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Abstract. A new approach is proposed for finding all e—feasible solutions for certain classes of nonlinearly
constrained systems of equations. By introducing slack variables, theinitial problem istransformed into aglobal
optimization problem (P) whose multipleglobal minimum solutionswith azero objectivevalue(if any) correspond
toall solutionsof theinitial constrained system of equalities. All e-globally optimal pointsof (P) arethenlocalized
within a set of arbitrarily small digoint rectangles. Thisis based on a branch and bound type global optimization
agorithm which attainsfinite e—convergenceto each of the multiple global minimaof (P) through the successive
refinement of aconvex relaxation of the feasible region and the subsequent solution of aseriesof nonlinear convex
optimization problems. Based on the form of the participating functions, a number of techniques for constructing
this convex relaxation are proposed. By taking advantage of the properties of products of univariate functions,
customized convex lower bounding functions are introduced for a large number of expressions that are or can
be transformed into products of univariate functions. Alternative convex relaxation procedures involve either
the difference of two convex functions employed in BB [23] or the exponential variable transformation based
underestimators employed for generalized geometric programming problems [24]. The proposed approach is
illustrated with several test problems. For some of these problems additional solutions are identified that existing
methods failed to locate.
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1. Introduction

A fundamental task in applied mathematics, engineering and sciences is finding all solu-
tions of a set of equations. This task is sometimes further complicated by requiring the
simultaneous satisfaction of a number of inequality and/or variable bound constraints. Not
only the problem of computing all solutions of nonlinearly constrained systemsof equations
is NP-hard, but it is also possible that there exists exponentially many such solutions [1].
In addition, simply checking if a solution exists is NP-hard [2]. There exists alarge body
of literature on methods for solving systems of equations. These methods fall within the
following three broad classes: (i) Newton and quasi—Newton type methods; (ii) homotopy
continuation type methods; and (iii) interval-Newton methods.

Newton and quasi—-Newton type methods and their modifi cationsachieve superlinear con-
vergence only when they are well within the neighborhood of the solution. However, these
methods are likely to fail if the initial guessis poor, or if singular points are encountered.
Modificationsin an attempt to avoid singularities may incorporate trust—region techniques
such as Powell’s “dogleg” method [31], steepest descent direction information [7], [10],
[26] and alterations on the quasi—-Newton Jacobian estimates [30]. This type of methods,
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although very computationally efficient, cannot provide guaranteesfor convergence. This
ismanifested in practice with their poor convergence characteristics.

One of the most widely used method for locating solutions of nonlinear systems of
equations belongs to the broad class of embedding methods. This class of methods are
also known as continuation, homotopy continuation, or incremental loading, and are based
on the pioneering work of [19], [20], [8], [18]. The basic idea of homotopy continuation
methods is to create afamily of asingle parameter functions so that the solution for (t=0)
is known and then solve a sequence of problems with ¢ steadily increasing from (t=0) to
(t=1) using the solution of one problem as an estimate for the next. A popular variation is
to use a system variable as the continuation parameter and integrate the resulting system
of ordinary differential equations towards steady—state by utilizing AUTO [9]. A problem
common to all homotopy variantsisthat variable bounds and inequality constraints cannot
be handled directly. A comprehensive review of the extensive literaturein this areacan be
found in [12]. While in practice homotopy continuation methods are frequently used in
an attempt to locate all solutions of arbitrary nonlinear systems of equations, mathematical
guarantees that all solutions will be found exist only in special cases (e.g. polynomial
systemswith no constraints). For polynomial systems of equations, however, Morgan [27]
proposed a differential arclength continuation using a special homotopy that establishes a
number of continuation pathsguaranteed to convergeto all possiblereal and complex roots.
Two popular software packages, CONSOL [27] and POLSY S[34] have implemented this
method.

Interval-Newton methods can find rectangles containing all solutions of nonlinear sys-
tems of equations within certain variable boundswith mathematical certainty. They do so
by applying the classical Newton-like iterative methods on interval variables rather than
variables coupled with a generalized bisection strategy [29], [13]. A version of the basic
Interval-Newton method has been implemented into the public domain software program
INTBIS [17] which is coupled with a portable interval standard function library INTLIB
[16]. The main attractive feature of Interval-Newton methods is that they provide mathe-
matical guarantees for convergence to all solutions of fairly arbitrary nonlinear systems of
equations within certain variable bounds. However, this wide applicability to almost arbi-
trary nonlinear functions comes at an expense. Because no specific structure of individual
expressions is analyzed the obtained interval bounds can sometimes be fairly loose.

The proposed approach is based on convex lower bounding coupled with a partitioning
strategy and like Interval-Newton methods, it can provide guaranteesfor convergence to all
e—solutions. The fundamental difference, however, between our procedure and Interval—
Newton methods is that while the former utilizes a single value to lower bound functions
within rectangular domains, we lower bound nonconvex functions with convex functions.
By exploiting the mathematical structure of the problem, this typically results in much
tighter bounds. In the next section, a description of the problem is presented.
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2. Problem Description

This paper addresses the problem of identifying all solutions of a nonlinear system of
equations subject to inequality constraints and variable bounds and is formulated as:

hi(x) = 0, j € Ng )

gk(x) S 0: k S NI

x” < x < XU,
where NV is the set of equalities, N the set of inequality constraints, and x the vector
of variables. Note that in formulation (S) the total number of variablesis allowed to be
different than the total number of equalities so as neither the existence nor the uniqueness of
asolutionof (S) ispostulated. Therefore, both overspecified and underspecified systemsare
included in the present investigations. Note that a number of important problems naturally
arise as specia instances of formulation (S). On one hand, by omitting all inequality
congtraints, (S) corresponds to a system of nonlinear equations. On the other hand, by
eliminating all equality constraints (S) checks the existence of feasible pointsfor the given
inequality constraint set (feasibility problem).

Formulation (S) can be transformed into the following min—max optimization problem

[15]

: .
min max  |h;(x)|

subjectto gx(x) < 0, k € N7

ngxng.

By introducing a single slack variable s, the min-max problem can be written as the
following optimization problem (PO).

glzno s (PO)
0: ] S NE
0: ] S NE

subjectto  hj(x) —s
—hj(x)—s

INIA

IN

gk(X) 0: k € NI

U

XL§X b

INA

Clearly, there is a one to one correspondence between multiple global minima (x*, s*)
of (P0) for which s* = 0 and solutions of (S). This means that if the global minimum of
(PO) involves a nonzero slack variable s* then the original problem (S) has no solutions.
Note that, unlessthe functions &; (x) and g (x) arelinear and convex respectively, formu-
lation (P) corresponds to a nonconvex optimization problem. This implies that if a local
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optimization approach is used to solve (P0), one might miss some of the multiple global
minima of (PO) or even erroneously deduce that there are no solutions for (S). Therefore,
an approach that is guaranteed to always locate all multiple global minima of (P0) appears
to be necessary for solving (S) so that (i) the correct solution vector (x*, s*) is identified
and (ii) all solutions (x*) of (S) with s* = 0 are found in all instances. In this work, a
deterministic global optimization is proposed which is guaranteed to locate all e—global
minimaof (P0) through the successive refinement of converging lower and upper bounds
on the solution based on the solution of convex optimization problems defined by a branch
and bound approach. A lower bound on the solution of (PO) is found by first replacing
each nonconvex constraint in (PO) with a convex underestimation of it and then finding
the solution of the convex relaxation (R) of (PO) with commercially available solver such
as MINOS5.4 [28] as shown in [22] and [23]. This approach naturally partitions the con-
straintsof formulation (PO) into convex (for which no relaxation isrequired) and noncornvex
congtraints. This partitioning yields the following alternative formulation (P):

min s P

x,s20

0: ] S NnoncE
0: .7 S NnoncE

subjectto  hP7"°(x) — s

—h77"(x) — s
ggonc(x)

lin
hj (x)

IAIA

k € Nnonc[

IN
o

0: .7 € M“’LE

conv

9:""" (%)

AN

0: .7 € Ncorw[
x" < x < xV

Here Nyon e, Niin E @rethe setsof nonconvex and linear equality constraintsrespectively,
and Ny oner, Neonu 1 @€ the sets of nonconvex and convex inequality constraints,

NE :NnoncE UMinE: NI :NnoncIUNcorwI-

A convex relaxation (R) of (P) of the form,
min s (R)

x,520

subjectto A} (x) —s < 0, j € Nuoner
;LT_“?]T'LC(X) — 8 S 0, ] € NnoncE
gzconc(x) S 0, k S Nnonc[

6™ ()

IN
o

j S Ncorw[
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ngxng

canbeobtained by replacingtheoriginal nonconvex functions A7 °"“(x),—h7 ¢ (x).g7. °"“ (x)
with some convex tight lower bounding functions ﬁﬁffc(x),ﬁ’j‘j;c(x), grere(x). These
lower bounding functions A%°7°(x),h2°7¢(x), §2o"(x) must be (i) corvex in [x, x7];
(ii) valid underestimatorsof the original functionsh? ¢, —h'*"“, gp°"¢; and (iii) for every
pointx € [xL, xU] the maximum separation between theoriginal functionsand the convex
underestimators must become arbitrarily e small by appropriately reducing the size of the
rectangular domain [x', x*] around the point x inside which the convex underestimators
are defined. These requirements are expressed mathematically as follows:

Property 1: h7°Pe(x), h2o7¢(x), and §7°"¢(x) be covex ¥ x € [xF,xY].

