
ate energy cutoff must be employed. Note that in these searches the role of short
range interactions is overemphasized and many important subsequences may be
overlooked. However, the application has been successful for predicting global min-
imum energy conformations for proteins that possess special secondary structure,
such as a—helices.

A modified build-up type algorithm is based on the principles of dynamic pro-
gramming [172, 173]. As before, a finite number of discrete states are used to
define each residue, with these states corresponding to local minima of the en-
ergy function. The number of intermediate conformations is reduced by making
stagewise decisions, as in dynamic programming. However, because the principle
of optimality is not directly applicable to the protein folding problem, more than
just the best path to each state is retained. As in the buildup method, the number
of retained states is related to a cutoff energy parameter. The general procedure
has been tested on two formulations. In the first formulation, conformations were
built only by discrete search followed by an overall local minimization. The second
formulation, which gave improved results, uses limited local minimization within
the build-up stages of the algorithm.

3.2. Genetic Algorithms. Genetic algorithms can be classified as optimiza-
tion techniques that are qualitatively based on the principles of evolutionary theory
[67]. For these methods, the variables of the optimization problem (e.g., dihedral
angles) correspond to the gene sequence of a given chromosone. The algorithm re-
lies on the manipulation of a population of chromosones through processes known
as mutation, selection and recombination.

In general, the initial population is generated by selecting random values for
a specified number of chromosones. The fitness of a given chromosone is assigned
based on the objective function value (e.g., potential energy) represented by that
chromosone. In order to create a child generation, a mating population must first
be selected from the parent population. This selection is typically based on a com-
bination of fitness and probability information. Children can then be created via
crossover and mutation processes. Crossover is achieved by combining chromosone
segments (sequences of variable values) from each of the parent chromosones. A
number of random and probability based methods for choosing crossover variables
have been developed [50, 56, 99, 100]. Once a child generation has been cre-
ated, further alterations are achieved through mutation. Many methods can be
envisioned [50, 56, 99, 100]. For example, the effects of point mutations can be
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Crossover

l Mutation

FIGURE 1. Pictorial representation of simple crossover and muta-
tion in genetic algorithms

mimicked by randomly changing the value of a single variable. A simple example
of crossover and mutation is given in Figure 1. Finally, the fitness of each child is
evaluated, and a subset of the children are used to replace the parent population.
This evolutionary process is repeated until the imposed termination criteria are
achieved.

In recent years, genetic algorithms have been applied to the protein folding
problem. By using a rotamer library of amino acid side chain conformations and
entropically based criteria, low energy conformations with native-like structure have
been identified for a number of proteins [170]. Other implementations using ro-
tamer libraries have been relatively successful in identifying global minimum confor-
mations for polypeptides with special structure (e.g., a-helical) [100]. A modified
genetic algorithm, which evaluates fitness based on locally minimized conforma-
tions, has been shown to improve performance [75]. Prediction of low energy con-
formations via genetic algorithms has also been attempted for larger peptides (>
20 residues). In most cases, these methods employ knowledge based fitness func-
tions [164] and conformational libraries from databases of experimentally derived
structures. In some of these applications experimental structures were included in
the library, which can obviously bias the prediction of near native conformations.
The prediction of near native structures worsened for both larger examples and for
those not contained in the database [100, 169].

In general, there tend to be significant differences in both the formulation of the
fitness function and the exact implementation of the algorithmic techniques. The
development of these criteria and conditions greatly influences the ability to predict
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global minimum energy conformations. In addition, when variables are highly in-
terdependent, as in the protein folding problem, the specifications of crossover and
mutation become even more important. For these reasons, the application of ge-
netic algorithms will most likely be limited to specific classes of the protein folding
problem.

3.3. Simulated Annealing and Sampling Methods. Before describing
sampling and simulated annealing techniques, it is beneficial to examine the Metrop-
olis Monte Carlo approach more closely. The fundamental Metropolis enhancement
over basic Monte Carlo sampling is the introduction of a Boltzmann distribution in
directing the conformational search. The approach is implemented by choosing an
initial arbitrary conformation and obtaining its conformational energy, F;. A new
conformation can then be generated by randomly or probabilistically altering some
variables, and its energy, FE,, is subsequently evaluated. This new conformation is
accepted according to the condition given in Equation 3.1.

(3.1) Py(T,E) > RND

Here, Pg(T, E) is a probability factor, and RN D represents a randomly generated
number between 0 and 1. If the condition is met, the conformation is accepted. For
the Metropolis technique the probability factor is based on a Boltzmann distribu-
tion, as shown in Equation 3.2.

