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Abstract

In this paper an O(n2) mathematical formulation for in silico sequence selection in de novo protein design

proposed by Klepeis et al. (2003)(2004), in which the number of additional variables and linear constraints

scales with the square of the number of binary variables, is compared to three O(n) formulations. It is

found that the O(n2) formulation is superior to the O(n) formulations on most sequence search spaces. The

superiority of the O(n2) formulation is due to the reformulation linearization techniques (RLTs), since the

O(n2) formulation without RLTs is found to be computationally less efficient than the O(n) formulations. In

addition, new algorithmic enhancing components of RLTs with inequality constraints, triangle inequalities, and

Dead-End Elimination (DEE) type preprocessing are added to the O(n2) formulation. The current best O(n2)

formulation, which is the original formulation from Klepeis et al. (2003)(2004) plus DEE type preprocessing,

is proposed for in silico sequence search. For a test problem with a search space of 3.4 × 1045 sequences, this

new improved model is able to reduce the required CPU time by 67%.

Keywords

Peptide and protein design and discovery; Drug design; In silico sequence selection; Structure prediction; De

novo protein design; Optimization

1 Introduction

De novo peptide or protein design starts with a flexible 3-dimensional protein structure and involves the search

for all amino acid sequences that fold into such a template. The motivation behind computational protein

design is usually a quest for improved activity (e.g., higher inhibitory activity for an inhibitor) (Klepeis et al.,

2003)(2004), but it is definitely not where the applications are limited to. De novo protein design has been

successfully employed for modulating protein-protein interactions (Kortemme and Baker, 2004), promoting

stability of the target protein (Malakauskas and Mayo, 1998) (Kuhlman and Baker, 2004), conferring novel

binding sites or properties onto the template (Richards and Hellinga, 1991) (Richards et al., 1991), and locking

proteins into certain useful conformations (Shimaoka et al., 2000) (Kraemer-Pecore et al., 2001). To a large

extent it enhances our understanding of proteins’ sequence-structure relationship and protein molecular and

structural biology, a key research area in the post-Human-Genome-Project era.

With an enormous potential that has only been minimally harnessed, computational protein design does,

however, possess some inherent limitation. The limitation stems from the fact that de novo protein design is
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an NP -hard problem (Pierce and Winfree, 2002), and hence computational time required scales exponentially

with the number of design positions on the protein template. This makes full-sequence-full-combinatorial

design on proteins of practical size (i.e., 100 - 200 residues) very challenging. The maximum sequence search

space de novo protein design can handle varies drastically from one approach to another, with the main

determinant being the algorithms behind or the mathematical formulation employed.

Klepeis et al. (2003)(2004) proposed a novel two-stage protein design framework. In the first stage in

silico sequence selection is executed based on the minimization of the sum of energy interactions between

each amino acid pair in the protein. In the second stage of fold specificity calculation, protein structure

prediction is performed by solving a nonconvex constrainted global optimization formulation with an objective

function of an atomistic energy force field over the set of independent dihedral angles which can be used to

describe any possible configuration of the system. Klepeis et al. (2004) solved the formulation with the αBB

deterministic global optimization approach, a branch-and-bound method applicable to the identification of

the global minimum in nonlinear optimization problems with twice-differentiable functions (Klepeis et al.,

2002) (Klepeis et al., 1999) (Adjiman et al., 1998a,b, 2000) (Klepeis and Floudas, 1999) (Floudas, 2000).

In addition, structure prediction is done under two different circumstances. Under the first circumstance,

the structure is constrained to vary, with some imposed fluctuations, about the template. Under the second

circumstance, a free-folding calculation is carried out with only a limited number of constraints, like the

disulfide bridge constraint but not the underlying template structure enforced. A consistent ensemble of low-

energy conformations produced by the global optimization algorithm provides a means for quantifying the fold

specificity of each low-lying energy sequence obtained from the first stage. The use of a relative probability

for folding into the template structure avoids the complications inherent in the specification of an appropriate

reference state. The relative folding probability can be found by summing the statistical weights for those

conformers from the free folding simulation that resemble the template structure, and dividing this sum by

the summation of statistical weights for all conformers from the free folding simulation (Klepeis et al., 2004).

In this article, the focus is on the mathematical formulation for the first stage of in silico sequence selection.

First, an overview on the mathematical formulation proposed by Klepeis et al. (2003)(2004) for computational

sequence search will be presented, along with discussion on computational complexity of the considered for-

mulation. Then, three equivalent O(n) formulations, as well as a new improved O(n2) formulation empowered

with algorithmic enhancing components will be introduced. Finally, the computational efficiency of all pro-

posed formulations will be investigated using a selected set of test problems, which search for the sequence

with global minimum in energy for the template of human beta defensin 2.

