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Abstract

A major challenge in computational peptide and protein design is the systematic generation of novel pep-

tides and proteins which are either compatible with existing target template structures or with arbitrarily

postulated new three dimensional structural folds. This chapter presents an account of the recent advances in

mathematical modeling and optimization methods for de novo protein design. It will be followed by a novel

integrated framework based on global optimization and mixed-integer optimization for the computational de-

sign of peptides and proteins. Compstatin, a 13-residue cyclic peptide that binds to complement component

C3 and inhibits complement activation, will be employed as the peptide target for testing the novel de novo

protein design framework. Experimental functional analysis provides validation to the in silico predicted novel

peptide sequences (e.g. Ac − I [CV Y QDWGAHRC]T − NH2) which are shown to exhibit 16-fold improved

activity over the synthetic therapeutic peptide Compstatin. Further validation of the in silico sequence pre-

diction framework is obtained by considering tryptophan in position 4 of Compstatin. It is shown that the

mutation of valine to tryptophan is preferred (e.g. Ac − I [CV WQDWGAHRC]T − NH2) compared to the

mutation from valine to tyrosine, in agreement with recent experimental results (Mallik et al., 2005) which

demonstrated 45-fold higher inhibitory activity.
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Introduction

The de novo peptide and protein design, first suggested almost two decades ago, begins with a postulated or

known flexible protein three-dimensional structure and aims at identifying amino acid sequence(s) compatible

with this structure. Initially, the problem was denoted as the “inverse folding problem” (Drexler, 1981; Pabo,

1983) since protein design has intimate links to the well-known protein folding problem (C. Hardin and Luthey-

Schulten, 2002). In contrast to the characteristic of protein folding to associate a given protein sequence with

its own unique shape, the inverse folding problem exhibits high levels of degeneracy; that is, a large number

of sequences will be compatible with a given protein structure, although the sequences will vary with respect

to properties such as activity and stability.

In silico protein design allows for the screening of overwhelmingly large sectors of sequence space, with this

sequence diversity subsequently leading to the possibility of a much broader range of properties and degrees

of functionality among the selected sequences. Allowing for all 20 possible amino acids at each position of a

small 50 residue protein results in 2050 combinations, or more than 1065 possible sequences. From this large

number of sequences, the computational sequence selection process aims at selecting those sequences that will

be compatible with a given structure using efficient optimization of energy functions that model the molecular

interactions.

In an effort to make the difficult nature of the energy modeling and combinatorial optimization manage-

able, the first attempts at computational protein design focused only on a subset of core residues and explored
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steric van der Waals based energy functions through exhaustive searches for compatible sequences (Ponder

and Richards, 1987; Hellinga and Richards, 1991). Over time, the models have evolved to incorporate im-

proved rotamer libraries in combination with detailed energy models and interaction potentials. Although the

consideration of packing effects on structural specificity is sometimes sufficient, as shown through the design of

compatible structures using backbone-dependent rotamer libraries with only van der Waals energy evaluations

for a subset of hydrophobic residues (Desjarlais and Handel, 1995; Dahiyat and Mayo, 1996), there has been

extensive research to develop models including hydrogen bonding, solvent and electrostatic effects (Dahiyat et

al., 1997; Raha et al., 2000; Street and Mayo, 1998; Nohaile et al., 2001). These functional additions to the

design models are especially important for full sequence design since packing interactions no longer dominate

for non-core residues (e.g., surface and intermediate residues). The incorporation of these additional non-core

residues increases the potential for diversity, and therefore enhances the probability for improving functionality

when compared to the parent system. An additional complication is the need to account for changes in amino

acid compositions and inherent propensities through the appropriate definition of a reference state (Koehl and

Levitt, 1999; Wernisch et al., 2000; Raha et al., 2000).

Template Flexibility

Many computational protein design efforts were based on the premise that the three-dimensional coordinates

of the template or backbone were fixed. This assumption was first proposed by Ponder and Richards (1987),

and was appealing because it greatly reduced the search space and thus the time required to converge to a

solution for the minimum energy sequence, regardless of the kind of search method employed. However, the

assumption was also highly questionable. Protein backbones had been observed to allow residues that would

not have been permissable had the backbone been fixed (Lim et al., 1994). In the Protein Data Bank, there

exist numerous examples of proteins which exhibit multiple NMR structures. Though commonly assumed as

rigid bodies as a first approximation, the secondary structures of α-helices and β-sheets actually display some

twisting and bending in the protein fold, and Emberly et al. (2003)(2004) had applied principal component

analysis of database protein structures to quantify the degree and modes of their flexibility.

Su and Mayo (1997) (2001) claimed that their ORBIT (Optimization of Rotamers By Iterative Techniques)

computational protein design process was robust against 15 per cent change in the backbone. Nevertheless,

they found out on a later case study on T4 lysosome that core repacking to stabilize the fold was difficult to

achieve without considering a flexible template (Mooers et al., 2003). Therefore, to ensure that good sequence

solutions are not rejected, it is more desirable to assume backbone flexibility in de novo protein design.

Researchers have formulated several methods to incorporate template variability. First, backbone flexibility

can simply be modeled by using a smaller atomic radii in the van der Waals potential. One common practice

has been to scale down the radii by five to ten per cent (Handel and Desjarlais, 1995; Kuhlman and Baker,

2000) and thus permitting slight overlaps between atoms due to backbone movements. Key disadvantages of

this simple approach include overestimation of the attractive forces and also the possibility of hydrophobic

core overpacking.

Another way to allow for backbone flexibility is through considering a discrete set of templates by using

genetic algorithms and Monte Carlo sampling. This is the approach adopted by both Handel and Desjarlais

(1999) and Kraemer-Pecore et al. (2003). Under this approach an ensemble of related backbone conformations

close to the template are generated at random. Then a sequence will be designed for each of them under

the rigid backbone assumption, and finally the backbone-sequence combination with the lowest energy will be

selected. For symmetric proteins backbone structure can actually be modeled by parametric fitting and this

will enhance computational efficiency. However, the vast majority of protein structures are non-symmetric

which make this parametric approach infeasible. Su and Mayo (1997) overcame this difficulty by treating α-

helices and β-sheets as rigid bodies and designing sequences for several template variations of the protein Gβ1.

Farinas and Regan (1998) considered a discrete set of templates when they designed the metal binding sites

in Gβ1, and they identified varied residue positions that would have been missed if average three-dimensional

coordinates had been used for calculations. Harbury et al. (1998) incorporated template flexibility through

an algebraic parameterization of the backbone when they designed a family of α-helical bundle proteins with
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right-handed superhelical twist. They were able to achieve a root mean square coordinate deviation between

the predicted structure and the actual structure of the de novo designed protein of around 0.2Å.

One natural approach to incorporate backbone flexibility is to allow for variability in each position in the

template. The deterministic in silico sequence selection method recently proposed by Klepeis et al. (2003)

(2004) using integer linear optimization technique takes into account template flexibility via the introduction

of a distance dependent force field in the sequence selection stage. Pairwise amino acid interaction potential,

which depends on both the types of the two amino acids and the distance between them, were used to calculate

the total energy of a sequence. Instead of being a continuous function, the dependence of the interaction

potential on distance is discretized into bins. With typical bin sizes of 0.5 to 1Å, the overall protein design

model Klepeis et al. (2004) developed implicitly incorporated backbone movements of roughly the same order

of magnitude.