Property 2: h?°"%(x) > h}°7°(x) , —h}7"%(x) > ﬁ’i‘ffc(x) , and giome(x) >
grone(x), vx € [XL,XU].

Property 3: V x ¢ [XL,XU] ande > 0, 3 [xl,x“] C [xL,xU] with é(e) =

||x“—x’||;/2 > 0 such that

max (h;mnc(x)—iz,’_f_mc(x)) < €,

x€[x! x¥] 7

max ] (—h;wnc(x) — iz,"o’?c(x)) < €

xg[x!,x® -

max (g3 (x) — 47 °"°(x)) < e
x€g[x! x¥]

Property 3 requires that the maximum separation between the nonconvex function and its
tight convex lower bounding function, defined inside some rectangular region, must go to
zero

lim ¢ = 0.
§—0+

as the size of the rectangular domain approaches zero (§ = 0). This is important for
proving finite e—convergence. The order O (e) = O(6™) with which e approaches zero as
6 goes to zero is important because it determines the speed of convergence. Clearly, the
largest possible value for n is desirable so as the maximum tolerance reaches an arbitrary
valuee for anot too small variablerange . For example, if the maximum separation e goes
asé? then avalue of just § = 0.01 suffices to meet a convergence tolerance of e = 0.0001.

An efficient convex lower bounding of nonconvex functionals appearing in formulation
(P) isclearly central to the design of the proposed global optimization approach for locating
all solutions. Undoubtedly, thetighter the convex lower bounding isthe better the quality of
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the obtained lower boundswill be, and consequently the faster the algorithm will converge.
Thetightest possible convex lower bounding function for any arbitrary nonconvex function
f(x) inside some rectangular region P is called the convex envelope ¢(x) of f(x), and it
must conform to the following properties[15]:

(i) ¢(x)convexfordlx € P.
(i) f(x)>é(x)fordlx € P.
(iii) For al functions g(x) that satisfy (i) and (ii), ¢(x) > g(x) foral x € P.

Unfortunately, in all but the simplest cases there exists no method for deriving the convex
envelope for arbitrary functions defined inside arbitrary domains. As aresult, the focusin
this work is to identify the maximum possible function which satisfies properties (i) and
(if). There exists a number of techniques for obtaining functions that satisfy properties
(i), (ii). In the following sections, a number of convex lower bounding procedures are
discussed which can be of use not only for the problem of locating all multiple solutions
but also for any deterministic branch and bound global optimization algorithm based on
convex lower bounding. The first convex lower bounding technique is motivated by the
fact that a large number of nonconvex terms appearing in different models are or can be
transformed into the product of functions of a single variable (univariate functions). By
exploiting the properties of products of univariate functions, tight convex lower bounding
functions are derived in the next section.

3. Productsof univariate functions

A function f : R — R of asingle variable z is called univariate function. Products of
univariate functions f;,

f(x) = Hfi(mi)

are in general nonconvex functions even if the corresponding univariate functions are
convex. By utilizing appropriate linear transformations, if necessary, a large number of
nonlinearitiesappearing in applied mathemati csand engineering problems can be described
as products of univariate functions.

Al—-Khayyal and Falk [3] showed that the nonconvex bilinear product of zy inside the
rectangular domain [z%, 2] x [y%,yY] can be tightly convex lower bounded by the
following linear cut:

max (zLy + zyL - zLyL, zUy + sz - zUyU)

First, the conditions under which a similar result holds for the product of two arbitrary
univariate functions f(z) and g(y) are investigated.
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TueorEM 1 If £, g are twice differentiable univariate functions f(z), g(y) € C? defined
insidearectangle [(z%,zY) , (y*,%Y)] and
i(z,9) = max { ¢ (f 9(v)) +¢(¢"f(2)) - f*d",
¢ (f9(y) + ¢ (¢" (=) — fUg"}

where f =  inf
f stHxlswf(m)’
fY = sup f(=),
zl<z<z¥
L .
= f
g fLSHfISng(z),
U o_
g~ = sup g(z)

zl<z<z¥

and ¢ (gV f(z)) are the convex envelopes of

and ¢ (f"4(v)) , ¢ (¢" f(2)) . ¢ (/9(v)) ,
the univariate functions f£g(y ( ), fY g(y), and g" f(z) respectively then:

)
(i) i(=z,y)isconvex,V (z,y) € [z",2Y] x [y",47].
(i) f(z)9(y) > Uz,y), ¥ (2,9) € [z",2Y] x [v",9"].
Proof: Bothfunctions¢ (f"g(y)) +¢ (¢" f(z)) — f"g" and ¢ (f”g(v)) +4 (¢” f(=)) -
fY gV are convex as the sum of the convex envelopes of univariate functions. Since the
maximum of two convex functions is a convex function as well, statement (i) is true and

I(z,y) isconvex for al (z,y) in [zX, 2Y] x [y",yY]
Because,

flz) = fF>0,Vz € [z5,2"] and g(y) —g" >0,Vy € [y",y"]
we have
(f(2) = ") (9(v) — ¢") > 0,V (2,9) € [o",2"] x [v",3"].
After rearranging termswe obtain,
f(=)9(y) > fre(y) + f(2)g" — fg", ¥ (z,9) € [a",2"] x [v",9"].
By the definition of the convex envelope we know that,
ffaly) > #(F 9¥), Yy € [v",97]
9" f(2) 2 ¢(¢"f(2), Vo € [o",2"]
Therefore,
f(=)9(y) > ¢(F 9(v)) + ¢(f(2)g") — fg", ¥ (z,9) € [¢",2"] x [v",9"].
(D)

\Y
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Furthermore, by following the same line of reasoning on the relation,

(f(2) = £7) (9(w) —¢") > 0,V (z,9) € [2",2"] x [y",4"],

we obtain:
f(@)a(y) > ¢(F9(w)) + ¢(¢” f(=)) — 7", V (2,9) € [a",2"] x [v",4"].
)
Relations (1),(2) imply that statement (ii) istrue. ]
Based on Theorem (1) function I(z, y) can be utilized as a tight convex lower bounding
function of the product of two continuous and twice differentiablefunctions. It can also be

shown that under certain conditions i(z, y) corresponds to the actual convex envelope of
the product f(z)g(y). These conditions are stated in the following theorem:

TuHEOREM 2 If (i) the univariate functions,

g"f(z), ¢” f(=) and " g(y), f7g(y)

are concave in [z%, z”] and [y",y"] respectively and (ii) the functions f(z), g(y) are
monotonic, then I(z, y) isthe convex envelope of f(z)g(y).

$(f(2)g(y)) = Uz,v), ¥ (z,9) € [&",2"] x [v",4"].