2 Overview of In Silico Sequence Selection in De Novo Protein

Design

The novel formulation for the in silico sequence selection stage of the de novo protein design framework

proposed by Klepeis et al. (2003) (2004) is of the following original form:

min
y

j

i
,yl

k

∑n

i=1

∑mi

j=1

∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)yj

i y
l
k

subject to
∑mi

j=1
y

j
i = 1 ∀ i (1)

y
j
i , yl

k = 0 − 1 ∀ i, j, k, l

Note that this formulation corresponds to a quadratic assignment like model. It differs, however, in the set of

constraints. Set i = 1, . . . , n defines the number of residue positions along the backbone. At each position i

there can be a set of mutations represented by j{i} = 1, . . . ,mi, where, for the general case mi = 20∀i. The

equivalent sets k ≡ i and l ≡ j are defined, and k > i is required to represent all unique pairwise interactions.

Binary variables y
j
i and yl

k are introduced to indicate the possible mutations at a given position. That is, the

y
j
i variable will indicate which type of amino acid is active at a position in the sequence by taking the value
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of one for that specification. The composition constraints in the formulation require that there is exactly one

type of amino acid at each position.

The objective function to be minimized represents the sum of pairwise amino acid energy interactions in

the template. Parameter E
jl
ik(xi, xk), which is the energy interaction between position i occupied by amino

acid j and position k occupied by amino acid l, depends on the distance between the alpha-carbons at the

two backbone positions (xi, xk) as well as the type of amino acids j and l. These energy parameters were

empirically derived based on solving a linear programming parameter estimation problem subject to constraints

which were in turn constructed by requiring the energies of a large number of low-energy decoys to be larger

than the corresponding native protein conformation for each member of a set of proteins (Loose et al., 2004).

The resulting potential, which contains 1, 680 energy parameters for different amino acid pairs and distance

bins, was shown to rank the native fold as the lowest in energy in more proteins tested than other potentials

and also yield higher Z-score (Loose et al., 2004) (Tobi and Elber, 2000) (Tobi et al., 2000). The fact that

the energy potential is discretized into bins rather than being a continuous function is highly desirable as it

inherently incorporates backbone flexibility for the protein.

As indicated in the formulation, bilinear terms appear in the objective function. The objective can be

reformulated as a strictly linear (integer linear programming) problem using a standard linearization approach:

min
y

j

i
,yl

k

∑n

i=1

∑mi

j=1

∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)wjl

ik

subject to
∑mi

j=1
y

j
i = 1 ∀ i

y
j
i + yl

k − 1 ≤ w
jl
ik ≤ y

j
i ∀ i, j, k, l (F1)

0 ≤ w
jl
ik ≤ yl

k ∀ i, j, k, l

y
j
i , yl

k = 0 − 1 ∀ i, j, k, l

Formulation (F1) is derived from the transformation of the bilinear combinations into a new set of linear

variables, w
jl
ik, while the addition of the four sets of constraints serves to reproduce the characteristics of the

original formulation. For example, for a given i, j, k, l combination, the four constraints require w
jl
ik to be zero

when either y
j
i or yl

k is equal (or when both are equal to zero). If both y
j
i and yl

k are equal to one then w
jl
ik is

also enforced to be one. The solution of the integer linear programming problem (ILP) can be accomplished

rigorously using branch and bound techniques (CPLEX, 1997) (Floudas, 1995) making convergence to the

global minimum energy sequence consistent and reliable.

Formulation (F1) is an O(n2) formulation, meaning that the number of linear constraints (excluding

composition constraints) scales with n2, where n is the number of binary variables. For instance, if all 20

amino acids are considered for each position in a 40-residue protein, then n equals 40 × 20 = 800. The

number of variables w
jl
ik will be 400 × 820 = 328, 000, and hence number of linear constraints is simply

4 × 328, 000 = 1, 312, 000, which is roughly on the order of |n|2.

Klepeis et al. (2004) reported that the performance of the branch and bound algorithm could be significantly

enhanced through the introduction of reformulation linearization techniques (RLT). The basic strategy is to

multiply appropriate constraints by bounded non-negative factors (such as the reformulated variables) and

introduce the products of the original variables by new variables in order to derive higher-dimensional lower

bounding linear programming (LP) relaxations for the original problem (Sherali and Adams, 1999). These LP

relaxations are solved during the course of the overall branch and bound algorithm, and thus speed convergence

to the global minimum. In the case of the formulation for in silico sequence selection, RLT is introduced by

multiplying the composition constraints by the binary variables yl
k to produce the following additional set of

constraints ∀ j, k, l:

yl
k

mi∑

j=1

y
j
i = yl

k ∀ i, k, l (2)
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This equation is linearized using the same variable substitution as introduced for the objective. The set of

RLT constraints then become:

mi∑

j=1

w
jl
ik = yl

k ∀ i, k, l (3)

In summary, the RLT-empowered O(n2) formulation of Klepeis et al. (2003)(2004) is as follows:

min
y

j

i
,yl

k

∑n

i=1

∑mi

j=1

∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)wjl

ik

subject to
∑mi

j=1
y

j
i = 1 ∀ i

y
j
i + yl

k − 1 ≤ w
jl
ik ≤ y

j
i ∀ i, j, k, l (F2)

0 ≤ w
jl
ik ≤ yl

k ∀ i, j, k, l
∑mi

j=1
w

jl
ik = yl

k ∀ i, k, l

y
j
i , yl

k = 0 − 1 ∀ i, j, k, l

In the mathematical formulation comparison studies outlined in this article, both O(n2) formulations (F1)

and (F2), along with other O(n) formulations and new O(n2) formulations with algorithmic enhancement

techniques are employed to compute the sequence with the global energy minimum for the same set of test

problems, and the respective computational times required are compared.