—(En—E;)
(3.2) p(T,E) =e  ¥8T
kp is the Boltzmann’s constant, in the appropriate units, and 7' is the temperature.
Note that all lower energy conformers are accepted because pg(T,E) > 1V E, <
E;. Although the search is directed toward lower energy regions, uphill moves are
randomly allowed, which provides an escape from local minima.

Obviously, the success of a Metropolis Monte Carlo search is highly dependent
on the choice of the temperature, T'. If the value is excessively large, many high en-
ergy conformations will be accepted at the expense of searching low energy regions.
On the other hand, low temperatures will direct the search towards the local min-
ima nearest to the starting conformation. This major drawback was overcome by
introducing the concept of a simulated annealing cooling schedule [86]. Physically,
this method is analogous to a crystallization process. The system begins at a high
temperature, at which all states are accessible, and brought down to a temperature
low enough so that the system is essentially “frozen” at a low energy conformation.
If the temperature decrease is applied correctly, and sufficiently slow, the global
minimum energy conformation can be identified.

The efficiency of simulated annealing techniques to locate global minimum en-
ergy conformations has been evaluated through several studies, and in some cases
conflicting results have been observed. For met-enkephalin, simulated annealing
algorithms were shown to identify the lowest energy structure using both the AM-
BER [192] and ECEPP [82, 134] force fields. For example, one study found
convergence to the global minimum energy conformation in 11 out of 40 simulated
annealing runs [134]. In other studies, the ability of simulated annealing to locate
global minimum energy conformations has been questioned. A search for the global
minimum of met-enkephalin using simulated annealing could not locate the global
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minimum energy conformation [129]. Although this disagreement may, in part,
be attributed to differences in modeling (e.g., keeping certain variables fixed), it
also demonstrates the stochastic nature of this technique. Nevertheless, the general
simulated annealing approach, due to its simplistic form, has been applied to a
large variety of peptide examples [125, 128, 133, 135, 165].

In order to overcome some of the inherent limitations of the basic simulated
annealing technique, a combined Monte Carlo and energy minimization approach
has also been proposed [104, 105]. This Monte Carlo Minimization (MCM) tech-
nique employs a local minimization of each conformation before application of the
Metropolis condition shown in Equation 3.1. A modified version of this technique,
known as the electrostatically driven Monte Carlo method [149, 150], uses electro-
static interaction energies to direct the random changes in variable values before
minimizing and applying the Metropolis condition. Similarly, the self-consistent
electrostatic field method [143] is used within a MCM framework to enforce favor-
able electrostatic interactions. Another MCM technique has been used to locate
low energy conformers of met-enkephalin [180]. Although the MCM modifications
(over MC methods) tend to increase the probability of convergence to the global
minimum energy conformation, the combined costs of local minimizations and sto-
chastic searching lead to large computational times.

The concept of simulated annealing has also been applied to the area of molec-
ular dynamics. Here the temperature is related to the kinetic energy, which can be
obtained from the velocities of the atoms [19, 103]. Therefore, molecular dynamics
annealing is accomplished by scaling atomic velocities. At high temperatures the
conformational space is totally accessible due to large atomic velocities. As temper-
ature is decreased, local conformations are defined because atomic velocities have
been restricted. This technique has been most successful in refining peptide struc-
tures using restraints derived from crystallography and NMR studies [21, 189].

In general, the confidence of locating the global minimum energy conforma-
tion via simulated annealing can only be evaluated by performing multiple runs
with varying annealing schedules. More recent Monte Carlo based simulation tech-
niques attempt to eliminate these uncertainties by developing generalized rather
than canonical ensemble of conformations [61]. In the regular canonical ensemble,
the probability distribution can be described by Equation 3.3.

(3-3) PDp(T, E) < n(E)pp(T, E)

In Equation 3.3 the probability distribution is proportional to the number of states
at a given energy, n(E), multiplied by the Boltzmann weighting factor, as given in
Equation 3.2. For a given temperature, PD g resembles the familiar Boltzmann bell-
like shape distribution in energy. In order to generate truly random energy walks,
and therefore overcome all energy barrier, the generalized ensemble algorithms em-
ploy different weighting factors. For example, in the case of the multicanonical
algorithm (i.e., multicanonical ensemble) [15, 16], the probability distribution is
defined to be constant in energy, as shown in Equation 3.4.

