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Abstract

A global optimization approach is proposed for finding the global minimum energy
configuration of Lennard—Jones microclusters. First, the original nonconvex total poten-
tial energy function, composed by rational polynomials, is transformed to the difference
of two convex functions (DC transformation) via a novel procedure performed for
each pair potential that constitute the total potential energy function. Then, a decom-
position strategy based on the GOP algorithm [1, 2, 3, 4] is designed to provide tight
bounds on the global minimum through the solutions of a sequence of relaxed dual
subproblems. A number of theoretical results are included which expedite the compu-
tational effort by exploiting the special mathematical structure of the problem. The
proposed approach attains e-convergence to the global minimum in a finite number of
iterations. Based on this procedure global optimum solutions are generated for small
microclusters n < 7. For larger clusters 8 < N < 24 tight lower and upper bounds on
the global solution are provided serving as excellent initial points for local optimization
approaches. Finally, improved lower bounds on the minimum interparticle distance at

the global minimum are provided.

1 Introduction

Microclusters are [5] aggregates of atoms, ions, or molecules, sufficiently small that a signif-
icant proportion of these units is present on their surfaces. Typically, they consist of two to
several hundred atoms. In microclusters, we are faced with systems that are neither single
entities nor continua composed by a large number of units, but lie somewhere in between,
providing the link between single atoms or molecules and bulk matter. The importance of
microclusters ranges from the area of catalysis to astrophysics and crosses the boundaries
of subjects such as nucleation, crystal growth and surface physics. The remarkable increase
of interest in microcluster physics in the last few years has been catalyzed by the emergence

of several fields of direct application in the study of cluster properties.
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The study of the topography of the potential energy function of a microcluster in the
internal configurational space was and still remains a central problem in this area of research
[5, 6]. Even under simplifying assumptions about the interaction energy, the minimization
of the total potential energy is very difficult to solve because it corresponds to a non—convex
optimization problem involving numerous local minima. It has been reported [5] that the
number of local minima of an n-atom microcluster grows as (ezp[n?]). In fact, it has been
shown [7], that the complexity of determining the global minimum energy of a cluster of
particles interacting via two-body forces belongs to the class NP. In other words, there is no
known algorithm that can solve this problem in non-exponential time [8]. A geometrical,
possibly topological proof that a local minimum is both unique and global is not likely
to be found because there still exist unsolved problems in the theory of sphere packings
where difficulties are undoubtably less acute [9, 10, 11, 12], than those in the minimization
problem at hand.

Faced with these difficulties, current methods use physical intuition, approximation pro-
cedures, mimicking of physical phenomena, random searches, lattice optimization /relaxation,
or local optimization approaches. Hoare in a series of papers [13, 14, 15, 16, 6] proposed
a method of finding minima of the total potential function of an 5 < N < 66 particle LJ
cluster based on a growth scheme involving the repetitive placement of an extra atom at
all packing vertices of an initial compact cluster. The resulting structures are then relaxed
and the obtained local minima are recorded. However, solutions of low—symmetry are not
likely to be found with this method [17]. Another method [18] is based on the simple idea of
smoothly deforming the potential energy hypersurface [19], by using the diffusion equation,
so that local minima disappear gradually, while the global one grows at their expense. One
then eventually ends up with a single minimum which is conjectured to correspond to the
global minimum. However, it has been observed that when the global minimum corresponds
to a narrow potential well of large depth it might disappear faster than a wider, originally
shallower, potential well.

Molecular dynamics (MD), Monte Carlo (MC) simulations, and simulated annealing
(SA) correspond to the most widespread methods in the study of clusters. Simulation
calculations using the molecular dynamics technique were carried out [20, 21, 22, 23, 24]
in an attempt to investigate the energetics and the structural stability of microclusters.
Monte Carlo techniques based on the Metropolis procedure [25], were employed [26, 27, 28]
for studying the structure size and configuration, thermodynamic properties, and melting
behavior of Lennard—Jones microclusters. The simulated annealing method, which can be
viewed as a method for stochastically tracing the annealing process by Monte Carlo sim-

ulation, has been widely used either alone [17, 29, 30, 31, 32, 33| or in conjuction with



some other method(s) [34, 35, 36] for solving the potential energy minimization problem of
various microclusters of atoms involving different body interaction terms. Furthermore, a
deterministic method [37, 38] for annealing the potential energy function by tracing the evo-
lution of a multiple-Gaussian—packet approximation and using notions of renormalization
group theory has been applied to microcluster conformation problems.