Mathematical Modeling and Optimization Methods

Once an energy function has been defined, sequence selection is accomplished through an optimization based

search designed to minimize the energy objective. Both stochastic and deterministic methods have been

applied to the computational protein design problem. The Self-Consistent Mean Field (SCMF) (Lee, 1994)

and dead-end-elimination (DEE) (Desmet et al., 1992) are both good examples of deterministic methods. The

key limitations imposed on the SCMF and DEE are (i) the backbone/template is fixed, and (ii) sequence

search is restricted to discrete set of rotamers. In their application of the SCMF method, Koehl and Delarue

(1994) (1995)(1996) refined iteratively a conformational matrix whose element CM(i, j) gives the probability

that side chain i of a protein takes on rotamer j. Hence CM(i, j) sums to unity over all possible rotamers

for a given side chain i. With an initial guess for the conformational matrix, which is usually based on the

assumption that all rotamers had the same probability, that is, for rotamer k of residue i:

CM(i, k) =
1

Ki

k = 1, 2, ..., Ki (1)

the mean-field potential E(i, k) is calculated using (Koehl and Delarue, 1994):

E(i, k) = U(xikC ) + U(xikC , x0C) +

N∑

j=1,j 6=i

Kj∑

l=1

CM(j, l)U(xikC , xjlC) (2)

where x0C corresponds to the coordinates of the atoms in the template, and xikC corresponds to the

coordinates of the atoms of residue i whose conformation is described by rotamer k. Lennard-Jones (12-6)

potential can be used for the potential energy U (Koehl and Delarue, 1994). Energies of the Ki possible

rotamers of residue i can subsequently be converted into probabilities using Boltzmann law:

CM1(i, k) =
e

−E(i,k)
RT

∑Ki

l=1 e
−E(i,l)

RT

(3)

CM1(i, k) provides an update on CM(i, k) which can be used to repeat the calculation of energies and

another update on the conformational matrix until convergence is attained. The convergence criterion is

usually set as 10−4 to define self-consistency (Koehl and Delarue, 1994). In addition, oscillations during

convergence could be removed by updating CM1(i, k) with a ”memory” of the previous step (Koehl and

Delarue, 1994):

CM = λCM1 + (1 − λ)CM (4)

where optimal step size λ was found to be 0.9 (Koehl and Delarue, 1994). The main disadvantage of SCMF

is that though deterministic in nature, it does not guarantee to yield a global minimum in energy (Lee, 1994).
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In contrast, DEE assures the convergence to a globally optimal solution consistently. DEE operates on

the systematic elimination of rotamers that are not allowable to be parts of the sequence with the lowest

energy. The energy function in DEE is written in the form of a sum of individual term (rotamer-template)

and pairwise term (rotamer-rotamer):

E =

N∑

i=1

E(ir) +

N−1∑

i=1

N∑

j>i

E(ir, js) (5)

where E(ir) is the rotamer-template energy for rotamer ir of amino acid i, E(ir, js) is the rotamer-rotamer

energy of rotamer ir and rotatmer js of amino acids i and j respectively, and N is the total number of

residues in the protein (Pierce et al., 2000). The pruning criterion in DEE is based on the concept that if the

pairwise energy between rotamer ir and rotamer js is higher than that between rotamer it and js for all js in

a certain rotamer set {S}, then ir cannot be the global energy minimum conformation (GMEC) and thus can

be eliminated. Mathematically the idea can be expressed as the following inequality (Voigt et al., 2000):

E(ir) +

N∑

j 6=i

E(ir, js) > E(it) +

N∑

j 6=i

E(it, js) ∀{S} (6)

So rotamer ir can be pruned if the above holds true. Bounds implied by (6) can be utilized to generate

the following computationally more tractable inequality (Voigt et al., 2000):

E(ir) +

N∑

j 6=i

min
s

E(ir, js) > E(it) +

N∑

j 6=i

max
s

E(it, js) (7)

The above inequality can be extended to eliminate pairs of rotamers. This is done by determining a rotamer

pair ir and js which always contributes higher energies than rotamer pair iu and jv for all possible rotamer

combinations. The analogous computationally tractable inequality is (Voigt et al., 2000):

ε(ir, js) +
N∑

k 6=i,j

min
t

ε(ir, js, kt) > ε(iu, jv) +
N∑

k 6=i,j

max
t

ε(iu, jv , kt) (8)

where ε is the total energies of rotamer pairs:

ε(ir, js) = E(ir) + E(js) + E(ir, js) (9)

ε(ir, js, kt) = E(ir, kt) + E(js, kt) (10)

The Mayo group has pioneered the development of DEE and has applied the method to design a variety

of proteins (Malakauskas and Mayo, 1998) (Strop and Mayo, 1999) (Shimaoka et al., 2000) (Bolon and Mayo,

2001) (Mooers et al., 2003). Goldstein (1994) improved the original DEE criterion by stating that rotamer ir

can be pruned if the energy contribution is always reduced by an alternative rotamer it:

E(ir) − E(it) +

N∑

j 6=i

min
s

[E(ir, js) − E(it, js)] > 0 (11)

For rotamer pair elimination, the corresponding inequality is (Voigt et al., 2000):

ε(ir, js) − ε(iu, jv) +

N∑

k 6=i,j

min
t

[ε(ir, js, kt) − ε(iu, jv , kt)] > 0 (12)
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In general, rotamer pair elimination is computationally more expensive than single rotamer elimination, and

methods have been developed by Gordon and Mayo (1998) to predict which doubles elimination inequalities

are the strongest.

Pierce et al. (2000) introduced Split DEE which split the conformational space into partitions and thus

eliminated the dead-ending rotamers more efficiently:

E(ir) − E(it) +

N∑

j,j 6=k 6=i

{min
u

[E(ir, ju) − E(it, ju)]} + [E(ir, kv) − E(it, kv)] > 0 (13)

Further revisions and improvements on DEE had been performed by Wernisch et al. (2000) and Gordon

et al. (2003).

The protein design problem has been proved to be NP -hard (Pierce and Winfree, 2002), which means the

time required to solve the problem varies exponentially according to nm, where n is the average number of

amino acids to be considered per position and m is the number of residues. Hence as the protein becomes

big enough, deterministic methods may reach a plateau, and this is when stochastic methods come into

play. Monte Carlo methods and genetic algorithms are the most commonly used stochastic methods for

de novo protein design. In Monte Carlo methods, a mutation is performed at a certain position in the

sequence and the Boltzmann probability calculated from the energies before and after the mutation, as well as

temperature is compared to a random number. The mutation is allowed if the Boltzmann probability is higher

than the random number, and rejected otherwise. Dantas et al. (2003)’s protein design computer program,

RosettaDesign, applied Monte Carlo optimization algorithms. In completely redesigning nine globular proteins,

RosettaDesign yielded sequences of 70−80% identity as the final results of energy optimization when multiple

runs were started with different random sequences (Dantas et al., 2003). Originated in genetics and evolution,

genetic algorithms generate a multitude of random amino acid sequences and exchange for a fixed template.

Sequences with low energies form hybrids with other sequences while those with high energies are eliminated

in an iterative process which only terminates when a converged solution is attained (Tuffery et al., 1991).

Handel and Desjarlais (1999) have applied a two-stage combination of Monte Carlo and genetic algorithms to

design the hydrophobic core of protein 434cro. Both Monte Carlo methods and genetic algorithms can search

larger combinatorial space compared to deterministic methods, but they share the common disadvantage of

lacking consistency in finding the global minimum in energy.