3 Complexity Issues

It is known that de novo protein design is an NP -hard problem (Pierce and Winfree, 2002). Next we present

another proof of this result. There are two advantages of the presented proof. First, the proposed reduction

suggests that unconstrained quadratic 0–1 programming problem (UQ01) is a specific subclass of problem (1).

Therefore, some of the complexity results proved for UQ01 are also valid for problem (1) (for more details on

complexity of UQ01 see Pardalos and Jha (1992)). The second argument is that problem (1) remains NP -hard

even if the number of possible mutations for all residue positions along the backbone is equal to 2. Although

this complexity result characterizes worst-case instances, it provides some insight into the problem difficulty

and indicates that de novo protein design is a hard combinatorial optimization problem.

Theorem 3.1 Problem (1) is NP -hard. This result remains valid if for all i the number of possible mutations

mi = 2.

Proof. Consider an unconstrained quadratic 0–1 programming problem, which is defined as follows:

min
x∈{0,1}p

xT Qx,

where Q is an p × p symmetric real matrix. This problem is known to be NP -hard. In order to prove the

needed statement we reduce UQ01 to formulation (1).

Let n = 2p and for all i we have that mi = 2. Next assign the following energies:

• for i = 1, . . . , p and corresponding k = i + 1, . . . , p set E11
ik = qik + qki, where qki and qik are elements of

the matrix Q;

• for i = 1, . . . , p set E11
i,i+p = qii and E12

i,i+p = qii;

• for all other i and corresponding k = i + 1, . . . , n set E12
ik = E21

ik = E11
ik = E22

ik = 0.
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Using the aforementioned values of mi and energies the objective function in (1) can be rewritten as follows:

n∑

i=1

mi∑

j=1

n∑

k=i+1

mk∑

l=1

E
jl
iky

j
i y

l
k =

n∑

i=1

2∑

j=1

n∑

k=i+1

2∑

l=1

E
jl
iky

j
i y

l
k =

=

p∑

i=1

p∑

k=i+1

E11
ik y1

i y1
k +

p∑

i=1

E11
i,i+py

1
i y1

i+p +

p∑

i=1

E12
i,i+py

1
i y2

i+p =

=

p∑

i=1

p∑

k=i+1

(qik + qki)y
1
i y1

k +

p∑

i=1

qiiy
1
i y1

i+p +

p∑

i=1

qiiy
1
i y2

i+p =

=

p∑

i=1

p∑

k=i+1

(qik + qki)y
1
i y1

k +

p∑

i=1

qiiy
1
i (y1

i+p + y2
i+p) =

=

p∑

i=1

p∑

k=i+1

(qik + qki)y
1
i y1

k +

p∑

i=1

qiiy
1
i

Let xi ≡ y1
i . All assignment constraints of the type y1

i + y2
i = 1 are automatically satisfied and can be

removed since variables y2
i do not appear in the objective function. The described reduction is obviously

polynomial. Therefore, problem (1) is NP -hard.

4 O(n) Formulations

In this section we describe briefly three O(n) formulations which were derived for quadratic assignment prob-

lems and have been proved to be totally equivalent to O(n2) formulations (F1) and (F2).

First two formulations were proposed by Oral and Kettani (1990) (1992) (and are modifications of the

initial technique by Glover (1975)) for a general linearly constrained quadratic 0–1 programming problem.

Applications of these general approaches to problem (1), which is a specific class of linearly constrained

quadratic 0–1 programming problem, results in the following two formulations:

min
y

j

i
,ζ

j

i

∑n

i=1

∑mi

j=1
D

j
i

−
y

j
i + ζ

j
i

subject to ζ
j
i ≥

∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)yl

k − D
j
i

−
y

j
i − D

j
i

+

(1 − y
j
i ) ∀i, j

∑mi

j=1
y

j
i = 1 ∀i

ζ
j
i ≥ 0 ∀i, j (F3)

y
j
i , y

l
k = 0 − 1 ∀i, j, k, l

D
j−
i = −

∑n

k=i+1
max1≤l≤mk

|min{0, E
jl
ik(xi, xk)}|

D
j+
i =

∑n

k=i+1
max1≤l≤mk

max{0, E
jl
ik(xi, xk)}

and

min
y

j

i
,ζ

j

i

∑n

i=1

∑mi

j=1

(∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)yl

k − B
j
i

+

(1 − y
j
i ) + ζ

j
i

)

subject to ζ
j
i ≥ −

∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)yl

k + B
j
i

−
y

j
i + B

j
i

+

(1 − y
j
i ) ∀i, j

∑mi

j=1
y

j
i = 1 ∀i

ζ
j
i ≥ 0 ∀i, j (F4)
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y
j
i , y

l
k = 0 − 1 ∀i, j, k, l

B
j−
i = −

∑n

k=i+1
max1≤l≤mk

|min{0, E
jl
ik(xi, xk)}|

B
j+
i =

∑n

k=i+1
max1≤l≤mk

max{0, E
jl
ik(xi, xk)}

Both formulations (F3) and (F4) are promising in terms of their times to convergence because as compared

to the original binary quadratic integer problem of n variables, the number of auxiliary linear constraints is

reduced to n, whereas the number of new continuous variables ζ
j
i introduced is n versus the n2 binary variables

w
jl
ik in the O(n2) formulations.