It appears that lattice optimization techniques are the most efficient in generating struc-
tures involving the lowest known potential energy. It has been proposed [39] that the most
energetically favored microclusters in the range 20 < N < 50 are the ones involving in-
terpenetrating icosahedra (polyicosahedra) or (PIC). For N < 55 a double icosahedral
(DIC) growth scheme was introduced [40] and for 55 < N < 147 [41] a third layer icosahe-
dral structure using two different surface arrangements was presented. Using these notions
[42] optimal configurations for LJ microclusters were derived in the range 13 < N < 147
based on a lattice optimization/relaxation algorithm. First, a heuristic procedure is em-
ployed for finding a set of lattice local minimizers assuming icosahedral IC or face—centered
FC arrangements. Then, the currently best lattice minimizers are relaxed by using a lo-
cal optimization algorithm. Later, this method was improved [43] by reducing the time
complexity and by relaxing every lattice local minimizer yielding a number of better op-
timal configurations. A parallel implementation [44] allowed results on minimum energies
for clusters of up to N = 1,000 atoms and by employing a parallel version of a two—level
simulated annealing algorithm, solutions for cluster sizes as large as N = 100, 000 have been
reported [45].

2 Problem Definition

The problem which is to be addressed in this work can be simply stated as follows:

Given N interacting particles, find their configuration(s) in the three-dimensional

Fucledian space involving the global minimum potential energy.
The main assumptions in this work are the following:

1. Many-body interactions are not taken into account.
2. Quantum effects are not taken into consideration.
3. All particles are considered to be spherical and of the same size.

4. The scaled Lennard—Jones pair potential is employed: (T% — T%)



Assumption (1) restricts the applicability of the global optimization approach as de-
veloped to systems of particles interacting with central two—body forces. Conceptually,
however, the proposed approach can be extended to systems of particles interacting with
many—body forces if an analytic expresssion for the total potential energy is given. Assump-
tion (2) implies that the total potential energy is a continuously varying quantity, in other
words it is not quantized. Any formulation of the problem that takes into account quantum
effects must involve a number of discrete variables which further increase the already high
complexity of the problem. Thus, quantum aspects are not the focus of current work, in-
stead they are left as a future target. Assumption (3) implies that all particles are identical
and are of the same size. This assumption has been introduced for the sake of simplicity and
can easily be relaxed. Assumption (4) is made initially for computational convenience, and
is by no means restrictive since the developed framework is general enough to conceptually
incorporate different expressions for the total potential energy.

In this work the scaled Lennard—Jones potential is chosen due to its simplicity and wide
acceptance in the study of microclusters. With this scaling we define a universal Lennard—
Jones potential that is applicable to different atoms such as He, Ar, Kr, etc., because of the
corresponding states property that we have implicitly imposed. Given N particles whose
interactions are described with Lennard—Jones pair potentials, the problem of finding the
structure with the absolute minimum energy can be formulated in the (z;, ¥, 2;) coordinate

space as follows:
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Note that by selecting a cartesian coordinate system where the first particle is fixed at the
intersection of all three axes, the second one lies on the x—axis, and the the third one stays
on the xy—plane, we have £1 = y; = 21 = Y3 = 29 = z3 = 0. In this way, we eliminate all
translational and rotational degrees of freedom for the microcluster.
The main difficulty in solving this problem arises from the fact that the objective is a

non—convex function of many variables which has been reported [5] to involve numerous



local minima. In the next section a procedure is introduced for transforming the initial
non—convex objective function to a difference of two convex functions (DC transforma-
tion). Then, by exploiting the acquired DC structure of the problem a global optimization

algorithm is proposed.

3 Transformation to a DC programming problem

The main difficulty in solving the minimization problem as it has been presented in the
previous section arises from non—convexities in the objective function. In fact, even the
expression for a single pair potential interaction v;; is a non-convex function.

Let us pose the problem in the (x,y,z) coordinate space and consider a single pair po-

tential interaction v; 3. Note that vy 5 is a function of six variables z1,¥1, 21, Z2, Y2, 22.

vy = {[(331 “ ot _1y2)2 + (21 — 22)?]°
2 } (2)

(1 —z2)? + (y1 — ¥2)? + (21 — 22)?]?