Recent methods attempt to avoid the problem of optimizing residue interactions by manipulation of the

shapes of free energy landscapes (Jin et al., 2003). Another class of methods focus on a statistical theory for

combinatorial protein libraries which provides probabilities for the selection of aminoacids in each sequence

position (Zhou and Saven, 2000; Kono and Saven, 2001; Saven, 2003). The set of site-specific amino acid

probabilities obtained at the end actually represents the sequence with the maximum entropy subject to all

of the constraints imposed (Zhou and Saven, 2000; Kono and Saven, 2001; Park et al., 2004). This statistical

computationally assisted design strategy (scads) has been employed to characterize the structure and functions

of membrane protein KcsA and to enhance the catalytic activity of a protein with dinuclear metal center

(Park et al., 2004). It has also been used to calculate the identity probabilities of the varied positions in the

immunoglobulin light chain-binding domain of protein L (Kono and Saven, 2001). Scads serves as a useful

framework for interpreting and designing protein combinatorial libraries, as it provides clues about the regions

of the sequence space that are most likely to produce well-folded structures (Hecht et al., 2004).

Several sequence selection approaches have been tested and validated by experiment, thereby firmly estab-

lishing the feasibility of computational protein design. The first computational design of a full sequence to be

experimentally characterized was the achievement of a stable zinc-finger fold (ββα) using a combination of

a backbone-dependent rotamer library with atomistic level modeling and a dead-end elimination based algo-

rithm (Dahiyat and Mayo, 1997). Recently, Kuhlman et al. (2003) introduced a computational framework that

iterates between sequence design and structure prediction, designed a new fold for a 93-residue α/β protein,

and validated its fold and stability experimentally. Despite these accomplishments, the development of a com-

putational protein design technique to rigorously address the problems of fold stability and functional design
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remains a challenge. One important reason for this is, as mentioned earlier, either the almost universal specifi-

cation of a fixed backbone or the use of a discrete set of backbones, which does not allow for the true flexibility

that would afford more optimal sequences and more robust predictions of stability. Moreover, several models

which attempt to incorporate backbone flexibility highlight a second difficulty, namely, inadequacies inherent

to energy modeling (Desjarlais and Handel, 1999). The need for empirically derived weighting factors, and

the dependence on specific heuristics limit the generic nature of these computational protein design methods.

Such modeling based assumptions also raise issues regarding the appropriateness of the optimization method

and underscore the question of whether it is sufficient to merely identify the globally optimal sequence or,

more likely, a subset of low lying energy sequences. An even more difficult problem relevant to both flexibility

and energy modeling is to correctly model the interactions which control the functionality and activity of the

designed sequences.

De Novo Protein Design Framework

In Klepeis et al. (2003) (2004), a novel two-stage computational peptide and protein design method is presented

to not only select and rank sequences for a particular fold but also to validate the stability and specificity of the

fold for these selected sequences. The sequence selection phase relies on a novel integer linear programming

(ILP) model with several important constraint modifications that improve the tractability of the problem

and enhance its deterministic convergence to the global minimum. In addition, a rank-ordered list of low

lying energy sequences are identified along with the global minimum energy sequence. Once such a subset of

sequences have been identified, the fold validation stage is employed to verify the stabilities and specificities

of the designed sequences through a deterministic global optimization approach that allows for backbone

flexibility. The selection of the best designed sequences is based on rigorous quantification of energy based

probabilities. In the sequel, we will discuss the two stages in detail.

In silico Sequence Selection

To correctly select a sequence compatible with a given backbone template, an appropriate energy function

must first be identified. Desirable properties of energy models for protein design include both accuracy and

rapid evaluation. Moreover, the functions should not be overly sensitive to fixed backbone approximations.

In certain cases, additional requirements, such as the pairwise decomposition of the potential for application

of the dead-end elimination algorithm (Desmet et al., 1992), may be necessary.

Instead of employing a detailed atomistic level model, which requires the empirical reweighting of energetic

terms, the proposed sequence selection procedure is based on optimizing a pairwise distance-dependent inter-

action potential. Such a statistically based empirical energy function assigns energy values for interactions

between amino acids in the protein based on the alpha-carbon separation distance for each pair of amino

acids. Such structure based pairwise potentials are fast to evaluate, and have been used in fold recognition

and fold prediction (Park and Levitt, 1996). One advantage of this approach is that there is no need to

derive empirical weights to account for individual residue propensities. Moreover, the possibility that such

interaction potentials lack sensitivity to local atomic structure are addressed within the context of the overall

two-stage approach. In fact, the coarser nature of the energy function in the in silico sequence selection phase

may prove beneficial in that it allows for an inherent flexibility to the backbone.

A number of different parameterizations for pairwise residue interaction potentials exist. The simplest

approach is the development of a binary version of the model such that each contact between two amino acids

is assigned according to the residues types and the requirement that a contact is defined as the separation

between the side chains of two amino acids being less than 6.5 Å (Meller and Elber, 2001). An improvement

of this model is based on the incorporation of a distance dependence for the energy of each amino acid

interaction. Specifically, the alpha-carbon distances are discretized into a set of 13 bins to create a finite

number of interactions, the parameters of which were derived from a linear optimization formulated to favor

native folds over optimized decoy structures (Tobi and Elber, 2000; Tobi et al., 2000). The use of a distance
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dependent potential allows for the implicit inclusion of side chains and the specificity of amino acids. The

resulting potential, which involves 2730 parameters, was shown to provide higher Z scores than other potentials

and place native folds lower in energy (Tobi and Elber, 2000; Tobi et al., 2000).

The linearity of the resulting formulation based on this distance-dependent interaction potential (Loose et

al., 2003) is also an attractive characteristic of the in silico sequence selection procedure. The development

of the formulation can be understood by first describing the variable set over which the energy function

is optimized. First, consider the set i = 1, . . . , n which defines the number of residue positions along the

backbone. At each position i there can be a set of mutations represented by j{i} = 1, . . . , mi, where, for the

general case mi = 20∀i. The equivalents sets k ≡ i and l ≡ j are defined, and k > i is required to represent all

unique pairwise interactions. With this in mind, the binary variables yj
i and yl

k can be introduced to indicate

the possible mutations at a given position. That is, the yj
i variable will indicate which type of amino acid is

active at a position in the sequence by taking the value of 1 for that specification. Then, the formulation, for

which the goal is to minimize the energy according to the parameters that multiply the binary variables, can

be expressed as :

min
y

j

i
,yl

k

∑n

i=1

∑mi

j=1

∑n

k=i+1

∑mk

l=1 Ejl
ik(xi, xk)yj

i y
l
k

subject to
∑mi

j=1 yj
i = 1 ∀ i

yj
i , yl

k = 0 − 1 ∀ i, j, k, l

The parameters Ejl
ik(xi, xk) depend on the distance between the alpha-carbons at the two backbone positions

(xi, xk) as well as the type of amino acids at those positions. The composition constraints require that there is

exactly one type of amino acid at each position. For the general case, the binary variables appear as bilinear

combinations in the objective function. Fortunately, this objective can be reformulated as a strictly linear

(integer linear programming) problem (Floudas, 1995):

min
y

j

i
,yl

k

∑n

i=1

∑mi

j=1

∑n

k=i+1

∑mk

l=1 Ejl
ik(xi, xk)wjl

ik

subject to
∑mi

j=1 yj
i = 1 ∀ i

yj
i + yl

k − 1 ≤ wjl
ik ≤ yj

i ∀ i, j, k, l

0 ≤ wjl
ik ≤ yl

k ∀ i, j, k, l

yj
i , yl

k = 0 − 1 ∀ i, j, k, l

This reformulation relies on the transformation of the bilinear combinations to a new set of linear variables,

wjl
ik , while the addition of the four sets of constraints serves to reproduce the characteristics of the original

formulation. For example, for a given i, j, k, l combination, the four constraints require wjl
ik to be zero when

either yj
i or yl

k is equal (or when both are equal to zero). If both yj
i and yl

k are equal to one then wjl
ik is also

enforced to be one.