(3.4) PDu(E) x n(E)pu(E) = C
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Here C represents a constant, and pps(E) is the multicanonical weight factor. For
Equation 3.4 to hold, the multicanonical weight factor must satisfy the following
equation:

1
n(E)
Since such weight factors are not know a priori, the major drawback of this pro-
cedure is the development of appropriate weight factors. For example, some infor-
mation can be obtained by initially performing a number of canonical Monte Carlo
simulations. Theoretically, the multicanonical algorithm also provide information
which can be used to develop canonical distributions at any temperature; informa-
tion that can be used in the calculation of thermodynamic quantities. Comparative
studies have shown the multicanonical method to be more effective than general
simulated annealing algorithms [62] and comparable to simulations involving sim-
ulated tempering and in the 1/k-ensemble [63].

(3.5) pm(E) x

3.4. Smoothing/Deformation Methods. These global optimization meth-
ods rely on the assumption that the global minimum of a deformed energy hyper-
surface can be traced back to the global minimum of the original function [167].
The method and extent of smoothing are crucial in defining the deformed surface.
However, more important are the procedures for reversing the deformation and in-
terpreting the changes in the deformed landscape in order to locate the true global
minimum.

One technique for smoothing the energy surface is conceptually related to the
process of diffusion (or conduction) [144]. This diffusion equation method (DEM)
alters the original energy function E(x) by adding the parameter ¢, which is physi-
cally analogous to time in the diffusion problem. The transformed function, E(a:, t),
can be obtained through solution of the diffusion equation, shown in Equation 3.6.

O2E(x,t) _ OE(z,t)
or2 Ot

The boundary condition recovers the original function, E(x), at initial time.

(3.6)

(3.7) E(z,0) = E(z)

One consideration in using the diffusion equation method is the choice of an
initial value for the parameter ¢t. Obviously, as ¢ goes to infinity Equation 3.6
becomes

O?E(z,t — o0)
Ox?
Solution of Equation 3.8 yields a unimodal surface. For sufficiently large values of
t the surface should provide one minimum, although the number of steps required
for reversing the deformation may become exceedingly large. Once a starting value
for ¢ has been selected and an initial minimum has been located, ¢ is gradually
decreased and a sequence of local minima can be traced back to a local minimum of
the original function at ¢ = 0. The choice of the initial minimum and the decrease of
t determine whether this final minimum corresponds to the actual global minimum.

(3.8) =0
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The original approach has been extended up to oligopeptide systems [91]. In
order to decrease the computational cost of this method, the energy function is
based on a Gaussian adaptation of the ECEPP force field [130, 131]. The dif-
fusion equation can then be obtained by evaluating the Fourier-Poisson integral
in the Cartesian coordinate space. These solutions are used as starting points for
minimizations in the dihedral angle space of the original force field. The required
approximations limit the applicability of this method, although some modifications
have been recently proposed to reduce these limitations [92].

A number of other spatial smoothing techniques, known as effective energy
methods, are jointly motivated by the concepts of simulated annealing and smooth-
ing. In particular, the packet annealing method attempts to identify appropriate
spatial scales as the system is annealed, where these spatial scales are complicated
functions of temperature and the energy landscape. This is accomplished by rep-
resenting the energy surface by characteristic (Gaussian) packets, which physically
represent metastable macrostates of the system [160]. Each packet, a, is repre-
sented by a center of mass x,, spatial scale A, and a probability of occupation
Pa- An effective energy equation governs the behavior of these packets, and is used
to derive packet annealing equations which can be iteratively solved to identify
the location and formation of new packets [160]. The procedure is initialized at
high temperature, at which spatial scales are large and the energy landscape is
defined by one or a small number of packets. As the temperature is decreased,
the packet annealing equations are solved and the packets with highest probability
are traced towards low energy minima. As with the DEM, successful implemen-
tation of this method requires approximations for the force field terms in order to
perform the Gaussian integrations. In addition, effective algorithms for identify-
ing bifurcation points in large scale problems must still be developed. The packet
annealing method has been tested on met-enkephalin after employing a number of
simplifications [161]. The effective energy technique has been used in conjunction
with simulated annealing [28], and general Gaussian integral transforms have been
applied to molecular conformation and distance geometry problems [127].

