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Abstract. This paper presents an overview of the deterministic global optimization
approaches and their applications in the areas of Process Design, Control, and Compu-
tational Chemistry. The focus is on (1) decomposition-based primal dual methods, (ii)
methods for generalized geometric programming problems, and (iii) global optimization
methods for general nonlinear programming problems. The classes of mathematical
problems that are addressed range from indefinite quadratic programming to concave
programs, to quadratically constrained problems, to polynomials, to general twice con-
tinuously differentiable nonlinear optimization problems. For the majority of the pre-
sented methods nondistributed global optimization approaches are discussed with the
exception of decomposition-based methods where a distributed global optimization ap-
proach is presented.

1. Background. A significant effort has been expended in the last
five decades toward theoretical and algorithmic studies of applications that
arise in Process Synthesis, Design, Control, and Computational Chem-
istry. In the last decade the area of global optimization has attracted a
lot of interest from the Operations Research and Applied Mathematics
community, while in the last five years we have experienced a resurgence
of interest in Chemical Engineering for new methods of global optimiza-
tion as well as the application of available global optimization algorithms
to important engineering problems. This recent surge of interest is at-
tributed to three main reasons. First, a large number of process synthesis,
design, control, and computational chemistry problems are indeed global
optimization problems. More specifically, in the area of Process Synthesis
and Design, global optimization problems arise in phase equilibrium, non-
ideal separations, energy optimization, reactor-based systems, parameter
estimation, data reconciliation, and metabolic reaction pathways. In the
area of Process Control, global optimization issues are in the robust control
analysis of systems with real parametric uncertainty, stability analysis of
polytopes of matrices, optimal control of complex reaction mechamisms,
and nonlinear model predictive control. In the area of Process Operations,
the design of systems under uncertainty, and the planning and schedul-
ing of batch, semi-continuous, and continuous processes result in global
optimization problems. In the area of Computational Chemistry, global
optimization problems arise in the clusters of atoms and molecules, the
design of small organic molecules, the three-dimensional structure predic-
tion of oligopeptides, and polypeptides, the prediction of protein structure,
the interaction of proteins, the refinement of X-ray and NMR data, and
the design of constrained peptides. Second, the existing local nonlinear
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optimization approaches (e.g., generalized reduced gradient and successive
quadratic programming methods) may either fail to obtain even a feasible
solution or are trapped to a local optimum solution which may differ in
value significantly form the global solution. Third, the global optimum
solution may have a very different physical interpretation when it is com-
pared to local solutions (e.g., in phase equilibrium a local solution may
provide incorrect prediction of types of phases at equilibrium, as well as
the components’ composition in each phase).

The existing approaches for global optimization are classified as deter-
ministic or probabilistic. The deterministic approaches include: (a) Lips-
chitzian methods (e.g. Hansen et al. 1992 a, b), (b) Branch and Bound
methods (e.g. Al-Khayyal and Falk 1983; Horst and Tuy, 1987; Al-Khayyal
1990), (c¢) Cutting Plane methods (e.g. Tuy et al. 1985), (d) Difference
of Convex (D.C.) and Reverse Convex methods (e.g.. Tuy 1987 a,b), (e)
Outer Approximation methods (e.g. Horst et al. 1992), (f) Primal-Dual
methods (e.g. Shor 1990; Floudas and Visweswaran 1990, 1993; Ben-Tal
et al. 1994), (g) Reformulation-Linearization methods (e.g. Sherali and
Alameddine, 1992; Sherali and Tuncbilek 1992), and (h) Interval methods
(e.g. Hansen 1979). The probabilistic methods include (i) random search
approaches (e.g. Kirkpatrick et al. 1983), and (ii) clustering methods
(e.g. Rinnoy Kan and Timmer 1987). Recent books that discuss the above
classes are available by Pardalos and Rosen (1987), Torn and Zilinskas
(1989), Ratschek and Rokne (1988), Horst and Tuy (1990), Floudas and
Pardalos (1992), Horst and Pardalos (1995), Horst et al. (1995), Pinter
(1996), Grossmann (1996) and Floudas and Pardalos (1996).

Contributions from the chemical engineering community to the area
of global optimization can be traced to the early work of Stephanopoulos
and Westerberg (1975), Westerberg and Shah (1978), and Wang and Luus
(1978). Renewed interest in seeking global solution was motivated form the
work of Floudas et al (1989). The first exact primal-dual global optimiza-
tion approach was proposed by Floudas and Visweswaran (1990), (1993)
and its features were explored for quadratically constrained and polynomial
problems in the work of Visweswaran and Floudas (1992), (1993). Swaney
(1990) proposed a branch and bound global optimization approach and
more recently Quesada and Grossmann (1993, 1995) combined convex un-
derestimators in a branch and bound framework for linear fractional and
bilinear programs. Manousiouthakis and Sourlas (1992) proposed a refor-
mulation to a series of reverse convex problems, and Tsirukis and Reklaitis
(1993 a,b) proposed a feature extraction algorithm for constrained global
optimization. Maranas and Floudas (1992, 1993, 1994a,b) proposed a novel
branch and bound method combined with a difference of convex functions
transformation for the global optimization of molecular conformation prob-
lems that arise in computational chemistry. Vaidyanathan and El-Halwagi
(1994) proposed an interval analysis based global optimization method and
Ryoo and Sahinidis (1995) suggested the application of reduction tests
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within the framework of branch and bound methods. Androulakis et al.
(1995) proposed the global optimization method BB which addresses gen-
eral continuous optimization problems with nonconvexities in the objective
function and/or constraints. This approach classifies the nonconvexities as
special structure (e.g., bilinear, signomial, univariate) or generic structure
and is based on convex relaxations and a branch and bound framework.
Maranas and Floudas (1995) proposed a new approach for enclosing all
e-feasible solutions of nonlinearly constrained systems of equations. This
approach transforms the problem into a min-max form and corresponds to
enclosing all multiple global optima via the «BB global optimization ap-
proach. A variety of convex underestimators for trilinear, fractional, gen-
eralized polynomial, and products of univariate functions were proposed.
Maranas and Floudas (1996) proposed a global optimization approach for
generalized geometric programming problems that have many applications
in robust control and engineering design problems. In a series of papers
McDonald and Floudas (1994;1995a,b,c) addressed the fundamental prob-
lems of (i)minimization of the Gibbs free energy and (ii) the tangent plane
stability criterion that arise in phase and chemical reaction equilibrium as
global optimization problems for the first time. They proposed decompo-
sition based approaches for biconvex problems that result from the use of
the NRTL equation, and branch and bound approaches for the UNIQUAC,
UNIFAC, ASOG, and TK-Wilson activity coefficient models. McDonald
and Floudas (1996) proposed the combination of the two aforementioned
classes of problems, developed a special purpose program GLOPEQ, and
performed an extensive computational study on difficult phase equilibrium
problems.

The books of Floudas and Pardalos (1996) and Grossmann (1996) con-
tain a number of recent chemical engineering contributions which are briefly
discussed in the following. Staus et al. (1996) formulated the combined
adaptive controller design and estimation problem as a nonconvex prob-
lem with convex objective and bilinear constraints, and proposed a branch
and bound global optimization method which is based on the McCormick
underestimators. Visweswaran et al. (1996) addressed bilevel linear and
quadratic programming problems to global optimality by employing the
basic principles of the GOP and developing additional theoretical prop-
erties that exploit the underlying mathematical structure of such prob-
lems. Androulakis et al. (1996) developed a distributed version of the
GOP, and discussed the key theoretical and implementation issues along
with extensive computational results on large scale indefinite quadratic
and pooling/blending problems. Shectman and Sahinidis (1996) proposed
a finite algorithm for separable concave programs, discussed the design
of such branch and bound approaches, and presented computational re-
sults employing domain reduction tests. McKinnon et al. (1996) addressed
the global optimization in phase and chemical reaction equilibrium us-
ing interval analysis coupled with the tangent plane stability criterion of
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Gibbs. Mockus and Reklaitis (1996) proposed a continuous formulation for
the short term batch scheduling propblem, and developed a global opti-
mization approach based on the Bayesian heuristic. Lucia and Xu (1996)
studied nonconvexity issues in sparse successive quadratic programming,
and Banga and Seider (1996) introduced a stochastic global optimization
approach which they applied to the optimal design of a fermentation pro-
cess, phase equilibrium problems and optimal control problems. Epperly
and Swaney (1996a,b) proposed a branch and bound method with a new
linear programming underestimating problem, and provided extensive com-
putational studies. This approach is applicable to NLPs in factorable form
which includes quadratic objective and constraints, and twice differentiable
transcendental functions. Visweswaran and Floudas (1996a) proposed new
formulations for the GOP algorithm which are based on a branch and bound
framework, allow the implicit solution of the relaxed dual problems which
are formulated in a single MILP model, and feature a linear branching
scheme. Visweswaran and Floudas (1996b) discussed the implementation
issues of the GOP and provide extensive computational experience on a
variety of chemical engineering probelms. Byrne and Bogle (1996) and
Vaidyanathan and El-Halwagi (1996) proposed global optimization meth-
ods that are based on interval analysis for constrained NLPs and MINLPs
respectively. Liu et al. (1996) proposed a new approach for planning
of chemical process networks which is based on global concave minimiza-
tion. The approach is based on their earlier work on finite global optimiza-
tion approaches and their computational studies revealed the efficiency of
the proposed approach. Ierapetritou and Pistikopoulos (1996) studied the
global optimization of stochastic planning, scheduling and design prob-
lems, applied the decomposition-based approach, GOP, and demonstrated
that significant reductions in the number of relaxed dual problems can be
achieved by exploiting the mathematical structure further. Iyer and Gross-
mann (1996) extended the global optimization approach of Quesada and
Grossmann (1993) to the multiperiod heat exchanger networks that feature
fixed configuration, linear cost functions, arithmetic mean driving forces,
and isothermal mixing. Quesada and Grossmann (1996) studied further
the use of alternative bounding approximations and applied them to a va-
riety of engineering design problems that include structural design, batch
processes; layout design, and portfolio problems. Smith and Pantelides
(1996) proposed a symbolic manipulation algorithm for the automatic re-
formulation of algebraic constraints and introduced a spatial type branch
and bound approach within the gPROMS framework.

Recently, Adjiman et al. (1996) and Adjiman and Floudas (1996)
proposed novel approaches for the rigorous determination of the o param-
eters that are employed in the aBB global optimization approach. These
methods are based on interval anlysis of the hessian matrices and calculate
rigorous bounds on the minimum eigenvalue for general twice differentiable
problems.
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In this paper, we will focus on deterministic global optimization meth-
ods that have been developed in the Computer-Aided Systems Laboratory,
CASL, of the Department of Chemical Engineering of Princeton Univer-
sity. These will be classified as (i) decomposition-based primal-relaxed dual
methods, (ii) methods for generalized geometric programming models, and
(iil) methods for general nonlinear programming problems.

2. Decomposition methods.

2.1. The primal-relaxed dual approach, GOP. Floudas and Vis-
weswaran (1990,1993) proposed a deterministic primal-relaxed dual global
optimization approach, GOP, for solving several classes of nonconvex op-
timization models for their global solutions.

2.1.1. Formulation. The general form of the optimization problem

addressed by the GOP approach is:

min f(z,y)
T,y

(2.1) s.1.

g(z,y) <
h(z,y)

%NOO

r €
Yy €
where X and Y are non-empty, compact, convex sets, f(z,y) is the objec-
tive function to be minimized, g(z,y) is a vector of inequality constraints
and h(z,y) is a vector of equality constraints. It is assumed that these
functions are continuously differentiable over X x Y. For the sake of con-
venience, it will be assumed that the set X is incorporated into the first

two sets of constraints. In addition, the problem is also assumed to satisfy
the following conditions:

Conditions (A):

(a) f(z,y) and g(z,y) are convex in z for every fixed y, and convex in y
for every fixed =z,

(b) h(x,y) is affine in x for every fixed y, and affine in y for every fixed z,

(¢) Y CV, where V= {y:g(e,y) <0, h(z,y) = 0, for some 2 € X},
and

(d) An appropriate constraint qualification (e.g., Slater’s, linear indepen-
dence qualification) is satisfied for fixed y.