The solution of the integer linear programming problem (ILP) can be accomplished rigorously using branch

and bound techniques (CPLEX, 1997) (Floudas, 1995) making convergence to the global minimum energy

sequence consistent and reliable. Furthermore, the performance of the branch and bound algorithm is signif-

icantly enhanced through the introduction of reformulation linearization techniques (RLT). Here, the basic

strategy is to multiply appropriate constraints by bounded non-negative factors (such as the reformulated

variables) and introduce the products of the original variables by new variables in order to derive higher-

dimensional lower bounding linear programming (LP) relaxations for the original problem (Sherali and Adams,

1999). These LP relaxations are solved during the course of the overall branch and bound algorithm, and thus

speed convergence to the global minimum. The following set of constraints illustrates the application of the

RLT approach to the original composition constraint. First, the equations are reformulated by forming the

product of the equation with some binary variables or their complement. For example, by multiplying by the
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set of variables yl
k, the following additional set of constraints ∀ j, k, l is produced:

yl
k

mi∑

j=1

yj
i = yl

k ∀ i, k, l

This equation can now be linearized using the same variable substitution as introduced for the objective. The

set of RLT constraints then become:

mi∑

j=1

wjl
ik = yl

k ∀ i, k, l

Finally, for such an ILP problem it is straightforward to identify a rank ordered list of the low lying energy

sequences through the introduction of integer cuts (Floudas, 1995), and repetitive solution of the ILP problem.

By using the enhancements outlined above, in combination with the commercial (LP) solver CPLEX (CPLEX,

1997), a globally optimal (ILP) solution is generated.

Fold Specificity

Once a set of low lying energy sequences have been identified via the sequence selection procedure, the fold

stability and specificity validation stage is used to identify the most optimal sequences according to a rigorous

quantification of conformational probabilities. The foundation of the approach is grounded on the development

of conformational ensembles for the selected sequences under two sets of conditions. In the first circumstance

the structure is constrained to vary, with some imposed fluctuations, around the template structure. In the

second condition, a free folding calculation is performed for which only a limited number of restraints are

likely to be incorporated (in the case of compstatin and its analogs only the disulfide bridge constraint is

enforced) and with the underlying template structure not being enforced. In terms of practical considerations,

the distance constraints introduced for the template constrained simulation can be based on the structural

boundaries defined by the NMR ensemble (in the case of compstatin and its analogs a deviation of 1.5 angstroms

is allowed for each non-consecutive Cα-Cα distance from the known NMR structures), or simply by allowing

some deviation from a subset of distances provided by the structural template, and hence they allow for a

flexible template on the backbone.

The formulations for the folding calculations are reminiscent of structure prediction problems in protein

folding (Klepeis et al., 2002). In particular, a novel constrained global optimization problem first introduced

for structure prediction using NMR data (Klepeis et al., 1999), and later employed in a generic framework

for the structure prediction of proteins (Klepeis and Floudas, 2003) is employed. The global minimization of

a detailed atomistic energy forcefield Eff is performed over the set of independent dihedral angles, φ, which

can be used to describe any possible configuration of the system. The bounds on these variables are enforced

by simple box constraints. Finally, a set of distance constraints, Edis
l l = 1, . . . , N , which are nonconvex in

the internal coordinate system, can be used to constrain the system. The formulation is represented by the

following set of equations:

min
φ

Eff

subject to Edis
j (φ) ≤ Eref

j j = 1, . . . , N

φL
i ≤ φi ≤ φU

i i = 1, . . . , Nφ

Here, i = 1, . . . , Nφ corresponds to the set of dihedral angles, φi, with φL
i and φU

i representing lower and

upper bounds on these dihedral angles. In general, the lower and upper bounds for these variables are set to

-π and π. Eref
j are reference parameters for the distance constraints, which assume the form of typical square

well potential for both upper and lower distance violations. The set of constraints are completely general,

and can represent the full combination of distance constraints or smaller subsets of the defined restraints.

The forcefield energy function, Eff can take on a number of forms, although the current work employs the

ECEPP/3 model (Némethy et al., 1992).
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The folding formulation represents a general nonconvex constrained global optimization problem, a class

of problems for which several methods have been developed. In this work, the formulations are solved via the

αBB deterministic global optimization approach, a branch and bound method applicable to the identification

of the global minimum of nonlinear optimization problems with twice–differentiable functions (Adjiman et

al., 1998a,b, 2000; Klepeis et al., 1999; Klepeis and Floudas, 1999; Floudas, 2000; Klepeis et al., 2002). A

converging sequence of upper and lower bounds is generated, with the upper bounds on the global minimum

obtained by local minimizations of the original nonconvex problem, while the lower bounds belong to the set

of solutions of the convex lower bounding problems that are constructed by augmenting the objective and

constraint functions through the addition of separable quadratic terms.

In addition to identifying the global minimum energy conformation, the global optimization algorithm

provides the means for identifying a consistent ensemble of low energy conformations (Klepeis and Floudas,

1999; Klepeis et al., 2003a,b). Such ensembles are useful in deriving quantitative comparisons between the

free folding and template-constrained simulations. In this way, the complications inherent to the specification

of an appropriate reference state are avoided because a relative probability is calculated for each sequence

studied during this stage of the approach. The relative probability for template stability, ptemp, can be found

by summing the statistical weights for those conformers from the free folding simulation that resemble the

template structure (denote as set temp), and dividing this sum by the summation of statistical weights for all

conformers from the free folding simulation (denote as set total):

ptemp =

∑
i∈temp

exp[−βEi]∑
i∈total

exp[−βEi]

where exp[−βEi] is the statistical weight for conformer i.

Computational and Experimental Findings

Compstatin

The target chosen to test the novel protein design framework proposed by Klepeis et al. (2003) is Compstatin.

Compstatin is a 13-residue cyclic peptide that has the ability to inhibit the cleavage of C3 to C3a and

C3b. The effect of targeting the C3 cleavage is triple and results to hindrance in: (i) the generation of the

pro-inflammatory peptide C3a, (ii) the generation of opsonin C3b (or its fragment C3d), and (iii) further

complement activation of the common pathway (beyond C3) with end result the generation of the membrane

attack complex (MAC). A C3-binding complement inhibitor was identified as a 27-residue peptide using

a phage-displayed random peptide library (Sahu et al., 1996). This peptide was truncated to an equally

active 13-residue peptide named compstatin with sequence I[CVVQDWGHHRC]T-NH2 , where the brackets

denote cyclization through a disulfide bridge formed by Cys2-Cys12 (Sahu et al., 1996) (Morikis et al., 1998).

Acetylation of the N-terminus of compstatin (Ac-compstatin) resulted to a 3-fold increase in activity (Sahu et

al., 2000) (Morikis et al., 2002) (Soulika et al., 2003).

Compstatin blocked the cleavage of C3 to the pro-inflammatory peptide C3a and the opsonin C3b in

hemolytic assays and in human normal serum (Sahu et al., 1996) (Sahu et al., 2000), prevented heparine/protamine-

induced complement activation in baboons in a situation resembling heart surgery (Soulika et al., 2000), in-

hibited complement activation during the contact of blood with biomaterial in a model of extra-corporeal

circulation (Nillson et al., 1998), increased the lifetime of survival of porcine kidneys perfused with human

blood in a hyper-acute rejection xenotransplantation model (Fiane et al., 1999), blocked the E coli -induced

oxidative burst of granulocytes and monocytes (Mollnes et al., 2002), and inhibited complement activation

by cell lines SH-SY5Y, U-937, THP-1 and ECV304 (Klegeris et al., 2002). Compstatin was stable in biotran-

formation studies in vitro in human blood, normal human plasma and serum, with increased stability upon

N-terminal acetylation (Sahu et al., 2000). Compstatin showed little or low toxicity and no adverse effects

when these were measured (Fiane et al., 1999) (Nillson et al., 1998) (Soulika et al., 2000). Finally, compstatin

showed species-specificity and is active only with human and primate C3 (Sahu et al., 2003).
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In silico Sequence Selection

The first stage of the design approach involves the selection of sequences compatible with the backbone

template through the solution of the ILP problem. The formulation relies only on the alpha-carbon coordinates

of the backbone residues, which were taken from the NMR-average solution structure of compstatin (Morikis

et al., 1998).

