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Abstract: This paper presents an overview of the recent advances in deterministic
global optimization approaches and their applications in the areas of Process Design
and Control. The focus is on global optimization methods for (a) twice-differentiable
constrained nonlinear optimization problems, (b) mixed-integer nonlinear optimiza-
tion problems, and (c) locating all solutions of nonlinear systems of equations.
Theoretical advances and computational studies on process design, batch design
under uncertainty, phase equilibrium, location of azeotropes, stability margin, process
synthesis, and parameter estimation problems are discussed.
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1. INTRODUCTION

A significant effort has been expended in the last
five decades toward theoretical and algorithmic
studies of applications that arise in Process Design
and Control. In the last decade we have experi-
enced significant interest in Chemical Engineering
for new methods of global optimization as well
as the application of available global optimization
algorithms to important engineering problems.

The existing approaches for global optimization
are classified as deterministic or probabilistic.
The deterministic approaches include: (a) Lips-
chitzian methods, (b) Branch and Bound meth-
ods, (¢) Cutting Plane methods, (d) Difference
of Convex (D.C.) and Reverse Convex methods,
(e) Outer Approximation methods, (f) Primal-
Dual methods, (g) Reformulation-Linearization
methods, and (h) Interval methods. The prob-
abilistic methods include (i) random search ap-
proaches, and (ii) clustering methods. Recent
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books that discuss the above classes are available
by Pardalos and Rosen (1987), Torn and Zilinskas
(1989), Ratschek and Rokne (1988), Horst and
Tuy (1990), Neumaier (1990), Floudas and Parda-
los (1992), Horst and Pardalos (1995), Horst et
al. (1995), Pinter (1996), Grossmann (1996) and
Floudas and Pardalos (1996).

Contributions from the chemical engineering com-
munity to the area of global optimization can
be traced to the work of Stephanopoulos and
Westerberg (1975), and Westerberg and Shah
(1978). Renewed interest in seeking global solu-
tions was motivated from the work of Floudas et
al (1989). The first exact primal-dual global opti-
mization approach was proposed by Floudas and
Visweswaran (1990), (1993) and its features were
explored for quadratically constrained and poly-
nomial problems in the work of Visweswaran and
Floudas (1992), (1993). Swaney (1990) proposed
a branch and bound global optimization approach
and more recently Quesada and Grossmann (1993,
1995) combined convex underestimators in a
branch and bound framework for linear frac-
tional and bilinear programs. Manousiouthakis
and Sourlas (1992) proposed a reformulation to



a series of reverse convex problems, and Tsirukis
and Reklaitis (1993 a,b) proposed a feature ex-
traction algorithm for constrained global op-
timization. Maranas and Floudas (1992, 1993,
1994a,b) proposed a novel branch and bound
method combined with a difference of convex func-
tions transformation for the global optimization
of molecular conformation problems that arise in
computational chemistry. A very important theo-
retical advance has been made by Liu and Floudas
(1993,1995,1996) who showed that the GOP can
be applied to very general classes of NLPs. This
result is very significant because it extends the
classes of mathematical problems that the GOP
can be applied to nonlinear objective function
and constraints that are twice-continuously dif-
ferentiable. Vaidyanathan and El-Halwagi (1994)
proposed an interval analysis based global opti-
mization method and Ryoo and Sahinidis (1995)
suggested the application of reduction tests within
the framework of branch and bound methods.
Androulakis et al. (1995) proposed the global
optimization method aBB which addresses gen-
eral continuous optimization problems with non-
convexities in the objective function and/or con-
straints. This approach classifies the nonconvexi-
ties as special structure (e.g., bilinear, signomial,
univariate) or generic structure and is based on
convex relaxations and a branch and bound frame-
work. Maranas and Floudas (1995) proposed a
new approach for enclosing all e-feasible solutions
of nonlinearly constrained systems of equations.
This approach transforms the problem into a min-
max form and corresponds to enclosing all multi-
ple global optima via the aBB global optimization
approach. Maranas and Floudas (1997) proposed
a global optimization approach for generalized
geometric programming problems that have many
applications in robust control and engineering
design problems. In a series of papers McDon-
ald and Floudas (1994;1995a,b,c) addressed the
fundamental problems of (i)minimization of the
Gibbs free energy and (ii) the tangent plane sta-
bility criterion that arise in phase and chemical
reaction equilibrium as global optimization prob-
lems for the first time. They proposed decom-
position based approaches for biconvex problems
that result from the use of the NRTL equation,
and branch and bound approaches for the UNI-
QUAC, UNIFAC, ASOG, and TK-Wilson activity
coefficient models. McDonald and Floudas (1997)
proposed the combination of the two aforemen-
tioned classes of problems, developed a special
purpose program GLOPEQ, and performed an
extensive computational study on difficult phase
equilibrium problems. Hua et al. (1996) applied
an interval analysis method for the phase stability
computations of binary and ternary mixtures.