It has been shown Floudas and Visweswaran (1990, 1993) that the class of

problems that satisfies these conditions includes, but is not restricted to,

bilinear problems, quadratic problems with quadratic constraints and poly-

nomial and rational polynomial problems. Recently, it has also been shown

(Liu and Floudas 1993, 1995) that a very large class of smooth optimization
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problems can be converted to a form where they satisfy Conditions (A),
and hence are solvable by the GOP algorithm. Liu and Floudas (1996)
proposed a generalized primal-relaxed dual approach which contains the
GOP as a special case, extended the GOP to certain classes of nonsmooth
problems, and suggested a penalty type implementation for improving the
computational efficiency.

2.1.2. Concepts and properties of the GOP approach. The
GOP algorithm utilizes primal and relaxed dual subproblems to obtain
upper and lower bounds on the global solution. The primal problem re-
sults from fixing the y variables to some value, say y*, and is defined as
follows:

min  f(z, yk),

(2.2) s.t. gz, y*)
h(z,y*) = 0

INA

where ¥* € Y. It has been assumed here that any bounds on the z variables
are incorporated into the first set of constraints. Notice that because of the
introduction of additional constraints by fixing the y variables, this prob-
lem provides an upper bound on the global optimum of (2.1). Moreover,
P¥(y*), the solution of this problem yields a solution z* for the z vari-
ables and Lagrange multipliers A* and p* for the equality and inequality
constraints respectively?!.

The Lagrange function constructed from the primal problem is given
as:

(2.3) LF (2, y, A 1%) = f(z,y) + Noh(z, y) + pFg(z, y).

The z variables that are present in the linearization of the Lagrange func-
tion around z*, and for which the gradients of the Lagrange functions with
respect to x at z* are functions of the y-variables, are called the connected
variables. It can easily be shown that the linearization of the Lagrange
function around z* can also be written in the form:

NIE
lin
(2.4) L@, y, A% i) o = Lo(y A i)+ migh(y)

i=1

where Nfé is the number of connected variables at the k*" iteration, and
LE(y, A%, %) represents all the terms in the linearized Lagrange function

1 Tt is assumed here that the primal problem is feasible for y = y*. See Floudas and
Visweswaran (1990, 1993) for the treatment of the cases when the primal problem is
infeasible for a given value of y.
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that depend only on y. The positivity and negativity of the functions ¢¥(y),
which represent the gradients of the Lagrange function with respect to the
variables x; at iteration k, define a set of equations that are called the
qualifying constraints of the Lagrange function at the k** iteration, and
which partition the y variable space into NIz subregions. In each of these
subregions, a Lagrange function can be constructed (using the bounds for
the # variables) that underestimates the global solution in the subregion,
and can therefore be minimized to provide a lower bound for the global
solution in that region.

Consider the first iteration of the GOP algorithm. The initial parent
region is the entire space y € Y from the original problem. This region is
subdivided into 2V7e subregions, and in each of these subregions, a sub-
problem of the following form is solved:

min  up
yeY,un

st oup > LM,y Al
giy) < 0 if mf’ = mZU e’

where I} is the set of connected variables at the first iteration, Nfé is the
number of connected variables, and zX and z! are the lower and upper
bounds on the i*® connected variable respectively. This subproblem corre-
sponds to the minimization of the Lagrange function, with the connected
variables replaced by a combination of their lower and upper bounds. Note
the presence of the qualifying constraints in the problem. These constraints
ensure that the minimization is carried out in a subregion of the parent
node. If this problem has a value of up that is lower than the current best
upper bound obtained from the primal problem, then it is added to the
set of candidate lower bounds; otherwise, the solution is fathomed, that is,
removed from consideration for further refinement.

Consider a problem with two # and two y variables. In the first itera-
tion, assuming that both #; and z» are in the set of connected variables for
the first iteration, there are four relaxed dual subproblems solved. These
problems are shown in Figure 2.1(a). It can be seen that the qualifying con-
straints partition the y-space into the four regions. Each of the relaxed dual
subproblems solved provides a valid underestimator for the corresponding
region as well as a solution point (denoted in the figure by y4, y?, y©
and y”) in the region. Figure 2.1(b) shows the corresponding branch-and-
bound tree created by the solution of these four problems. The starting
point y! is the root node, and it spawns four leaf nodes. The infimum of

the four nodes provides the point for the next iteration, in this case, say

yt.



8 CHRISTODOULOS A. FLOUDAS

In the second iteration, the relaxed dual problem is equivalent to fur-
ther partitioning the subregion that was selected for refinement. In each of
these partitions, a relazed dual subproblem is solved. Figure 2.2(a) shows
the subregions created in the example, assuming that there was only one
connected variable in this iteration. The two relaxed dual subproblems
solved in this iteration give new solutions y¥ and y¥ and are possible
candidates for entering at future iterations. Figure 2.2(b) shows the corre-
sponding nodes in the branch-and-bound tree created by this iteration.

The preceding discussion illustrates the key features of a branch and
bound framework for the algorithm. The framework is based upon the
successive refinement of regions by partitioning on the basis of the qualifying
constraints.

Visweswaran and Floudas (1990, 1992) demonstrated that the GOP
can address several classes of problems that include: (i) Bilinear, nega-
tive definite and indefinite quadratic programming problems; (ii) Quadratic
programming problems with quadratic constraints; and (iii) Unconstrained
and constrained optimization of polynomial functions. For the case of poly-
nomial functions in one variable Visweswaran and Floudas (1992) showed
that the primal is a single function evaluation while the relaxed dual be-
comes a system of two linear equations. Visweswaran and Floudas (1993)
proposed new theoretical properties that enhance significantly the com-
putational performance of the GOP algorithm. The effect of the new
properties is illustrated through application of the GOP algorithm to a
difficult inde finite quadratic problem, a multiperiod tankage quality prob-
lem that occurs frequently in the modeling of refinery processes, and a set
of pooling/blending problems f rom the literature. In addition, extensive
computational experience is reported for randomly generated concave and
indefinite quadratic programming problems of different sizes. The results
show that the properties help to make the algorithm computational ly ef-
ficient for fairly large problems.

2.1.3. Branch and bound framework for the GOP. The branch
and bound framework for the GOP is based on the following definitions.
For a node j in the branch and bound tree, F; is its parent node, and I;
is the iteration at which node j is created. R; is the set of constraints
defining the region corresponding to node j. At any point, N; denotes the
total number of nodes in the tree, and C' denotes the current node.

Root node and starting region : At the beginning of the algorithm,
there are no subdivisions in the y-space. Therefore, the root node in the
branch and bound tree is simply the starting point for the algorithm, y!.
The region of application for this node (i.e., the current region) is the entire
y-space.

Reduction tests at each node : At each node, the current region
of application is divided into several subregions using the gualifying con-
straints of the current Lagrange function. It is possible to conduct simple
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FiG. 2.1. Partition in the y-space for the first iteration with two connected variables
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F1G. 2.2. Partition in the y-space for the second iteration with one connected variable
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tests on the basis of the signs of the gqualifying constraints that can be
used to reduce the number of connected variables. One such test, based
upon the properties first presented in Visweswaran and Floudas (1993), is
presented below:

Suppose a node j is to be partitioned in the k" iteration (i.e., I = k).
Then,

(i) If g¥(y) > 0 Vye€ R;, set z; =z in L¥(x,y, A*, u*) and remove

¢t from the set of connected variables.

(i) If g¥(y) <0 Vy e Ry, set z; = 2Y in LF(z,y, A*, u*) and remove

¢ from the set of connected variables.
The proofs of the validity of these reductions can be easily obtained by
considering that the term z;g%(y) can be underestimated by zlg¥(y) for
all positive g¥(y) and z¥ g¥(y) for all negative g (y).

Evaluation of bounds for the = variable : Tighter bounds on the
z variables can be obtained by considering the current domains in the y
variable space, the existing linear and convex constaints, and convex relax-
ations of the nonconvex constraints. One way of obtaining such bounds is
by minimizing and maximizing each variable such to the aforementioned
set of constraints.

The major steps of the branch-and-bound version of the GOP algo-
rithm are described in Visweswaran and Floudas (1996a,b) and are also
shown in Figure 3. Floudas and Visweswaran (1990, 1993) showed that the
GOP algorithm attains finite convergence to an e-global minimum solution.

2.2. The distributed computing GOP approach. Androulakis
et al. (1996) studied the distributed computing issues for the GOP and
demonstrated that large-scale quadratic programming and large scale pool-
ing problems can be addressed. They identified the following three major
sources of computational challenges : (i) the update of the bounds on the
connected z variables, (ii) the solution of the relaxed dual problems, and
(iii) the routing of the appropriate data.

The computational difficulty of the GOP algorithm manifests itself
in the solution of 2¥/¢ problems, where NI, is the number of connected
variables. The connected z variables form a sub—set of the original z—type
variables. It was shown theoretically, Visweswaran and Floudas (1993), and
observed computationally that obtaining tight bounds on the optimization
variables, for both the z—type as well as the y—type, is very helpful in
the convergence rate of the algorithm. In order to calculate tight variable
bounds one has to solve 2(N, + N,) convex NLP’s, where N, and N, if
the total number of x—type and y—type variables respectively. Therefore,
the search for tighter variable bounds problems can be computationally
improved if these problems are solved in parallel.

The major computational bottleneck of the method is the solution of a
potentially very large number of relaxed dual problems at a given iteration,
9NIe  Therefore, major emphasis has to be placed on the most efficient
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Fi1G. 2.3. Flow Diagram of distributed GOP
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solution, from the computational point of view, of this large number of
convex or linear optimization problems.

Finally, issues related to the routing of the appropriate data, once
a lower bound has been identified, will also be addressed. Such issues
require the implementation of a parallel routing/sorting algorithm. Figure
2.3 depicts the basic steps of the distributed implementation of the GOP
algorithm and highlights the parallelized steps.

2.2.1. Updating the variable bounds. In order to identify the
tightest possible variable bounds, we have to calculate the maximum and
minimum possible values of all the variables within the current domain of
interest. Based on the partitioning induced by the GOP algorithm, the
domain of interest for the solution of the relaxed dual problem, is defined
by three set of constraints : (a) original convex constraints, (b) Original
convexified constraints, and (¢) previous qualifying constraint. Sets (a)
and (b), define implicitly the range of variables with respect to the origi-
nal problem. Obviously, any convex constraint, that is convex inequality
and/or affine equality, will not alter the convexity characteristics of the
problem and thus can be used. Any convexification of the original non—
convex constraints will be an overestimation of the feasible region, and it
would restrict the domain for the purpose of identifying tighter variable
bounds. In addition, the current domain of interest, over which the new
lower bound will be sought, is implicitly defined by the set of the previous
qualifying constraints.

It was also observed computationally that the frequency at which these
problems are solved can be treated as a decision variable. For certain classes
of problems, (e.g., indefinite quadratic), computing tight bounds once at
the very beginning was adequate, whereas for other classes of problems,
(e.g., pooling and blending), the variable bounds had to be updated at each
iteration. It is clear that the total number of variable bounds problems that
have to be solved are 2( Ny + Ny ), implying that for large scale optimization
problems the framework of distributed computing is needed. With respect
to the implementation, it is first identified whether it is worth solving the
bounds problems in parallel. Then, the vector of variables is divided into
smaller groups and these groups are assigned to nodes who are responsible
for solving the variable bounds problems associated with variables. The
master node is then collecting the partial vector. The collection process has
an unavoidable sequential character but the gains from solving the variable
bounds in parallel outperform any potential performance degradation.

2.2.2. Solving the relaxed dual problems. The parallel solution
of the relaxed dual problems aims at addressing the need to reduce the
computational burden associated with the solution of 2¥7¢ problems at
each iteration.