The third formulation is another modification of the previous ones, but in this formulation the number of

new variables is increased to 2n and we keep some of the upper bounding linear constraints (Oral and Kettani

(1990), Pardalos et al. (2004)):

min
s

j

i
,y

j

i
,ζ

j

i

∑n

i=1

∑mi

j=1
s

j
i − M

j−
i y

j
i

subject to [
∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)yl

k] − ζ
j
i − s

j
i + M

j−
i ≤ 0 ∀ i, j

ζ
j
i ≤ M

j
i (1 − y

j
i ) ∀ i, j

∑mi

j=1
y

j
i = 1 ∀ i (F5)

M
j−
i =

∑n

k=i+1
max1≤l≤mk

|min{0, E
jl
ik(xi, xk)}|

M
j+
i =

∑n

k=i+1
max1≤l≤mk

max{0, E
jl
ik(xi, xk)}

M
j
i = M

j−
i + M

j+
i ∀ i, j

ζ
j
i ≥ 0, s

j
i ≥ 0, y

j
i = 0 − 1 ∀ i, j

where set i, set j, and energy parameters E
jl
ik(xi, xk) are exactly the same as they were in the O(n2) formula-

tions.

It is easy to show that the above formulations (F3)-(F5) are equivalent to the initial quadratic 0–1 pro-

gramming problem (1), and hence they should give the same global energy minimum value when it is applied

on the same test problem for sequence selection. The computational efficiency of O(n) formulations is of major

interest because of the significant reduction in the number of variables and linear constraints.

5 New Improved Class of O(n2) Formulations

In an effort to generate better O(n2) formulations, a number of new ideas were investigated so as to speed up

the sequence search algorithm. The resulting novel models were included in the computational comparison.

Different combinations of the new elements were investigated. The new components to be tested are (a)

conversion of the equality RLT constraints into inequality constraints, (b) addition of triangle inequalities,

and (c) execution of a preprocessing step using one iteration of the Dead-End Elimination theorem before

solving the in silico sequence selection model.

Since RLTs and triangle inequalities both lead to superfluous equations which do not affect the feasibility

region of the original formulation (F1), and preprocessing simplifies the formulation by eliminating the binary

variables that might otherwise be unable to be recognized as fixable, implementation of any combination of

the three will certainly not affect the objective function value.

5.1 RLT with inequalities

The rationale for this technique is to relax the RLT constraints, which are supposed to be crucial in speeding

up the branch and bound algorithm in the original O(n2) formulation that Klepeis et al. (2004) proposed, by
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changing the equality in the equation to “less than or equal to,” making the RLT equation look like:

mi∑

j=1

w
jl
ik ≤ yl

k ∀ i, k, l (4)

Considering that equality is equivalent to both “larger than or equal to” and “less than or equal to,” imple-

menting only the latter will probably lead to a problem that is easier and faster to solve.

5.2 Addition of triangle inequalities

Valid triangle inequalities as shown below were added to the O(n2) formulation in an attempt to hasten

convergence to the global energy minimum solution. Similar to RLTs, they are supposed to enhance the

algorithm by providing tighter lower bounds to the original problem.

(yj
i − yl

k)(yj
i − yp

m) ≥ 0 ∀i < k < m, j, l, p (5)

2 − (yj
i − yl

k)2 − (yj
i − yp

m)2 − (yl
k − yp

m)2 ≥ 0 ∀i < k < m, j, l, p (6)

The equations can be expanded to obtain the following final form of linear constraints which have been included

into the quadratic integer problem:

y
j
i − w

jp
im − w

jl
ik + w

lp
km ≥ 0 ∀i < k < m, j, l, p (7)

w
jl
ik + w

jp
im + w

lp
km − y

j
i − yl

k − yp
m + 1 ≥ 0 ∀i < k < m, j, l, p (8)

where linear binary variables y
j
i and w

jl
ik were defined in the same way as before, whereas indices m and p

were aliases of position sets i and k and amino acid sets j and l respectively. Moreover, position triplets i, k,

and m is subject to the constraint of i < k < m.

An additional subtlety to consider in applying triangle inequalities is the total number of inequalities to

impose, which supposedly has an optimal value giving the best computational efficiency. In view of this,

triangle inequalities were to be applied only if the sum of the pairwise energy triplets, namely S
jlp
ikm =

E
jl
ik + E

jp
im + E

lp
km was less than a certain cutoff value. Both cases of no cutoff and cutoff value of −40 were

tried in the formulation comparison studies.