The books of Floudas and Pardalos (1996) and
Grossmann (1996) contain a number of recent
chemical engineering contributions (not presented
here due to space limitations), and the review
paper of Floudas (1997) presents an overview of
these recent chemical engineering contributions
and the advances in global optimization based
on the decomposition approach GOP, the gen-
eralized geometric programming, and the aBB
approach. VanAntwerp et al. (1997) introduced a
global optimization approach based on branch and
bound for the design of a robust controller to time-
varying nonlinear plant perturbations. Sriniwas
and Arkun (1997) introduced a global optimiza-
tion approach based on the GOP principles for the
nonlinear model predictive control problems with
polynomial ARX models. Shectman and Sahini-
dis (1998) proposed a finite global optimization
method for separable concave problems. Yamada
and Hara (1998) proposed a global optimization
approach based on the triangle covering for H-
infinity control with constant diagonal scaling.

Adjiman and Floudas (1996) proposed novel ap-
proaches for the rigorous determination of the «
parameters that are employed in the BB global
optimization approach. These methods are based
on a modified Kharitonov theorem for interval
polynomials, interval anlysis of the hessian matri-
ces and calculate rigorous bounds on the minimum
eigenvalue for general twice differentiable prob-
lems. Furthermore, Adjiman et al. (1998a) pro-
posed several new rigorous methods for the calcu-
lation of the o parameters for (i) uniform diagonal
shift of the hessian matrix and (ii) non-uniform
diagonal shift of the hessian matrix, and they
established their potential trade-offs. Adjiman et
al. (1998b) presented the detailed implementation
of the aBB approach and computational studies
in process design problems such as heat exchanger
networks, reactor-separator networks, and batch
design under uncertainty.

In this paper, we will focus on our recently pro-
posed deterministic global optimization method
denoted as aBB, and present the key contribu-
tions in addressing (a) twice-differentiable NLPs,
(b) mixed-integer nonlinear problems, and (c) the
location of all solutions of nonlinear systems of
equations.

2. THE oBB APPROACH FOR GENERAL
NLPS

The aBB algorithm is based on a branch-and-
bound framework and addresses nonconvex min-
imization problems of the formulation (1). The
theoretical properties of the algorithm guarantee
that such a problem can be solved to global opti-
mality with finite e-convergence.
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where f, g and h belong to C?, the set of twice-
differentiable functions, and x is an n-vector.

Each iteration of the algorithm consists of a
branching step and a bounding step. In the branch-
ing step, a lower bound is obtained by construct-
ing valid convex underestimators for the functions
in the problem and solving the resulting convex
NLP to global optimality. An upper bound is
calculated either by solving the original problem
locally over each subdomain of the solution space
or by performing a problem evaluation at the
solution of the lower bounding problem. The iden-
tification of the global optimal solution depends
on the validity of the lower bounding problems as
well as the construction of increasingly tight lower
bounding problems for successive partitions of the
solution space. Such properties lead to the gener-
ation of a nondecreasing sequence of lower bounds
which progresses towards the optimal solution.