Based on the theoretical analysis of the method, it is clear that all the
relaxed dual problems that have to be solved, have the same functional
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form, and only the bound combinations of the z—type variables will be
different. Therefore, what distinguishes one relaxed dual problem problem
from the others is the bound combination at which the linearization will be
computed, as well as the qualifying constraints that have to be included. As
can be seen in Figure 2.4, the y—domain is partitioned based on the signs
of the qualifying constraints. In this simple illustration we assume that
there exist 2 connected variables that give rise to four bound combinations,
that is four possible sign combinations of the qualifying constraints. A
particular node in the parallel architecture is responsible for solving the
primal problem and preparing all the necessary data for the formulation of
the relaxed dual problems. Subsequently, each node, based on the number
of connected variables that have been identified, determines whether it
is responsible for solving any relaxed dual problems. The next step is,
for every node, to proceed on the solution of the relaxed dual problems
corresponding to the bound combinations that have been assigned to it.
Once the assigned problems have been solved, all the feasible solutions are
stored in the local CPU’s and only the best lower bound generated at each
processing element is being propagated to the “master” node. This issue
brings us naturally to the third implementational issue associated with the
distributed implementation of the GOP algorithm, that is the routing of
the best lower bound.

Domain 1 (- -) 1 )
Domain 2 (+ -) 2

Yo 4
Domain 3 (- +) 3
Domain 4 (+ +) 1

Fi1Gg. 2.4. Parallel Solution of the Relaxred Dual Problems.

2.2.3. routing of the best lower bound. Poor data communication
in parallel architectures can create substantial bottlenecks, thus degrading
the overall performance of the algorithm. Based on the previous section it
is clear that for the “master” node to proceed with the solution of the next
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primal problem only information related to the best lower bound is needed.
Furthermore, it is rare to envision a situation in which hundreds of process-
ing elements attempt to, almost simultaneously, access a particular node in
order to provide certain data. The queuing problems that would arise will
be very significant. Therefore, a routing algorithm was implemented which
would, in [log(P) + 1| steps, where P is the number of nodes, transmit to
node 0 the best lower bound. This is described in detail in Androulakis et
al. (1996).

2.3. The GOP in bilevel linear and quadratic programming.
Visweswaran et al. (1996) addressed bilevel linear and quadratic program-
ming problems using as a basis the key concepts of the GOP and studying
further the mathematical structure of such models.

2.3.1. Formulation. Bilevel programming refers to optimization prob-
lems in which the constraint region is implicitly determined by another
optimization problem, as follows:

ni"in F(z,y)
s.t.
G(z,y) <0 (P)
H%/in flz,y)
yeyq st g(zy) < 0
reX, y €Y
where G(z,y) is the vector valued function X x Y — RP, g(x,y) is the
vector valued function X x Y — R™, and X and Y are compact convex
sets.

Problem (P) can be interpreted in the following way. At the higher
level the decision maker (leader) has to choose first a vector 2 € X to
minimize his objective function F; then in light of this decision the lower
level decision maker (follower) has to select the decision vector y € Y that
minimizes his own objective f.

Applications of bilevel programming are diverse, including (i) design
optimization problems of chemical plants where regions of different models
should be examined (as for example in equilibrium calculations where the
different regions correspond to different number and type of phases), (ii)
long-range planning problems followed by short-term scheduling in chemi-
cal and other industries, (iii) hierarchical decision making policy problems
in mixed economies, where policy makers at the top level influence the de-
cisions of private individuals and companies, and (iv) energy consumption
of private companies, which is affected by imported resources controlled by
government policy.

If all functions are linear, problem (P) gives rise to the following bilevel
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linear programming formulation:

min F(z,y) =z +djy
s.t.
G(z,y) <0 (P2)
min f(z,y) = clz+dly
ye s.t.yg(r,y):Aa:—}—By—b < 0
x>0

For the sake of simplicity, the constraints G(z, y) will be ignored in the
sequel. However, it is easy to show that the results obtained below hold
in the presence of general convex constraints at the outer level. It should
also be noted that any bounds on y are assumed to be incorporated into
the inner level inequality constraints.

Rather than working with problem (P2) in its hierarchical form the
analysis begins by converting it into a single mathematical program. This
can be achieved by replacing the follower’s optimization problem with the
necessary and sufficient KKT optimality conditions. This results in the
following problem:

min cfe+dly
z,y.u

s.t. dy+u"B=0
ui(Az+ By —15); =0, i=1,..,m (P2S)
Ar+ By <b
x>0, y>0,uy;>0,i=1,...m

where u; is the Lagrange multiplier of the i’" follower’s constraint (Az +
By —b);, i = 1,..,m. Note that the optimality conditions assume the
existence of a stable point for the inner optimization problem, and therefore
assume the satisfaction of an appropriate constraint qualification.
Problem (P2S) is a single nonlinear optimization problem, albeit non-
convex due to the presence of bilinear terms in the complementarity condi-
tions. Floudas and Visweswaran (1990, 1993) demonstrated that this class
of problems can be solved to global optimality through their primal-dual
decomposition algorithm (GOP). Here, by exploiting the special problem
structure and introducing extra 0-1 variables to express the tightness of the
follower’s constraints a modified and more efficient algorithm is developed.

2.3.2. Mathematical properties. Consider the following partition
of the variables Y = u, X = (z,y) which satisfies Conditions (A) of the
GOP algorithm (Floudas and Visweswaran, 1990, 1993). For fixed Y = Y*,
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the primal problem can be written as:

min cfa:—l—dfy
@,y
s.t. Y (Az + By —b); =0, i=1,..m (PQSI)
Az + By <b
x>0

Note that the KKT gradient conditions in problem (P2S), which are in
the variables u, can be used directly in the dual problem. The solution
to this primal problem, if feasible, yields the multipliers A* and u* for the
equality and inequality constraints in (P2S’). Note that when u® = 0, the
corresponding constraint drops out from the set of equality constraints, and
there will be no multiplier for that constraint, implying that A\f = 0 for
this case. Conversely, when u¥ > 0, the corresponding constraint is active,
and therefore the value of u¥ is zero.
Visweswaran et al. (1996) proved the following property :

PROPERTY 2.1. Suppose that the minimum value of the Lagrange func-
tion
L*7 L*('i’g’u’/'tk’Ak):min L(x)y)u)/'tk’Ak)
T,y

occurs at (z,y); then,

Yo INE(us — ub) ST — (b + Arub)bi]

- k yky > min 1= )
L@y i A0 = 556 ) N(ui— ) <0, vSP = SF

2
A (u; —ub) >0, vSP =5V
where S = (Ax + By — b) are slacks (S > 0) introduced for ease in the
presentation; SF,SY are the lower and upper bounds on the constraints
(Az+By—b);, respectively; B; corresponds to a combination of lower/upper
bounds of constraints; SPi is the vector of lower/upper bounds of the con-
straints corresponding to the bound combination B;; and C'B is the set of
all bound combinations.

The above property preserves the important feature of the GOP algorithm
that the solution of problem (RD) can be equivalently substituted by a
series of optimization subproblems corresponding to different partitions of
the Y-space.

It can be seen that the Lagrange function is essentially expressed in terms
of the follower’s constraints. This implies that from a computational point
of view, the complexity of the relaxed dual problem is determined by the
number of active inner problem constraints (i.e., those constraints for which
A¥ £ 0). This can be of great significance in problems with large number
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of variables but few constraints. For instance, for the case of two & and two
y variables with two constraints, the number of subproblems that would
be needed is reduced from 2* to only 3 (since the combination of the zero
upper bounds for all the constraints results in redundant RD subproblem).

2.3.3. Introduction of 0-1 variables. It is clear that each combi-
nation of the u variables corresponds to a vertex of the followers feasible
region. However, different combinations with the same set of nonzero u;
correspond to the same vertex. It is desirable to avoid such nonzero com-
binations from being generated more than once. This can be ensured by
the introduction of binary variables, as shown below.

Consider the set of binary variables a;, ¢ = 1,...,m, associated with
each one of the follower’s constraints as follows:

1,if constraint (Az + By —b); is active

a; = .
0, otherwise

The following set of big-M constraints are also introduced to establish

one-to-one correspondence between the multiplier u; of constraint i and

the corresponding 0-1 variable a;:

Constraint (6) implies that if ; = 0 = 0 < u; < 0 = w; = 0, i.e. the
multiplier is also zero, forcing the corresponding constraint to be tight,
whereas if a; = 1 = (1/M) < w; < M, the associated multiplier has
nonzero value implying an inactive constraint.

The incorporation of constraints (6) along with the 0-1 variables q;
into (P2S) results in:

min x4+ dly
T,yu

s.t. dy+u"B=0
a;(Ae+By—104); =0, i=1,..,m

u < Ma;, 1:=1,..,m (P3S)
a; < Mu;, 1:=1,..,m
Az + By <b

By augmenting the Y-vector to include the 0-1 variables, the following
primal problem can be derived for Y = Y* = (u*, a*):

min cfa:—l—dfy
T, Yy,u
st aj(Az+By—1b); =0, i=1,..m } pgq)
Az + By <b
z>0,y>0
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Property 2.1 can then be recast as follows:

So[ME(ai — af)S;7 — (uf + Arak)bi]
*(m o > i i=1
P@ ot ) = 5l Mo —aby <0, s = st
A(a; —ab) >0, VSP =8V

Consider the i'* term. It is clear that if a¥ = 0, the corresponding con-
straint would have been absent from the primal problem (P3S’), leading to
AM¥ =0, so that this term would be absent from the summation. Therefore,
only the case of af = 1 is important. Then, since a; is always less than or
equal to af, the minimum of L(z,y,a, u*, A¥) occurs at the lower (upper)
bound of (Az + By — b); if A¥ < 0(A% > 0). Therefore, it is sufficient to
set each active constraint in the summation to the appropriate bound, and
the following result is always true:

Only one relazed dual problem is solved at every iteration regardless of
the size of the problem.

Another advantage of (PS3) problem formulation is that additional con-
straints (integer cuts) in the 0-1 variables, a;, can be used together with
the Lagrangian cut to improve the solution efficiency of the resulting MILP
relaxed dual problem. In particular, as has been showed by Hansen et al.
(1990), in any optimal solution of bilevel programming problem (PS1) the
active constraints of the follower’s problem satisfy the following conditions:

1,(i)
dai>1,ifdi>0,i=1,..m

1)
Y ai>1,ifdi<0,i=1,..m

where I,(i), I, (i) are the sets of constraints in which variable y; appears
with positive and negative sign, respectively. Also, an active set strategy
suggests that:

m
Zai <yl
i=1

where |y| is the cardinality of the follower’s decision vector y. It can be
seen that these and other preprocessing steps can be done on the binary
variables to eliminate certain combinations.

Based on the above analysis, a modified algorithm for global optimiza-

tion of bilevel linear programming programs is outlined in Visweswaran et
al. (1996).
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2.3.4. Linear-quadratic and quadratic-quadratic bilevel prob-
lems. In this section the solution approach is extended to consider the
linear/quadratic as well as the quadratic/quadratic bilevel programming
problems of the following general form:

min F(z,y)
s.t.
min f(z,y)
y
YEQ st. Ax+ By < b (P")
x>0

where F(z,y) is a convex function of z and y, and f(z,y) = day+z " Q3y+
y' Q2y. For sake of simplicity, it is assumed that F(z,y) = ¢fz + dfy. It
can easily be shown, however, that the following analysis is valid for any
convex form of F'(z,y). It is also assumed that f(z, y) is a convex quadratic
function. Then, the KKT conditions for the inner problem are both neces-

sary and sufficient for inner optimality which preserves the equivalence of
problems (P’) and (PS’) below:

min  F(z,y)=clz+dly

r,y,u

st. A+ By <b
2TQE+27Q2+uTBy+dy=0 ( (PS)
ui(Az+ By —15); =0, i=1,..,m
reX,yeY, u>0

Introducing the set of 0-1 variables a; results in the following equivalent
formulation:

min  F(z,y)=clz+dly

T,Yy,a,u

st. Az + By<b
20T Q3 +27Qi+u"By+dy =0 )
a;(Az+By—105); =0, i=1,..,m (P3SY)
u < Ma;, 1:=1,..,m
a; < Mu;, 1:=1,..,m
reX, yeY, a,={0—-1}, v, >0,i=1,..,m

As in the linear case, the variables can be partitioned into Y = (a, u), and
X = (z,y). Then, for fixed Y = Y* the primal problem becomes

min  F(z,y)=clz+dly
z,y

st. Az + By<b ,
2T Q3+ 2TQ} +ut T By +dy=0 ( (P45)
af(Az + By —b); =0, i=1,..m
reX, yey
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Visweswaran et al. (1996) showed that the Lagrange function can be re-
duced to

L(z}y’a’u’uk’)\k’yk) = Z)\k AI—|—By—b)
—1—21/ uf) By + (T + dTy)k
Then, it is obvious that Property 2.1 holds:

. , koyk ok E(q; — _
Iil}yn L(z,y,a,u, p® A%, v%) > ZA 1)(Az + By — b)F

—1—21/ uf)B; + (cFe 4 d¥ y)*

and consequently only one relaxed dual subproblem has to be solved per
iteration.