The eigenvalues of the Hessian matrix of v; 3, which can be calculated by using symbolic

computation [46], are:

)\1:>\2:>\3:0 (3)
1 1
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7’?,2 7’%,42
13 7
e =24 — — (5)
(7’%,42 7"?,2)

where 715 = [(z1 — 22)? + (y1 — ¥2)2 + (21 — 22)2]% is the eucledian distance between par-
ticles (1) and (2). Note that A4 and A5 become zero at 715 = 1, are positive for 71 53 > 1,
and are negative for r1 3 < 1. Also, g is zero at 715 = (13/7)1/6 ~ 1.108683, positive for
r1,2 < 1.108683, and negative for 7 5 > 1.108683. Therefore, only when r1 5 € (1,1.108683),
all eigenvalues are non-negative which implies that vy 5 is convex. The convexity of v ,,
however, can be maintained by adding a “strongly” convex term to v;j. This term may
have the form a(z?+y2 4 22 + 22 + y2 + 22), where a is an arbitrarily large positive number.
Note that the effect of this extra term in the Hessian matrix is to add the term 2a to all the
diagonal elements of the matrix which, given a sufficiently large o, forces all the eigenvalues
to become non-negative by overpowering the convexity characteristics of v1 3. Let F1 be

the summation of vy » and the extra term a(z? + y2 + 22 + z2 + 32 + 22).
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It can easily be derived that the eigenvalues of the Hessian matrix corresponding to F1 are:

>\1:>\2:>\3:2OL (7)
1 1
T12 Tip
13 7
1,2 1,2

Since we want all the eigenvalues to be non-negative, we have the following inequality

constraints for a.

a > 0 (10)
1 1
a > 12| —&4 — 4 (11)
<7"%,42 7’?,2)
1
a > 12 (%—1—‘3) (12)
T12 Tip2

The minimum value of o that will maintain all eigenvalues of F1 non—negative for all values
of 71,2 can then be derived as the solution of the following optimization problem over r; »:

12 (% - T%) if Tmin < 11,2 <1
1

T
T1,2 2

o =max{ 0 if 1 <ry9<1.108683
71,2
12 (SL - %) if r12 > 1.108683

T
T1,2 T1,2

where 7,,;, is a lower bound on 7; 3. Note that at the global minimum all interparticle
distances are never significantly less than one, because otherwise the corresponding pair
potential resumes a large positive value which cannot occur at the global minimum. In

Appendix A rigorous lower bounds on the minimum interparticle distances are given for



different cluster sizes. A sufficient value of 7,,;, for all practical purposes is about 0.8-0.99.
If we define F2 as

F2=o(z}+y’+ 22+ 2] +y2 +27) (13)

then the initial non—convex expression for the pair potential has been transformed to the
difference of two convex functions, more specifically v1 5 = F1 — F2. By applying the same
analysis to every pair potential interaction the total potential energy expression can be then
written as the difference of two convex functions (DC structure). It should be noted that
this analysis is by no means restricted to the specifics of the problem at hand. It can be
applied to any non—convex objective function as long as the eigenvalues do not diverge to
—oo and analytical expressions for them can be derived.

The transformation of every pair potential term to the difference of two convex functions
results in values of a’s which are much larger than the ones required to maintain the entire
expression for the total potential energy a difference of only two convex functions. In fact,
even at the global minimum not all pair potential expressions are convex. It would have
been ideal if the above procedure could have been applied to the entire total potential
energy function. Unfortunately, this cannot be performed since it is a complicated function
of 3N — 6 variables, and hence no closed form expression for the eigenvalues of the Hessian
matrix can be obtained. In Appendix B a procedure for assigning an o to each variable
rather than to each pair potential is briefly discussed. This approach involves the following

extra term:
N

Y (aziz? + ayiy? + azi2?) (14)

=1
The initial non—convex objective function can be rewritten as the difference of two convex
functions by assigning appropriate values to ag;, ayi, a,;. It should be noted that both ways
of transforming the initial objective function to a difference of two convex functions are
equivalent since by combining/expanding terms, one collapses to the other. Only the values
of the o parameters are different. In the next section a global optimization procedure is

introduced which employs the initial transformation without loss of generality.

4 Problem Formulation

The problem of finding the global minimum energy of N particles interacting with central
Lennard—Jones forces can be formulated as the following non-linear optimization problem

NLP.



minV = Z Z

(P1)
st mfgmigm?, t1=2,...,N
U
yz_y‘igyi: =9, aN
d<z<z, i=4,..,N

Ty=Y1 =21 =Y =22 =23=10

where :cf’, yZL, zZL, m?, yZU, zfj define the box constraints for the z;, y;, 2; variables. In formu-
lation (P1) the objective function is non—convex so no guarantee for convergence to the
global minimum can be made. In view of the transformation presented in the previous

section (P1) can be reformulated as the following (DC) programming problem.