Proof: Theorem (1) proves that function i(z, y) conforms with Properties (i) and (ii) of
section 3. Therefore, it remainsto show that it satisfies Property (iii) of section 3. Because
the convex envelope of a univariate concave function defined in an interval is the line
segment connecting the the two end points we have:

d)(gLf(z)) — gL -f(mU)_f(mL)z_,r_ me(mL)_sz(mU)]

) - o [, 00y
I o [e@Y) - g(yL)z ¥ a(y") —y"9(y")

¢(f g(y)) =f yU — yL + yU _ yL :|
U v [e@Y) - g(yL)m ¥ g(y") —y"9(y")

d’(f g(y)) =f _ yU — yL + yU _ yL :|

After substituting these expressions into the relation for i(z, y) we obtain:

lz,y) = max(li(z,y),l(z,y))

wherely (z,y) =

gLf(zU)—f(zL)] .+ [fLy(yU)—g(yL)] v

2U _ oL yU — 4L
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N -gL 2” f(z") — 2" f(27) +fLyUg(yL) -y9(y") ngL]
2U — 2L

velf(z") 2" f(=")  wy’elv") —v"e(") _ ngU]

+ 2U _ oL yU — oL

Because f(z), g(y) are monotonic one of the following alternativesis true:

(@) f(=z") = f~, f(= ) = fY, g(z") = ¢%, g(=zY) = 4"
(b) f(e) = £, f(=Y) = 1Y, g(=") = 47, (mU) = g~
() f(=*) = fY, f(=Y) = f*, g(=%) = g%, g(z ) = ¢v
(@) f(=") = fY, f(&V) = ¥, g(z") = ¢", g(=") = 4"
Assuming that (a) istrue we have
L(zE,yE) = f(z8)e(v") LY, y") = f(¥)e(yY)
Lz, yY) = f(")g(y") and  L(z",yY) = f(z")g(y")
LzY,y") = f(=¥)e(¥") LY, y") = f(e¥)e(y")

Thisimpliesthat one can partition the original rectangle

R = [(z"9"), (2" 4"), (2", 9"), (=", 4")]

into the following two digjoint triangles,

7= [(2"y"), (25 97), (" 9")], and T = [(27,47), (2",4"), (27, ")]

at whose vertices the linear functions I, (z, y), I2(z, y) match the original product of uni-
variate functions f(z)g(y) respectively (See Figure 1). If i(z,y) were not the convex
envelope of f(z)g(y) over the rectangular domain R then, there would be athird convex
function i3(z, y) underestimating f(z)g(y) over R and apoint (z,%) € R such that:

i(2,9) < 1:(2,9)
Supposethat (£, §) € 7;. Then (z, §) isaunique convex combination of the three extreme

points »',v%,v3 of 7;. Hence, for the affine function I, there exists unique positive
A1, Az, Az satisfying E?:l ); = 1 such that

= l(i)ivi> = i:)il(v)

Because 5 is the convex envelope of f(z)g(y) inside R, (i) I3 is convex and (ii) it matches
f(z)g(y) at al vertex pointslikel(z, y) doeswhich implies:



10 C.D. MARANAS AND C.A. FLOUDAS

X'.y) R "y

T,

(xXy) €.y

Figure 1. Decomposition of rectangle R into two triangles 77 , 75 .

I3(2,9) = Is (EM) < Z,\izg(fui) = Z)\il(vi) = I(z, 7).

This contradicts the initial hypothesis I(z, §) < I3(&,§) and therefore, I(z,y) is indeed
the convex envelope of f(z)g(y) in’R. Note that asimilar argument holds if (Z, 7) € 7.
Moreover, depending on which monotonicity combination (a), (b) ,(c) or (d) is true it
is always possible to partition R into two triangles 71, 75 by halving along one of the
diagonals. Therefore, by following the same line of thought for combinations (b), (c)
and (d) it is straightforward to extent this proof for all monotonicity combinations.
|

The analysis for the convex lower bounding of products of two univariate functions can
be extended to accommodate the product of N univariate functions. Thisis accomplished
by successively convex lower bounding pairs of univariate functionsin arecursive manner
until no pairs are left. One of the possible alternatives of combining pairs is to start with
convex lower bounding the last two functions of the product and work your way to the front
of the expression. Theorem (3) states that this procedure yields a convex lower bounding
function for the initial product.

TueoreM 3 If f; € C*: [zF,2] = RT,i=1,...,N and

L(x) = yo
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where y; = max{p(ff11y541) + ¢ (1 Fi(2i1)) — vl i,
S(fi¥i+1) + 6 (Ui Fiv1(2i+1)) = 941 Fi4 b
j=0,...,N—3
ynv—2 = max{¢(fy_ fn(en)) + (FNfn-1(en-1)) — Fh 1 N
o (FN_1fn(en)) + d(fN Fvo1(zn-1)) — Fy_1fn }
inf
and ij/U = zljnH/, :/?i {6(flavie1) + 6 (1 fiva(mizn)) — vipa s
¢(fJU+1yj+1) +¢ (yjr']+1fj+1(mj+1)) - yjr']+1 JU+1, },
j=0,...,N—3

inf
y50 = PEI gl e(en)) + (P Fro(ev—n) — Fh £,

IN,IN—-1
¢(fy_1fn(en)) + ¢(fNfv-1(@n-1)) — FN_1 fN}
then

(i) L(x)iscorvex,V x € [x*,x"].
@) T (o) 2 L6, Vx € [

Proof: Starting from the beginning of the recursive definition of L(x), yy_2 isaconvex
function of (zn_1,zx) asthe max of two convex functions. For the same reason yy_3
isaconvex function of (zy_2,yn—_2) or otherwise of (zx_2, 2y—1, ZN). By recursively

substituting y; into the expression for y; _; we deducethat forevery j = 0,..., N -2, y;
isaconvex function of (z;41,z;42,...,2n). Therefore, L(x) = yo isaconvex function
of (z1, 22, ..., zxN) which proves part (ii) of Theorem (3).

From Theorem (1) and the statement of Theorem (3) we have,

fvoi(zn-1)fv(zy) > max{¢(fi_ifn(zn)) + ¢(Fafvi(en-1)) — fh_1fx,
S(FN_ 1 fn(zn)) + (N fv—r(zno1)) — FY_1 £V}

= YN-2

v

max {¢(f119j41) + 6 (/11 Fi1(2i401)) — ¥4 i
¢(ff+1yj+1) + ¢ (y][']+1fj+1(mj+1)) - y]U+1ij+1: }

and  fjy1(2j+1)y+1

= Y,
j=0,...,N-3

By combining these last two sets of inequalities we have,
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N
Hfz(zl) > yo = L(x), Vx € [x*,x"]
i=1

which proves part (ii) of Theorem (3). ]

Theorem (3) describes one possible way of recursively combining pairs of univariate
functions. Theorem (4) states who many of these alternative sequences exist for convex
lower bounding the product of N univariate functions.

THEOREM 4 There are,

(V1)
NoN-17

ways of combining pairs of univariate functionsin a product of N univariate functions.

Proof: Clearly, there exists (J;’) = W ways of selecting thefirst pair of univariate

functions to be convex lower bound. After this action, we are left with N — 1 functions
which implies that there are (Nz‘l) = M%M alternatives for picking the next pair
of functions. Thisrecursive convex lower bounding is continued until we are left with only
a pair of functions involving a single convex lower bounding alternative. Because every
convex lower bounding stage is independent of the previous one, the total number of ways
of combining pairsthe N univariate functionsin pairs of twoiis:

N (;) = . i(z‘z—l) _ NN - (W

oN-1 - Nao2N-1°

1=

Examples of convex lower bounding of products of N univariate functions are givenin
appendix A. Furthermore, conditionsfor convexity/concavity are provided for generalized
polynomial terms, which are aspecial case of products of univariatefunctions, in appendix
B. From the analysisin the previous sectionsit is clear that in order to convex lower bound
the product of univariate functionsit is necessary to be able to obtain the convex envel ope,
or at least atight convex lower bounding function, of arbitrary univariate functions. To
this end, guidelinesfor constructing the convex envelope of arbitrary functions of asingle
variable inside a certain interval are presented in the following section.

3.1. Convex Envelopes of Univariate Functions

Computing the convex envelopes of arbitrary twice differentiable functions in a single
variable appears frequently as atask in many complex convex lower bounding situations.
In some cases, thisis a straightforward task, for example if f € €? : [a, b] — R is convex
then its convex envelope coincides with the original function:
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—— Oiriginal function
------ Convex Envelope

Figure 2. Convex envelope of univariate function.

#(f(z)) = f(z), Y& € [a,b] ifandonlyif f(z)isconvexin [a,b].