A different approach for deforming the energy surface is to increase the dimen-
sionality of the original problem. Initial applications of these energy embedding
techniques were based on distance geometry approaches. Typically, the number of
dimensions is initially expanded to N-1 dimension, where N is the total number of
atoms. One method reduces the dimensionality by progressively projecting out com-
ponents based on eigenvalue analysis, and subsequently minimizing in the reduced
space [32, 33]. Another technique uses a constrained problem formulation and a
penalty term to eliminate vectors of coordinates [34]. A second penalty function
method augments the objective function with terms consisting of Cayley-Menger
determinants [146, 147]. The increased dimensionality methods are generally most
effective in maintaining only short distances. A modified rotational energy embed-
ding technique attempts to overcome these limitations (i.e., high energy barriers)
by performing internal rotations when reducing dimensionality [35].

A number of recent smoothing techniques avoid the use of costly integral trans-
forms in deforming the energy hypersurface. One method modifies the energy terms
by adding two new parameters, v and P, to the energy equation. A new smoothing
function is constructed by replacing r® from the Lennard-Jones type potential of
Equation 2.6 with the term (rf ++)/(1++). The smoothness of the modified func-
tion can be be controlled by varying the two parameters, P and . As with other
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smoothing methods, the global search involves tracking local minima from highly
deformed states to the original energy hypersurface. This approach has only been
tested on the molecular cluster problem [158]. A qualitatively similar technique
has also been used in molecular dynamics simulations [145]. An alternative method
smoothes the energy hypersurface using local minima to construct separable qua-
dratic underestimating functions. The local minima of these fitted functions are
then used to initiate searches on the original energy surface [42, 142].

3.5. Branch and Bound Methods. Typically, branch and bound methods
have been associated with, and are efficient methods for, solving combinatorial
global optimization problems [47, 49]. The protein folding problem possesses in-
herently combinatorial aspects, and some explicit combinatorial approaches have
already been presented. In general, the use of these probabilistic and heuristic
methods in a branch and bound framework should prove to increase the efficiency
in locating global minimum energy conformations.

A deterministic branch and bound method, BB, has been developed and ap-
plied to general global optimization problems involving twice-differentiable func-
tions [2, 3, 4, 5, 6, 9]. The application of the aBB algorithm to the global
minimization of energy functions was first introduced for microclusters [108, 109],
and small acyclic molecules [110, 111]. The approach has also been extended to
general constrained optimization problems [3, 4, 5, 6, 9].

The aBB global optimization algorithm effectively brackets the global minimum
energy conformation by developing converging lower and upper bounds. These
bounds are refined by iteratively partitioning the initial domain. Upper bounds on
the global minimum are obtained by function evaluations or local minimizations
of the original energy function, . Lower bounds belong to the set of solutions of
the convex lower bounding functions, which are constructed by augmenting E with
the addition of separable quadratic terms. For a protein folding problem defined in
dihedral angle space, the lower bounding function, L, is described by Equation 3.9.

N

(3.9) L=E+Y ag;:(¢f — i) (87 — ¢1)

i=1

Here N is equal to the total number of dihedral angles in the protein. ¢F and
@Y represent the lower and upper bounds on the dihedral angle ¢; in the current
domain. The agy; represent nonnegative parameters which control the shape of
the underestimating function, L. To maintain convexity of this function, the oy ;
must be greater or equal to the negative one-half of the minimum eigenvalue of the
Hessian of E over the defined domain. A number of methods have been developed
to determine these parameters [2, 3, 5, 6]. The overall effect of these terms is to
overpower the nonconvexities of the original terms by adding the value of 2a to the
eigenvalues of the Hessian of E.

The convex lower bounding functions, L, possess a number of important prop-
erties which define the deterministic nature of the algorithm and guarantee conver-
gence to the global minimum energy conformation:

(i) L is a valid underestimator of E;
(if) L matches E at all corner points of the box constraints;
(iii) L is convex in the current box constraints;
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(iv) the maximum separation between L and E is bounded and proportional to «
and to square of the diagonal of the current box constraints. This property
ensures that feasibility, e¢, and convergence, €., tolerances can be reached
for a finite size partition element;

(v) the underestimators L constructed over supersets of the current set are al-
ways less tight than the underestimator constructed over the current box
constraints for every point within the current box constraints.