N-1 N
minV = Z Z
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Tij
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In this work an approach for finding the global minimum based on the global optimization
algorithm GOP developed by Floudas and Visweswaran [1, 2, 3, 4] is presented. The GOP
algorithm can be applied to optimization problems that have or can be transformed to the
following form, and it guarantees e—convergence to the global minimum in a finite number

of steps:

min f(z,y)

st g(z,y) <0
h(z,y)=10
zeX,yeY

(P3)
Here XY are non-empty, compact, convex sets and f(z,y),9(z,y) and h(z,y) are contin-
uous, piecewise differentiable, and analytical functions over X X Y. The initial variable set

is partitioned to the sets X and Y in such a way that the following conditions are satisfied.

o f(z,y) and g(z,y) are convex in x for every fixed y, and convex in y for every fixed x.

e h(z,y)is linear in x for every fixed y, and linear in y for every fixed x.

If these conditions cannot be satisfied with only partitioning of variables, transformation of
variables can be employed. The GOP algorithm has been applied to optimization problems
involving bilinear, quadratic, polynomial, or rational polynomial terms in the objective
function and/or constraints [1, 2, 3, 4].

In view of the GOP requirements for convergence to the global minimum the following
transformation of variables is performed on formulation (P2). The coordinate set of vari-
ables z;,v;,z; (x—type) is “mirrored” to X;,Y;, Z; (y—-type) so z; = X;, vi = Y;, z =
Z;, Yi = 1,...,N. Then, for each pair—potential we add the term o(X2 + Y2 + Z2 +
ij + YJ2 + ij) to the total potential energy function. The purpose of these added terms



is to “convexify” each pair potential by transfering the non—convexities to the terms that
we subtract from each pair—potential contribution. These terms have the following form;
(2 X+ vYi + 2.Z; + ©;X; + y;Y; + 2;Z;). Note that they are linear in z;, y;, z; for fixed
X;,Y;, Z; and vice-versa. The values of a;;’s are selected so that they are the minimum
ones that guarantee convexification of each pair—potential term with the addition of the

extra terms. Based on the above (P2) can be reformulated as follows:

N-1 N
minV = Z Z
=1 j=21+1
1
(%~ X7+ (V- P + (G )
2

(X = X5)2 + (Ve = V5)? + (% - 25)P
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N-1 N
- DY aij(wiXi 4 uYi+ zZi + ;X + y;YG + 2 Z;)
=1 j=:+1
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L U .

yigy'igyi: 7’:3a"':N
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Note that if we fix X;,Y;,Z; and let z;,y;, 2; vary, formulation (P4) corresponds to a
linear programming problem. If now we fix z;,¥;, z; and let X;,Y;, Z; vary (P4) becomes a
convex NLP programming problem. Thus, all GOP requirements are satisfied. Let now
consider a more restrictive version of (P4) where all y—type variables are fixed, namely

X, = XKY, =YX, 2z = ZK.

N-1 N
minV = { Z Z
1=1 j=21+1

10



st

1
(XK - X2+ (VK -YF2+ (2] - 2F))e
2
K K K K K _ 7K
(X - X722+ (Y -Y2 )2+ (27 - Z;)*)

(X2 + (V2 + (2 + (XF)? + () + (Zf)z]}
(P5)

N-1 N

Yo > o(@X{ + y Y + w2 + 2 XF 4V + 22)

1=1 j=21+1
z; = XX, i=2,...,N
yu=Y% = i=3,... N
z=2K i=4,...N
mfgmigm?, t1=2,...,N
zf’gzingj, 1=4,...,N

Ty=Y1 =21 =Y =22 =23=10

Problem (P5) is called the primal problem and its solution provides an upper bound to

the solution of (P4) since it corresponds to a more restricted form of (P4). It is clear

that (P5) is always feasible and its solution corresponds to a single function evaluation.

By applying the KKT conditions [47] we obtain for the Lagrange multipliers Agz;, Ay, Az

associated with the equality constraints in (P4):

N

dei = (O o)XE,  i=2,..,N (16)
7=2
N

A = (O aif)VE, i=3,...,N (17)
7=3
N

i = (O i) ZE, i=4,...,N (18)
7=4

By applying the strong duality theorem [48], and substituting the values for Az;, Ay, Az we
obtain the relaxed dual (RD) formulation (P6). The solution of this problem provides a

lower bound to the solution of (P2) since it corresponds to its relaxation.

min  up
Xi,Yi,Zi,up

11



N-1 N
subject to up > L(zi,¥i,2,X;,Y;, Z;) = min Z Z
ZiyYi,2: i=1 j=it1
1
(X = X5)2 + (Yi = Y5)? + (Zi — Z)%)°
2
(Xi - X;)% + (Y - Y5)? + (Zi — Z;)*

=2 j=1
N N
K
+ YO )V -Y)(y - Y)
=3 j=1
N N
K
+ Y Q)2 - Zi)(z - Z)
=4 j=1
a:f_a:igmzj, 1=2,...,N
w<w<y, i=3,...,N
z <zz<zzu, 1=4,...,N