A full computational design study from compstatin would result in a combinatorial search of 2013 ≈ 8×1016

sequences. However, in light of the results of the experimental studies of the rationally designed peptides, a

directed, rather than full, set of computational design studies were performed. First, since the disulfide bridge

was found to be essential for aiding in the formation of the hydrophobic cluster and prohibiting the termini

from drifting apart, both residues Cys2 and Cys12 were maintained. In addition, because the structure of the

type-I β turn was not found to be a sufficient condition for activity, the turn residues were fixed to be those

of the parent compstatin sequence; namely Gln5-Asp6-Trp7-Gly8. In fact, when stronger type I β sequences

were constructed, which was supported by NMR data indicating that these sequences provided higher β turn

populations than compstatin, these sequences resulted in lower or no activity (Morikis et al., 2002). Therefore,

the further stabilization of the turn residues, which would likely be a consequence of the computational peptide

design procedure, may not enhance compstatin activity. This is especially true for Trp7, which was found to

be a likely candidate for direct interaction with C3. For similar reasons, Val3 was maintained throughout the

computational experiments.

After designing the compstatin system to be consistent with those features found to be essential for comp-

statin activity, six residue positions were selected to be optimized. Of these six residues, positions 1, 4, and

13 have been shown to be structurally involved in the formation of a hydrophobic cluster involving residues at

positions 1, 2, 3, 4, 12, and 13, a necessary but not sufficient component for compstatin binding and activity.

The remaining residues, namely those at positions 9, 10 and 11, span the three positions between the turn

residues and the C-terminal cystine. For the wild type sequence these positions are populated by positively

charged residues, with a total charge of +2 coming from two histidine residues and one arginine residue.

Based on the structural and functional characteristics of those residues involved in the hydrophobic cluster,

a base case was studied with positions 1, 4 and 13 selected only from those residues defined as belonging to

the hydrophobic set (A,F,I,L,M,V,Y). In addition, this set included threonine for position 13 to allow for the

selection of the wild type residue at this position. For positions 9, 10 and 11 in the base case, all residues were

allowed, excluding cystine and tryptophan. In view of the experimental studies on Compstatin by Mallik et al.

(2005) who proposed tryptophan (W) or fused-ring non-natural amino acids at position 4 would contribute to

high inhibitory activity of the peptide, an additional run was performed with the inclusion of tryptophan (W)

in the selection set for position 4. Table 2 summarizes the preferred selection at each position according to the

composition of the lowest lying energy sequences. Tryptophan (W) was indeed strongly favored at position

4 if it was included in the selection set. This observation agrees with the experimental finding by Mallik et

al. (2005). It should be noted that if tryptophan (W) is allowed to be in the aforementioned hydrophobic

set for all six positions, then sequences with tryptophan (W) in position 4 and alanine (A), or phenyl (F), or

tryptophan (W) in position 9 are predicted among the most promising ones by the proposed novel in silico

sequence selection framework (position 1 is I, position 10 is R and position 13 is T, as in set D of Figure 1).

The sequence selection results exhibit several important and consistent features. First, position 10 is

dominated by the selection of a histidine residue, a result that directly reinforces the composition of the wild

type compstatin sequence. In contrast, position 11 is found to have the largest variation in composition, with

both polar, hydrophobic and charged residue being part of the set of optimal low lying energy sequences. At

position 9, a subset of those residues chosen for position 11, are selected. When considering those positions

involved in the hydrophobic cluster of compstatin, it is evident that valine provides strong forces at each

position. However, the results for position 4 contrast with those at position 1 and 13 in that tyrosine, rather

than valine, is the preferred choice for the lowest as well as a large majority of the low lying energy sequences.

It should be noted that because the compstatin structure was determined via NMR methods, there exists

an ensemble of 21 structures for which alternative templates could be derived. These alternative templates

were studied as a means of incorporating backbone flexibility into the sequence selection process, and the
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results proved to be consistent and in qualitative agreement with those for the average template structure.

Fold specificity calculations for selected sequences

Based on the sequence selection results a handful of optimal sequences were constructed for use in the second

stage of the computational design procedure. Figure 1 presents that peptides studied which are further

classified into sets A, B, C and D.

For all sequences further characterized via the fold stability calculations, residue 10 was set to histidine,

a prediction consistent with the composition of the parent peptide sequence. Moreover, since the variation

in the residue composition for position 11 is predicted to be rather broad, position 11 was restricted to be

arginine in subsequent sequences (except Set C). The first set of sequences was constructed to better analyze

the effect of the tyrosine substitution at position 4, with the justification to focus on this substitution being

an attempt to assess the unusually dominant selection of tyrosine at position 4. The consistent element of the

sequences belonging to set A is the assignment of tyrosine to position 4. To further isolate any substitution with

respect to the parent peptide sequence, sequences A1, A2 and A3 assume the parent compstatin composition

of histidine at position 9. Moreover, sequence A1 resembles the parent peptide sequence at positions 1 and

13 as well, while sequences A2 and A3 are constructed so as to add the valine substitutions incrementally;

first at position 13 for sequence A2 and then at both positions 1 and 13 for sequence A3. Sequences A1 and

A3 exhibit substantial increases in fold stability over the parent peptide sequence (Table 1). These results

highlight the significance of the tyrosine substitution at position 4, and may help to further clarify certain

features of the proposed binding model for the compstatin-C3 complex (Morikis et al., 2002).

To further explore the combination of position 9 substitutions with the presence of tyrosine at position

4, several additional sequences were constructed. The B1 and B2 constructions represent a reduction in the

number of simultaneous mutations from the parent peptide sequence. In effect these two sequences correspond

to the individual combinations of sequence A2 with both sequence A4 and sequence A5 such that position 1 is

taken from sequence A2, while position 9 matches the substitutions incorporated into sequences A4 and A5.

An additional sequence, B3, is formulated as a combination of sequence A3 and the position 9 substitution of

histidine to tryptophan as taken from control sequence X2. Each of the three designed sequences demonstrate

significant increases in fold stability relative to the original compstatin sequence (Table 1).

Another set of two additional sequences were identified with the only difference between them being the

specification of the residue at position 4. For sequence C1, tyrosine was assigned to position 4, while sequence

C2 was selected to have valine at this position. For both sequences, threonine was specified at positions 9

and 11, while positions 1 and 13 were set to isoleucine and valine, respectively. The choice of isoleucine for

position 1 helps to reduce the number of simultaneous changes from the parent peptide sequence.

For both sequence C1 and sequence C2 the stability calculations indicate a substantial decrease in stability

when compared to the parent peptide sequence. Nevertheless, between sequence C1 and C2 there is strong

evidence for the preference of tyrosine at position 4. This prompted closer examination of the residue selections

at position 9 and position 11, the two remaining positions not involved in the hydrophobic clustering of

compstatin. In particular, the specification of threonine at both positions 9 and 11 results in a negative

net charge balance due to the aspartate at position 6, especially because of the replacement of arginine by

threonine at position 11. This validates further the placement of arginine at position 11 for the previous set

of sequences (Table 1).