If now f(z) is concave, then its convex envelope is a line segment connecting the end
points of the graph of the function:

Constructing the convex envelope of an arbitrary nonconvex function, however, is a much
more demanding task because its graph alternates between convex and concave portions.
In general, the convex envelope of nonconvex univariatefunctionsis composed by different
representations in different subintervals. More specifically, the convex envelope curve
alternates between the original function (convex portions of the curve) and line segments
(concave portions) (SeeFigure2). Thechallengehereistolocatethe exact pointsct, ¢; k =
1,..., K where the convex envelope changes representation from a line segment to trace
the curve of the origina function and vice-versa. The number of these “switch—over”
points depends on the frequency that f(z) changes sign in the interval [a, b]. The actual
locations of these points depend not only on the shape of the function but also on the
location of the end points.

L ocating the exact location and number of pointscet, ¢ k = 1, ..., K requiresknowledge
of global information about the univariatefunction f(z) intheinterval [a, b]. More specif-
ically, the location of all unconstrained local minima ;, local maxima u;, and inflection
pointsdl;, du; is needed:
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L: f'()y =0, f'"(L) >0
v ff(w) =0, f'(w) <
di; : f'(dl) = 0, f'(d,) <
du; : f"(du;) = 0, f'(dw;) >

0
0
0

These points can be obtained by utilizing a robust solver guaranteed to locate all solutions
of univariate functionsin an interval [13]. Due to the alternating of convex and concave
portions of the nonconvex function f, there is a specific order with which these points
appear in the graph of the univariate function f(z) whichis:

A=l —du—u], -

This naturally provides a partitioning of the initia interval [a, b] into convex subintervals
[dl;, du;] and concave ones [du;, dl;].

The procedure for locating the first point where the convex envel ope changes represen-
tation depends on whether f(z) is convex or concave at z = a. If fisconcaveat z = a
then the initial segment of the convex envelopeisaline. The next segment of the convex
envelopeisthefunctionitself starting at the point z wherethe slope f/ of f equalstheslope
of the line connecting a with z.

f(z) — f(a)

r—a

= f'(=)

Note that = belongs to one of the convex subintervals [di;, du;] since f must be convex
at z. Thisimpliesthat the task of locating z corresponds to drawing a tangent from the
fixed point (a, f(a)) to each one of the convex function representations defined in the
subintervals [dl;, du;]. Because there exists a single tangent to a convex function drawn
from a point outside the a convex function [21] any standard bisection algorithm can be
utilized to locate z. The correct subinterval [dl;, du;] isthen the one which providesaline
that does not cut-off any portion of the curve f(z).

If fisconvex at z = a, then theinitia segment of the convex envelope can be either a
line or the function itself. If there exists aconvex subinterval [di;, du;], i = 2, ... where
theequation f(z) — f(a) = f'(z) (z — a) hasasolution z which definesaline that does
not cut-off any portion of the curve f(z) then the initial segment of the convex envelope
is a line connecting the points (a, f(a)) and (z, f(z)). Otherwise, the initial segment of
the convex envelope is the function f itself. Thelast point of this segment z; is found by
locating the end points z1, z, of the next subinterval where the convex envelope becomes
aline segment. This corresponds to drawing a common tangent to f inside the intervals

[dli, du] and [dl;, du;], ¢ = 2,.... and is the solution of the following system of two
equations:
f(z2)_f(z1) Y] gt
= f@) = f(=)
wherez; € [dli,dui] and 2z, € [dl;,du;], i = 2,.... Again, the correct subinterval
[dl;, du;], © = 2,...isthen the one for which the line connecting the points (z1, f(z1))

and (z2, f(z2)) does not cut-off any portion of the curve f(z). The next line segment is
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then found by iteratively solving the system of two equations for locating the new points
z1,22. Thistime however, z, € [dl;,du;] and z5 € [dl;,du;], j =i+ 1,.... Thisis
continued until the end point z = b is met. Based on this analysis an iterative procedureis
defined for constructing the convex envelope of arbitrary univariate nonconvex functions.
In the next section, an alternative convex lower bounding method is discussed for problems
involving only signomial terms.

4. Convex Lower Bounding of Signomial Problems

A large number of systems of nonlinear equalities subject to nonlinear inequalities have or
can assume a generalized geometric problem formulation [24]:

min s
t,s

subjectto  Gj(t) — Gi(t) — s < 0, j € Ng
1 2 :
- Gi(t) + Gi(t) — s <0, j € Ng
Gl(t) — Gi(t) <0, j €N

t; >0 i=1,...,N

N
where  G7(t) = Y e [[ 7 5 € Np, m=1,2,3,4

keK™ i=1
Heret = (t1,...,tn) is the positive variable vector; GT*, m = 1,2,3,4, j € NEg U
N7 are positive posynomial functions in t; a;;; are arbitrary real constant exponents;
whereas ¢;;; are given positive coefficients. Finaly, sets K", m = 1,2, 3,4 count how
many positively/negatively signed monomials form the posynomias G7*, m = 1,2,3,4
respectively. Clearly, the above formulation correspondsto ahighly nonlinear optimization
problem with a nonconvex constraint set and possibly digjoint feasible region. However,

after applying the transformation,
t; = expz;, 1 =1,...,N

to the original formulation we obtain the following optimization problem which involves
congtraints that are the difference of two convex functions.

subject to Gi(x) — G(x) — s

j O:JENE

0, j € Ng
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Glx) — Gj(x) <0, j €Ny

N
where Gi'(x) = Z cjkexp{z aijkzi},j € Ng, m=1,2,3,4

keK]m i=1

A convex lower bounding formulation can be obtained by underestimating every separable
concave function with a linear function. An anaysis on the convex lower bounding
procedure as well as on a number of techniques that improve the computational efficiency
of the approach are described in detail in [24].

5. Convex Lower Bounding Using BB

For arbitrary nonconvex functions f € €? : [x’,x"”] — R, a convex lower bounding
function £ of f can be defined by augmenting f with the addition of a separable convex
guadraticfunction of x asproposedin [23] and generalizedtoinclude equality andinequality
congtraintsin [4].

Note that e is a nonnegative parameter which must be greater or equal to the negative
one half of the minimum eigenvalue of f over x* < x < xY. The parameter a can be
estimated either through the solution of an optimization problem or by using the concept
of the measure of amatrix. The effect of adding the extra separable quadratic term to f is
to make £ convex by overpowering the nonconvexity characteristicsof f with the addition
of the term 2« to the diagonal elements of its Hessian matrix. Thisfunction £ defined over
the rectangular domain [xL, xU] , involves a number of properties which enable usto use
as atight convex lower bounding function of f. These properties, whose proof is givenin
[23], are asfollows:

Property 1 £ isavalid underestimator of f.
Vx € [XL,XU], L(x) < f(x).

Property 2 £ matches f at all corner points.

Property 3 £ isconvexin [x%,x"].
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Property 4 The maximum separation between £ and f is bounded and proportional to o
and to the square of the diagonal of the current box constraints.

_ _ l U __ L2
mex () - £(x) = jalx’ — x|

Property 5 The underestimators constructed over supersets of the current set are always
lesstight than the underestimator constructed over the current box constraintsfor every
point within the current box constraints.

Property 6 £ correspondsto arelaxed dual bound of the original function f

This type of convex lower bounding is utilized for arbitrary nonconvex functions which
lack any specific structure that might enable the construction of a more customized convex
lower bounding function.

6. Procedure for Locating All Solutions
6.1. Description

A deterministic global optimization approach is proposed for locating al e—solutions of
nonlinear systems of equalities subject to nonlinear inequality constraints (S). By intro-
ducing a dack variable, the initial problem (S) is transformed into a global optimization
problem (P) whose multiple global minima (if any) correspond to the multiple solutions of
(S). A zero objective function value denotes the existence of a solution whereas a strictly
positive objective function value implies that (S) has no solutions. This defines a one—
to—one correspondence between solutions of the constrained system of equations (S) and
multiple global minima with an objective value of zero for problem (P). However, it has
been shown [14] that no agorithm can exactly locate all multiple global minima of (P)
with afinite number of function evaluations. A corrolary of thisresult [14] isthat no algo-
rithm can alwayslocalize, with afinite number of function evaluations, all globally optimal
points by compact subrectangles in one-to—one correspondence with them. Therefore,
a more tractable target, than finding all exact global minima of (P), is to find arbitrarily
small digjoint subrectangles containing all globally optimal points of (P), possibly notin a
one-to—one correspondence.