5.3 Preprocessing

The way preprocessing delivers improvement in computational efficiency is usually by means of reducing the

problem size by eliminating some of the variables. In mathematical terms the preprocessing step can be stated

as follows:

If ∃ j̃ 6= j s. t.
∑

k,k>i minl[E
jl
ik − E

j̃l
ik] > 0

then y
j
i = 0 (9)

The original idea of the above came from the Dead-End Elimination (DEE) criterion (Goldstein, 1994) (Pierce

et al., 2000) (Voigt et al., 2000) (Gordon et al., 2003):
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E(ia) − E(ib) +
∑

k 6=i

min
c

[E(ia, kc) − E(ib, kc)] > 0 (10)

which states that rotamer ia at position i can be pruned if its energy contributation is always lowered by

substituting with an alternative rotamer ib. In the de novo protein design framework that Klepeis et al.

(2003) (2004) developed, different conformations for each amino acid mutation were not considered. In other

words, the number of rotamers at each position is only one for each amino acid to consider. Nevertheless,

the DEE criterion is still applicable independent of the number of rotamers. Since in Klepeis et al. (2003)

(2004)’s model the total energy only takes into account pairwise amino acid interactions but not each amino

acid itself, the energies of the rotamers ia and ib themselves (i.e., E(ia) and E(ib)) immediately go to zero,

yielding equation (9) which is in a form incorporable into the O(n2) formulation.

5.4 The formulations

With the three aforementioned algorithmic enhancing operations, a list of novel O(n2) formulations were

generated:

min
y

j

i
,yl

k

∑n

i=1

∑mi

j=1

∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)wjl

ik

subject to
∑mi

j=1
y

j
i = 1 ∀ i

y
j
i + yl

k − 1 ≤ w
jl
ik ≤ y

j
i ∀ i, j, k, l (F6)

0 ≤ w
jl
ik ≤ yl

k ∀ i, j, k, l
∑mi

j=1
w

jl
ik ≤ yl

k ∀ i, k, l

y
j
i , yl

k = 0 − 1 ∀ i, j, k, l

min
y

j

i
,yl

k

∑n

i=1

∑mi

j=1

∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)wjl

ik

subject to
∑mi

j=1
y

j
i = 1 ∀ i

y
j
i + yl

k − 1 ≤ w
jl
ik ≤ y

j
i ∀ i, j, k, l

0 ≤ w
jl
ik ≤ yl

k ∀ i, j, k, l
∑mi

j=1
w

jl
ik ≤ yl

k ∀ i, k, l (F7)

y
j
i − w

jp
im − w

jl
ik + w

lp
km ≥ 0

∀i < k < m, j, l, p s. t. S
jlp
ikm = E

jl
ik + E

jp
im + E

lp
km ≤ cutoff value

w
jl
ik + w

jp
im + w

lp
km − y

j
i − yl

k − yp
m + 1 ≥ 0

∀i < k < m, j, l, p s. t. S
jlp
ikm = E

jl
ik + E

jp
im + E

lp
km ≤ cutoff value

y
j
i , yl

k = 0 − 1 ∀ i, j, k, l

Preprocessing: If ∃ j̃ 6= j s. t.
∑

k,k>i minl[E
jl
ik − E

j̃l
ik] > 0

then y
j
i = 0

min
y

j

i
,yl

k

∑n

i=1

∑mi

j=1

∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)wjl

ik

subject to
∑mi

j=1
y

j
i = 1 ∀ i
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y
j
i + yl

k − 1 ≤ w
jl
ik ≤ y

j
i ∀ i, j, k, l (F8)

0 ≤ w
jl
ik ≤ yl

k ∀ i, j, k, l
∑mi

j=1
w

jl
ik ≤ yl

k ∀ i, k, l

y
j
i , yl

k = 0 − 1 ∀ i, j, k, l

Preprocessing: If ∃ j̃ 6= j s. t.
∑

k,k>i minl[E
jl
ik − E

j̃l
ik] > 0

then y
j
i = 0

min
y

j

i
,yl

k

∑n

i=1

∑mi

j=1

∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)wjl

ik

subject to
∑mi

j=1
y

j
i = 1 ∀ i

y
j
i + yl

k − 1 ≤ w
jl
ik ≤ y

j
i ∀ i, j, k, l

0 ≤ w
jl
ik ≤ yl

k ∀ i, j, k, l
∑mi

j=1
w

jl
ik ≤ yl

k ∀ i, k, l (F9)

y
j
i − w

jp
im − w

jl
ik + w

lp
km ≥ 0

∀i < k < m, j, l, p s. t. S
jlp
ikm = E

jl
ik + E

jp
im + E

lp
km ≤ cutoff value

w
jl
ik + w

jp
im + w

lp
km − y

j
i − yl

k − yp
m + 1 ≥ 0

∀i < k < m, j, l, p s. t. S
jlp
ikm = E

jl
ik + E

jp
im + E

lp
km ≤ cutoff value

y
j
i , yl

k = 0 − 1 ∀ i, j, k, l

To summarize, formulation (F6) is just the original formulation Klepeis et al. (2003)(2004) proposed (i.e.,

formulation (F2)) with the equality in the RLT constraints changed to “less than or equal to.” Formulation

(F7) is formulation (F6) with the addition of triangle inequalities. Formulation (F8) is formulation (F6) with

preprocessing, whereas formulation (F9) is formulation (F6) with both triangle inequalities and preprocessing.