The final set of sequences was designed in accordance with additional reductions in the number of simulta-

neous mutations relative to the parent peptide sequence. Specifically, sequence D1 and sequence D2, resemble

sequence B1 and sequence B2 with threonine instead of valine as the C-terminal residue, a specification match-

ing the composition of the original parent peptide sequence. Both sequences provide significant increases in

fold stability. For sequences D1 and D2 the differences with respect to the parent peptide sequence are iso-

lated to the residue before and after the β turn. Both the position 4 tyrosine and position 9 phenylalanine

substitutions provide enhancements to the fold stability of the compstatin structure, and represent unforeseen

and unpredictable enhancements over the parent peptide sequence (Table 1).
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Experimental Validation

A number of the designed sequences presented above were constructed and tested experimentally for their

activity, without performing NMR-based structural analyses. Since the ultimate goal is to enhance the func-

tional activity of compstatin, such achievements must be complemented and verified through experimental

studies. Rather than performing massive chemical synthesis of peptide analogs, a few selected analogs were

tested against the theoretical prediction. Table 1 shows the experimentally measured percent complement

inhibition and peptide D1 is currently the most active compstatin analog available. The C2A/C12A analog

is inactive (Morikis et al., 2002) and has been used as a negative control for the inhibition measurements.

Table 1 summarizes the results from the inhibitory activity experiments in comparison to the theoretical fold

stability results.

Qualitatively, the predicted increases in fold stability and specificity are in excellent agreement with the

results from the experimental studies. This is especially significant given that the predictions correspond more

directly to fold stability enhancements while the experiments directly test inhibitory function.

The comparison between experimental and computational results indicate that the most active compstatin

analogs are sequences D1 and B1, as suggested by the optimization study. The common characteristic of

these two sequences is the substitutions at positions 4 and 9, the two positions flanking the β turn residues,

Gln5-Asp6-Trp7-Gly8. In particular, the combination of tyrosine at position 4 and alanine at position 9 are

key residues for increased activity and lead to an 16-fold improvement over the parent peptide compstatin (see

Table 1).

Conclusions and Future Work

A novel computational structure-activity based methodology for the de novo design of peptides and proteins

was presented. The method is completely general in nature, with the main steps of the approach being the

availability of NMR-derived structural templates, combinatorial selection of sequences based on optimization

of parameterized pairwise residue interaction potentials and validation of fold stability and specificity using

deterministic global optimization. The optimization study led to the identification of many active analogs

including a 16-fold more active analog, as validated through immunological activity measurements. Allow-

ing tryptophan in position 4, the in silico sequence prediction framework demonstrates that tryptophan is

preferred over tyrosine and tyrosine is preferred over valine. This is in agreement with recent experimental

results (Mallik et al., 2005) which showed a 45-fold improvement in the inhibitory activity of the peptide

(Ac − I [CV WQDWGAHRC]T − NH2). These results are extremely impressive and represent significant

enhancements in inhibitory activity over analogs identified by either purely rational or experimental combina-

torial design techniques. The work provides direct evidence that an integrated experimental and theoretical

approach can make the engineering of compounds with enhanced immunological properties possible. Future

work will be focused on algorithmic improvement on the novel de novo protein design framework to enhance

computational efficiency, trial and incorporation of non-energy-based formulations to increase accuracy of

predictions, and application of the framework on more protein targets.

Acknowledgments

CAF gratefully acknowledges financial support from the National Science Foundation and the National Insti-

tutes of Health (R01 GM52032).

References

C. Adjiman, I. Androulakis, and C. A. Floudas. Global Optimization of Mixed-Integer Nonlinear Problems.

AiChE Journal, 46:1769–1797, 2000.

12



C. Adjiman, I. Androulakis, and C.A. Floudas. A Global Optimization Method, αBB, for General Twice-

differentiable Constrained NPLs - I. Theoretical Advances. Computers Chem. Eng., 22:1137, 1998a.

C. Adjiman, I. Androulakis, and C.A. Floudas. A Global Optimization Method, αBB, for General Twice-

differentiable Constrained NPLs - II. Implementation and Computational Results. Computers Chem. Eng.,

22:1159, 1998b.

D.N. Bolon and S.L. Mayo. Enzyme-like Proteins by Computational Design. Proc. Natl. Acad. Sci. USA,

98:14274–14279, 2001.

T.V. Pogorelov C. Hardin and Z. Luthey-Schulten. Ab initio protein structure prediction. Curr. Opin. Struc.

Biol., 12:176–181, 2002.

CPLEX. Using the CPLEX Callable Library. ILOG, Inc., 1997.

B.I. Dahiyat, D.B. Gordon, and S.L. Mayo. Automated design of the surface positions of protein helices.

Protein Sci., 6:1333–1337, 1997.

B.I. Dahiyat and S.L. Mayo. Protein design automation. Protein Sci., 5:895–903, 1996.

B.I. Dahiyat and S.L. Mayo. De novo protein design: fully automated sequence selection. Science, 278:82–87,

1997.

G. Dantas, B. Kuhlman, D. Callender, M. Wong, and D. Baker. A Large Scale Test of Computational Protein

Design: Folding and Stability of Nine Completely Redesigned Globular Proteins. J. Mol. Biol., 332:449–460,

2003.

J.R. Desjarlais and T.M. Handel. De novo design of the hydrophobic cores of proteins. Protein Sci., 4:2006–

2018, 1995.

J.R. Desjarlais and T.M. Handel. Side chain and backbone flexibility in protein core design. J. Mol. Biol.,

290:305–318, 1999.

J. Desmet, M. Maeyer, B. Hazes, and I. Lasters. The Dead-end Elimination Theorem and Its Use in Protein

Side-chain Positioning. Nature, 356:539–542, 1992.

K.E. Drexler. Molecular engineering: an approach to the development of general capabilities for molecular

manipulation. Proc. Natl. Acad. Sci. USA, 78:5275–5278, 1981.

E.G. Emberly, R. Mukhopadhyay, C. Tang, and N.S. Wingreen. Flexibility of α-helices: Results of a Statistical

Analysis of Database Protein Structures. J. Mol. Biol., 327:229–237, 2003.

E.G. Emberly, R. Mukhopadhyay, C. Tang, and N.S. Wingreen. Flexibility of β-Sheets: Principal Component

Analysis of Database Protein Structures. Proteins: Structure, Function, and Genetics, 55:91–98, 2004.

E. Farinas and L. Regan. The De Novo Design of a Rubredoxin-like Fe Site. Protein Science, 7:1939–1946,

1998.

A.E. Fiane, T.E. Mollnes, V. Videm, T. Hovig, K. Hogasen, O.J. Mellbye, L. Spruce, W.T. Moore, A. Sahu, and

J.D. Lambris. Compstatin, a peptide inhibitor of C3, prolongs survival of ex-vivo perfused pig xenografts.

Xenotransplantation, 6:52–65, 1999.

C. A. Floudas. Nonlinear and Mixed-Integer Optimization: Fundamentals and Applications. Oxford University

Press, 1995.

C.A. Floudas. Determistic Global Optimization: Theory, Methods and Applications. Kluwer Academic Pub-

lishers, 2000.

13



R.F. Goldstein. Efficient Rotamer Elimination Applied to Protein Side-chains and Related Spin Glasses.

Biophysics Journal, 66:1335–1340, 1994.

B.B. Gordon, G.K. Hom, S.L. Mayo, and N.A. Pierce. Exact Rotamer Optimization for Protein Design. J.

Computational Chemistry, 24:232–243, 2003.

D.B. Gordon and S.L. Mayo. Radical Performance Enhancements for Combinatorial Optimization Algorithms

Based on the Dead-end Elimination Theorem. J. Comput. Chem., 19:1505–1514, 1998.

T.M. Handel and J.R. Desjarlais. De Novo Design of the Hydrophobic Cores of Proteins. Protein Science,

4:2006–2018, 1995.

T.M. Handel and J.R. Desjarlais. Side-chain and Backbone Flexibiity in Protein Core Design. J. Mol. Biol.,

290:305–318, 1999.