Once solutions for the upper and lower bounding problems have been estab-
lished, the next step is to modify these problems for the next iteration. This
is accomplished by successively partitioning the initial domain into smaller sub-
domains. A possible partitioning strategy involves successive subdivision of the
original hyper-rectangle by halving on the midpoint of the longest side (bisection).
In order to ensure non-decreasing lower bounds, the hyper-rectangle to be bisected
is chosen by selecting the region which contains the infimum of the minima of lower
bounds. A non-increasing sequence for the upper bound is found by solving the
nonconvex problem, E, locally (or by function evaluation) and selecting it to be
the minimum over all the previously recorded upper bounds. Obviously, if the sin-
gle minimum of L for any hyper-rectangle is greater than the current upper bound,
this hyper-rectangle can be discarded because the global minimum cannot be within
this subdomain (fathoming step). In the worst case the full branch and bound tree
would need to be expanded and searched. However, in the protein folding prob-
lem and in many problems (in general), the ability to fathom significant portions
of the domain space greatly accelerates convergence to the global minimum. A
one-dimensional example of this algorithm is illustrated in Figure 2.

In recent work, the aBB algorithm has been shown to be successful for isolated
peptide systems using the ECEPP/3 potential energy model [10, 112]. These re-
sults not only illustrate the efficiency of the algorithm to locate global minimum
energy conformations, but they also demonstrate its ability to elucidate low energy
regions and conformations. A novel approach was recently proposed for oligopep-
tides based on a domain partitioning scheme that relies on probability data derived
from the Brookhaven PDB [10].

3.6. Computational Results. The computational requirements of a sam-
pling of global optimization techniques were compared by considering the results
for the oligopeptide met—enkephalin, a 5 residue benchmark molecular conforma-
tion problem. In the most general case, this problem possesses 24 independent
internal coordinate variables. As previously stated, it is believed that the potential
energy hypersurface for this protein contains on the order of 10'! local minima.
Most of the methods reviewed were able to find the global minimum conformation,
although issues of consistency are more difficult to assess. Some methods, most
notably those grouped under build—up techniques, were less successful in locating
the global minimum conformation for met—enkephalin. However, for most of these
techniques, qualitative agreement (i.e., backbone structure) was observed.

Table 1 gives computational results for the met—enkephalin protein folding
problem. A number of studies reduced the complexity by fixing the w variables,
which results in a 19 variable problem. The best CPU times are on the order
of 1 CPU hour. It should also be pointed out that unlike the genetic algorithm,
simulated annealing and Monte Carlo approaches, the aBB approach provides in-
formation on upper and lower bounds for the global minimum energy. An additional
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FIGURE 2. One-dimensional illustrative example of the aBB ap-
proach. In iteration 1 the overall domain is bisected, the two con-
vex lower bounding functions are created and their unique minima
(L1 and L2) are identified. An upper bound is also identified. Since
L1 is less than L2, the region containing L1 is further bisected in
iteration 2, while the other region is stored. The minimum of one
region (L3) is greater than the new upper bound, so this region
can be fathomed. The other region is stored. In iteration 3 the
region with the next lowest lower bound (L2) is bisected and since
both new lower bound minima (L5 and L6) are greater than the
current best upper bound, the entire region is fathomed. Finally,
by iteration 4, the region containing L4 is bisected which results in
a region that can be fathomed (containing L7) and a convex region
whose minimum (L8) equals the current upper bound and is the
global minimum.
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TABLE 1. Computational results for met—enkephalin protein fold-
ing problem. The third column indicates the number of free vari-
ables (internal coordinates).

Method | Ref [ Nyor CPU Platform
Genetic Algorithm 100 24 2 hrs SGI IRIS 4D/220
Simulated Annealing 125 24 2.5 hrs Apollo DN1000
Simulated Annealing 126 24 1.5 hrs Apollo DN1000
Monte Carlo Minimization 104 19 2-3 hrs IBM 3090

24 10 hrs IBM 3090
Simulated Annealing / (180] | 24 2 hrs CRAY X-MP

Monte Carlo Minimization
Monte Carlo Minimization / | [129] | 24 1.5-4 hrs IBM 3090
Simulated Annealing

Electrostatically Driven [151] | 19  2-3hrs IBM 3090
Monte Carlo 24 10 hrs IBM 3090
Multicanonical Algorithm 61 19 6 hrs IBM RS600
Diffusion Equation 91 19 20 min IBM 3090
aBB 10 24 1.3 hrs HP-730

difference is the fact that the aBB algorithm is a domain based, rather than a point
based, method. In some cases, these approaches have also been applied to small
peptide problems. A general size limit for tractable problems is on the order of 20
to 40 residues, although this value is highly dependent on the form of the energy
function and the number of free variables. Obviously, at these limits, the ability to
prove global optimality and consistency is debatable.