An important step in the convexification strategy
is the decomposition of each nonlinear function
into a sum of terms belonging to one of several
categories: linear, bilinear, trilinear, fractional,
fractional trilinear, convex, univariate concave or
general nonconvex. It is also possible to construct
customized underestimators for other mathemat-
ical structures such as signomial expressions, as
shown by Maranas and Floudas (1997). In con-
structing a convex underestimator for the over-
all function, it is first noted that the linear and
convex terms do not require any transformation.
The convex envelope of the bilinear, fractional,
and univariate concave terms can be constructed
by following simple rules. For a more detailed
exposition the reader is directed to Maranas and
Floudas (1995,1997) and Adjiman et al. (1998a,b).

Bilinear Terms : In the case of a bilinear term
zy, Al-Khayyal and Falk (1983) showed that the
tightest convex lower bound over the domain
[#L,2Y] x [yL,yY] is obtained by introducing a
new variable wp which replaces every occurrence
of zy in the problem and satisfies :
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wp > aVy+yYz —

An upper bound can be imposed on w to construct
a better approximation of the original problem
(McCormick, 1976). This is achieved through the
addition of two linear constraints:

wp < 2y +yte— 2yt
wp < xLy+wa—:cLyU.

3)

Fractional Terms : Fractional terms of the form

xz/y are underestimated by introducing a new

variable wr and two new constraints (Maranas

and Floudas, 1995) which depend on the sign of

the bounds on z.

we > ety +x/yY -2t /Y ifz >0
B2 afy¥ —aty/ytyY +atyt ifat <0

we > ¥ Jy + x/y" — 2V Jy" ifz¥ >0
F=afy" —aVy/y gV + 2V )yU ifz¥ <0

(4)

Univariate Concave Terms : Univariate con-
cave functions are underestimated by their lin-
earization at the lower bound of the variable
range. Thus the convex envelope of the concave
function ut(z) over [z%,zY] is the linear function
of x:

ut(zY) — ut(z¥)

2U — 2L (SL' - xL)' (5)

ut(z®) +
General Nonconvex Terms : For the most
general nonconvexities, a slightly modified ver-
sion of the underestimator proposed by Maranas
and Floudas (1994b) is used. A function f(x) €
C?(R") is underestimated over the entire domain
[xL, zY] by the function £(z) defined as

n
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where the «;’s are positive scalars.

Since the summation term in Equation (6) is
negative over the entire region [zl 2Y], L(z) is
a guaranteed underestimator of f(z). Further-
more, since the quadratic term is convex, all non-
convexities in the original function f(x) can be
overpowered given sufficiently large values of the
«; parameters: L(x) is therefore a valid convex
underestimator. Since L£(x) is convex if and only if
its Hessian matrix H. () is positive semi-definite,
a useful convexity condition is derived by noting
that H () is related to the Hessian matrix Hy(x)
of f(x) by

He(e) = Hy(z) +2 A, (7)

where A is a diagonal matrix whose diagonal
elements are the «a;’s. A is referred to as the
diagonal shift matriz, since the addition of the
quadratic term to the function f(zx), as shown
in Equation (6), corresponds to the introduction
of a shift in the diagonal elements of its Hessian
matrix Hz(z). The following theorem can then
be used to ensure that £(x) is indeed a convex
underestimator:

Theorem 2.0.1. L(x), as defined in Equation (6),
is convex if and only if Hy(x) +2 A = Hy(x) +
2 diag (a;) is positive semi-definite for all = €
[xL, 2Y].



A number of deterministic methods have been
devised in order to automatically identify an
appropriate diagonal shift matrix (Adjiman and
Floudas, 1996; Adjiman et al. (1998a.b).