Since the stationary conditions for are functions of X and Y variables, they
appear to both primal and relaxed-dual subproblems. Moreover, for the
case of quadratic outer objective F'(z,y) the primal problem corresponds
to a nonlinear programming problem. However, under the convexity as-
sumptions it can be solved using a conventional NLP solver.

2.4. New formulations for the GOP approach. Visweswaran and
Floudas (1996a,b) introduced new formulations for the GOP which consist
of an MILP reformulation of the relaxed dual problems and a linear par-
titioning of the domain. These developments are discussed in the sections

2.4.1 and 2.4.2.

2.4.1. MILP reformulation of the relaxed duals. The solution
of the relaxed dual subproblems at each node is the most time consuming
step in the algorithm. The reduction test mentioned can help to prune the
branch-and-bound tree at each node; however, it is still necessary to solve
a large number of subproblems at each iteration. It is very likely that the
solution of most of these subproblems are useless as far as the succeeding
iterations are concerned, i.e., most of the nodes will be fathomed as soon
as they are spawned. Naturally, this raises the question whether these
subproblems can be solved implicitly. This section presents one possible
approach for reformulation of the relaxed dual problem at each iteration
so that the implicit enumeration of all the solutions can be achieved by
solution of an MILP problem.

At the K iteration, the Lagrange function has the form given by
(2.4). Consider the i** term in the summation. In each of the INIE relaxed
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dual subproblems, this term takes on either of two values:
L K : K

Ky — zigi (y) i g (y) >0

9 (0) { 2/ gf(y) i ¢f(y) <O

Now, x; can be implicitly expressed as a combination of its lower and
upper bounds:

2.6 r; = 1— o)l + oE2V
I3 (2 I3 I3

where o € {0, 1}.
This leads to the following formulation for the i*? term in (2.4):

29K (y) = ti+2lgf(y)

where
ti > of (xf —af)g*
ti > (xf — )9 (v) — (1 — af )gk)

aff gl < gt (y) < (1-af)gf
where gX and gX are respectively the lower and upper bounds on the
qualifying constraints. As the following property shows, this can be used
to reformulate the relaxed dual problem as a mixed integer linear program
(MILP):

PROPERTY 2.2. Suppose that, at the K" iteration, C denotes the cur-
rent node to be partitioned, and Rc denotes the set of constraints defining
the region associated with C. Then, the best solution from all the relazed
dual subproblems at this iteration can be obtained as the optimal solution
of the following mized-integer linear program.

NIC;" NIE
27) st opp > D Y abel (y) + LE(y, M)
i=1 i=1
i > of (2] —a)g
th > (f —2P)(ef (v) - (1-af)eF)
of gl < gf(y) <(1-af)eF
(y,uB) € Rc

where gi and gX are the lower and upper bounds on g (y) over Y.

If LE(y, M p%) are convex functions in y, then (2.7) is a convex
MINLP, and can be solved with the Generalized Benders Decomposition
(Geoffrion (1972), Floudas et al. (1989)) or the Outer Approximation al-
gorithm Duran and Grossmann (1986). The recent book of Floudas (1995)
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presents a theoretical, algorithmic, and applications oriented exposure of
approaches for MINLP problems.

It should be noted that the reduction tests of Section 2 can also be applied
to the MILP formulation, as shown by the following property.
PROPERTY 2.3. At the K'" iteration,
(i) If g5 (y) > 0 for all y (respectively g&(y) < 0 for all y) then variable
ok can be fized to 0 (respectively 1.)
(ii) If g% (y) = 0 for all y then variable o wvanishes from formulation

(2.7).

Backtracking : With the MILP reformulation, it is possible to solve the
relaxed dual subproblems implicitly for the best solution at each iteration.
However, it is not sufficient to find the best solution; it must also be de-
termined whether any of the other partitions can provide a useful solution
for further refinement.

Consider the relaxed dual subproblems solved when node j is being
partitioned. Suppose that this node was partitioned during iteration K.
Then, there are NIX binary variables, and QNI partitions to consider.
Solving the problem (2.7) gives the best solution among these partitions.
Suppose that this solution corresponds to the combination a“. Suppose
also that J¢c is the set of binary variables that are equal to 1 in this com-
bination, and that there are NJ¢ of them. Consider now the following
cut

Zai—ZQiSNjc—l

i€Jc igJc

If problem (2.7) is resolved with the above cut added to the problem, then
the solution will have a value for « different from o, and will therefore
correspond to a different subregion of the current problem. Note that the
objective value of this problem represents the “second” best possible solu-
tion. The best solution, of course, is the one corresponding to the solution
of the first MILP problem, with o = a®. Therefore, this methodology is
sufficient to go back to a partitioned node at any point.

Note that although the size of the MILP problems increases slightly
at each iteration due to the accumulation of constraints from previous
iterations, the number of binary variables present in these problems is equal
to the number of connected variables for each iteration. In other words,
the number of binary variables in the MILP problems is bounded by the
number of # variables in the original problem. The detailed GOP/MILP

Algorithm description is presented in Visweswaran and Floudas (1996a,b).

REMARK 2.1. After the MILP problem has been solved, an integer cut
is added to the corresponding formulation which ensures that that solution
cannot be repeated. Thisimplies that the same MILP formulation might be
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solved several times over the course of the iterations with small differences
arising from the additional integer cuts. Subsequently, there is considerable
potential for storing the tree information from these problems for use in
future iterations.

REMARK 2.2. At each iteration of the algorithm, there is a single
MILP problem solved as compared to the original algorithm, which needs
to solve 2NV I subproblems at the K" iteration. The number of binary vari-
ables present in any MILP formulation during all the iterations is bounded
by the maximum number of z variables. However, it is usually the case
that the number of connected variables is a fraction of the total number of
z variables, implying that the MILP problems are likely to have few binary
variables.

REMARK 2.3. The major advantage of the MILP problem appears
when there are more than about 15 connected variables at any iteration.
In such cases, the original algorithm would need to solve over 2 million
problems at that iteration, the vast majority of which would never be
considered as candidate solutions for further branching. In the case of the
MILP algorithm, the implicit enumeration allows for far fewer problems to
be solved. The maximum number of MILP problems solved is twice the
number of iterations of the algorithm.

2.4.2. A linear branching scheme for the GOP algorithm. In
both the GOP and GOP/MILP algorithms, the qualifying constraints (i.e.,
the gradients of the Lagrange function) are used to partition the y-space.
The reduction properties presented in Section 2.1.3 can provide a significant
reduction in the number of connected variables and subsequently the num-
ber of partitions. However, in the worst case, the number of subproblems
solved still increases exponentially with the number of connected variables.
It is then natural to ask the following question: Is it possible to develop a
valid lower bound at each iteration using only a linearly increasing number
of relaxed dual subproblems? In this section, we present one branching
scheme that achieves this goal. This scheme originates from the study of
Barmish et al. (1995) on the stability of polytopes of matrices of robust
control systems.

Reformulation of qualifying constraints
Consider the relaxed dual problem at the k*? iteration. This problem has
the constraint

NIE

pp > L(a® g, A 1)+ > g (y) - (2 — 2f).
i=1

where Nlé is the number of connected variables at the k" iteration. Re-
arranging the terms leads to

NIE
pp > Lo, () + Y af(v) - i,
i=1
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where
NIE
LE, (1) = L@* y, A0 i) + Y gk (y) ok
=1

is a convex function in y.

Suppose that all the z variables are bounded between -1 and 1. If this
is not the case, it can be achieved by use of the following linear transforma-
tion. Suppose that z < 2 < 2Y. Then, define 2’ such that —1 < 2/ < 1,
and

r=a -2 +b
The substitution of the lower and upper bounds gives
a:L:a-(—l)—}—b, and mU:a-(l)—}—b

leading to

U L U L

: : r’ +x
= — and b= ——
2 ’ 2
The variables z’ can then be substituted for z using the above transfor-
mation, leading to a Lagrange function in y and 2’. We will continue the
presentation in this section by considering the case —1 < z < 1.
The following observation is now made:

(a) I gf(y) >0,

zigi(y) > «fgf (v) = xigf(y) > —gf (v)
(b) I gf(y) <0,

zigi(y) > el 9i (v) = wigf(¥) > of (v)
Combining these two cases leads to the inequality

zigf(y) > —lgf (v)|

and
NIE

(2.8) pB > Liew(y) = Y 9f ()]
i=1

The first term on the right hand side is convex, and can remain unaltered.
Consider now the summation term. Using the concept of the infinity norm,
(2.8) can be written as

(2.9) pB 2 Ly (y) = NIG - (max|g; (v)])
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For any value of y, there is some j € 1,.. .,NIé such that

95 ()] =  max [gf(y)|
NI

=Ly c
implying that
(2.10) lof Wl > lgf (W), i=1,...,NI§

Consider the following two possibilities:
(a) If gjk(y) > 0, then |gjk(y)| = g]’»“(y), and (2.10) reduces to the two

inequalities

E k

g () > g (y) } , Eo
2.11 g ! i=1,...,NI;, i
(2.11) 9iy) > —gf(y) ¢ 71

and (2.9) becomes

pB > LY., (y) — NIE - gf (y)

(b) If gJ’»“(y) < 0, then |gf(y)| = —g}“(y), and (2.10) reduces to the two
inequalities
' gi(y) < —gf(y) e

and (2.9) becomes

pB > Li.(y) + NIE - gf (y)

The two cases presented above indicate how the summation in (2.8) can
be replaced by a linear term when g;?(y) represents the maximum of all
the qualifying constraints at a given value of y. This concept can then be
extended to cover the entire region for y. To do this, the above procedure
needs to be repeated for all values of j, resulting in 2 x Nfé subproblems
that need to be solved in order to properly underestimate the Lagrange
function at all values of y.

3. The generalized geometric programming approach, GGP.
Maranas and Floudas (1996) introduced a global optimization approach for
generalized geometric programming models that have a variety of applica-
tions in engineering design and robust control.

Generalized geometric or signomial programming (GGP) is the class
of optimization problems where the objective function and constraints are
the difference of two posynomials. A posynomial G(x) is simply the sum of
a number of posynomial termsor monomials g;(x), k = 1,..., K multiplied
by some positive real constants ¢;, k=1,..., K.

G(x) = c191(x) + caga(x) + -+ cx 9K (X)
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Note that ¢, € R*, k = 1,..., K. Each monomial g(x) is in turn the
product of a number of positive variables each of them raised to sum real
power,

g(x) = afraf ol
where dy,ds,...,dy € R. The term geometric programming was adopted
because of the key role that the well known arithmetic-geometric inequality
played in the initial developments.