With the use of the forcefield developed by Loose et al. (2004) for the pairwise energy parameters, both cases

with no cutoff and with cutoff value of −40 were attempted in imposing the triangle inequalities for formulation

(F7). This is to confirm our speculation that a small subset rather than all applicable triangle inequalities are

needed to speed up the algorithm. For all the other formulations that possess triangle inequalities, only the

case of cutoff value of −40 was attempted.

Finally, the counterparts of formulations (F7), (F8), and (F9) with the equality RLT constraints were also

included in the formulation comparison studies. They are namely:
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min
y

j

i
,yl

k

∑n

i=1

∑mi

j=1

∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)wjl

ik

subject to
∑mi

j=1
y

j
i = 1 ∀ i

y
j
i + yl

k − 1 ≤ w
jl
ik ≤ y

j
i ∀ i, j, k, l

0 ≤ w
jl
ik ≤ yl

k ∀ i, j, k, l
∑mi

j=1
w

jl
ik = yl

k ∀ i, k, l (F10)

y
j
i − w

jp
im − w

jl
ik + w

lp
km ≥ 0

∀i < k < m, j, l, p s. t. S
jlp
ikm = E

jl
ik + E

jp
im + E

lp
km ≤ cutoff value

w
jl
ik + w

jp
im + w

lp
km − y

j
i − yl

k − yp
m + 1 ≥ 0

∀i < k < m, j, l, p s. t. S
jlp
ikm = E

jl
ik + E

jp
im + E

lp
km ≤ cutoff value

y
j
i , yl

k = 0 − 1 ∀ i, j, k, l

Preprocessing: If ∃ j̃ 6= j s. t.
∑

k,k>i minl[E
jl
ik − E

j̃l
ik] > 0

then y
j
i = 0

min
y

j

i
,yl

k

∑n

i=1

∑mi

j=1

∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)wjl

ik

subject to
∑mi

j=1
y

j
i = 1 ∀ i

y
j
i + yl

k − 1 ≤ w
jl
ik ≤ y

j
i ∀ i, j, k, l (F11)

0 ≤ w
jl
ik ≤ yl

k ∀ i, j, k, l
∑mi

j=1
w

jl
ik = yl

k ∀ i, k, l

y
j
i , yl

k = 0 − 1 ∀ i, j, k, l

Preprocessing: If ∃ j̃ 6= j s. t.
∑

k,k>i minl[E
jl
ik − E

j̃l
ik] > 0

then y
j
i = 0

min
y

j

i
,yl

k

∑n

i=1

∑mi

j=1

∑n

k=i+1

∑mk

l=1
E

jl
ik(xi, xk)wjl

ik

subject to
∑mi

j=1
y

j
i = 1 ∀ i

y
j
i + yl

k − 1 ≤ w
jl
ik ≤ y

j
i ∀ i, j, k, l

0 ≤ w
jl
ik ≤ yl

k ∀ i, j, k, l
∑mi

j=1
w

jl
ik = yl

k ∀ i, k, l (F12)

y
j
i − w

jp
im − w

jl
ik + w

lp
km ≥ 0

∀i < k < m, j, l, p s. t. S
jlp
ikm = E

jl
ik + E

jp
im + E

lp
km ≤ cutoff value

w
jl
ik + w

jp
im + w

lp
km − y

j
i − yl

k − yp
m + 1 ≥ 0

∀i < k < m, j, l, p s. t. S
jlp
ikm = E

jl
ik + E

jp
im + E

lp
km ≤ cutoff value

y
j
i , yl

k = 0 − 1 ∀ i, j, k, l

Hence, in total the computational performance of 12 formulations were tested for in silico sequence search.

They were used to compute the sequence with the global energy minimum for a set of test problems which

are listed in the following section.
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6 Comparison of Proposed Formulations

6.1 Human beta defensin 2

The template that was employed in the in silico sequence selection for formulation comparison in terms of

convergence time is the 3-D structure of human beta defensin 2, or hβD-2, which has a PDB code of 1fd3 in

the Protein Data Bank. hβD-2’s structure was elucidated using X-ray crystallography at a resolution of 1.35Å

by Hoover et al. (2000).

hβD-2 is a small cationic peptide found in the human immune system. It is crucial to innate immunity

(Hoover et al., 2000). It possesses antimicrobial property derived from the electrostatic force between the

positive charge on the defensin molecule and the negative charge of the anionic head group of the microbe’s

membrane lipids. This electrostatic force essentially disrupts the microbe’s cell membrane and thus kills the

cell (Hoover et al., 2000).

It is desirable to gain knowledge about the structure of the protein to be redesigned so as to develop a

better amino acid mutation set for each position. As for the structure of hβD-2, hβD-2 possesses an octameric

tertiary structure which is largely determined by its primary structure (Hoover et al., 2001). Its tertiary

structure is formed by a mix of hydrophobic and hydrogen bonding between the residues Gly1, Asp4, Thr7,

Lys10, Gly31, Leu32, Pro33, and Lys39. The monomer units of hβD-2 are grouped into units of four that are

oriented in such a way that their N -termini are in the core of the octamer. The core is sealed off from solvent

by hydrogen bonds between Gly1, Gly3, Asp4, and Thr7. The surface of hβD-2 is mostly amphiphilic.