2.1 Owerall Valid Convexr Underestimator

Based on the underestimators discussed for each
of the term types identified, a convex underesti-
mator for any given twice-differentiable function
can now be obtained through a decomposition ap-
proach. A function f(zx) with continuous second-
order derivatives can be written as

bt

)+ E bixp; 12B;,2

i=1
ft ut nt
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= TR2 o i=1
where LT () is a linear term; CT'(x) is a convex

term; bt is the number of bilinear terms, zp;,1 and
xB;,2 denote the two variables that participate in
the ith bilinear term and b; is its coefficient; ft
is the number of fractional terms, zr; 1 and zF, 2
denote the two variables that participate in the
ith fractional term and f; is its coefficient; ut is
the number of univariate concave terms, UT;(z?)
is the ith univariate concave term, z* denotes the
variable that participates in UT}; nt is the number
of general nonconvex terms, NT;(x) is the ith
general nonconvex term.

f(@) = LT(z) + CT(x

The corresponding lower bounding function is

E(:z: w) = LT( )+CT( )
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where «;; corresponds to term ¢ and variable j
and satisfies Theorem 2.0.1. The wp, variables
are defined by Equations (2) and (3). The wp,
variables must satisfy constraints of the forms

given by (4).

If the nonlinear equality constraints contain con-
vex or general nonconvex terms, the equalities ob-
tained by simple substitution of the corresponding
underestimators are nonlinear. In the presence of
convex, general nonconvex or univariate concave
terms, the original equalities h(x) = 0 must there-
fore be rewritten as two inequalities of opposite
signs, and these two inequalities must then be un-
derestimated independently. The univariate con-
cave terms appearing in the nonconvex equality

)

become convex in one of the two inequalities while
the convex terms become concave and the gen-
eral nonconvex terms become convex or remain
nonconvex. A detailed description of handling the
equalities is in Adjiman et al. (1998a,b).

3. RIGOROUS CALCULATION OF a FOR
GENERAL NLPS

The focus of this section is the development of
methods that generate rigorously a set of a pa-
rameters satisfying Theorem 2.0.1. This allows
the construction of a convex underestimator £(x)
for a twice-differentiable function f(x) over a
specified domain. Two classes of approaches to
this problem are defined as: (i) uniform diagonal
shift of the Hessian matrix of f(x), and (ii) non-
uniform diagonal shift of the Hessian matrix of

fx).

As seen in Equation (7) and Theorem 2.0.1, the di-
agonal shift matrix A is closely linked to the Hes-
sian matrix Hy(x) of the function being underesti-
mated. For general twice-differentiable functions,
the elements of the Hessian matrix Hy(x) are
likely to be nonlinear functions of the variables.
The difficulty arising from the presence of the
variables in the convexity condition can be over-
come through the transformation of the exact x-
dependent Hessian matrix to an interval matrix
[Hy] such that Hy(z) C [Hy], Vz € [z, 2Y].
The elements of the original Hessian matrix are
treated as independent when calculating their nat-
ural interval extensions (Neumaier, 1990). The
interval Hessian matrix family [Hy] is then used
to formulate a theorem in which the « calculation
problem is relaxed.

Theorem 8.0.1. Consider a general function f(x)
with continuous second-order derivatives and its
Hessian matrix Hy(x). Let L(x) be defined by
Equation (6). Let [Hy] be a real symmetric in-
terval matrix such that Hy(x) C [Hy], Vx €
[xL, V). If the matrix [H] defined by [H] =
[Hf] +2 A = [Hy] + 2 diag (a;) is positive semi-
definite, then £(x) is convex over the domain
@, 2V].

The quality of the underestimator generated by
any given a calculation method can be measured
in terms of the separation distance between the
nonconvex function and its underestimator: the
tighter the lower bounding scheme, the faster
the convergence. For this purpose, the maximum
separation distance between f(x) and L(x), dimaz,
can be used. Maranas and Floudas (1994) showed
that it is directly proportional to the «;’s and
given by



In addition, the a parameters and the bounds on
the variables can be shown to affect the maximum
number of iterations required in order to achieve
e-convergence (Maranas and Floudas, 1994).

In the sequel, two rigorous methods for the cal-
culation of the o parameters are outlined. These
methods are based on the non-uniform diagonal
shift matrix and the details of their proofs as well
as several other methods are in Adjiman et al.
(1998a).