3.7. Considering Solvation and Free Energy. The problem of considering
solvation effects in global conformational energy searches has been made tractable
by the development of implicit solvation models and algorithms to efficiently calcu-
late solvent accessible areas and volumes. However, results for such formulations are
essentially nonexistent, and those that have appeared are for limited searches only.
One recent method utilizes extensive Monte Carlo simulations along with NMR
data to predict the hydration structure of leu-enkephalin [114]. In this study,
hydration energies are modeled using a solvent accessible solvation energy term.
Recently, both solvent accessible area and volume effects have been considered in
the context of a global optimization search based on the aBB algorithm. Results for
all terminally blocked residues and a number of oligopeptide examples are analyzed
and compared [87, 88].

Similarly, results from global optimization searches including entropic effects
have also been lacking. This is understandable because free energy calculations not
only require the location of the global minimum potential energy conformation, but
also a complete list of low energy conformers. One method, based on the Monte
Carlo minimization technique, proposes a free energy directed search to locate low
free energy conformers [178]. Relative free energy calculations are accomplished
using the harmonic approximation outlined above. A comparison between the pro-
posed technique and regular Monte Carlo minimization has also appeared [115]. A
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recent approach, based on a modified version of the aBB algorithm, emphasizes this
approach’s ability to identify low energy regions. A complete free energy analysis
using this method is tested on a number of oligopeptide examples [89].

3.8. Peptide Docking Methods. Once a method for “scoring” the binding
affinity has been selected, the exact form of the optimization problem must be de-
veloped. Several general approaches have been employed. The most obvious and
most difficult approach would be to optimize the entire system of the two interact-
ing peptides. To accomplish this, the relative position of the two peptides, which
is defined by six degrees of freedom (three translation and three rotation), along
with the total number of internal degrees of freedom for the two molecules must
be considered. This problem becomes intractable for all but the smallest systems.
Alternative approaches have decomposed the problem by considering the binding
affinities of shorter subsequences at different binding sites of the macromolecule.
The full binding ligand can then be constructed based on the optimally docked
subsequences. This approach relies on the ability to build a suitable ligand. An
alternative method is based on independently generating conformations of the iso-
lated ligand. Binding affinities for a number of these rigid conformations can then
be calculated and compared. Here the drawback is that intermediates with higher
binding affinities may be overlooked.

The following discussion classifies the peptide docking approaches according
to their treatment of the internal flexibility of the ligand molecule. However, it
should be noted that some approaches combine aspects of both rigid and flexible
methods. In addition, the choice of scoring function is often closely related to these
classifications. For example, it is implicitly difficult for shape based approaches
to capture internal flexibility due to their simplified description of the molecular
surface. Nevertheless, for almost rigid docking problems, these methods can be used
to systematically search a large number of potential ligands. In contrast, detailed
energy based approaches better represent the free energy of the system and can
deal with internal conformational changes, although their increased dimensionality
make these methods more computationally expensive. Therefore, there is a need for
rigorous global optimization approaches to address the peptide docking problem.

3.8.1. Rigid Models. The first, and most common, methods used to address
the peptide docking problems were based on the concept of shape complementarity.
These methods employ, at least initially, rigid approximations for both the ligand
and receptor molecules. In the most general case, six degrees of freedom, three
translational and three rotational, must be optimized to determine the best “fit”
for the receptor-ligand complex. In practice, approximations are used to effectively
reduce the number of degrees of freedom. In addition, the alignment of each ligand
must be optimized within the binding site. Typically, several screening stages are
used to reduce these optimizations to a manageable number.

One shape based method utilizes a simplified protein model, which is generated
by representing each amino acid by a single sphere. The scoring function is based on
interfacial areas and a simplified nonbonded potential energy term. Potential ligand
structures are screened by systematically rotating the ligand and then translating
the structure, along only one dimension, into the pocket [72, 193, 194]. These
approximations and simplifications are necessary in order to make the problem
tractable, especially in the context of a systematic search. A recent modification
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attempts to overcome these computational limitations by using a simulated anneal-
ing, rather than a systematic, search to screen the ligand structures [26].

Distinctive characteristics of molecular surfaces have also been used to reduce
the number of degrees of freedom for shape based docking problems. One study
considers local shape functions, which are generated by placing spheres at surface
points along the ligand and receptor surfaces. The volume within the surface and
the unit vector that extends from the center of the sphere to the surface characterize
these functions. A combinatorial algorithm can then be used to compare these local
shape functions at “knobs and holes” [98] on the ligand and receptor surfaces so
that the best alignments of the two molecules can be identified [31].