TyI=Y1 =21 =Y —=22=23=0

L U .
z; < X; <z, 1=2,...,N
L U .
y; <Y, <y, 1=3,...,N
<z, <Y i=4,...,N

Problem (P8) is linear in z;,y;, 2; so at the minimum point, z;,y;, z; will be at an upper
or lower bound depending on whether their coefficient is negative or positive respectively.
These variables z;,y;, 2; are called connected variables and the gradients of the Lagrange
function in terms of the connected variables are called qualifying constraints which in prob-
lem (P6) have the following form:

XK - X (19)
YA - v (20)
zEk -z (21)

This suggests that instead of minimizing explicitly in terms of the connected variables

12
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i, Vi, z, it is sufficient to solve (P6) once for each combination of their bounds and select
the infinum over the calculated minima in all iterations. We have shown that the solution
of (P5) provides an upper bound and the solution of (P6) a lower bound on the actual
solution of the problem. This calls for an iterative scheme between (P5) and (P6) to
determine the global solution of (P2).

Based on the above analysis, the solution of the initial non—convex problem (P2) has
been transformed to the solution of a series of convex non-linear relaxed dual problems
which can efficiently be solved with existing algorithms. The solution of the primal problem,
which corresponds to a single function evaluation, provides an upper bound to the global
minimum whereas the relaxed dual problems yield lower bounds. It has been proved [1, 4]
that by iterating between the primal problem and the relaxed dual problems e-convergence
to the global minimum is achieved in a finite number of steps.

The main limitation with this approach is that for n connected variables, up to 2™ re-
laxed dual problems must be solved per iteration. Furthermore, a large number of these
relaxed dual problems do not contribute to the bounding of the solution because they are
infeasible. These early observations motivated the development of a number of computa-
tional properties. First, if a qualifying constraint always maintains constant sign, then the
relaxed dual problems involving the reverse qualifying constraint do not need to be solved
[3]. Furthermore, if a qualifying constraint is rigorously equal to zero for some iteration k,
then the corresponding connected variable can be set to either its lower or upper bound
[3]. In this work the bounds of the variables are updated because this results in tighter
lower bounding of the objective function. More specifically, the bounds of the variables for
the current iteration coincide with the bounds of the variables of the relaxed dual problem
whose solution is the current point. Based on this we can define a 2™—tree with nodes
corresponding to relaxed dual problems and levels corresponding to iterations. In the cur-
rent iteration, only the Lagrange functions of relaxed dual problems which correspond to
predecessor nodes for the node of the current relaxed dual problem are incorporated. It
is interesting to note that their number is very small typically of the order log,(K). The
bounds for the current iteration are provided by the relaxed dual problem corresponding to
the parent node of the current relaxed duals. Note also that no qualifying constraints are
needed in the formulation. The application of this property greatly reduces the required
number of iterations for convergence as well as improves the solution time for each relaxed
dual problem by including only a small number of previous Lagrange functions and by
excluding all qualifying constraints from the current relaxed dual problem.

Based on the presented problem formulation and the properties mentioned above, an

algorithmic procedure has been developed for the location of the global minimum which is

13



outlined in the following section.

5 Algorithmic Procedure

The basic steps of this procedure are as follows:

STEP 1 - Initialization

An initial point X?,Y?°, Z? is selected, the iteration counter K is set to zero, and a
convergence tolerance ¢ is decided. Appropriate box constraints zZ,yF,z%,z¥ 5V 2V for each
variable z;,9;,2i,X;,Y;,Z; are selected. PUBD RIBD are defined as the minimum solution
of the primal problems and the maximum solution of the relaxed dual problems so far
respectively.

STEP 2 - Primal problem

The primal problem (P6) is solved at XX, VX, ZX for the variables z;,y;, z; and the
Lagrange multipliers Ag;, Ay;, Az If the solution of the primal is less than PUBD {hen pUBD
is equal to the solution of the primal problem.

STEP 3 - Selection of previous Lagrange functions and update of bounds

The Lagrange functions from relaxed dual problems in previous iterations (k = 1,2,..., K—
1) corresponding to predecessor nodes for the current iteration are included to be constraints
in the current iteration’s relaxed dual problems. The box constraints of the current iteration
are the ones of the relaxed dual problem corresponding to the parent node for the current
tree level (iteration).