Method 1: Scaled Gerschgorin Theorem

Theorem 8.0.2. For any vector d > 0 and a
symmetric interval matrix [A4], define the vector
« as

0 1
—m _Z
o ax< 0, 5

d;
Qi — Z |a|ijd_z

J#i
where |G,|z'j = max{lﬂz’jL |61]|}

Then, for all A € [4], the matrix Az = A+ 2A
with A = diag(a;) is positive semi-definite.

Method 2: Minimization of Mazimum Separation
Distance

Since the maximum separation distance between
the original function and its underestimator re-
flects the quality of the underestimator, this
method aims at deriving a non-uniform diagonal
shift matrix A which is optimal with respect to
dmaz- This goal can be expressed as an optimiza-
tion problem of the form

min (¥ —2")TA(2V — 2%)

st. Hy(x) +2A >0

z € [zl zY]

where A is a diagonal matrix, and M > 0 means
that the matrix M is positive semi-definite.

Due to the nonconvexity of the above problem,
the formulation is relaxed to

min (z¥ — 2")TA(z? — 1)

st. [Hf]+2A>0
The presence of the interval Hessian matrix in the
constraint makes the identification of the solution
of this problem difficult. To further simplify it,
[Hf] can be replaced by a real matrix whose
minimum eigenvalue is smaller than the minimum
eigenvalue of [Hf]. The lower bounding Hessian
L is a natural choice and the maximum distance
minimization problem becomes (see Adjiman et
al. 1998a):

min (2Y — ") TA(zY — 1)

st. L+2A >0
Problem (10), a semi-definite programming prob-
lem, is convex and can therefore be solved to
global optimality using interior-point methods
which have a polynomial worst-case complexity.

(10)

4. MIXED-INTEGER NONLINEAR
OPTIMIZATION

A wide range of chemical engineering problems
can effectively be framed as Mixed—Integer Non-
linear Problems (MINLP) as this approach allows
the simultaneous optimization of the continuous
variables pertaining to a certain structure, and of
the structure itself which is modeled via binary
variables (Floudas, 1995; Grossmann 1990,1996a).
Such a mathematical framework has been pro-
posed for a variety of process synthesis prob-
lems (e.g., heat recovery networks, separation sys-
tems, reactor networks), process operations prob-
lems (e.g., scheduling and design of batch pro-
cesses), molecular design problems and synthesis
of metabolic pathways. A number of these applica-
tions are described in Floudas (1995) and Gross-
mann (1996a). The degree of nonconvexity of the
participating functions is generally arbitrary and
nonlinearities can be identified in the continuous,
the integer, or joint domains. The difficulties in
solving these MINLPs therefore stem not only
from the combinatorial characteristics of the prob-
lem which are a direct result of the presence of the
integer variables, but also from the presence of
nonconvexities (Floudas and Grossmann, 1995).

4.1 The SMIN-aBB Algorithm

The SMIN-aBB algorithm is a global optimiza-
tion algorithm for MINLPs of the form :

min f(z) + 2" Aoy + oy
st. glz)+z"Aiy+cly
h(z)+azlAsy +cly =

re XC R
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where f, g and h belong to C2, the set of functions
with continuous second—order derivatives, x is a
vector of size n, ¥ is a vector of size m, Ag, A1, Ao
are n X m real matrices and cg,cy,c2 are real
vectors of size m.

As can be seen from (11), the binary variables
can participate linearly or in bilinear mixed inte-
ger terms. Although this condition may appear
restrictive at first, many other types of integer
or mixed-integer terms can be transformed into
this form through the introduction of additional
variables.