These multiple e—global minima of (P), (if any) can then be localized based on a branch
and bound procedure involving the successive refinement of convex relaxations (R) of
theinitial problem (P). Formulation (R) is obtained by replacing the nonconvex functions
hjome, —h7ome, gpone with tight, convex lower bounding functions h”"”c h”‘);”, garere,
by following some of the techniques discussed in the previous sect|on Because (R) is
convex, its global minimum within some box constraints can be routinely found with any
commercially availablelocal optimization algorithm (e.g. MINOS 5.4[28]) and will always
underestimate the global minimum of (P) within the same box constraints. Therefore, if
the solution of (R) inside some rectangular region is strictly positive, then the solution of
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(P) inside the same rectangular domain will also be strictly positive. A strictly positive
solution for (P) implies that the slack variable s cannot be driven to zero, and thus (S) is
guaranteed not to have any solutions inside the rectangular region at hand. This provides
a mechanism for fathoming (eliminating) parts of the target region which are guaranteed
not to contain any solutions. If on the other hand, the global minimum of (R) is negative
then (P) may or may not involve a solution with a zero slack variable and therefore no
deduction can be drawn regarding the existence or not of solutionsfor (S) insidethe current
rectangular domain. In this case, further partitioning of the current rectangular region is
required until the global minimum of (R) becomes positive (fathoming) or afeasible point
for (P) isfound (convergence).

Based on Property (3) which demands that the convex lower bounding functions fzi‘j}”,
E’_“j;”, G7°™° must be tight, the maximum separation between the original functions and
the convex underestimators can become arbitrarily e—small by appropriately reducing the
size of the rectangular domain. This implies that as the current box constraints [x”, xV]
collapse into a point the maximum difference e between the original constraint set and its
convex relaxation goes to zero. Therefore, any feasible point of problem (R) becomes at
least e—feasible for problem (P) by sufficiently tightening the bounds around this point.
Tighter box constraints can be realized by partitioning the current rectangular domain into
a number of smaller ones. Note that subdivision is required only for the variables which
participate in nonlinear terms appearing in (P).

Oneway of partitioning isto successively dividethe current rectangleintwo subrectangles
by halving on the middle point of the longest side of the initial rectangle (bisection). At
each iteration the lower bound of (P) issimply the infimum over all the minimaof problem
(R) in every subrectangle composing the initial rectangle. Therefore, a straightforward
(bound improving) way of tightening the lower bound is to halve at each iteration, only
the subrectangle responsible for the infimum of the minima of (R) over all subrectangles,
according to the rules discussed earlier. Clearly, if the global minimum of (R) in any
subrectangle is strictly greater than zero we can safely ignore this subrectangle because
the global minimum of (P) cannot be situated inside it (fathoming step). This procedure
generates a nondecreasing sequence for the lower bound of (P) yielding a set of candidate
rectangles for containing a solution of (S). Convergence is reached when none of the
rectangles involve a negative lower bound (no solutions), or when all of the remaining
rectangles with negative lower bounds are within the prespecified size tolerance .. The
basic steps of the proposed algorithm are summarized in the foll owing subsection.

6.2. Algorithmic Steps

STEP O - Initialization

A size tolerance ¢, and afeasibility tolerance ¢ are selected and the iteration counter
Iter is set to one. Appropriate global bounds x/?P , xVBP on x are chosen and local
bounds x©-Tter xU:Iter for the first iteration are set to be equal to the global ones. Finally,
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select an initial point x> /**" that satisfies the linear equalities and convex inequalities of
(P).
STEP 1 - Feasibility and Convergence Check

If the maximum violation of all nonconvex constraints of (P) calculated at the current
point x*1*" for (s=0) islessthan e,

max max |hnonc(xc,1ter)| , max gzonc(xc,ﬁer) < €;
JE€NnoncE k€Nnoner

then the point x**°" isae ;—solution of (S). Fathom current rectangle if its diagonal isless
thane,,

HxU,Iter_xL,IterH S €.

and GO TO Step 4. Otherwise, continue with STEP 2.
STEP 2 - Partitioning of Current Rectangle

The current rectangle [x’ 7%, xU:Tter] is partitioned into the following two rectangles
(r=1,2):

r L Iter U,Iter B r L Iter U,Iter
T T T T
1 1 1 1
L,It U, It L,It U, It
L Iter (xllterer-l— ZIte:T) (xl“e:r_i_ xlue:r) U,Iter
T -— ’ ~ 7 b r
[Iter 2 2 [Iter
L Iter U,Iter L Iter U,Iter
LZN TN - L TN N -

where I’**" corresponds to the variable with the longest side in the initial rectangle,

Iter U,Iter L,Iter
l z -z )

= argmax ( ;
i3

STEP 3 - Solution of Convex Problems Inside Subrectangles

Solvethefollowing convex optimization problem (R) in both subrectangles(r = 1, 2) by
using any convex nonlinear solver (e.g. MINOS5.4[28)). If thesolution s”/*“" isnegative
then, it is stored along with the value of the variables x at the solution point 7', If

1t s grictly positive then the element (r, Iter) is fathomed.

sol

STEP 4 - Update Iteration Counter Iter and Lower Bound s™2P
Theiteration counter isincreased by one,

S

Iter «— Iter + 1
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and the lower bound s“P? is updated to be the minimum solution over the stored ones
from previousiterations. Furthermore, the selected solution is erased from the stored set.

LBD _ ' Iter

s sol

1 7
r' Iter

where s,

. I
= mins,,, r=12 I=1,..., Iter—1.
r I

STEP 5 - Update Current Point x> /**™ and Current Bounds x*Tte7 xU.1ter
The current point is selected to be the solution point of the previously found minimum

solutionin STEP 4,

1 7
c,Iter __ r' Iter
X = Xsol

and the current rectangle becomes the subrectangle containing the previously found solu-
tion,

L Iter U, Iter’ T
Zq Zy
L,Iter! U,Iter’
[XL,Iter,XU,Iter] — L Iter! (xl”er, +:L‘l“er, ) , if ¢ =1
jiter! 2
L, Iter’ U Iter’
L TN ZN J
L Iter U, Tter' 7
Z1 Zq
L,Iter! U,Iter! .
[XL,Iter,XU,Iter] — (:L‘l“er, -I-:cl“er, ) UTter' | if ¢ = 2
2 jiter!
L Iter' U Tter'
TN TN

STEP 7 - Check for Convergence

IF s;pp < 0,thenreturnto STEP 1

Otherwise, terminate.

Mathematical proof that the proposed procedure is guaranteed to converge to a set
of digoint rectangles containing all global minimum solutions of (P) is given based on
the analysis of a standard deterministic global optimization algorithm presented in [15].
Because the employed branch and bound technique fathoms only rectangles guaranteed
not to contain any global minima of (P) no solutions of (P) which are at least €, apart
are missed. By following the proof in [23], a sufficient condition for the proposed branch
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and bound algorithm to be convergent to the global minima, requires that the bounding
operation must be consistent and the selection operation bound improving.

A bounding operationiscalled consistent if (i) at every step any unfathomed partition can
be further refined, and (ii) for any infinitely decreasing sequence of successively refined
partition el ementsthe gap between thelower and upper bounds goesto zero astheiterations
gotoinfinity. Dueto properties (1),(2),(3) of section 2 the gap between the lower and upper
bound for any partition element goes to zero as the size of the partition element goes to
zero aswell. Furthermore, the employed bisection subdivision process (bisection along the
longest side) is exhaustive becausethe size of aninfinitely partitioned element goesto zero.
Therefore, the bounding operation is consistent. Also, the employed selection operationis
bound improving because the partition element where the actual lower bound is attained is
selected for further partition in the immediately following iteration. Therefore according
to Theorem IV.3. in [15] the employed global optimization algorithm is convergent to the
global minima of (P). In the next section the proposed global optimization algorithm is
applied to a number of example problems.

7. Computational Results

In this section, a number of test problems are addressed which are aimed at determining
the ability of the approach to find al solutions of constrained systems of equations with
reasonable computational requirements. The proposed branch and bound convex lower
bounding algorithm has been implemented in GAMS [5] and computational times are
reported for all examples on a HP-730 workstation with size and feasibility tolerances of
104,

Example 1.  The first example involves the location of all the stationary points of the
Himmelblau function as described in [33].