STEP 4 - Update of o;; parameters

The convexification parameters o;; are updated in every iteration as follows:

12 (L - L) if Toin < 755 < 1
k¥ (¥}
o = max{ 0 if 1 <r; <1.108683
Tij
12 (% — 15;) if r;; > 1.108683

:z:£<:ci<a:§‘, 1=2,...,N
4

yz<y1.§y;u7 7'_37 '7N
zzl-<zi<z}‘, i=4,...,N

Here :cf,yzl-, zll-, z, vy, 2} are the current bounds on z,, ¥, 2;.

14



STEP 5 - Non-interior current point (XX,YX 6 ZK)
If any of the XX,V.X, ZX is at its bound (lower/upper) then the appropriate relaxed

dual problems are eliminated.

STEP 6 - Current Lagrange function completely above PUBP

PUBD within the box constraints

If the current Lagrange function is completely above
of the current relaxed dual problem, then the global minimum is not contained inside the
current box constraints and the corresponding relaxed dual problem does not have to be
solved. If so the algorithm proceeds with STEP 9.

STEP 7 - Solution of relazed dual problems
K BK

z1) Py

spectively, that has not been found to activate any checks in STEPS 5,6 the following

For every combination of bounds B BX of the connected variables z;,y;, z Te-

relaxed dual problem is solved.

min
XY, Zi,up HE
subject to
Bk Bl Bk
UB > Lk(mi Y, Y ) 25 “,X,L',Yi,Zi), V k= 1,2,...,K -1
(P7)
BE BE pBK
KB Z LK(:CZ m:yi Y )y 24 Zz:Xh},i:Zi)
Kl K .
;" < X; <z, 1=2,...,N
K|l K, )
Y; SYZS?A u, 7’:3a"':N
K|l K, ;
z "< Z; <z Y, i=4,...,N

Here Li, Li are the Lagrange functions from the previous iterations and the current one

respectively, B, Bk BZ- are the set of values of the connected variables z;,¥;,2; in the

z1) Py
Lagrange function from the k** iteration and :cZK’l, yZ-K’l, zzK’l, :czK’u, yZ-K’u, 25 are the bounds

on X;,Y;, Z; in the current iteration K.

STEP 8 - Update RFBP XK YK 7K

After all relaxed dual problems have been solved, a new lower bound RYBP for the
global minimum is selected which corresponds to the lowest value of the stored solutions of
all relaxed dual problems from all iterations so far. At the same time, the values of X;,Y;, Z;

of the minimum stored solution are selected for the next current point XZ-KH,Y;KH, ZZK'H.

15



Once selected, the stored solution is deleted from the list. This ensures that no relaxed dual
problem will return to the same solution during successive iterations.

STEP 9 - Check for convergence

If PUBD _ RIBD « ¢ then econvergence has been achieved and the algorithm is
stopped. Otherwise, we set K = K + 1 and we return to STEP 2.

This global optimization algorithmic procedure has been applied to a number of prob-

lems which are presented in the next section.

6 Examples for N <7

By using the global optimization procedure presented earlier along with the transformation
presented in Appendix B the global minimum potential energy configurations of small mi-
croclusters 2 < N < 7 are generated. The global minimum structure for N = 2, E*(2) = -1
corresponds to two particles “touching” each other. For N = 3, E*(3) = —3 three particles
form a unit equilateral triangle at the global minimum. For N = 4, E*(4) = —6 the four
particles are placed at the vertices of a regular tetrahedron. For N = 5, E*(5) = —9.104
(rounded to the third decimal place), a trigonal bipyramid slightly contractred along the
symmetry axis and distended in the symmetry plane corresponds to the global minimum en-
ergy structure. For N = 6, E*(6) = —12.712 a regular octahedron with slightly contracted
sides yields the global optimum configuration. Finally, for N = 7, E*(7) = —15.593 the
regular icosahedron (pentagonal bi-pyramid) with slightly distended edges and contracted
axial distances is the structure involving the global minimum total potential energy.

For larger N the complexity of the problem limits the use of the general global opti-
mization procedure. In the next section a “relaxation” of the global optimization procedure
is presented which for larger microclusters yields tight lower and upper bounds on the
global minimum total potential energy as well as excellent initial points for a possible local

optimization approach.