The global optimum of a problem of type (11)
is identified using a branch—and-bound scheme
which allows the generation of converging se-
quences of valid upper and lower bounds. The
branch—and-bound tree is constructed by branch-
ing on a combination of the continuous and binary
variables. For each region of the solution space



thus obtained, a convex lower bounding MINLP is
derived and solved to global optimality using the
OA algorithm, the GBD algorithm or the linear
underestimators of Glover (see Floudas, 1995), de-
pending on the type of participation of the binary
variables. If this problem is infeasible, or if its so-
lution is greater than the current upper bound for
problem (11), the region is fathomed. Otherwise,
an upper bound is generated through the solution
of the original nonconvex MINLP restricted to the
current domain. The results are then used to guide
further exploration of the solution space : the node
with the smallest lower bound is split into two
new domains. Combined with an underestimating
strategy which provides gradually tighter convex
lower bounding problems, this approach results in
the identification of the global optimum solution
with e—convergence.

4.2 The GMIN-aBB Algorithm

The GMIN-aBB algorithm is a global optimiza-
tion algorithm for general MINLPs of the form :

min f(z,y)
s.t. g(z,y) < 0
h(z,y) = 0 (12)

re XC R"
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where f, g and h belong to C?, the set of twice-
differentiable functions, x is a vector of size n, y
is a vector of size m.

As seen from the formulation, arbitrary twice—
continuous non—convex terms in which both con-
tinuous and binary variables participate are al-
lowed. Thus, the proposed framework addresses a
very general class of MINLP problems.

The key idea of the GMIN-aBB algorithm is to
embed the aBB algorithm within a branch and
bound framework which handles the binary vari-
ables. At each node of the branch and bound tree
a continuous relaxation of the original problem is
being solved, with some of the binary variables
fixed to 0 or 1, according to the branching rules
that are discussed in a subsequent section. The
most important consequence of this approach is
that the continuous relaxation at each node is a
non—convex NLP whose global optimum solution
can provide a guaranteed lower bound to the
MINLP problem. It is therefore crucial to be able
to solve each branch and bound node efficiently to
global optimality. Note that any lower bound on
the global solution of these non—convex NLPs is
a valid lower bound for the global solution of the
original MINLP problem. The aBB algorithm is
employed so as to provide valid lower bounds for
the outer branch and bound algorithm. A detailed

description of the three major components of the
GMIN-aBB approach, namely the lower bound
generation, the selection of branching variables,
and the selection of branching nodes can be found
in Adjiman et al. (1997).

5. LOCATING ALL SOLUTIONS OF
NONLINEAR SYSTEMS OF EQUATIONS

A fundamental task in many chemical engineering
problems is finding all solutions of a set of equa-
tions. Typical examples of such tasks in chemical
engineering include (i) the well known identifica-
tion of potential multiplicities of exothermic reac-
tions occurring in adiabatic CSTR’s; (ii) solution
of cubic equations in PVT calculations for the va-
por, liquid and metastable state specific volumes;
(iii) evaluation of multiple-steady states in certain
types of reaction networks; (iv) identification of
multiple solutions for porous catalysts effective-
ness factors in exothermic reactions ; (v) solution
of (un)constrained simulation problems in steady—
state flowsheet modelling; (vi) identification of
equilibrium points in (un)reacting multiphase sys-
tems such as multiple miscibility gaps in liquid—
liquid equilibria; (vii) prediction of all homoge-
neous / heterogeneous azeotropes or eutectic points
at some temperature or pressure for given activity
models; and (viii) location of all multiple steady
states of individual distillation columns as well as
of interlinked separation systems.

Maranas and Floudas (1995) proposed a new
approach for finding all e—feasible solutions for
certain classes of nonlinearly constrained systems
of equations. This is formulated as:

hj(x)=0, j € Ng (13)
gr(z) <0, k € Np
zt <z < :I:U,

where Ng is the set of equalities, N; the set
of inequality constraints, and « the vector of
variables.

By introducing a single slack variable s, formula-
tion (13) can be written as :

min s
z,s>0
subject to  hj(z) —s<0, j € Ng
—hj(z) +s<0, j € Ng

gk(z) <0, k € N (14)

mLSwgmU.

There is a one to one correspondence between
multiple global minima (z*,s*) of (13) for which
s* = 0 and solutions of (14). This means that
if the global minimum of (13) involves a nonzero



slack variable s* then the original problem (14)
has no solutions.