By grouping together monomials with identical sign, the generalized
geometric (GGP) problem can be formulated as the following nonlinear
optimization problem:

min Go(t) = GF(t) — G5 (t)
(GGP) st.  Gj(t) = Gf(t) — G7(t) <0, j=1,....M

4 >0 i=1... N
N

where G;(t) = Z Cij G, j=0,...,M
kEK?— i=1
N

@
il
—
-+
~—
|
D
ol
=
o~
=R
S
x
LY
|
‘.O

where t = (¢1,...,tn) is the positive variable vector; G;, Gy, j=0,....M
are positive posynomial functions in t; oy, are arbitrary real constant
exponents; whereas c;j are given positive coefficients. Finally, sets Kj+, K;
count how many positively /negatively signed monomials form posynomials
G]»+, G} respectively.

3.1. DC transformation. The objective function as well as the con-
straints in the original formulation GGP are in general nonconvex func-
tions. Based on an eigenvalue analysis, it is quite straightforward to show
that the Hessian matrices of these nonlinear functions involve eigenvalues
of nonconstant sign implying that they are neither convex nor concave.
However, by applying the transformation,

t; = expz;, t=1,...,N

on the original formulation (GGP) we obtained the following programming
problem (DC).

min Go(z) = G¥(z) — G5 (2)

z
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O
a
»
$
=
I

+ - -
Gi(z) — Gj(z) <0, j=1,....M

where Gt (z)

[l
Ny
o
D
>
el
—N—
=
£
<0
o
2
.
[l
vo
<

kEKj' i=1
N

G;(z) = Z Cjr €Xp {Z ik 22}, J=0,...,.M
kEKj_ i=1

3.2. Lower bounding. A lower bound on the solution of problem
(DC) can be obtained by solving a convex relaxation of the original prob-
lem (DC). Such a convex relaxation can be realized by underestimating
every concave function, —G}’ (z) with a linear function —L; (z) for every
j =0,..., M. This linear function is constructed by underestimating ev-

N
ery implicitly separable term — exp {Z ik zz} with a linear function.
i=1

This defines the following relaxed convex programming problem (R) whose
solution provides a lower bound on the solution of (DC).

min - GZ(e) = GHa) — Ly (n)

st.  Gi"™(z) = Gf(z) — Lj(s) <0, j=1,....M

N
where G;»L(z) = Z CjkeXp{Z Qijk Zi}; j=0,....M

kek} i=1
N
Li(z)= > cik {Ajk + Bj (Z aijkzi) } yJ=0,,M
kEKT i=1
and Ajp = }/J% exp (YJLk) — YJL’“ exp (YJ%
E
by = SROL) e )
ViV
N
YJLk = Zmin (aijkziL,aijkin),

i=1
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N
Yﬁ; = Zmax (aijsz, aijszj)

i=1
Note that the linear underestimator —L; (z) of -Gy (z) is composed by
the sum of a number of linear functions each one of which is lower bounding
an implicitly univariate function of the form —exp (Y'). Clearly, the smaller
the difference between the original functions G (z) and the linearizations
L; (z) the closer the solution of (R) will be to the solution of (DC). The
quality of this lower bounding can be analyzed by examining the tight-
ness of underestimation of every concave term of the form —exp (V) with
a linear function inside some interval [YL YY]. Let A(Y) be the separa-

tion between the concave function — exp (Y') and the linear underestimator
inside the interval [Y'1, YY]

YYexp(YE)—YLexp (YY) exp(YY)—exp(YT)
YU_vL + YU _vyL Y

AY)=—exp (V) (
This separation function A(Y) is concave in Y and it reaches its single

maximum at
. exp (Y}) —exp (V%)
Y* = log T T
Y — Y]k

J

with a value

Amae = exp (YL) (1-Z24Zlog(2))
exp (6) —1
— 5
Note that as the interval width § = YV — Y© goes to zero, Z approaches
one and therefore the maximum separation goes to zero.

where 7 = § = YU vyl

6 — 0, Z — 1, and Ayyqe — 0.

The rate at which this maximum separation goes to zero can be determined
by Taylor expanding Ay, q,(6) at § = 0.
Apae 62 n 3 n 116* n 565 n 4168 n 567
exp(YL) 8 16 576 1152 51840 = 41472
By considering only the first leading term of the positive termed series

expansion we deduce that the rate at which A,,,, approaches zero as §
goes to zero is

+ O(8%)

Az ~ O(8%), as § — 0.

On the other hand, as § goes to infinity A4 goes to infinity as well.
By considering only the leading term in the expression for A,,q.:(8) we
conclude that A4, goes to infinity as

Apae = O(exp (8)), as § — +o0.
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3.3. Scaling of variables. This objective can be accomplished by
first scaling all variables ¢; in the original formulation (GGP) and then
employing the exponential transformation. Such a scaling is the following

tU L

e vl (AU ) I S WO

tﬁ],new _ tiL,new 2

where tf’new,t?’new are selected so as log (t?’new) — log (tiL’new) is small.

Maranas and Floudas (1996) present (i) different ways of transforming the
inequalities, (ii) reduction approaches of the partitioned domains, (iii) the
use of monotonicity analysis for variable elimination, (iv) a complete de-
scription of the algorithmic steps, and (v) a proof of convergence to an
e-global solution.

4.. Global optimization for general NLPs. In this section, we will
discuss global optimization methods for general twice differentiable nonlin-
ear programming problems.

4.1. Existence theorem. A very important theoretical advance has
been made by Liu and Floudas (1993) who showed that the GOP can be
applied to very general classes of NLPs defined as:

min F'(z)

z€X

subject to G(z) < 0

where X is a non empty, compact, convex set in R” , and the functions
F(z), G(z) are C? continuous on X. This result is very significant because
it extends the classes of mathematical problems that the GOP can be
applied from polynomials or rational polynomials to arbitrary nonlinear
objective function and constraints that may include exponential terms and
trigonometric terms with the only requirement that these functions have
continuous first and second order derivatives.

4.2. The aBB approach for general NLPs. A novel branch and
bound global optimization approach which combines a special type of dif-
ference of convex functions’ transformation with lower bounding understi-
mating functions was proposed by Maranas and Floudas (1994 a,b). An-
droulakis et al. (1995) extended this approach to address the general class
of nonlinear constrained optimization problems noted in section 4.1.

4.2.1. Formulation. The formulation of such general nonlinear op-
timization problems is :

(PO) min f(x)
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st. hj(x) = 0, j=1,.... M
gr(x) < 0, k=1,....K
Ax < ¢
xI' < x < %Y

Here x denotes the vector of variables, f(x) is the nonlinear objective
function, h;(x) is the set of nonlinear equality constraints and gx(x), k =
1,..., K is the set of nonlinear inequality constraints. Formulation (P0) in
general corresponds to a nonconvex optimization problem possibly involv-
ing multiple local and disconnected feasible regions. The aBB approach is
based on the convex relaxation of the original nonconvex formulation (P0).
This requires the convex lower bounding of all nonconvex expressions ap-
pearing in (P0). These terms can be partitioned into three classes:
(i) convex,

(ii) nonconvex of special structure,

(iil) nonconvex of generic structure.
Clearly, no convex lower bounding action is required for convex functions.
For nonconvex terms of special structure (e.g. bilinear, univariate concave
functions), tight specialized convex lower bounding schemes already exist
and therefore can be utilized. Based on this partitioning of different terms
appearing in the objective function and constraints, formulation (PO0) is
rewritten equivalently as follows:

N-1 N
(P) min  C%(x)+ DTN+ D] D b i
kex?® =1 {'=i+1
st CI(x)+ > NCi(x)+ N7 bl awizs, <0
kEKI i=1 §/=i+1

where NC’i(x)Withx € {J;Z : iENg}, J=0,...,2M 4+ K)

Note that all nonlinear equality constraints h;(x) = 0 appearing in (PO0)
have been replaced by two inequalities in (P). C?(x) is the convex part of
the objective function; NCP(x) is the set of K° generic nonconvex terms
appearing in the objective function; N} is the subset of variable x partic-
ipating in each generic nonconvex term k in the objective; and b?yi,xixi/
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the bilinear terms. Similarly, for each constraint j, there exists a con-
vex part C7(x), K/ generic nonconvex terms NCY(x), with N} variables
x per term, and the bilinear terms bgi,mi;ri/. Additionally, linear equal-
ity constraints and variable bounding constraints appear explicitly in the
model (P). Clearly, for each optimization problem that falls within formu-
lation (PO) there exist several ways of reformulating it into (P). In the
current implementation of «BB the only nonconvex terms recognized as
having special structure are the bilinear terms. Work is currently under
way to include in the set of nonconvex terms of special structure additional
nonconvex functions such as univariate concave, signomial functions, and
products of univariate functions Maranas and Floudas (1995). In the next
section the derivation of a convex relaxation (R) of (P) is discussed.

4.2.2. Convex relaxation. A convex relaxation of (P) can be con-
structed by replacing each generic nonconvex term, NC?(x), and each bi-
linear term, bg a%iti, §=0,...,(2M + K), with one or more convex lower
bounding functions.

Nonconvex terms of special structure :

As it is shown in Al-Khayyal and Falk (1983), the tightest possible
convex lower bounding of a bilinear term b; ; ; ;s inside some rectangular
domain [:L‘ZL, 15]] X [If;, J:H] (convex envelope) corresponds to the maximum
of the following two linear cuts.

bi gz > s;p(xi,xp) = max (YiLwi' + Vi — Y

Vi + Vi e = YY)

L . L U
where Y;” = min (bz',z"l‘i Vbi s ),

Y{’ = min (biJ/.Z‘Z»I?, bi,i'l‘U),

i i’
U L U
YV = max (b gal, b pzl),

}/z[’] = Inax (biyl'lgl‘i[?, bz,z’lZU/)

s; (24, 24) is the convex envelope of b; ;2;2; inside the rectangular do-
main |&; ,a:ZU] X [rZL,, a:g] and therefore, it can become arbitrarily close to
b; j1x;x; for a small enough rectangular domain.

It can be shown that the maximum separation between b; ;:x;2;» and
s; ;» inside the domain [rZL, a:ZU] X [:L‘ZIZ, a:g] can be at most one fourth of the

area of the rectangular domain multiplied by the absolute value of b; ;::

i, .

4

Lemma 1 : The maximum separation of the bilinear term z y from its
convex envelope,

maX[(zLy + 2yl —2lyl), 2y + zy¥ — J:UyU)],
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inside the rectangle [a:L, xU] X [yL, yU] occurs at the middle point :

b al N
-T2 VT
and is equal to one fourth of the area of the rectangular domain.
Nonconvex terms of generic structure : '
The convex lower bounding of the generic nonconvex terms NCj is
motivated by the approach introduced in Maranas and Floudas (1994a).
For each one of the generic nonconvex functions,

NCi(x), j=0,...,2M+ K), k € K/
where NC’i(x)Withx € {JJZ : iENg}, i=0,...,2M + K)

a convex lower bounding function NC’i’com} can be defined by augmenting
the original nonconvex expression with the addition of a separable convex
quadratic function of (z;, i € N}).

NCP™(x) = NC(x)

+ Z agyk(xL,xU) (mZL—rZ) (:L‘ZU—IZ), J=0,....,2M+K), k € K?
ieN?

; 1
where agk(xL,xU) > maX{O,—§ min )\(x)}

xL<x<xY

Note that af,k are nonnegative parameters which must be greater or equal
to the negative one half of the minimum eigenvalue of the Hessian matrix
of NCJ™ over b <@ <al, i€ Nj. These parameters ai,k can be
estimated either through the solution of an optimization problem or by us-
ing the concept of the measure of a matrix. The effect of adding the extra
separable quadratic term on the generic nonconvex terms is to construct
new convex functions by overpowering the nonconvexity characteristics of
the original nonconvex terms with the addition of the terms 2(}?7,6 to all

of their eigenvalues. These new functions NC’i’com} defined over the rect-

angular domains zf < z; < 2V, i€ ng involve a number of important
properties. These properties are as follows: '
Property 1: NC1°°"" is a valid underestimator of NCY.