More detailed descriptions of molecular surfaces have also been used in deter-
mining shape complementarity. One procedure creates a webbed surface for the
ligand and receptor by using a local coordinate system to define the surface points
for each molecule. After setting the ligand position, a least squares method is used
to align the surface points of the two molecules. The method also screens ligands
according to a Coulombic scoring function [14].

An alternative approach transforms the problem from identifying complemen-
tary shapes for the receptor and ligand proteins into one of matching similar shapes
for these two molecules. This is accomplished by characterizing the binding site by
a collection of spheres that lie on the outside of the receptor surface, and the ligand
by a collection of spheres that lie on the inside of the ligand surface [39, 40, 93].
Potential matches are identified by grouping and comparing distances between the
center of spheres for each molecule. Local refinement of translation and rotation
vectors is used for the highest ranking matches. The complexity of the problem
is, to some degree, obscured because it also depends on the choice of location, size
and number of spheres used to model the receptor molecule. Other modifications
of this procedure include the addition of hydrogen bonding criteria, and the use
of local minimization of the potential energy in order to relax the rigidity of the
ligand molecule [96, 159].

The “soft docking” model represents the two molecules as a collection of cubes
rather than spheres. This method combines aspects of surface complementarity,
grid search and soft potential modeling. The “cubic” representation along with a
grid search makes the translational and rotational searches much more efficient. In
addition, the cubes implicitly allow for some volume overlap, which can be used in
combination with surface complementarity to screen docked complexes [70].

In general, when considering a rigid receptor, the concept of a grid search can
be used to reduce the computational requirements of evaluating scoring functions.
This is accomplished by precomputing values for the receptor based on points of a
three dimensional grid [57]. The concept is similar to cubic lattice model approaches
in molecular conformation problems, for which a recently proposed algorithm using
a tabu search has been highly effective [140]. This approach has been the basis of
a number of recent studies [116, 185], including one that employs a Monte Carlo
search in the context of “knobs and holes” docking [185].

3.8.2. Flexible Models. In the most general case, flexible docking approaches
attempt to optimize the free energy of the entire macromolecule-ligand complex,
which is described by translational, rotational and internal variables of the system.
In contrast to most rigid modeling approaches, these methods typically do not
require prior knowledge of ligand conformations. As a result, their success in pre-
dicting ligand binding is highly dependent on the use of detailed scoring functions
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to evaluate free energy changes. In addition, although some studies have consid-
ered full macromolecular-ligand systems, most approaches also depend on effective
decomposition strategies of the overall docking problem.

It should also be noted that some simple approaches have been implemented
in an attempt to model flexible docking. For example, a number of methods have
incorporated ligand flexibility by considering databases of multiple ligand conforma-
tions [83, 118]. However, these methods require reliable databases and methods for
developing appropriate ligand conformations, and these are typically not available.
On the other hand, thermodynamic integration and free energy perturbation meth-
ods allow for full flexibility and detailed modeling of binding free energies. However,
these simulations, usually accomplished by molecular dynamics, effectively explore
only single low energy minima. This has led to the need for global optimization
methods that efficiently search the conformational energy hypersurface associated
with peptide docking problems.

One of the most common, approaches has been based on Monte Carlo simulat-
ing annealing algorithms. This method was first applied to flexible ligand docking
using molecular affinity potentials [58]. Molecular affinity potentials increase the
computational efficiency of the search by employing precomputed energy grids [57].
In this case, flexibility was introduced by allowing internal rotations of torsion an-
gles, along with translational and rotational movement. However, for each docking
example, a set of simulated annealing runs were necessary in order to increase the
confidence of the reported structures.

A second method, also based on simulated annealing, involves a two-step pro-
cedure to dock flexible oligopeptide ligands [22]. In the first step, a modified poten-
tial energy force field was used to reduce unfavorable intermolecular contacts. This
energy model was employed in local energy minimizations of arbitrarily docked lig-
ands, which were needed in order to generate an initial set of ligand conformations.
The scoring function for the second step described energy interactions between both
the flexible ligand and rigid receptor molecules. The set of minimized conforma-
tions was then used to generate starting points for a Monte Carlo minimization
procedure. Although experimental results were not initially available, later com-
parison has shown that this method did not correctly predict MHC binding. These
discrepancies are most likely attributable to incorrect energy modeling (e.g., no in-
clusion of solvation), along with the inherent inefficiencies associated with simulated
annealing searches.