However, even if the number of multiple global
minima of (13) is finite it has been shown that
no algorithm can locate all of them with a finite
number of function evaluations. A corrolary of this
result is that no algorithm can always localize,
with a finite number of function evaluations, all
globally optimal points by compact subintervals
in one—to—one correspondence with them. There-
fore, a more reasonable aim is to find arbitrarily
small disjoint subintervals containing all globally
optimal points of (14) if any.

These multiple e-global minima of (14), (if any)
can then be localized based on a branch and
bound procedure involving the successive refine-
ment of convex relaxations (R) of the initial prob-
lem. Formulation (R) is obtained by replacing the
nonconvex functions with some tight, convex lower
bounding functions by following the techniques
discussed in section 2. Because (R) is convex
its global minimum within some box constraints
can be routinely found and will always under-
estimate the global minimum of (14) within the
same box constraints. A strictly positive solution
for (14) implies that the slack variable s cannot
be driven to zero, and thus (13) is guaranteed
not to have any solutions inside the rectangular
region at hand. This provides a mechanism for
fathoming (eliminating) parts of the target region
which are guaranteed not to contain any solutions.
If on the other hand, the global minimum of (R)
is negative then (14) may or may not involve
a solution with a zero slack variable and there-
fore no deduction can be drawn regarding the
existence or not of solutions for (13) inside the
current rectangular domain. In this case, further
partitioning of the current rectangular region is
required until the global minimum of (R) becomes
positive (fathoming) or a feasible point for (14) is
found (convergence). The branch and bound pro-
cedure of Maranas and Floudas (1995) generates
a nondecreasing sequence for the lower bound of
(14) yielding a set of candidate rectangles for con-
taining a solution of (13). Convergence is reached
when none of the rectangles involve a negative
lower bound (no solutions), or when all of the
remaining rectangles with negative lower bounds
are within the prespecified size tolerance €,.

6. COMPUTATIONAL STUDIES

Extensive computational studies on important
problems in chemical process design and control
have been contacted for all the theoretical and
algorithmic advances presented in sections 2, 3,
4, and 5. More specifically, the aBB global op-
timization approach for twice differentiable con-
strained NLPs has been applied to blending and

pooling problems, to linearly constrained concave
programming problems, to reactor design, to non-
sharp separation synthesis problems, to heat ex-
changer network design, to robust stability anal-
ysis problems, to generalized geometric program-
ming problems. The SMIN-aBB and the GMIN-
aBB have been applied to small MINLP litera-
ture problems, as well as heat exchanger network
synthesis problems, the design of multilevel pump
configurations, and a variety of trim loss problems
that arise in the paper industry, where small to
medium size problems have been addressed ef-
fectively. The method for enclosing all solutions
of constrained systems of equations has been ap-
plied for steady state identification in reaction
networks, equilibrium processes, multiple steady
states in CSTRs, robot kinematics, and circuit
design problems.

Recent important modifications of the aBB ap-
proach were introduced by Harding and Floudas
(1997) for the batch process design under uncer-
tainty, and by Esposito and Floudas (1998) for
the parameter estimation of nonlinear algebraic
models using the error in variables approach. In
the former approach, it was shown that analytical
calculations of the a parameters are indeed pos-
sible and this allowed for large scale problems to
be addressed to global optimality. These include
problems up to 16,000 variables. In the latter
approach, the effect of different underestimation
alternatives that exploit the mathematical struc-
ture along with the role of branching variables and
the updates of the bounds are evaluated and it
is shown for the first time that that parameter
estimation problems can be solved efficiently to
global optimality. Additional recent areas where
the aBB has been an important component in-
clude the nesting and packing of arbitrary objects,
the protein folding and peptide docking problems
in computational chemistry and biology. Recent
key modifications of the approach for locating
all solutions have been introduced by Harding
et al. (1997) for the determination of all homo-
geneous azeotropes, while cuurent research work
focuses on enclosing all heterogeneous and reac-
tive azeotropes, performing rigorous reactive flash
calculations, and locating all transition states in
molecular systems.