P.B. Harbury, J.J. Plecs, B. Tidor, T. Alber, and P.S. Kim. High-resolution Protein Design With Backbone

Freedom. Science, 282:1462–1467, 1998.

M.H. Hecht, A. Das, A. Go, L.H. Bradley, and Y. Wei. De Novo Proteins From Designed Combinatorial

Libraries. Protein Science., 13:1711–1723, 2004.

H.W. Hellinga and F.M. Richards. Construction of new ligand binding sites in proteins of known structure I.

Computer aided modeling of sites with predefined geometry. J. Mol. Biol., 222:763–785, 1991.

W. Jin, O. Kambara, H. Sasakawa, A. Tamura, and S. Takada. De Novo Design of Foldable Proteins with

Smooth Folding Funnel: Automated Negative Design and Experimental Verification. Structure, 11:581–590,

2003.

A. Klegeris, E.A. Singh, and P.L. McGeer. Effects of C-reactive protein and pentosan polysulphate on human

complement activation. Immunology, 106:381–388, 2002.

J. L. Klepeis, C. A. Floudas, D. Morikis, and J. Lambris. Predicting Peptide Structures Using NMR Data

and Deterministic Global Optimization. J. Comput. Chem., 20:1354–1370, 1999.

J. L. Klepeis, C. A. Floudas, D. Morikis, C. G. Tsokos, E. Argyropoulos, L. Spruce, and J. D. Lambris. Inte-

grated Structural, Computational and Experimental Approach for Lead Optimization: Deisgn of Compstatin

Variants with Improved Activity. J. Am. Chem. Soc., 125:8422–8423, 2003.

J. L. Klepeis, H. D. Schafroth, K. M. Westerberg, and C. A. Floudas. Deterministic Global Optimization

and Ab Initio Approaches for the Structure Prediction of Polypeptides, Dynamics of Protein Folding and

Protein-Protein Interaction. In R. A. Friesner, editor, Advances in Chemical Physics, volume 120, pages

254–457. Wiley, 2002.

J.L. Klepeis and C.A. Floudas. Free Energy Calculations for Peptides Via Deterministic Global Optimization.

J. Chem. Phys., 110:7491, 1999.

J.L. Klepeis and C.A. Floudas. Ab initio tertiary structure prediction of proteins. J. Global. Optim., 25:113–

140, 2003.

J.L. Klepeis, C.A. Floudas, D. Morikis, C.G. Tsokos, E. Argyropoulos, L. Spruce, and J.D. Lambris. Integrated

Computational and Experimental Approach for Lead Optimization and Design of Compstatin Variants with

Improved Activity. J. Am. Chem. Soc., 125:8422–8423, 2003.

J.L. Klepeis, C.A. Floudas, D. Morikis, C.G. Tsokos, and J.D. Lambris. Design of Peptide Analogs with

Improved Activity Using a Novel De Novo Protein Design Approach. Industrial & Engineering Chemistry

Research, 43:3817, 2004.

14



J.L. Klepeis, M.T. Pieja, and C.A. Floudas. A New Class of Hybrid Global Optimization Algorithms for

Peptide Structure Prediction: Integrated Hybrids. Comp. Phys. Comm., 151:121–140, 2003a.

J.L. Klepeis, M.T. Pieja, and C.A. Floudas. Hybrid Global Optimization Algorithms for Protein Structure

Prediction : Alternating Hybrids. Biophysical J., 84:869–882, 2003b.

P. Koehl and M. Delarue. Application of a Self-consistent Mean Field Theory to Predict Protein Side-chains

Conformation and Estimate Their Conformational Entropy. J. Mol. Biol., 239:249–275, 1994.

P. Koehl and M. Delarue. A Self Consistent Mean Field Approach to Simultaneouos Gap Closure and Side-

chain Positioning in Homology Modeling. Nature Struct. Biol., 2:163–170, 1995.

P. Koehl and M. Delarue. Mean-field Minimization Methods for Biological Macromolecules. Current Opinion

in Structural Biology, 6:222–226, 1996.

P. Koehl and M. Levitt. De novo protein design I. In search of stability and specificity. J. Mol. Biol.,

293:1161–1181, 1999.

H. Kono and J.G. Saven. Statistical Theory for Protein Combinatorial Libraries. Packing Interactions, Back-

bone Flexibility, and the Sequence Variability of a Main-chain Structure. J. Mol. Biol., 306:607–628, 2001.

C.M. Kraemer-Pecore, J.T. Lecomte, and J.R. Desjarlais. A De Novo Redesign of the WW Domain. Protein

Science., 12:2194–2205, 2003.

B. Kuhlman and D. Baker. Native Protein Sequences Are Close to Optimal for Their Structures. Proc. Natl.

Acad. Sci. USA, 97:10383–10388, 2000.

B. Kuhlman, G. Dantae, G.C. Ireton, G. Verani, B. Stoddard, and D. Baker. Design of a Novel Globular

Protein Fold with Atomic-Level Accuracy. Science, 302:1364–1368, 2003.

C. Lee. Predicting Protein Mutant Energetics by Self-Consistent Ensemble Optimization. J. Mol. Biol.,

236:918–939, 1994.

W.A. Lim, A. Hodel, R.T. Sauer, and F.M. Richards. The Crystal Structure of a Mutant Protein With Altered

But Improved Hydrophobic Core Packing. Proc. Natl. Acad. Sci. USA, 91:423–427, 1994.

C. Loose, J. Klepeis, and C. Floudas. A new pairwise folding potential based on improved decoy generation

and side chain packing. Proteins, 2003. in press.

S.M. Malakauskas and S.L. Mayo. Design, Structure, and Stability of a Hyperthermophilic Protein Variant.

Nat. Struct. Biol., 5:470–475, 1998.

B. Mallik, M. Katragadda, L.A. Spruce, C. Carafides, C.G. Tsokos, D. Morikis, and J.D. Lambris. Design and

NMR Characterization of Active Analogues of Compstatin Containing Non-natural Amino Acids. Journal

of Medicinal Chemistry., 2005. in press.

J. Meller and R. Elber. Linear programming optimization and a double statistical filter for protein threading

protocols. Proteins, 45:241–261, 2001.

T.E. Mollnes, O.L. Brekke, M. Fung, H. Fure, D. Christiansen, G. Bergseth, V. Videm, K.T. Lappegard,

J. Kohl, and J.D. Lambris. Essential role of the C5a receptor in E coli-induced oxidative burst and phago-

cytosis revealed by a novel lepirudin-based human whole blood model of inflammation. Blood, 100:1869–1877,

2002.

B.H.M. Mooers, D. Datta, W.A. Baase, E.S. Zollars, S.L. Mayo, and B.W. Matthews. Repacking the Core of

T4 Lysozyme by Automated Design. J. Mol. Biol., 332:741–756, 2003.

15



D. Morikis, N. Assa-Munt, A. Sahu, and J. D. Lambris. Solution Structure of Compstatin, a Potent Comple-

ment Inhibitor. Protein Sci., 7:619–627, 1998.

D. Morikis, M. Roy, A. Sahu, A. Torganis, P.A. Jennings, G.C. Tsokos, and J.D. Lambris. The structural

basis of compstatin activity examined by structure-function-based design of peptide analogs and NMR. J.

Biol. Chem., 277:14942–14953, 2002.

G. Némethy, K. D. Gibson, K. A. Palmer, C. N. Yoon, G. Paterlini, A. Zagari, S. Rumsey, and H. A. Scheraga.

Energy Parameters in Polypeptides. 10. J. Phys. Chem., 96:6472–6484, 1992.