YV € [oF, 2], ZE./\/',J; we have NC’Jk"com(x) < NC’i(x).

Property 2: NC1°"""(x) matches NCJ at all corner points.

Property 3: NC’i’com}(x) is convex in xz; € [J;ZL, xZU] L 1E ng

Property 4: The maximum separation between the nonconvex term
of generic structure NC?“”"" and its convex relaxation NC} is bounded
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J

and proportional to the positive parameters a; » and to the square of the

diagonal of the current box constraints.

S, (Ve - ve)
1
= 1 2 aluxh ) (@ —af)”
ieN!

Property 5: The underestimators constructed over supersets of the cur-
rent set are always less tight than the underestimator constructed over the
current box constraints for every point within the current box constraints.
Clearly, the smaller the values of the positive parameters ozg’k, the narrower
the separation between the original nonconvex terms and their respective
convex relaxations will be. Therefore fewer iterations will also be required
for convergence. To this end, customized « parameters are defined for each
variable, term and constraint. Furthermore, an updating procedure for
the a’s as the size of the partition elements decreases is currently under
investigation.

This type of convex lower bounding is utilized for nonconvex functions
which lack any specific structure that might enable the construction of
customized convex lower bounding functions. Clearly, the a—based convex
lower bounding can be applied to bilinear terms as well without having to
introduce additional variable and constraints. However, in this case the
maximum separation will be larger than the one based on the linear cuts.
More specifically, the maximum separation for the o convex lower bounding
scheme 1is,

(= = ")+ (0 o)’
. .

This is always greater than

(zV — 2L) (3¢ — oF)
4

unless 2V — 2z = yY — y!. Based on the aforementioned convex lower

bounding procedures for bilinear terms and generic nonconvex terms, a
convex relaxation (R) of (P) is proposed.

(R) min C'(x)+ > NCY(x)

+ 2 adulxhx?) (e =) (o — i) + sl
PENY

s.t. Y (x) + E NC(x)

keKs
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+al (B xY) Y0 (of — ) (af — @)+, <0,
ieN]
i=1,...,2M + K)

sly > max (V) Pag + Vi e - YT

k3

Y9V + ¥V = YIUVEY) =0, 2M + K)

i L
where Y)" = min (bJ Szl “,:13 )

Y34 = min (bj Lk ,J:[{)

Z’ZZ

U _
}/z' - (zz’xz’ zz"r )

}/ij"yU = zz’xz’i z"r’)
Ax = ¢, xF < x < %Y
and NCi(x) with x € {x : ieN,g'}, j=0,...,(2M + K)

Formulation (R) is a convex programming problem whose global min-
imum solution can be routinely found with existing local optimization
solvers such as MINOS5.4. Formulation (R) is a relaxation of (P) and
therefore its solution is a valid lower bound on the global minimum solu-
tion of (P).

In the next section, we will see how this convex lower bounding formu-
lation (R) can be utilized in a branch and bound framework for locating
the global minimum solution of (P).

4.2.3. Global optimization algorithm, aBB. A global optimiza-
tion procedure, BB, is proposed for locating the global minimum solution
of (P) based on the refinement of converging lower and upper bounds.
Lower bounds are obtained through the solution of convex programming
problems (R) and upper bounds based on the solution of (P) with local
methods.

As it has been discussed in the previous subsection, the maximum
separation between the generic and bilinear nonconvex terms and their
respective convex lower bounding functions is bounded. For the generic
nonconvex terms this maximum separation is proportional to the square of
the diagonal of the rectangular partition element and for the bilinear terms
proportional to the area of the rectangular domain. Furthermore, as the
size of the rectangular domains approaches zero, these maximum separa-
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tions go to zero as well. This implies that as the current box constraints
[xL',xY] collapse into a point; (i) the maximum separation between the
original objective function of (P) and its convex relaxation in (R) becomes
zero; and (ii) by the same argument, the maximum separation between the
original constraint set in (P) and the one in (R) goes to zero as well. This
implies that for every positive number ¢; and x there always exists a posi-
tive number 6 such that by reducing the rectangular region [x*,x"] around
x 50 as ||xY —x|| < § differences between the feasible region of the original
problem (P) and its convex relaxation (R) become less than e;. Therefore,
any feasible point x° of problem (R) (even the global minimum solution)
becomes at least e;—feasible for problem (P) by sufficiently tightening the
bounds on x around this point.

The next step, after establishing an upper and a lower bound on the
global minimum, is to refine them. This is accomplished by successively
partitioning the initial rectangular region into smaller ones. The number
of variables along which subdivision is required is equal to the number of
variables x participating in at least one nonconvex term in formulation (P).
The partitioning strategy involves the successive subdivision of a rectangle
into two subrectangles by halving on the middle point of the longest side of
the initial rectangle (bisection). Therefore, at each iteration a lower bound
of the objective function of (P) is simply the minimum over all the min-
ima of problem (R) in every subrectangle composing the initial rectangle.
Therefore, a straightforward (bound improving) way of tightening the lower
bound is to halve at each iteration, only the subrectangle responsible for
the infimum of the minima of (R)) over all subrectangles, according to the
rules discussed earlier. This procedure generates a nondecreasing sequence
for the lower bound. An nonincreasing sequence for the upper bound is
derived by solving locally the nonconvex problem (P) and selecting it to
be the minimum over all the previously recorded upper bounds. Clearly,
if the single minimum of (R) in any subrectangle is greater than the cur-
rent upper bound we can safely ignore this subrectangle because the global
minimum of (P) cannot be situated inside it (fathoming step).

Because the maximum separations between nonconvex terms and their
respective convex lower bounding functions are bounded and continuous
functions of the size of rectangular domain, arbitrarily small ¢; feasibility
and €, convergence tolerances are reached for a finite size partition element.

The basic steps of the a BB global optimization algorithm are described
in Androulakis et al. (1995). A mathematical proof that the aBB global
optimization algorithm converges to the the global minimum is based on
the analysis of standard deterministic global optimization algorithms as
shown in Maranas and Floudas (1994a,b).

5. Computational studies and application areas.

5.1. The GOP and its variants. Visweswaran and Floudas (1996b)
provided a complete implementation of the new versions of the GOP al-
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gorithm, including reduction tests and local enhancements at each node of
the tree. Detailed computational results of applying the resulting imple-
mentation to various classes of nonconvex optimization problems, were also
presented. In the following, we will present a summary of the computa-
tional studies performed employing the GOP and its variants in a number
of application areas in process synthesis, and design, as well as in concave
and indefinite quadratic programming problems.

5.1.1. Implementation of the GOP and its variants. The cGOP
package is written entirely in the C programming language, and consists of
approximately 8000 lines of source code, of which around 30% are com-
ments. The algorithms can be called either in standalone mode or as
subroutines from within another program. The primal and relaxed dual
subproblems are solved either using CPLEX (for linear or mixed integer
linear) problems or MINOS for nonlinear problems. Various options are
available to change the routines that are used, such as obtaining tighter
bounds on the z variables and gf(y) (the gradients of the Lagrange func-
tion), as well as solving the full problem as a local optimization problem
at each node.

5.1.2. Data structures. Since the cGOP package is written in C,
it is highly convenient to aggregate the data transfer from one routine
to another using structures (equivalent to COMMON blocks in Fortran).
The primary data structures used in the package describe the problem
data, the solutions of the various primal problems, the data for the various
Lagrange functions, and the solutions of the relaxed dual subproblems at
each iteration.

The most important group of data is obviously the problem data itself.
In order to facilitate easy and general use of this data, the implementation
was written assuming that the following types of problems would be solved:

min C§I+d§y+ITQoy‘f'FD(I)"*'GD(y)

s.t. L <ce+diy+r"Qy <y, i=1,..., M
Fi(z) + G;(y) < u, i=M +1,..., M,

L<<I)<U
<ly)s

where 7 = 1,..., M, are the set of bilinear constraints, and j = M; +
1,..., M5 are the set of general nonlinear constraints. It is assumed that
the functions Fj(z) and G;(y) are convex in z and y respectively. Note
also that while the bilinear constraints can be equalities or inequalities,
the other nonlinear terms in the constraints are assumed to lie in convex
inequalities.

Given the above formulation, the data for the problem can be separated
into one part containing the linear and bilinear terms, and another part
containing the nonlinear terms Fj(z) and G;(y). The first part can be
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TaBLE 5.1
Heat Fxchanger Network and Nonsharp Separation Design Problems

Problem Problem Size GOP Algorithm
Name Variables | Constraints | Iterations | CPU (sec)
HEN-1 12 13 4 0.09
HEN-2 12 13 3 0.06
HEN-3 11 9 3 0.10
HEN-4 11 9 8 0.20
HEN-5 26 30 4 0.11
HEN-6 17 13 11 0.54
HEN-7 27 19 39 54.62
SEP-1 38 32 17 3.84

specified through a data file or as arguments during the subroutine call
that runs the algorithm. The nonlinear terms, which in general cannot be
specified using data files, can be given through user defined subroutines that
compute the contribution to the objective function and constraints from
these terms, as well as their contribution to the Hessian of the objective
function and the Jacobian of the constraints. The detailed structure of the
¢GOP is presented in Visweswaran and Floudas (1996b).

5.1.3. Computational results. In this section, we present the re-
sults of the application of the cGOP package to various problems in chem-
ical engineering design and control and mathematical programming.

Table 5.1 presents the computational results for heat exchanger net-
work problems with linear cost functionals, nonlinear costs, and nonsharp
separation problems. The first five examples have linear cost function-
als are taken from Quesada and Grossmann (1993), the sixth and seventh
have nonlinear costs and bilinear constraints and are taken from Floudas
and Ciric (1989), while the last one corresponds to nonsharp separation
sequencing and is taken from Floudas and Aggarwal (1990).

Tables 5.2, 5.3, and 5.4 present the computational results on pooling
problems. Table 5.2 addresses the Haverly pooling problems. Table 5.3 the
pooling problems studied by Ben-Tal and Gershovitz (1994), while Table
5.4 addresses the multiperiod tankage design problem of Visweswaran and
Floudas (1990). Three cases of the pooling problem have been solved using
the GOP and GOP/MILP algorithms. The data for these three cases,
as well as the average number of iterations required by the algorithms to
converge, are given in Table 5.2. It can be seen that in all cases, the
algorithms require less than 15 iterations to identify and converge to the
global solution.
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TABLE 5.2
Data and results for the Haverly Pooling Problem

Case | Bounds | Cost of | Optimal Solution | GOP Algorithm | GOP/MILP

7 |y B ] p* fter. | CPU Iter. | CPU

1 100 | 200 §16 -$400 1.0 12 0.22 121 0.49

I | 600 | 200 316 -$600 3.0 12 0.21 12 1 0.45

1T | 100 | 200 313 -$750 1.5 14 0.26 14 | 0.56
TABLE 5.3

Pooling Problems From Ben-Tal and Gershovitz (1994)

| Problem No. | Problem Size |

GOP Algorithm |

I|J | K|L | Iterations | CPU (HP730)
1. 41211 7 0.95
51512 |1 41 5.80
TABLE 5.4
Multiperiod Tankage Quality Problem

Starting Point Original GOP GOP/MILP
(y) Iter. | Subproblems | CPU | Iter | CPU
Lower bound 8 18 3.66 7 14.7
Upper bound 9 19 3.68 9 13.1
g1 = 100, q42 = 70 11 18 3.95 13 22.4
q:1 = 80, gs2 = 100 9 19 3.23 13 16.5
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Table 5.5 presents computational results for phase and chemical equi-
librium problems which are of crucial importance in several process sepa-
ration applications. For conditions of constant pressure and temperature,
a global minimum of the Gibbs free energy function describes the equi-
librium state. Moreover, the Gibbs tangent plane criterion can be used
to test the intrinsic thermodynamic stability of solutions obtained via the
minimization of the Gibbs free energy. Simply stated, this criterion seeks
the minimum of the distance between the Gibbs free energy function at
a given point and the tangent plane constructed from any other point in
the mole fraction space. If the minimum is positive, then the equilibrium
solution is stable.