4ot + dzi2o + 202 — 4221 — 14 = 0
4a3 + 227 4 4z 2y — 2625 — 22

—5.0
—5.0

5.0
5.0

I

IA A
ANVAN

I

First, the change of variables

9 9
is performed which ensures that all variable are positive. This results in the following
system of equations:
2 5 30
i T

5 20 +2 +12+17 1= 0
A 771/2 77?/11/2 77?/2 11?/1 =
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2 5 30 , 2 Ll 1, 20 o
1212 7 112 T YR T T Y T o™
1.0 < y < 10.0
1.0 < yo < 10.0

Then the exponential variable transformation, as described in section 4, is applied. The
resulting problem is solved in 197 iterations and 10.89 seconds of CPU time. All nine
solutions are found and shown in Table 1.

Table 1.  Nine solutions of

Example 1

# Sol z] z3
1 -0.2709  -0.9230
2 -0.1279  -1.9538
3 3.5844 -1.8481
4 3.3852 0.0739
5 3.0000 2.0000
6 0.0867 2.8843
7 -2.8051 3.1313
8 -3.0730 -0.0814
9 -3.7793  -3.2832

Example 2.  This example addresses the equilibrium of the products of a hydrocarbon
combustion process [25]. The problem is reformulated in the “ element variables’ space.

Ny +y1 —3ys =
2y1y2 + Y1 + 3Ri10ys + y2y3 + Rryays + Royays + Rsys — Rys =
2y2ya + Rryoys + 2Rsys + Reys — 8ys =

o o o o©

Roysya + 2y; — 4Rys =

Yiy2 +y1 + Rioys + v23 + Rryays + Royaya
+Rsy> + Rsy3 + Reys +y; —1 = 0

0.0001 < y < 100.0, i=1,...,5
The values of the parameters R, R;, ¢ = 5,...,10 are shown in Table 2.  Using the
exponentia variable transformation described in section 4, the single solution of the

problem isfound after 631 iterations and 31.7 seconds of CPU time (see Table 3).

Example 3. Thisexample [6] addresses abadly scaled systems of equations:
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10%z 25 — 1

exp (—z1) + exp (—z2) — 1.001

5.490 10° z1

< 4.553
2.196 1072 < 2,

18.210

IA A

The bilinear terms z,z-, —z;z, are underestimated based on the analysis in section 3,
and thetermsexp (—z1), exp (—z2) are convex, however, — exp (—z1), — exp (—z3) are
univariate concave terms and are convex lower bounded with a line segment.

After 32 iterations and 1.5 seconds of CPU time, it is shown that

(z%,23) = (0.0000145067, 6.89335287)

is a unique solution to the problem. Note that, the second solution (z1,z2) =
(0.00001098,9.106) reported in [6] does not satisfy the nonlinear equations.

Example 4. Thistest example [11], involves a blend of trigonometric and exponential
terms.

0.5sin(z1z5) — 0.25z5/7 — 0.5z
(1—0.25/7) (exp (2z1) — €) + ezs /7 — 2ez;

0.25
1.5

I

IA A
IAIA

zy 6.28

The a—based underestimation, described in section 5, was chosen to address the convex
lower bounding of the term sin (z;z2). The eigenvalues of this term are equal to:

1 .
A1g = ~3 (z% + z%) sin (z122)
1
+ 5\/4 — 8zyzsin (z122) cos (2122) + [(z% + z§)2 — 4] sin (2:11:2)22

A lower bound on this expression is then:
Amin > —max [(21)?, (2])?] — max[(z7)?, ()]

Therefore,
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max [(27)?, (2 )*] + max [(27)?, ()]

2

o =

Two solutions are found for this problemin 45 iterations and 2.0 seconds of CPU time (see
Table 4). Note that, both solutionswere missed in [6].

Example 5. Thistest problem is Brown’salmost linear system [17].

221+ 2o+ 23+ 24+ 25— 6 =
T+ 2zy+ 23+ T4+ 25— 6
T+ zy+ 223+ 24+ 25— 6
1+ 2o+ 3+ 24+ 25— 6

L1L9LIL4Ly — 1 =

I
© o o o o

—2< g <2 i=1,...5

This system exhibitstwo solutions: showninTable5. The«a parameter was used to convex
lower bound the last and only nonconvex constraint. The computational requirements for
different valuesof « areshownin Table6. Notethat the total number of iterationsremains
relatively small even for very large values of .. Moreover, avalue of « of assmall asone
appears to be sufficient.

Example 6. This example addresses a robot kinematics problem [17].

4.73110 3z1z5 — 0.3578z9z5 — 0.1238z; + =7
—1.63710" 325 — 0.9338z4 — 0.3571 = 0

0.2238z1z3 + 0.7623z52z3 + 0.2638z1 — =7
—0.07745z5 — 0.6734z, — 0.6022 = 0

zezg + 0.3578z, + 4.73110 3z, = 0
—0.7623z — 1 + 0.2238z5 + 0.3461 = 0
z% + m% -1 =0

zg + zi -1 =0

zg + mg -1 =0

z242i-1 =0
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1<z <1, i=1,...,8

The only nonconvex terms in the formulation are the bilinear terms z, z3, z,z3, zgzg and
are convex lower bounded based on the analysis of section 3. All distinct 16 solutions of
this problem are found in 2188 iterations and 109.58 seconds of CPU time.

Example 7.  This example involves the solution of acircuit design problem with extraor-
dinary sensitivities to small perturbations[32] leading to the following set of equations.

(1— z122) z3 {exp [z5 (glk — gapz71073 — g5kz810_3)] — 1}
—gs5t +garzz = 0, k=1,...,4

(1 — z122) 24 {exp [z6 (915 — g2 — 936 27107° + gupzo107%)] — 1}
—gspz1 +gax = 0, k=1,...,4

L1L3 — TaLy — 0
0 <z <10, i=1,...,9
where

k=1 k=2 k=3 k=14
gir 0.4850  0.7520 0.8690  0.9820
gor  0.3690 1.2540 0.7030 1.4550
gsr 5.2095 10.0677 22.9274 20.2153
gar 23.3037 101.7790 111.4610 191.2670
gsr 28.5132 111.8467 134.3884 211.4823

The o parameter was utilized to convex lower bound the various nonlinear terms. The
single solution of the problem,

2t = 0.899999, z} = 7.999693
2} = 0.449987, z3 = 5.000031
3 = 1.000006, =} = 0.999988
2} = 2.000069, =} = 2.000052
zt = 7.999971,

8
w
I

was first reported in reference [32]. Computational requirements for various values of «
areshown in Table 7. Note that these CPU requirements are only a small fraction of the
ones reported in [32].

Furthermore, after relaxing the variable bounds to

~10 < z; < 10, i=1,...,9
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a second solution was found

2} = 0.823226, z} = —2.765092
2t = —0.553286, 3 — 6.046646
2} = 0.671878, z = 0.975940
2} = —0.999677, z) = —1.708489
2t = 8.854525.

which was missed in all previous attempts at solving this problem.

8. Summary and Conclusions

In this paper a deterministic branch and bound type a gorithm was proposed for locating
all e—global solutions of certain classes of constrained systems of nonlinear equations. The
approach is based on the one-to—one correspondence between the multiple solutions of
the nonlinear systems and the multiple global minima with a zero objective value for the
resulting nonconvex optimization problem. All multiplee—global minimaof the nonconvex
optimization problem are localized based on a construction of upper bounds with function
evaluationsand lower bound on the global minimum solution through the convex relaxation
of the constraint set and the sol ution of convex minimization problems. Based on theform of
the participating functions, a number of alternative techniques for constructing this convex
relaxation are proposed. In particular, by taking advantage of the properties of products
of univariate functions, customized convex lower bounding functions are introduced for
a large number of expressions that are or can be transformed into products of univariate
functions. The utility of these convex lower bounding functions transcends the specifics of
the root finding problem because they can be incorporated in any convex lower bounding
algorithm. Alternative convex relaxation procedures involve either the difference of two
convex functions employed in BB [23] or the exponentia variable transformation based
underestimators employed for generalized geometric programming problems [24]. The
proposed branch and bound approach is guaranteed to localize all e—solutions of (S) within
arbitrarily small rectanglesin afinite number of iterations. A number of example problems
from many areas of research have been addressed and in all cases, convergence to all
multiple solutions was achieved with reasonable computational effort. Furthermore, in
certain cases new solutions were identified.
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Appendix A
Convex L ower Bounding Examples of Univariate Functions