7 A Relaxation of the Global Optimization Approach

As it has been mentioned earlier, the time bottleneck of the employed global optimization
approach is the large number of connected variables of the problem which potentially gives
rise to a very high number of relaxed dual problems per iteration. This motivates a re-
laxation of the global optimization approach which stems from the fact that usually the
global minimum potential energy configuration of an N—particle cluster is composed by the

slightly perturbed global minimum configuration for N — 1 particles plus an extra particle.
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This means that when solving for the global minimum structure of N particles and the
global minimum configuration for N — 1 particles is known, tight bounds for the coordinate
variables of the first N — 1 particles can be used around the global minimum positions of
an (N — 1)-particle microcluster and only for the N particle “loose” bounds are required.
Based on this, the global minimum potential energy problem in (P1) can be reformulated

as:

N
minV = Z

1
{ [(zi —2;)% + (% — ¥5)? + (2 — 2;)%]°

2
- [(mz’—mj)“r(yi—yj)2+(zz'—2j)2]3}
(P8)
st z; —e<z; <z te, 1=2,...,N -1
yr—e<y <y'+e i=3,...,N—-1
2} —e< 2z, <z +te, i=4,...,N -1

—-E<zy<FE
—-E<yy<E
—-E<2zy<FE

Ty=Y1 =21 =Y =22 =23=10

Here e = 0.01 — 0.05 accounts for the perturbation around the nominal point z}, 7y, 2}
which corresponds to the global minimum potential energy configuration of an N — 1 mi-
crocluster. Also, E = 2.0 — 4.0 defines a cube where the N** particle is expected to be.
Since z},y’, 2} corresponds to the global minimum potential energy point of an N — 1 mi-
crocluster, V in formulation (P8) must be convex in terms of z;,¥;,2;, i=1,...,N —1
in a neighborhood of z},y}, 2. By assuming that e in formulation (P8) is sufficiently
small, then in order to transform V to the difference of two convex functions only the term
(a,mN:chv + a,yNy]zv + a,zsz%]) is required. Thus, the Lagrange function resumes the following

form:
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L(mi:yiaziaXhYti:Zi) = IIllIl Z Z
TiyYiy2¢ i=1 j=it1
1
(Xi — X5)2 + (Y = Y5)2 + (Z; — Z;)?]°
2

(X = X5)2 + (Y = V5)? +(Z: - 25)P
(P9)

+ a'a:N(XJIv{ _XN)(mN_XN)
+ "“yN(YJéK =Yy )(ynw — Yu)
+ a'zN(Zj\I]{ - ZN)(ZN - ZN)

Note that formulation (P9) involves only three connected variables z , yy, 2y which means
that irrespective of how large N is, only up to 23 = 8 relaxed dual problems must be solved
per iteration. By combining the Lagrange function in formulation (P9) with the presented
global optimization procedure a number of examples 8 < N < 24 has been considered.
Tight lower and upper bounds on the global minimum solutions were first established by
selecting the tolerance to be between 0.01 —0.05. Then, by switching to a local optimization
algorithm the global minimum potential energy structures were found. All these results are
summarized in Table 1 where EL, EV correspond to the lower and upper bounds on the
global minimum energy E* and Iter is the total number of iterations for obtaining the
bounds. It should be noted that the provided lower and upper bounds include the best
reported solutions for 8 < N < 24.

Although this simplification cannot guarantee convergence to the global minimum it
appears that it behaves very well for small microclusters N < 24. This approach can
be extended to larger microclusters by allowing more than one particle to have “loose”
coordinate bounds. In this case, if M particles involve “loose” coordinate bounds then up

to 23M relaxed dual problems must be solved per iteration.

8 Discussion on the structures

For N < 7 by applying the developed global optimization procedure, the cartesian coor-
dinates of all particles in the three Eucledian space along with the total potential energy
corresponding to the global minimum potential energy configuration of the microcluster are

obtained. It should be noted that the geometry of the global optimum structures changes
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considerably as N increases. The mere addition of an extra atom does not always result in
the global optimum configuration without restructuring of the initial one.

For 8 < N < 24 the developed relaxation procedure provides bounds on the global
minimum configurations by generating a number of structures whose coordinates are very
close to the coordinates of the structure involving the global minimum total potential energy.
It should be emphasized that for 8 < N < 24 the global minimum configurations are not
unrelated, instead it seems that they follow a certain pattern. More specifically, they
correspond to the relaxation of icosahedral structures with one central particle, an initial
IC layer involving 13 particles and an incomplete second FC sublayer. Furthermore, the
particles occupying the second sublayer tend to aggregate together.

An important feature of the proposed approach is that it generates a sequence of lower
and upper bounds on the global optimum configuration. Each upper bound corresponds
to a different configuration of the particles in the three dimensional space, and hence the
upper bounds generated in the last iterations represent excellent candidates for “low energy”
structures that are very close to the global optimum configuration. At the same time, the
lower bounds exclude most of the local optimum structures and concentrate the search in the
domain of the best structures. Asit can be seen from Table 1 within a few iterations excellent

lower bounds are generated that eliminate almost all the sub—optimal configurations.