The GOP algorithm was applied to solve several problems of the phase
stability criterion and the results are shown in Table 5.5. In Table 5.5,
a comparison with the results obtained by the specialized implementation

GLOPEQ of McDonald and Floudas (1996) is also presented.

TABLE 5.5
Results for the Phase Stability Problem

Problem Problem Size GOP GLOPEQ*
Name | Nx [ Ny | N¢ | lterations | CPU (sec) | ITterations | CPU (sec)

BAW?2L 2 2 3 27 0.68 32 0.15
BAW2G 2 2 3 30 0.75 36 0.16
TWA3T 6 3 4 13 0.86 16 0.22
TWA3G B8 3 4 121 9.00 85 0.96
PBW3T1 6 3 4 82 6.33 53 0.63
PBW3G1 6 3 4 393 35.21 213 2.37
PBW3T6 6 3 4 1366 134.99 549 4.98
PBW3GE 6 3 4 1886 207.19 57 7.09

Tables 5.6 and 5.7 present the computational results for concave and
indefinite quadratic programming problems that were constructed employ-
ing the approach of Phillips and Rosen (1988).

In all the cases, it can be seen that the algorithm generally requires
very few iterations for the upper and lower bounds to be within 10% of the
optimal solution; generally, the convergence to within 1% is achived in a few
more iterations. Moreover, certain trends are noticeable in all cases. For
example, as the number of constraints (m) grows, the problems generally
become easier to solve. Conversely, as the size of the linear variables (k)
increases, the algorithm requires more time for the solution of the dual
problems, leading to larger overall CPU times.

5.2. The parallel GOP. Androulakis et al. (1996) proposed a dis-
tributed implementation of the GOP algorithm whose key issues are sum-
marized in section 2.2. The parallel GOP was implemented on an Intel-
Paragon machine. In this section, we will discuss the results of the parallel
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TABLE 5.6
Concave Quadratic Problems from Phillips and Rosen (1988)

Run Problem size Iterations CPU (sec)
m | n | k GOP | GOP/MILP
CLR1 | 50 | 50 | 50 2.0 0.120 0.116
CLR2 | 50 | 50 | 100 2.0 0.145 0.141
CLR3 | 50 | 50 | 200 2.2 6.047 1.574
CLR4 | 50 | 50 | 500 3.0 — 14.125
CLR5 | 50 | 100 | 100 2.0 0.217 1.373
CLR6 | 50 | 100 | 200 2.0 0.360 11.982
CLR7 | 100 | 100 | 100 2.0 0.305 0.306
CLRS8 | 100 | 100 | 200 2.0 0.374 0.369
CLR9 | 100 | 100 | 200 2.0 0.374 0.369
CLR10 | 100 | 100 | 500 3.0 — 80.028
CLRI11 | 100 | 150 | 400 1.7 — 182.208
TABLE 5.7

Indefinite Quadratic Problems from Phillips and Rosen (1988)

Run Problem size e=0.1 e =0.01
m | n | k Tter | CPU Iter | CPU
ILR1 | 25 | 25 25 | 2.0 | 0.232 | 2.200 | 0.312
ILR2 | 25 | 25 50 | 2.0 | 0.416 | 2.600 | 0.606
ILR3 | 25 | 25 | 100 | 2.2 | 1.522 | 3.000 | 2.030
ILR4 | 25 | 50 | 100 | 4.0 | 13.19 | 11.50 | 37.56
ILR5 | 50 | 50 50 | 2.0 | 0.864 | 2.400 | 1.504
ILR6 | 50 | 50 | 100 | 2.0 | 1.264 | 2.800 | 3.018
ILR7 | 25 | 75 | 100 | 3.0 | 68.86 | 30.00 | 294.3
ILR8 | 50 | 75 | 100 | 2.0 | 1.564 | 3.600 | 9.724
ILR9 | 75 | 75 | 100 | 2.0 | 2.120 | 2.800 | 6.304
ILR10 | 25| 75 | 150 | 4.0 | 115.80 | — —
ILR11 | 50 | 75 | 150 | 2.2 | 9.5380 | — —
ILR12 | 75 | 75 | 150 | 2.0 | 2.9560 | — —
ILR13 | 25 | 100 | 50 | 3.6 | 23.21 | 23.50 | 118.6
ILR14 | 50 | 100 | 50 | 2.2 | 2.130 | 3.800 | 6.510
ILR15 | 75 | 100 | 50 | 2.2 | 3.544 | 2.800 | 5.244

41
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GOP applied to large-scale indefinite quadratic programming problems and
large-scale pooling problems.

5.2.1. Indefinite quadratic problems. The generic formulation of
Phillps and Rosen (1988) is considered. By construction, we generate half
of the eigenvalues, A;, positive and half negative. Reportedly, this is the
most difficult problem to address since the solution, unlike strictly con-
cave problems, may not lie on a vertex point. Several runs, for different
problem sizes, were performed and the results are analyzed with respect to
(i) the effect of the linear constraints, and linear variables; (ii) the effect
of linear constraints; (iii) the effect of linear variables. Finally, some very
computationally intensive tasks are discussed. In all runs we denote by &
the number of linear variables, m the number of linear constraints, and n
the number of quadratic variables.

The first set of computational results aims at demonstrating the effect
on the performance of the GOP for different values of & and m. Typical
results are tabulated in Table 5.8.

TABLE 5.8
Combined Effect of m and k. N = m+n, M = m + 2(k+n).

k m n N M CPU(s)
80 120 100 180 480 4.49
100 100 100 200 500 5.42
100 200 200 300 800 10.3
100 300 100 200 700 9.38
150 150 250 400 950 12.3
200 200 100 300 800 6.26
200 200 200 400 1000 7.86
200 200 220 420 1040 17.4
200 200 250 450 1100 4.50
200 300 100 300 900 5.08
300 300 100 400 1100 9.58
400 200 100 500 1200 13.2

Based on these results the following observation can be made : as
long as k+Tm > 1 and 7+ > 1 the GOP algorithm identifies the global min-
tmum with mazimum efficiency. The GOP algorithm takes two iterations
and solves only two primal problems and two relaxed dual problems. Qual-
itatively, this implies that, for this particular structure of problems such
a combination of the parameters forces the solution to lie close to a ver-
tex point. The GOP algorithm, identifies that fact very efficiently and
converges in the minimum number of iterations.

The second set of computational experiments deals with certain in-
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stances which are computationally very intensive in terms of the connected
variables and number of iterations. The results have been summarized in
Table 5.9. It is important to notice from Table 5.9 the fact that although

TABLE 5.9
Some computationally intensive tasks.

k m n NI, Itn PE CPU(s)
30 20 100 9 54 32 100.
20 20 150 7 7 64 14.0
20 20 200 16 60 64 1847
300 100 200 8 3 32 54.0
50 50 220 10 3 64 31.6

50 50 250 14 16 64 796.
50 50 275 16 3 64 1800
50 50 300 17 3 64 3260
7 75 300 15 3 64 942.
775 350 11 3 64 209.

the absolute size of the problems might not be that large (k = 30, m = 20,
and n = 100 for instance) the difficulty of the problem is noticeable both
in terms of the number of iterations required as well as in terms of the
number of connected variables. Note that for all the representative runs of
Table 5.9 the relations between k, m, and n that define an “easy” problem
for GOP are violated. By combining the theoretical advances of the GOP,
along with the distributed implementation of the algorithm we were able
to address problems of significant size.

As a last qualitative remark we will observe the computational require-
ments, in terms of the total CPU time, as a function of the the number of
connected variables. As can be seen from Figure 5.1 there exists a linear
relationship between the logarithm of the CPU time and the number of
connected variables, NI, as expected since the number of relaxed duals
increases exponentially with V1.

Summarizing, the computational results for indefinite quadratic prob-
lems we can observe that :

e problems of 400 linear variables, 100 nonlinear variables, 200 linear
constraints, and 500 bound constraints can be solved in 13.2 s. as
shown in Table 5.8.

e increasing the size of the linear constraints makes the problem
easier for the GOP (e.g., problems with 300 linear constraints, 200
linear variables, 100 nonlinear variables require 7.6 s.)

e increasing the number of linear variables to 400 while maintaining
100 nonlinear variables and 100 constraints increases the CPU to
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198 s., and

e problems that correspond to increasing the number of nonlinear
variables up to 350 can still be solved with reasonable computa-
tional effort, as it is shown in Table 5.9.

5.2.2. Large scale blending and pooling problems. In this sec-
tion we will discuss the solution of a specific formulation of pooling/blending
problems using the GOP. Such problems are very often encountered in var-
ious chemical processes. They corresponds to a quadratically constrained
problem with a quadratic objective function. Different instances of ran-
domly generated Blending and Pooling Problems based on the above re-
formulation were generated and solved. Typical results are shown in Table
5.10.

The distributed implementation of the GOP allowed us to address
problems with 20 connected variables, which require the solution of 1,048,576
relaxed dual problems, in very realistic computational times. For instance,
as can be seen from Table 5.10 pooling problems of 128 variables and 330
constraints can be solved within 840-870 s., even though they have 20
connected variables.

5.3. The GOP for bilevel linear problems. Visweswaran et al.
(1996) studied the GOP approach applied to bilevel linear and quadratic
optimization problems. The key ideas of this approach are presented in
section 2.3. Their proposed modified GOP algorithm has been coded in C
language and tested for a series of small example problems appeared in the
literature. The results are summarized in Table 5.11.

A number of randomly generated problems with the same character-
istics as in previous similar studies with 40% and 33% density, have also
been considered. The results are summarized in Table 5.12. All compu-
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TaABLE 5.10
Blending and Pooling Problems

ncomp nprod npool nqual nvar ncon NI, PE CPU(s)

5 5 3 5 95 186 15 64 15.3

10 4 4 9 96 300 15 64 36.3
10 4 4 16 96 356 15 64 42.0
10 4 4 18 96 372 16 64 39.0
10 4 4 25 96 428 16 64 449
10 4 5 30 110 468 20 64 843.
12 4 4 9 112 336 16 64 37.3
12 4 4 25 112 464 16 64 50.1
12 4 4 30 112 504 16 64 449
12 4 5 4 128 330 20 64 869.
TABLE 5.11
Results for small linear ezamples
EXAMPLES | n, ny Outer Inner Iterations CpPU
Constraints Constraints time (s)
EX1 2 3 2 6 5 0.59
EX2 1 1 1 7 2 0.11
EX3 1 1 1 6 3 0.29
EX4 6 3 6 10 3 0.75
EX5 1 1 1 5 3 0.29
EX6 1 2 1 4 2 0.16
EX7 1 1 1 4 3 0.23
EXS8 1 1 1 4 3 0.22
EX9 1 1 1 5 3 0.29
EX10 1 2 2 4 2 0.16
EX11 2 3 3 6 5 0.82
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tations are performed using CPLEX for the solution of linear problems
using a HP-730. Performance measures include CPU time and the number
of iterations required to obtain the global solution. The main parameters
considered are the number of the follower’s constraints and the numbers
ng, ny of the leader’s and the follower’s variables. Problems involving 12—
17 constraints and 40-50 variables were solved.

As expected the CPU time and the number of iterations increases with
the size of the problem. Notice however, that the number of required iter-
ations remains relatively low. Also, as seen in Table 5.12, large differences
in computation effort are observed between problems of the same size (for
example, for the case of 26 outer and 14 inner variables, computation times
of 867 and 81 sec have been reported for two different examples).

TABLE 5.12
Computational Results for randomly generated linear problems

DENSITY n; ny Inner Iterations CPU
Constraints time (s)

40% 28 12 12 7 8.4
40% 28 12 12 57 121.0
40% 28 12 12 9 8.0
40% 28 12 12 14 6.8
40% 26 14 14 26 81.1
40% 26 14 14 88 867.6
40% 25 15 15 12 42.8
40% 25 15 15 20 52.1
40% 24 17 17 5 34.0
40% 30 15 15 36 129.8
40% 35 15 15 26 282.3
40% 35 15 15 85 455.3
33% 27 13 13 54 249.6
33% 27 13 13 17 52.6
33% 27 13 13 21 98.8

5.4. The GGP approach. The proposed deterministic global opti-
mization algorithm for generalized geometric programming problems by
Maranas and Floudas (1996) has been implemented in GAMS and com-
putational times reported on a HP-730 workstation are shown in Table
5.13.