Although the PDB file for hβD-2 has precise structural information about monomer chains A, B, C, and

D, only chain A was redesigned in the test problems for formulation comparison. Chain A is a 41-residue pep-

tide with the following natural sequence: GIGDPVTCLKSGAICHPVFCPRRYKQIGTCGLPGTKCCKKP

(Garćıa et al., 2001). Like other human β-defensins, it has an N -terminus α-helix located at Pro5-Lys10

which is held against the β-sheet by a S-S bond between Cys8 and Cys37. Two other S-S bonds that stabilize

the β-sheet are located at Cys15-Cys30 and Cys20-Cys38. The structural properties of chain A of hβD-2 are

summarized in Table (1).

6.2 Test problems

A total of five test problems of in silico sequence selection for hβD-2 are chosen for comparing performance

of the proposed formulations.

Test problem 1: This test problem is from one of the case studies performed by Rao (2004) on hβD-2

which has the smallest sequence search space of 1.3 × 108 sequences. The mutation set is shown in Table (2).

It is derived by eliminating the amino acids that appeared less than 10% of the time in the top 100 minimum

energy solutions of a bigger in silico sequence selection problem on hβD-2 using formulation (F2) (Rao, 2004).

Test problem 2: In this test problem the glycines at positions 1, 3, 12, 28, 31, and 34, the prolines at

position 5, 17, 21, 33, and 41, and the cysteines at positions 8, 15, 20, 30, 37, and 38 in the wild type sequence

are fixed. The glycines are fixed because of their characteristic flexibility which is deemed as an important

property to maintain in the loops. On the other hand, prolines are on the other extreme as their cyclic nature

causes significant steric hindrance. Being highly inflexible, prolines at the native positions are likely to exert

great influence on the overall protein structure, and hence they should be fixed too. The cysteines are fixed

because disulfide bridges usually play an essential role in maintaining the proper fold. Full combinatorial

optimization is allowed on the first ten varied positions (i.e., positions 2, 4, 6, 7, 9, 10, 11, 13, 14, and 16),

while the remaining positions are also fixed at their native residues. The sequence search space thus amounts

to 2010 = 1.0 × 1013.

Test problem 3: While keeping the glycines, prolines, and cysteines fixed in the natural sequence, the

scope of full combinatorial optimization is expanded from the first ten varied positions to the first fifteen
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varied positions (i.e., positions 18, 19, 22, 23, and 24 in addition to the ten varied positions in test problem

2). The remaining positions are also kept at their native residues. The corresponding sequence search space

is 2015 = 3.3 × 1019.

Test problem 4: In this test problem the glycines, prolines, and cysteines in the wild type sequence are

fixed, while all the other 24 positions along the chain are allowed to pick any one from the full set of 20 amino

acids. This leads to a sequence search space of 2024 = 1.7 × 1031.

Test problem 5: In this final test problem that has the largest sequence search space, the only positions

that are fixed at the native residues are those that have cysteines in the wild type sequence. In addition to

the varied positions in test problem 4, positions that have glycines or prolines as their native residues are

also included in the mutation set and subject to full combinatorial optimization. The size of the respective

sequence search space is 2035 = 3.4 × 1045.

6.3 Results and discussion

The CPU times required by the 12 proposed formulations to compute the sequence with the global energy

minimum for the five different test problems are tabulated in Table (3). Performance of the original formulation

proposed by Klepeis et al. (2003)(2004) (i.e., formulation (F2)) can be used as the base case for comparison. By

comparing the CPU times of the O(n) formulations (F3), (F4), and (F5) with those of formulation (F2), it is

apparent that O(n) formulations are inferior to O(n2) formulation in terms of computational efficiency despite

the fact that they have significantly fewer variables and linear constraints. We propose that the superiority

of formulation (F2) compared to O(n) formulations is due to the RLT constraints which enhance the branch

and bound algorithm, since the CPU time of formulation (F2) without the RLTs (i.e., formulation (F1)) for

test problem 2 is actually around 3 orders of magnitude of that for the O(n) formulations, as shown in Table

(3). For test problem 3, formulation (F1)) fails to converge, whereas the O(n) formulations converge within

reasonable timeframes.

The three new components that are supposed to improve computation: RLT constraints with inequality,

triangle inequalities, and preprocessing indicate different degrees of success. By comparing each of formulations

(F6), (F10), and (F11) with formulation (F2) for test problems 4 and 5 which are of relatively big size,

preprocessing is the most powerful in reducing CPU times, followed by RLTs with inequality and then by

triangle inequalities. In fact, for test problem 5 which has the largest sequence search space of 2035 = 3.4×1045,

formulation (F11) provides the shortest required computation time among all 12 proposed formulations. It is

able to reduce the CPU time for computing the same problem by the original formulation proposed by Klepeis

et al. (2003)(2004) by 67%.

Combination of two or more of the new algorithmic enhancement factors does not necessarily yield a better

CPU time than the use of only one single factor. This can be seen by comparing performances on test problem

5 between formulation (F8), which is original formulation plus RLTs with inequality and preprocessing, and

formulation (F6), which is original formulation plus RLTs with inequality only. The same phenomenon is

indicated by comparing formulation (F9), which is original formulation plus all three new components, and

formulation (F11), which is original formulation plus preprocessing only for test problems 4 and 5.

