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Abstract

The problem of finding the maximum diameter of n equal mutually disjoint circles
inside a unit square is addressed in this paper. Exact solutions exist for only n =
1,...,9,10, 16, 25, 36 while for other n only conjectural solutions have been reported.
In this work a max—min optimization approach is introduced which matches the best
reported solutions in the literature for all n < 30, yields a better configuration for
n = 15, and provides new results for n = 28 and 29.

1 Introduction

The problem of finding the maximum diameter of equal non—overlapping circles contained
in a unit square is equivalent to maximizing the minimum pairwise distance among n points
in a unit square. This problem has been solved exactly for only n = 1,...,9, 10, 16, 25, 36.
For 2 < n < 5 the problem can be easily solved using simple geometric arguments. Graham
derived the result for n = 6 according to Croft et al. [1], and Schaer [2, 3] first reported the
solutions for n = 8 and n» = 9.

The case n = 10 has been improved successively by Goldberg [4] and Schaer [5], However,
the currently best known solution has first been reported by Schliiter [6]. Subsequently,
Milano [7] and Valette [8] came up with less dense solutions and lately the best configuration
has been published again independently by Griinbaum [9] and Mollard and Payan [10].
Recently, de Groot et al. [11] by using an elimination algorithm proved that the solution
first given by Schliiter [6] is indeed exact.

The most thorough work on this problem has been published by Goldberg [4] in which
conjectural optimal arrangements were provided for n < 27 as well as for some n > 27. For
n = 11 and n = 13 Mollard and Payan [10] lately reported better solutions, for n = 14
first Wengerodt [12] and then Mollard and Payan [10] provided the same improved solution.
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Finally, for n = 16,25 and 36, Wengerodt [13, 14, 15] matched the solutions given by
Goldberg [4].

In this paper a max—min optimization approach is presented which yields improved
solutions for n = 15, new configurations for n = 28 and 29 and matches the best reported
configurations for up to n = 30.

2 Basic approach

The problem of maximizing the minimum pairwise distance of n points which are contained
in a unit square can be formulated as the following max—min optimization problem.

max min_ $;;
zi,y (1,5)€P
subject to

. (P1)
(zi — 2;)° + (v — v3)° = 845, V(i,4)€P
0<z;<1, i=1,...,N

the set P is defined as P = { (¢,7) such that ¢ < j}; z;,y; are the Cartesian coordinates of
the ** point; and s;; is the squared Euclidean distance between the points ¢« and 7. The

max-min optimization problem (P1) is equivalent to the following non-linear programming
problem (P2).

max i
z2,Yyt

subject to

2 ) . (P2)
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where t is the minimum over all the squared Euclidean distances s;;. Formulation (P2)
involves a linear objective function subject to quadratic concave inequality constraints plus
box constraints for the z;, y; variables. By utilizing the General Algebraic Modeling System
GAMS 2.25 [16] as a programming environment, and the nonlinear programming solver
MINOS 5.3 [17] the programming problem (P2) was solved for every n up to n = 30. Since
the employed solver provides no theoretical guarantee that the algorithm will converge to
the global optimum, multiple initial points were used in order to span most of the parameter
space. The selection of the initial points was based upon (i) partitioning the initial square
into a number of equal rectangles whose sides are equal or almost equal and (ii) generating



randomly points uniformily distributed inside every rectangle. For n = 15,28, 29 new better
configurations were found, in any other case the best reported solution was generated along
with a plethora of slightly inferior configurations with differences in the fifth or even sixth
decimal place in the objective function. The importance of this method lies in the fact that it
provides an efficient way for systematically generating optimal configurations. Asymmetric
configurations, among which the best solution is likely to be found for large n, can be easily
generated since no assumptions are introduced for the distribution of the points inside the
square. It should also be noted that this method can be easily modified for other packing
problems like packing of spheres in a cube or packing of circles in a ralilatelar triangle.

3 Discussion of results

For n < 9 our approach generated the already proven best configurations, which are il-
lustrated in Goldberg [4] and Croft et al. [1]. The problem for n = 10 has received
considerable attention and many optimal configurations have been published; Goldberg [4]
(m = 0.41666667), Schaer [5] (m = 0.41954209), Milano [7] (m = 0.42014346), Valette [8]
(m = 0.42118970) and the best by Schliiter [6] (m = 0.42127954), and later by de Groot et
al. [11]. Here m is the ratio of the minimum distance between any two points (or centers of
circles) over the side of the unit square. All these configurations along with the following;
(m = 0.41469035, m = 0.41543009,m = 0.41837401,m = 0.41953837, m = 0.42072498,m =
0.42117156,m = 0.42126800) have been generated with the proposed method.