The first four problems in Table 5.13 correspond to process design ap-
plications for the alkylation process, heat exchanger design, and reactor
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TABLE 5.13
Computational Results the Generalized Geometric Programming Problems

Example # | Nyar | Neon | Niter CPU
1 7 14 200 30
2 6 5 178 6
3 8 6 | 1600 100
4 8 4 71 6.8
5 ) 6 30 2
6 3 1 50 17
7 3 2 7 0.4
8 8 4 82 12
9 10 6 290 22
10 11 9 | 2950 427
11 4 4 15 0.5
12 3 4 26 1.4
13 4 5 51 )
14 5 10 | 3076 | 485.75
15 2 4 109 22
16 8 7 | 4896 | 10,000

designs. The following six problems are small problems taken from the
GGP early papers. The last six examples correspond to robust control
problems with real parametric uncertainty and are presented in increasing
difficulty. In particular, the last problem corresponds to a real world appli-
cation and it is the most difficult problem available in the literature. The
detailed mathematical formulations are presented in Maranas and Floudas
(1996).

As can be seen from Table 5.13, the proposed global optimization ap-
proach can address very difficult GGP problems to global optimality within
reasonable computational effort. An efficient C implementation of the al-
gorithmic procedure is currently under way, and is expected to significantly
reduce the CPU requirements.

5.5. The aBB approach. In section 4, we discussed the aBB global
optimization approach for general nonlinear optimization problems. In this
section, we will discuss some key aspects of its implementation and present
computational results for a variety of design, control, and computational
chemistry problems.

5.5.1. Implementation of «BB. One of the key characteristics of
the BB method is that it is a generic global optimization method for con-
strained optimization problems involving only continuous variables. The
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algorithm is implemented in C and at this point the user has the capability
of selecting from four different types of functional forms to define the op-
timization model. These forms include (i) linear, (ii) convex, (iii) bilinear,
and (iv) nonconvex terms. The original data are pre—processed so that
any linear part in the model, (i.e. linear constraints and linear cuts), are
identified at the very beginning thus reducing the amount of time that is
needed to set up the problem in subsequent stages of the algorithm. The
user has the capability to supply the values for the parameters o which are
defined for each variable i = 1,..., N participating in term k& € K’ and
constraint (or objective function) j = 0,..., M. In principle, tailoring the
« parameters for each variable, term and constraint generates tighter con-
vex underestimators than by simply defining a single generic « for all the
variables and nonconvex terms. Furthermore, the user also decides along
which variables branching will be performed. These variables are typically
the ones that appear in at least one nonconvex term.

The information required by the user, in the current implementation,
consists of an input file and a set of user specified functions.

e Input File : This file provides, in a user—friendly format, informa-
tion such as (i) the number of variables and constraints; (ii) the
number of different functional forms (i.e. linear, convex, bilinear,
and nonconvex) appearing in the model; (iii) the actual linear and
bilinear entries; (iv) values for the parameter oﬂ;yk for each vari-
able, term, and constraint or objective function; and finally (v)
the variables along which branching will be performed.

o User Specified Functions : The nonlinear, (i.e. convex and non-
convex), terms of the formulation have to be explicitly provided
by the user in a form of a C or F77 subroutine. Here the user spec-
ifies, for each function (as defined in the input file), the convex and
nonconvex terms.

An efficient parsing phase which would significantly simplify the prob-
lem input and declaration is currently incorporated in the version of a«BB.
Further work is in progress towards the evaluation of customized param-
eters « for different partition elements, as well as the incorporation of
rigorous calculations of the parameters a for general twice-differentiable
problems employing the recent results of Adjiman and Floudas (1996).

5.5.2. Computational results. The first set of results is concerned
with the performance of BB on non—convex optimization problems with
simple bound constraints. A very challenging class of problems is being se-
lected for this task, namely the minimization of the total potential energy
of oligopeptides which is at the core of one of the most important prob-
lems biochemistry, namely protein folding. Table 14 summarizes computa-
tional results for all 20 naturally occurring amino acids, depicting the total
number of variables, the globally minimum potential energy, the number
of iterations required, and finally the CPU requirements (on an HP-730
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TABLE 5.14
Computational Results for all Naturally occurring amino acids

| Amino acid | Nyar | Energy | Niter | CPU | < CPU > |

Pro 5 1981 28 6 6
Gly 6 6.33 67 | 14 14
Ala 7 5.18 | 141 ] 55
Cys 7 5.84 | 142 | 45 50
Mis 8 8902 208 173
Phe 8 843 | 298| 169
Ser 8 786 | 184 | 102
Trp 8 956 | 306 | 227 167
Asn 9 2295 | 345 | 220
Asp 9 2005 | 452 | 239
Thr 9 959 | 285 | 208
Tyr 9 848 | 753 | 506
Val 9 419 | 644 | 387 312
Gln 10 | -18.99 | 601 | 460
Glu 10 | -15.87| 640 | 386
Tle 10 254 | 388 | 352
Leu 10 572 | 1123 | 613
Met 10 6.91 | 1284 | 641 480
Lys 11 798 | 922 | 1070 1070
Arg 13 | -31.84 | 1000 | 1660 1660

machine) per amino acid as well as the average CPU time of all amino
acids with the same number of variables. In this work the empirical model
ECEPP3 is used to model the energetic interactions. Such models are char-
acterized by complex interactions resulting in severe non-linearities giving
rise to an exponentially increasing number of local minima. Identifying the
global minimum among them, is a major computational challenge. One of
the most important conclusions to be drawn is the fact that the compu-
tational requirements of aBB compare favorably with the reported results
employing simulated annealing.

The BB has been tested on a large number of test problems from
the literature and representative results will now be presented. The first
2 examples, as presented in Table 5.15 describe a very challenging, for lo-
cal solvers, robust control synthesis problem. It is characterized by strong
nonlinearities in the objective function and simple bound constraints. Two
cases are provided. Interestingly enough the success of a local solver to
identify the global minimum for example 2 is 1%. The next 3 examples,
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describe the phase equilibrium of two ternary and a binary mixtures. These
types of physical computation is both very important, from an engineer-
ing point of view, as well as very challenging from the global optimization
point of view. Example 4 exhibits a local solution extremely close, in ob-
jective function values, to the global optimum but with major differences
in terms of the physical characteristics of the solution. Example 6,7, and
8 are three well known formulation describing the so-called blending and
pooling problems. Three cases are defined in the literature and have been
extensively used for testing global optimization algorithms and all of them
very successful addressed. Example 9, is another test problem taken form
the literature featuring non—convextities in the form of bilinearities in the
constraint set. Example 10 is a very challenging problem describing the
separation of a three-component feed mixture. The goal is to achieve the
desired separation at the minimum possible capital cost. The next exam-
ple, discusses a reactor network design problem and it is known to have
caused problems for local solvers due to the existence of a local solution
very close to the global one. The computational results as presented here
represent a substantial improvement when compared to the original refer-
ence. Example 12 describes a large scale chemical reactor network design
problem. The goal being the identification of the sizes of the required re-
actors as well as the configuration of the reactor network. This problem
is characterized by non—convexities in terms of bilinear terms as well as
general non—convex terms describing the complex reactions kinetics. The
last two problems describe general non—convex optimization formulations.
Example 13 is a test problem having 6 local solutions. The last is a very
challenging and important one with major applications. It addresses the
optimal blank nesting problem. the objective is to minimize the amount
of scrap metal. It was identified that this problem poses major difficulties
to a local solver not only because of the existence of a plethora of local
solutions, but also because of a fairly high failure rate of local solver due
to the presence of severe non—convexities.

6. Discussion. It should be pointed out that the three approaches
presented in this paper address different classes of nonconvex optimization
problems. The GOP approach is best suited for quadratic, bilinear, and
biconvex problems. The GGP approach is specific to the signomials. The
aBB approach was developed for general twice-differentiable optimization
problems that exhibit highly nonlinear terms. Even though the BB ap-
proach can be applied to quadratic problems and generalized geometric
programming problems, its performance should not be expected to out-
perform, in general, the specialized GOP and GGP global optimization
approaches that exploit further the mathematical structure of the prob-
lem. In the case of quadratic functions, for instance, the aBB provides
convex underestimators and the parameters a are constant and hence can-
not be updated at each iteration. Furthermore, in the case of concave
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TaABLE 5.15
aBB Ezample Description

Example # Description
1 Example 6.3(a), Androulakiset al, 1995
2 Example 6.3(b), Androulakiset al, 1995
3 Example 6.3(I), Androulakiset al, 1995
4 Example 6.3(IT), Androulakiset al, 1995
5 Example 6.3(IT), Androulakiset al, 1995
6 Example 6.1(I), Androulakiset al, 1995
7 Example 6.1(IT), Androulakiset al, 1995
8 Example 6.1(IIT), Androulakiset? al, 1995
9 Example 3.1.1, Floudas and Pardalos, 1990
10 Example 5.4, Floudas and Pardalos, 1990
11 Example 20, Ryoo and Sahinidis, 1995
12 Example 9.2, Floudas and Pardalos, 1990
13 Example 6.5(I), Androulakiset al, 1995
14 Example 6.5(IT), Androulakiset al, 1995

TABLE 5.16
Computational Results for General Nonconver Optimization Problems using a BB

Example # | Nyar | Neon | Nizer | CPU
1 4 0 17 0.64
2 4 0 400 11.6
3 4 2 57 1.3
4 6 3 433 13.6
5 4 2 56 2.1
6 9 6| 14| 1.48
7 9 6| 17| 178
8 9 6| 14| 0.90
9 8 6| 202 | 4051
10 38 32 123 901
11 6 ) 56 16
12 29 41 293 | 4179
13 ) 3 406 168
14 8 118 250 | 3,153
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quadratic problems or the case of concave programming, the « BB underes-
timators being convex are weaker than the known linear underestimators.
One of the primary advantages of the « BB approach is that the underes-
timators do not require the introduction of new variables and constraints
but they simply correspond to reformulation of the objective function and
constraints. Hence, the size of the underestimating problems remains al-
ways the same as the original one. This can be a significant advantage
for problems that have many bilinear terms in the objective function and
constraints. In such a class of problems, the alternative underestimation
schemes (e.g., McCormick (1976), Al-Khayyal and Falk (1983), Sherali and
Alameddine (1992)) will require the addition of many new variables and
constraints. There is of course the trade-off between the size of the un-
derestimating problems and the quality of bounds that they provide and
can be specific to the class of problems addressed. Preliminary results in
small and medium size quadratic and bilinear literature problems such as
pooling problems and linearly constrained concave quadratic programming
problems indicate that the GOP performs slightly better than the aBB.
Comparing the BB with the GOP approach for problems with many bi-
linear terms it is expected that the GOP/MILP variant will be competitive
for up to twenty connected variables. Preliminary results on certain gen-
eralized geometric programming problems indicate that the GGP and the
aBB behave comparably.

Concluding remarks. This paper has presented an overview of the
advances in the area of deterministic global optimization. This overview
started with a general classification of the different approaches and contin-
ued with a primary focus on our recent contributions on (i) decomposition
methods, (ii) generalized geometric programming problems, and (iii) meth-
ods for general nonlinear optimization problems. The theoretical advances
have been supported by ample computational work on challenging liter-
ature problems and randomly generated problems, as well as important
applications in Process Synthesis, Design, Robust Control, and Compu-
tational Chemistry and Biology. The reported theoretical, and computa-
tional results, along with forthcoming availability of global optimization
tools strongly suggest the potential of the area of deterministic global op-
timization toward addressing challenging and very important engineering
and applied science problems.
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