In this appendix a number of convex lower bounding situations are examined.
(1) Bilinear terms
The convex underestimation of bilinear terms zy inside the rectangular region [z, zV] x
[y",yY] can be handled by invoking Theorem (1) and setting f(z) = z and g(y) = v:
Yy > max {zLy—+yLz——zLyL,
zUy_FyUz__mUyU}
Note that, the lower bounding procedure can be applied to a negatively—signed bilinear
term —zy by setting f(z) = —z and g(y) = y:
—zy > max {—zUy——yLz4—zUyL,
_zLy__yUz_FzLyU}
Because in this case f(z), g(y) are linear and therefore concave functions, we have from
Theorem (2) that the obtained convex lower bounding functions are identical to the convex
envel opes as werefirst derived by [3].
(2) Fractional terms
Convex lower bounding of the linear fractiona term z/y inside the rectangular region
[z, 2Y] x [y, yY] canalso beaccomplished based on Theorem (1) by selecting f(z) = z

andg(y) = ;-

L L
2 (5) () - ()

Notethat,d;(y%) - =, ¢(y%) s

8
t~
=
&8
h
V
=)

[
[w
=
8
h
AN

ylyt
Therefore,
et | &zl L >
. T ifz" > 0
— 2> max
) L L
y%—yﬁy?{,—i—;— ifzl < 0
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U U
T T T 1 U
4+ LI ife
y vt oyt

>0

&I ifel < 0
The same approach can be used for negatively—signed linear fractional terms. In this case,
however, we have f(z) = z, g(y) = —1/y. After following the same analysis we obtain:

L L .
z Yy Yy Yy =
—— > max
L L
T Ty T H L
—yf Tyt — T fz" > 0

u u . U

— sy ifel <0

<
<

u U
T T H U
+yLy$’IJ_yL fz= >0

@:| 5

(3) Trilinear terms
From Theorem (3) we know that a possible convex lower bounding function of zyz inside
the rectangular region [z, 2V x [y%,4Y] x [21,2Y] witha®, y5, 25 > 0is:

TYz > Sy = max {stl + zsf — stf, zU51 + zs? — mUsrlj
where s; = max {yLz+yzL —yLzL, yUz+yzU —yUzU}
and st = yF2t, U = 4USY

However, Theorem (4) statesthat there exist three different convex lower bounding schemes
for trilinear terms. These other two alternatives are:

Yz > Sy = max {yL51 + ysf — yLsf, yU51 + ys[{ — yUsrlj

where s; = max {:I:Lz + zzt — szL, ¥z + zzV — zUzU}
and st = zlzl, sV = V5V

Yz > Sy = max {zL51 + zsf — stf, zU51 + zsgj — zUsllj

where s; = max {zLy + zyL - zLyL, zUy + :z:yU - zUyU}
and st = zlyl) U = 2UyY

After eliminating sq, s; and substituting for sf, 3[1] we obtain for the three different convex
lower bounding schemes:
Yz > max {zyLzL + zLyzL + zLyLz - ZzLyLzL,
szzU + mUyzL + zUyLZ _ zUyLZL _ zUyUzU’
myLzL + mLyzU + mLyUz _ mLyUzU . mLyLzL’

2yU 2V 42Uy 42UV 2 — 2zUyUZU}
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Yz > max {zyLzL —}—zLyzL —I—mLyLz—ZzLyLzL,

2y 2E 4+ 2UysU + 2Py 2 — oLyl 2F — 2UyU 20,
oy 2V + zlyz" + 2Vyl 2 — 2Vy 2V — alyl 2",

2y 2V +2Vy2" 42Uyl 2 — 2mUyUzU}

Yz > max {zyLzL + zLyzL —+ zLyLz - 2zLyLzL,
myLzU + mLyzU + mUyUz _ zLyLzU _ mUyUzU,
szzL 4 zUyzL 4 zLyLz _ zUyUZU _ zLyLzL,
szZU + zUyzU + zUyUz . 2zUyUzU}
The combination of all three convex lower bounding alternativesyieldsthe following eight
linear functionsin z, y, z whose maximum is atight convex lower bounding function for

TYz!
Yz > max {myLzL + zLyzL + zLyLz - ZzLyLzL,
szzU —|—:1:UyzL + zUyLz _ zUyLZL _ mUyUZU,

sy 2" + 2Py + alyU 2 — 2PyU 2V — gty 2",

oyl 20 + 2Vy27 + 2lyUz — aPy¥ 2F — UV 27,

oyt 2 + aPyst + 2Vl 2 — aUyt 2V — alyl ot

zyLZU + zLyzU + zUyUZ . zLyLzU . mUyUzU’
szZL + zUyzL + zLyLz . zUyUZU . zLyLZL’
szzU + :I:UyzU + zUyUz — 2zUyUzU} .
(4) Fractional trilinear terms
From Theorems (3), (4) we have that the three convex lower bounding alternatives for £

inside the rectangular region [z%, zV] x [yX,yY] x [2L, 2Y] withzl, yE, 28 > o are

L L L U U .U

— > sy = max {st1+z51 —x7sy, & S +xs] — T 8

L L U U
Y £ Y Y Y Y
where s; = max z 4+ == Z 4+ = _Z_
' {z 22U U7 gz AL ZL}

L U
L _ Y v _ Y
and 31 = Z—U, 81 = Z_L
Y
— > sy — max {yL51+y5f—yLsf: yUsr +ys) —yUsY

where zL N z zL gV n z zU
s = max { —+ — -~ — 4
z 22U U 3 zL 2L

L _ _
ad sy = —, s = —
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Ty > 2" n z 2F 2V n z 2V

— s = max §—+—+w— 5, —+ F— —F

z = s1 Y sY7 s1 0 sk sk

where s; = max {zLy + zyL - mLyL, :z:Uy + myU — zUyU}
and st = zlyl, U = 2UyY

Again, after eliminating s,, s; and replacing s*, s we obtain:

z B A 2Ll 2Lyl
S 2z max {%*?*Ty—z S
P PR O A O N
U z—L+ z L U
oy’ 2Uy  aUyl  gUyl  aUyU
2L z—U+ z  zU 2L
U U U,U U,U
z z z
z L, 2Lyl 2Lyl
% > max {LU+2_;!+ A
oy’ aUy byl byl gyl
z—U+z—L+ z 22U 2L
e R L A N A
z—U+z—L+ z 2L 2V
2yl 2Vy  2UyV 2UyU
z—L+z—L+ z -2 P }
z B A 2Ll 2Lyl
%y mx{LU TV Y
syt zly  aUyU  glyl 2yl
z—L+z—L+ PR A A
oy’ 2Uy  alyt  oUyU  alyl
z—U+z—U+ 2z 22U U
U S U 2UyU
L T T —2—1 }

After combining all three convex lower bounding alternatives, we obtain the following eight

convex functionsin z, y, z whose maximum is atight convex lower bounding function for
Yz



SOLUTIONS OF NONLINEAR EQUATIONS 31

z B A / 2Lyl 2Lyl
%y max{LU e - 8

syt zly byl alyl  glyl
U + 2L + z L LU
£+zlf—y+zUyL_ UyL_zUyU
zL 2U z 2U 2L
2yl 2Uy  alyl  2lyU  gUyU
U + 2L + z 22U L
P P A N A
U + 2L + z L LU
oy’ 2Uy byl byl aUyU
U z—L+ z  2U 2L
sy’ zly  2Uyl 2Uyt zlyl
U T L + z L U
U S N 2UyU
L T T —27,0 }

Appendix B

Convexity/Concavity I dentification of Generalized Polynomial Terms

In this appendix, necessary and sufficient conditions are provided for convexity/concavity
of generalized polynomial terms of the form:

N
(Hz?’), di € ®,i=1,...,N
i=1

Generalized polynomial terms are a specia case of products of univariate functions by
selecting fi(z;) = de First, the two variable case f = z%y" is considered.

THEOREM 5 If one of the following conditions holds,
(1) z,y > 0.

(2) a,bareevenintegers.

(3) a,bareoddintegers, and zy > 0.

(4) a,bareintegers, a isodd, biseven, and z > 0.
(5) a,bareintegers, a iseven, bisodd, andy > 0

then (a) f = z%y® is convexin (z, y) if one of the following is true:
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(i) e <0,1—a—b < 0.