B. Nillson, R. Larsson, J. Hong, G. Elgue, K.N. Ekdahl, A. Sahu, and J.D. Lambris. Compstatin inhibits

complement and cellular activation in whole blood in two models of extracorporeal circulation. Blood,

92:1661–1667, 1998.

M.J. Nohaile, Z.S. Hendsch, B. Tidor, and R.T. Sauer. Altering dimerization specificity by changes in surface

electrostatics. Proc. Natl. Acad. Sci. USA, 98:3109–3114, 2001.

C. Pabo. Molecular technology. Designing proteins and peptides. Nature, 301:200, 1983.

B. Park and M. Levitt. Energy functions that discriminate x-ray and near native folds from well-constructed

decoys. J. Mol. Biol., 258:367–392, 1996.

S. Park, X. Yang, and J.G. Saven. Advances in Computational Protein Design. Current Opinion in Structural

Biology, 14:487–494, 2004.

N.A. Pierce, J.A. Spriet, J. Desmet, and S.L. Mayo. Conformational Splitting: A More Powerful Criterion for

Dead-end Elimination. Journal of Computational Chemistry., 21:999–1009, 2000.

N.A. Pierce and E. Winfree. Protein Design is NP-hard. Protein Engineering., 15:779–782, 2002.

J.W. Ponder and F.M. Richards. Tertiary templates for proteins. J. Mol. Biol., 193:775–791, 1987.

K. Raha, A.M. Wollacott, M.J. Italia, and J.R. Desjarlais. Prediction of amino acid sequence from structure.

Protein Sci., 9:1106–1119, 2000.

S.A. Ross, C.A. Sarisky, A. Su, and S.L. Mayo. Designed Protein G Core Variants Fold to Native-like

Structures: Sequence Selection by ORBIT Tolerates Variation in Backbone Specification. Protein Science,

10:450–454, 2001.

A. Sahu, B.K. Kay, and J.D. Lambris. Inhibition of human complement by a C3-binding peptide isolated from

a phage displayed random peptide library. J. Immunol., 157:884–891, 1996.

A. Sahu, D. Morikis, and J.D. Lambris. Compstatin, a peptide inhibitor of complement, exhibits species-

specific binging to complement component C3. Mol. Immunology, 39:557–566, 2003.

A. Sahu, A.M. Soulika, D. Morikis, L. Spruce, W.T. Moore, and J.D. Lambris. Binding kinetics, structure

activity relationship and biotransformation of the complement inhibitor compstatin. J. Immunol., 165:2491–

2499, 2000.

J.G. Saven. Connecting statistical and optimized potentials in protein folding via a generalized foldability

criterion. J. Chemical Physics, 118:6133–6136, 2003.

H.D. Sherali and W.P. Adams. A reformulation linearization technique for solving discrete and continuous

nonconvex problems. Kluwer Academic Publishing, Boston, MA, 1999.

M. Shimaoka, J.M. Shifman, H. Jing, L. Takagi, S.L. Mayo, and T.A. Springer. Computational Design of an

Intergrin I Domain Stabilized in the Open High Affinity Conformation. Nat. Struct. Biol., 7:674–678, 2000.

16



A.M. Soulika, M.M. Khan, T. Hattori, F.W. Bowen, B.A. Richardson, C.E. Hack, A. Sahu, L.H. Edmunds,

and J.D. Lambris. Inhibition of heparin/protamine complex-induced complement activation by Comsptatin

in baboons. Clin. Immunology, 96:212–221, 2000.

A.M. Soulika, D. Morikis, M.R. Sarias, M. Roy, L. Spruce, A. Sahu, and J.D. Lambris. Studies of Structure-

Activity Relations of Complement Inhibitor Compstatin. J. Immunology, 170:1881–1890, 2003.

A.G. Street and S.L. Mayo. Pairwise calculation of protein solvent-accessible surface areas. Fold. Des., 3:253–

258, 1998.

P. Strop and S.L. Mayo. Rubredoxin Variant Folds Without Irons. J. Am. Chem. Soc., 121:2341–2345, 1999.

A. Su and S.L. Mayo. Coupling Backbone Flexibility and Amino Acid Sequence Selection in Protein Design.

Protein Science, 6:1701–1707, 1997.

D. Tobi and R. Elber. Distance-dependent pair potential for protein folding: results from linear optimization.

Proteins, 41:40–46, 2000.

D. Tobi, G. Shafran, N. Linial, and R. Elber. On the design and analysis of protein folding potentials. Proteins,

40:71–85, 2000.

P. Tuffery, C. Etchebest, S. Hazout, and R. Lavery. A New Approach to the Rapid Determination of Protein

Side Chain Conformations. J. Biomol. Struct. Dyn., 8:1267–1289, 1991.

C.A. Voigt, D.B. Gordon, and S.L. Mayo. Trading accuracy for speed: a quantitative comparison of search

algorithms in protein sequence design. J. Mol. Biol., 299:789–803, 2000.

L. Wernisch, S. Hery, and S.J. Wodak. Automatic protein design with all atom force-fields by exact and

heuristic optimization. J. Mol. Biol., 301:713–736, 2000.

J. Zhou and J.G. Saven. Statistical Theory of Combinatorial Libraries of Folding Proteins: Energetic Dis-

crimination of a Target Structure. J. Molecular Biology, 296:281–294, 2000.

17



Table 1: Sequence and experimental relative activity of compstatin analogs with improved activity that were

identified by rational design, experimental combinatorial design, and the novel in silico de novo protein design

approach. Boldface is used to indicate that amino acids were fixed. Brackets indicate the disulfide bridge.

Relative complement inhibitory activity is derived from IC50 measurements.

Peptide Sequence Relative activity Reference

Compstatin I [CVV QDWGHHRC]T − NH2 1 (Sahu et al., 1996)

Ac-Compstatin Ac − I [CVV QDWGHHRC]T − NH2 3 (Sahu et al., 2000)

Ac-H9A Ac − I [CVV QDWGAHRC]T − NH2 4 (Morikis et al., 2002)

Ac-I1L/H9W/T13G Ac − L[CVV QDWGWHRC]G − NH2 4 (Soulika et al., 2003)

Ac-I1V/V4Y/H9F/T13V Ac − V [CVY QDWGFHRC]V − NH2 6 (Klepeis et al., 2003)

Ac-I1V/V4Y/H9A/T13V Ac − V [CVY QDWGAHRC]V − NH2 9 (Klepeis et al., 2003)

Ac-V4Y/H9F/T13V Ac − I [CVY QDWGFHRC]V − NH2 11 (Klepeis et al., 2003)

Ac-V4Y/H9A/T13V Ac − I [CVY QDWGAHRC]V − NH2 14 (Klepeis et al., 2003)

Ac-V4Y/H9A Ac − I [CVY QDWGAHRC]T − NH2 16 (Klepeis et al., 2003)

Ac-V4W/H9A Ac − I [CVWQDWGAHRC]T − NH2 45 (Mallik et al., 2005)

Table 2: Preferred residue selection for positions 1, 4, 9, 10, 11 and 13 of compstatin, as compared to the wild

type sequence. Only residues with greater than 10 % representation among the lowest lying energy sequences

are considered optimal. Provided in decreasing order.

Position Wild type Optimal1 Optimal2

1 I A,V V,A

4 V Y,V W,Y,V

9 H T,F,A F,T

10 H H H,K,S

11 R T,V,A,F,H H,F,T

13 T V,A,F V,A,F

1Base case: positions 1 and 4 selected from {A,F,I,L,M,V,Y}; position 13 selected from {A,F,I,L,M,V,Y,T};

positions 9,10 and 11 selected from all residues except C and W.
2Base case with position 4 among {A,F,I,L,M,V,Y,W}.
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Figure 1: Set of sequences tested for fold specificity.
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