Another MC based method employs a multiple-start technique in an attempt
to reproduce the results of a systematic search. The first step involves a Monte
Carlo search with a grid based scoring function in order to limit steric overlaps of
the ligand and receptor molecules. A second, energy directed, simulated annealing
search uses a pairwise potential energy function. Rather than rely on a single search,
this method employs a large number of short simulated annealing runs. Although
initial results were based on both rigid receptor and ligand conformations [64],
more recent work has addressed the issue of flexible ligand docking [65].

In a similar way, genetic algorithms have recently been used to dock flexible
ligands. In some cases, scoring functions have been based on potential energy force
fields [137], although some modified potentials have also been used [73]. The results
of one method [76], which includes solvation effects, have emphasized the need for
developing reliable scoring functions. In general, as with simulated annealing, the
ability to model flexibility is limited as ligand size increases. The coupling of these
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effects with the implicit unreliability of both the genetic algorithm and simulated
annealing search techniques must be closely considered when approaching large
scale docking problems such as de novo drug design.

Combinatorial methods have also been used to address the difficulties of mod-
eling full ligand flexibility. In theory, these methods are similar to the build-up
methods outlined for the protein folding problem, although in peptide docking in-
termolecular interactions are also included. An initial application to the peptide
docking problem was based on rigid ligand models generated from a database of
chemical structures [40]. A more detailed implementation uses libraries of low
energy conformations for single amino acid residues. These conformations are sub-
sequently joined and grouped according to scoring functions based on the intra- and
inter-molecular energies of the macromolecular-ligand complex [124]. More recent
methods have employed databases developed for smaller ligand fragments such as
functional groups [153] or even atoms [154]. In general, these ligand build-ups are
initialized by selecting a starting point within the macromolecular pocket. As with
the protein folding approaches, such combinatorial techniques must employ effective
reduction schemes in order to limit the number of generated conformations.

Similar approaches combine the ideas of fragment assembly and site mapping.
In contrast to the single anchor requirement of simple build-up methods, these
techniques attempt to identify a number of anchor fragments or residues which can
be joined through a process of fragment assembly. The first step, site mapping, is
equivalent to docking probe fragments at specific sites of the macromolecule. Some
methods have screened the binding affinities of these probes using shape based
modeling [94], while others have relied on other energy based descriptions, such as
hydrogen bonding interactions [17, 18]. In general these site maps are constructed
by local minimization, grid or library searches of the probe conformations. Other
techniques employ a multiple copy simultaneous search [119, 152]. Once anchor
positions have been determined using one of these methods, the resulting segments
must be joined by fragment assembly. Bridges can be formed by searching through
molecular libraries, or in some cases using an exhaustive search over all connections
[23]. A recently proposed technique applies a dynamic programming approach, as
discussed above, to the fragment assembly phase of a nonameric ligand in an MHC
HLA-A2 complex [60].

Recently, a novel decomposition based approach has been proposed for predict-
ing peptide docking to the MHC HLA-DR1 protein [11]. The general approach
is along the lines of performing site mappings for the five polymorphic pockets of
HLA-DRI1 that accommodate peptide docking [166]. Specifically, each naturally
occurring amino acid is treated as a probe molecule for each of the five pockets.
A deterministic global optimization search technique is then used to identify the
best binding conformation for each residue. The scoring function accounts for both
intra- and inter-molecular interactions using a detailed potential energy force field
along with a surface accessible solvation model. The global optimization search,
based on the aBB algorithm, is used to identify the global minimum energy confor-
mation for both the bound and free residues. The corresponding energy differences
are then used to provide rank ordered lists of the best binders for each pocket.
Results for pocket 1 of the HLA-DRB1 macromolecule have exhibited good agree-
ment with experimental binding assays [11]. Current research has focused on the
prediction of the full binding ligand.
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4. Conclusions

The importance of the protein folding and peptide docking problems is evi-
denced by the large amount of experimental and theoretical research conducted in
these areas. Although experimental studies of these systems will always be needed,
the ability to theoretically predict folded proteins and macromolecule-ligand com-
plexes would greatly aid in advancing the applications of such knowledge. Both
molecular modeling and global optimization are important factors in the overall
equation that will eventually provide a solution to these problems.

In this review, issues related to the modeling of protein folding and peptide
docking systems have been analyzed and discussed. In addition, a critical assess-
ment of a wide variety of global optimization approaches has been provided. These
observations have highlighted the extreme difficulty of these problems and the cru-
cial interdependence of modeling and global optimization approaches.
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