In addition, it is highly more desirable to apply a small subset using a certain cutoff value than to impose

the whole set of triangle inequalities in an attempt to speed up the in silico sequence search algorithm. This

is observed based on the CPU times for test problems 1, 2, and 3 for formulation (F7) in the cases with no

cutoff and with an arbitrary cutoff value of −40. The CPU times in the latter case is an order of magnitude

shorter.
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7 Conclusions

In this paper, a detailed computational comparison of twelve mathematical formulations for the in silico

sequence selection problem in de novo protein design is reported. A new improved O(n2) formulation (F11)

for performing the first stage of in silico sequence selection in the de novo protein design framework developed

by Klepeis et al. (2003)(2004) is provided. This novel formulation is the old O(n2) formulation proposed

by Klepeis et al. (2003)(2004) plus DEE-type preprocessing, and it is shown that it significantly reduces the

required computation time to solve the same quadratic assignment like sequence search problem. For instance,

to choose the global energy minimum solution from 2035 = 3.4 × 1045 sequences, the required CPU time is

reduced by 67%. This current best formulation we have proposed is obtained based on comparison between

performances of O(n2) formulation and O(n) formulations, as well as incorporation of different combinations of

the algorithmic enhancing components of RLTs with inequality, triangle inequalities, and DEE-type processing.
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Structural Features Positions

14 - 16
β strands 25 - 28

36 - 39
α helix 5 - 10

8 - 37
S-S bonds 15 - 30

20 - 38
16 - 19

β turns 21 - 24
32 - 35

Hairpins 25 - 29
Bulges 27, 28, 37

Table 1: Structural features of human beta defensin 2.

Position Amino acids allowed Position Amino acids allowed

1 Gly 22 Arg,Asn
2 Gln,Leu,Ser,Val 23 Phe,His,Asn
3 Gly 24 Phe,Met,Arg,Thr
4 Gln,Asn,Lys,Ser 25 Phe,Ile
5 Pro 26 Phe,Thr
6 Arg,Asn,Lys 27 Arg,Gln,Ile,Ser
7 Asn,His,Ile,Thr 28 Gly
8 Cys 29 Gln,Met
9 Asn 30 Cys
10 His,Lys,Ser 31 Gly
11 Arg,Trp,Met 32 His,Ser
12 Gly 33 Pro
13 Tyr 34 Gly
14 Tyr,Lys 35 Ala,Thr
15 Cys 36 Tyr
16 Tyr 37 Cys
17 Pro 38 Cys
18 Arg,Gly,His,Thr 39 Ala
19 Arg, Phe, Ala 40 Met
20 Cys 41 Pro
21 Pro

Table 2: Mutation set for test problem 1.
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Table 3: Comparison of CPU times in seconds to obtain one global energy minimum solution among the
proposed formulations. Solutions were obtained with CPLEX 8.0 solver enabled with branch and bound
algorithm on a single Intel Pentium IV 3.2GHz processor.

Formulations
Sequence

Test search (F1)a (F2)b (F3)c (F4)d (F5)e (F6)f (F7)g

problem space
1 1.3 × 108 0.30 0.14 0.05 0.04 0.05 0.15 0.23∗, 0.21?

2 1.0 × 1013 34874 1.93 12.80 65.04 13.23 2.16 44.02∗, 3.01?

3 3.3 × 1019 70.14% gap† 3.01 137.85 2052.2 278.0 3.22 64.39∗, 2.87?

4 1.7 × 1031 - 38.14 - - - 31.67 - , 29.06?

5 3.4 × 1045 - 74713 - - - 30006 - , 65575?

Formulations
Sequence (F9)i (F10)j (F12)l

Test search (F8)h cutoff for cutoff for (F11)k cutoff for
problem space tri. ineq.=-40 tri. ineq.=-40 tri. ineq.=-40
1 1.3 × 108 0.16 0.11 0.16 0.17 0.11
2 1.0 × 1013 2.15 2.26 2.01 2.52 2.10
3 3.3 × 1019 2.94 3.31 3.03 3.43 3.04
4 1.7 × 1031 31.08 35.48 35.92 25.00 36.15
5 3.4 × 1045 32657 52276 61872 24388 57569

aOriginal O(n2) formulation proposed by Klepeis et al. (2003)(2004) without RLT constraints.
bBase case: original O(n2) formulation proposed by Klepeis et al. (2003)(2004).
c,d,eO(n) formulations.
fOriginal O(n2) formulation with inequality RLT constraints.
gOriginal O(n2) formulation with inequality RLT constraints and triangle inequalities.
hOriginal O(n2) formulation with inequality RLT constraints and preprocessing.
iOriginal O(n2) formulation with inequality RLT constraints and triangle inequalities and preprocessing.
jOriginal O(n2) formulation with triangle inequalities.
kOriginal O(n2) formulation with preprocessing.
lOriginal O(n2) formulation with triangle inequalities and preprocessing.
†Integrality gap obtained after 100, 000 sec. CPU time.
∗No cutoff for triangle inequalities.
?Cutoff = −40 for triangle inequalities.
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