For n = 11 the following optimal arrangements have been reported: Goldberg [4] (m =
0.39801158), and the currently best reported by Mollard and Payan [10] as well as de Groot
et al. [11], (m = 0.39820731). The proposed method yielded the previous solutions plus
the following: (m = 0.39801104,m = 0.39801082). For n = 12 the symmetric solution is the
best so far, Goldberg [4] (m = 0.38873013), this solution along with (m = 0.38206940) have
been obtained. For n = 13 first Goldberg [4] reported an optimal arrangement with (m =
0.35355339) and then Mollard and Payan [10] the currently best known (m = 0.36609601)
which was also independently generated by our method and by de Groot et al. [11].

For n = 14 the following two solutions have been reported: Goldberg [4] (m = 0.34509206)
and the best so far by Wengerodt [12] (m = 0.34891526). These configurations along with a
large number of nearly optimal solutions have been generated. For n = 15 an improved con-
figuration (m = 0.34108138), over the best so far (m = 0.33860952) derived by de Groot et
al. [11], has been obtained. For n = 16 the optimum symmetric solution (m = 0.33333333)
was generated which was first published by Goldberg [4].

For n = 17 three solutions were derived (m = 0.30602129,m = 0.30611982,m =
0.30615399) which match the first three decimal places of the best reported so far by
Croft et al [1] (m = 0.306...). For n = 18,19, and 20 the currently best solutions
published by Goldberg [4] (n = 18, m = 0.30046261), (n = 19, m = 0.28954199), and
(n = 20, m = 0.28661165) have been matched. For n = 21 the best reported solution
(m =0.272...) by Croft et al [1] is matched up to the third decimal place by the following
configurations (m = 0.27181169,m = 0.27181226, m = 0.27181675).



For n = 22 an improved configuration was derived (m = 0.26795840), which was also re-
ported by de Groot ef al. [11], over the one obtained by Goldberg [4] (m = 0.26794919). For
n = 23,24, 25,27 the best arrangements published by Goldberg [4] (m = 0.258819045,m =
0.25433309,m = 0.25,m = 0.23584953) respectively, were generated along with a larger
number of slightly inferior solutions. For n = 26 the following configurations were obtained
(m = 0.23860970,m = 0.23872447, m = 0.23872458) which match the solution reported
by Croft et al [1] (m = 0.239...). For n = 28,29 the best derived configurations are
(m = 0.23053549, m = 0.22688290) respectively, however, no comparisons can be made
since no configurations were found in the literature. Finally, for n = 30 the best configu-
ration reported by Goldberg [4] (m = 0.22450296) was generated. The values of m for all
these solutions n < 30 are tabulated in Table 1. The adjacent graphs for the new solutions
(n=15,28, and 29) are given in Figures 1, 2, 3. Due to space limitations further adjacent
graphs as well as coordinates of the generated optimal configurations can be obtained by
the authors upon request.

While the derived configurations correspond to local minima of formulation (P2), the
frequency with which they appear as solutions of (P2) suggest that they are reasonable
candidates for being the global optimum solutions. Nevertheless, work is currently underway
for applying a global optimization approach proposed by Floudas and Visweswaran [18, 19]
in the problem at hand which will enable us to verify global optimality.

n m n m n m

1 11 | 0.39820731 || 21 | 0.27181675
2 | 1.41421356 || 12 | 0.38873012 || 22 | 0.26795840
3 | 1.03527618 || 13 | 0.36609601 || 23 | 0.25881904
4 | 1.00000000 || 14 | 0.34891526 || 24 | 0.25433309
5 | 0.70710678 || 15 | 0.34108138 | 25 | 0.25000000
6 | 0.60092521 || 16 | 0.33333333 || 26 | 0.23872458
7 10.53589838 || 17 | 0.30615399 || 27 | 0.23584952
8 | 0.51763809 || 18 | 0.30046260 | 28 | 0.23053549
9 | 0.50000000 || 19 | 0.28954199 || 29 | 0.22688290
10 | 0.42127954 || 20 | 0.28661165 || 30 | 0.22450296

Table 1: Minimal separation between n points in a unit square.
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Figure 1: Adjacent graph for n=15, m=0.34108138



Figure 2: Adjacent graph for n=28, m=0.23053549



Figure 3: Adjacent graph for n=29, m=0.22688290