(i) b < 0,1—a—-b < 0.

and (b) f = 22y’ isconcavein (z, y) if

i)a>05b>0,a+b<1

Proof: Thefunction f = z%y® iscorvex in (z, y) only if all theeigenvalues of theHessian

matrix H of f are positive. The Hessian matrix H includesthe second order derivatives of
f with respect to z and y.

2
07 o3y foe = gx’; = a(a—1)z* 2y
_ 72  0zd _ o _ &% _ —1,b-1
H = ( (ffzf 6§fy> where  fi, = b5y = oyos = abz® 1y
2 —_
dydxr Jy fyy — gyé — b(b—l) zayb 2

The eigenvalues A of H arethe roots of the characteristic equation:

A — (foo + fyy] A + [fmfyy - x2y] =0
This equation accepts only positiverootsif and only if:

fxx+fyy Z
fxa:fyy_ ;?y Z

After substituting the expressions for f.z, fyy, fzy We have,

0
0

20 2yb2 [a (a—1)y* +b(b—-1) zz] > 0
y?" 7222 2 [ab(1 —a—b)] > 0.
Note that 2?2~ ?y?*~2 isalways positive and furthermore z?~?y*~? is also positiveif one
of the conditions (1)—5) is true. In this case, the conditions for positivity of eigenvalues
can be rewritten as:
ala—1)y* +b(b—1)2?

>
ab(l—a—15) >

These conditions are satisfied for every z, y € R only if al the following inequalities are
satisfied:

(i) a(a—1) > 0,

(i) b(b—1) > 0,

(iii) ab(1—a—5b) > 0
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These inequalities decompose into the following three digoint sufficient conditions for
convexity of f = z%y® assuming that one of the requirements (1)—(5) istrue.

(i) e <0,b<0.
(i) e <0,1—a—b < 0.

(i) b < 0,1—a—b < 0.

Note that the requirements b > 1 in (ii) and e > 1 in (iii) are implied by the other two
inequalities, and therefore are not included.

The same analysis applies for checking concavity of f = z%®. The characteristic
equation accepts only negative rootsif and only if

foo + fyy <0
forfyy = f2y > 0
After some algebra we obtain the following set of conditionsfor concavity of f.
() a(a—1) <o,
(i) b(b—1) < o,
(iii) ab(l—a—5) > 0

which alternatively can be written as

i)a>00b>0,a+b <1

Notethat if theterm 22~ 2y ~2 isalwaysnegative, the conditions for convexity/concavity
arereversed.

THEOREM 6 If one of the following conditions holds,

(1) a,bareoddintegers, and zy < 0.

(2) a,bareintegers, a isodd, biseven, and z < 0.

(3) a,bareintegers, a iseven, bisodd, andy < 0

then (a) f = z%y® isconcavein (z, y) if one of the following is true:
() e <0,b<0.

(i) a <0,1—a-b < 0.

(i) b < 0,1—a—b < 0.
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and (b) f = 22y’ isconvexin (z, y) if

i)a>0>b>0,a+b<1

The proof of Theorem 6 is completely equivalent with that of Theorem 5 and thereforeit
is omitted.

A similar set of conditions for convexity/concavity can be obtained for the general n—
dimensional case. For the sake of simplicity, we assumethat z; > 0, 2 = 1,... N which
can always be achieved with simple rescaling of variables.

i3

N
TueorEM 7 Thefunction f : RY — Ry, f(x) = ’]:[1 ] is(a) isconvexinx € RY if

one of the following conditionsistrue:

(i) d; <0,Vi=1,...,N
N

(i) 3jsuchthatd; > 1— > dj,and d; < 0,Vi#j :i=1,...,N
i#]

and (b) isconcaveinx € RY if

N
(I) d >0,Vi=1,...,N, and Edz <1
i=1

N
Proof: The second order derivativesof f = [] z{* are equal to:
i=1

8% f {;‘fjiéf, it
fij = =

ot | Bl =
The expansion of the Hessian matrix of f yieldsthe following characteristic equation:

AV Cyoi(d,x)AV T 44+ C(d, x)A + Co(d,x) = 0

where
N
d; (1 —d;
N
i=1 4
N-1 N
d;d; (1—d; — d;)
Ovsldx) = 30 3 S
i=1 j=i+1 %y

ﬁ di <1 - Ek: dij)
CN_k(d,X) = Z]_l =

k
Px H 22
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Co(d,x) = * =L LN,

Note that the sets Py, &k = 1,..., N contain al possible waysthat k& elements of the set N
can be selected.

N =1{i:1<i<N}

Pr = {(il,...,ik) : ijEN, j:l,...,kandi1<i2<...<ik}, k=1,...,N

A sufficient condition for the characteristic equation not to accept any negative rootsis that
al terms Cy_x(d,x)AV =%, k = 1,..., N maintain constant sign for every A < 0 and
for every x € Y. More specifically, all terms Cy_;(d, x)AV =%, &k =1,..., N must be
positivewhen N is even and negative if N isodd. Thisis satisfied if,

< 0, if kisodd

N
> 0, if kiseven VxeRy

Vk=1...,N, Cn_i(d,k) {

These relations must be satisfied for every positive x, therefore they can be written equiva-
lently as:

k k . .
< 0, if kisodd
vE=1..N, (.Hld”) (1_2 f”) {2 0, if k iseven
Jj= j=

foral (41,...,%) € Pr. Notethatifd; <0,2=1,..., N then

k k
Vk=1...,N, (1—2%) > 0 and (Hdij){
j=1 ji=1

for al (¢1,...,4) € Pr, which implies that the characteristic equation accepts only
positiveroots for al x € Y whend; <0, i=1,...,N.

If we now allow only one exponent to be positived;, > 0, andd;, <0, Vj=2,...,N
then we have

k . .
> 0, if kisodd . .
Vk=1...,N, (I[ldij){g 0, if k is even V(i1,...,%) € Py
is

0, if kisodd
0, if kiseven

IV IA

which means that the characteristic equation accepts only positive roots for all x € R
only if
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k
Vk:l,N, (1—2‘12]) S 0: V(il"":ik) € Pk

Finally, it will be shown that these requirements cannot be satisfied if more than one
d;, i=1,...,Nispostive. Letd;,, d;, > 0, then because (i1,42) € P; we have:

di,(1—d;;) <0 and d;,(1—-4d;,) < 0.
However, d;,, d;, > 0, therefore

di, > 1and d;, > 1.
Furthermore, (1, 42) € P SO

(diydi,) (1 —d;, —di,) > 0
or

(1 _di1 _diz) > 0

whichisin contradiction with d;,, d;, > 1. Therefore, assuming conditions (i) or (ii) then
fisconvexinfor al x € RY.

By following the same line of thought, f is concave if all terms Cy_x(d, x)AVN =%, k =
1,..., N maintain constant sign for every A > 0 and for every x € %Jf Thisistrueif,

Vk=1...,N, Cn_i(d,k) >0, VxeRY.

This can be written equivalently as,

k k
Yk=1...,N, (Hdij) (1—2(1”) >0, V(i1,...,ix) € Ps

For (k = 1) we deduce that,
di(l—di) >0o0or0<d; <1, Vi=1,...,N

Thisimpliesthat,

k
VE=2...,N, 1-) di; >0, Y(ir,...,i) € Py,

ji=1
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which simplifiesinto

N
dodi < 1.
i=1

Therefore, if condition (jii) istruethen f isconcavein for al x € R%. ]
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Table2. Parameters of Example 2

R R5 R6 R7 RS R9 RlO

10 1.93010~! 4.10610~* 5.45110~* 4.49710~7 3.40710~° 9.61510~7

Table 3. Solution of Example 2

* * * * *
L1 T2 T3 Ty Ty

0.00311410 34.59792453 0.06504178 0.85937805 0.03695186

Table 4. Solutions of Example 4

# Sol zy z)

1 0.29944869  2.83692777
2 0.50000000  3.14159265

Table 5. Solutions of Example 5

Sol # zy z) zy zy zy

1 1.000 1.000 1.000 1.000 1.000
2 0916 0916 0916 0916 1418

Table 6. Computationa re-
quirementsfor Example 5

a lterations CPU (sec)

1000 352 22.16
100 112 7.42
10 37 2.26

5 12 0.69

1 7 0.35

Table 7. Computational re-
quirements for Example 7

a lterations CPU (sec)

0.1 1645 987.91
0.01 212 143.41