In the following, we will present an illustrative
application in the area of robust stability analysis
of control systems.

6.1 Robust Stability Analysis of Nonlinear Systems

Robust stability analysis of nonlinear systems
involves the identification of the largest possible
region in the uncertain model parameter space
for which the controller manages to attenuate any
disturbances in the system. The stability of a



where
ao(q) = 6.82079 107 °q1¢3¢> + 6.82079 10™°¢1¢2q4 45

feedback structure is determined by the roots of
the closed loop characteristic equation:

det (I + P(s,q)C(s,q)) = 0

7.61760 10 *q2q2 + 7.61760 10 *¢3q3
+4.02141 10~*¢1 g2¢2 + 0.00336706¢143q>
+6.82079 10 °q1qaqs + 5.16120 10 *g3 g6
+0.00336706¢1¢294q5 + 6.82079 10~ °¢1 ¢2q4¢7
+6.28987 10™°q1q2q596 + 4.02141 10~ *q1¢3¢4gs
+6.28987 10 °q1¢3q4q6 + 0.00152352¢2¢3q4q5

where ¢ is the vector of the uncertain model ai(q) =
parameters, and P(s), C(s) the transfer functions
of the plant and controller respectively. The “zero
exclusion condition” implies that a system with
characteristic equation P(s, q) = 0 is stable only
if it does not have any roots on the imaginary
axis for any realization of the ¢’s in the uncertain

model parameter space Q. A stability margin k,,

can then be defined as follows:
km(jw) = inf{k : P(jw, q(k)) = 0,V q € 9}

Robust stability for this model is then guaranteed
if and only if k,, > 1.

Checking the stability of a particular system with
characteristic equation P(jw, q) involves the so-
lution of the following nonconvex optimization
problem.

min k (15)
¢i,k>0,0>0

Re [P(jw, q)
Im[P(jw, q)

g —Aq k < ¢;<q +A¢ Tk i=1,...,n

=0
=0

where g% is a stable nominal point for the un-
certain parameters and Ag™, Aq~ are estimated
bounds. Note that it is important to be able to
always locate the global minimum of (15), other-
wise the stability margin might be overestimated.
This overestimation can sometimes lead to the
erroneous conclusion that a system is stable when
it is not.

Ezample : This problem was developed to study
the stability of the Fiat Dedra spark ignition en-
gine. It involves 9 variables and is highly nonlin-
ear. The stability margin formulation is :

min k
—ag(q)w® + as(q)w* — a2(q)w” + ao(q) =0
az(q)w® — as(q@)w* + as(q)w? —a1(g) =0

3.4320 — 1.2721k < q1 < 3.4329
0.1627 — 0.06k < go < 0.1627
0.1139 — 0.0782k < g3 < 0.1139
0.2539 < q4 < 0.2539 + 0.3068k
0.0208 — 0.0108k < g5 < 0.0208
2.0247 < g < 2.0247 + 2.4715k
1.0000 < g; < 1.0000 + 9.0000k

+5.16120 10~ *¢2¢39446

The remaining nonlinear terms are reported in
Adjiman et al. (1998b).

The solution of the stability problem shows that
this system is stable and computational results
are obtained with w € [0,10]. Application of
the aBB global optimization approach with the
Scaled Gerschgorin calculation of the parameters
a determines that the system is unstable in 48.9
cpu seconds while the use of the semidefinite
programming approach requires 1529 cpu seconds
for convergence.

7. CONCLUDING REMARKS

This paper has presented an overview of the ad-
vances in the area of deterministic global opti-
mization. This overview focused on global opti-
mization approaches for (a) general twice differ-
entiable NLPs, (b) mixed integer nonlinear opti-
mization problems, and (c¢) locating all solutions
of constrained systems of nonlinear equations. The
theoretical advances were outlined along with a
summary of the computational studies. An exam-
ple from the calculation of the stability margin
of uncertain control systems illustrated the recent
advances.
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