9 Conclusions

In this work a global optimization approach was introduced for finding the global minimum
potential energy configuration of small Lennard—Jones microclusters. It involved the trans-
formation of the initial non—convex total potential energy expression to the difference of two
convex functions (DC transformation) and the application of a Primal-Relaxed Dual global
optimization approach guarranteed to converge to the global optimum in a finite number of
iterations. For larger microclusters a relaxation of this methodology yielded tight lower and
upper bounds on the global minimum and initial points very close to the global optimum.

It should be emphasized that the developed DC transformation as well as the employed
global optimization procedure are not restricted to the specifics of the problem at hand.
They can conceptually be applied to system of many different particles interacting with

complex many—body forces. Extensions in this direction are currently under way.
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Appendix A: Lower Bounds for 7.,

It is essential for the presented DC transformation that all the eigenvalues of the Hessian
matrix remain greater than —oco. This is achieved only if all eucledian distances between
the particles are strictly greater than zero at the global minimum. Furthermore, the larger
Tmin 18 the better the lower bounding of the objective function becomes. This motivates not
only the proof of existence of an r,;, > 0 but also the identification of the tightest possible

one.

Theorem 1 The minimum eucledian distance Tysm over all particle pairs remains strictly

greater than zero at the global minimum potential energy microcluster configuration.

Proof: Let E*(n) be the global minimum potential energy of an n-particle Lennard—Jones
microcluster and EZ(n), EY(n) lower and upper bounds respectively of E*(n). By assuming
that all particles are “touching” each other the following second order in n lower bound on

E*(n) can be obtained:
n(n —1)
2

A n-particle microcluster can be constructed by placing n — 3 particles so that each of

EX(n) = - (22)

them touches three others, starting with three particles forming a equilateral triangle. This

provides the following linear in n upper bound on EU(n):
EY(n)=-3-3(n—-3)=-3n+6 (23)

Let r,_1 be the minimum interparticle distance of an n—particle microcluster at its global

minimum potential energy configuration.

-3n+6 = EY(n)
> E(n)
n—-2 n-—1 n—1
= Vit Z Vin
=1 j=21+1 2=1
n—1
> E*(n-1)+ ) via
=1
n—2
= E*(n - 1) + Z Vin + VUn_1n
=1
> Efn-1)-(n-2)+ Vn_1n
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Solving for v,_1,, we get:

1 2 U L
U"_17":T12' _7‘6- < E (TL)—E (n_1)+(n_2)

(n—1)(n-2)
2

= (%nz — gn—}— 5)

(1

man

= —-3n+6+ +(n—2)

Thus, for the minimum interparticle distance 7,/ (n) of an n—particle microcluster we have:

1
6

_ 1.2 _ 7
A0 (n) = L+4/57m s +6
man In2—In+5
Tighter lower bounds for r,_1 , can be obtained if instead of EU(n) = —3n + 6 we use the

best reported solution in the literature as an upper bound of the global optimum solution
E°Pi(n) > E*(n).

: ° ° (n — 1)(n _ 2) o 1, 1
e SET 4 (n2) = ET(n) 4 g0t - gn -1
After solving for Tgfrz(n) we get:
an, |71+ Eopi(n) + In2 — 1n

min - 1

2 _ 1,
5N n-—1

2

Table 2 summarizes the results for r'_) (n) T(II)(n) and 3 < n < 24. These bounds appear

min ) "man

to be much tighter than the ones reported by Xue et al., [49] O.
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Appendix B: Alternative DC Transformation

As presented earlier, instead of transforming each and every pair potential expression to a

difference of two convex functions by adding and subtracting the following term:
aij (a2 + 92 + 22 + 22 + 4] + 2F) (24)

it is quite advantageous to rewrite the total potential energy expression as the difference of

two convex functions by adding and subtracting the following single term:

N
Z (amim? + a'yiyi2 + a’ziz'iz) (25)

=1
This is because it results in tighter bounding of the objective function when the afformen-

tioned global optimization is applied. Let F be the summation of the original total potential

energy function plus the above extra term.

N-1 N
Floiyi,z) =y, Y

=1 7=2+1

2
e+ (5 - yi)? + (= - Zj)2]3}
N
+ Y (ewin? + ayy? + @izl (26)
=1
Note that F is a non-separable function in terms of z;,y;,2; of 3N — 6 variables. Thus,
no closed form analytical expressions for the eigenvalues of the Hessian matrix of F can
be derived. However, for convexifying F the actual expressions for all eigenvalues are not
required to be known. In fact, only the minimum value of the minimum eigenvalue over a
prespecified domain is needed in order to conclude whether or not F is convex in a particular
domain. If this value is non-negative then for the current set of as;,ay,a,; and for the
specified variable range F is convex. This can be formulated as the following non—convex

optimization problem:

min A
subject to
det(He—AI)=0
(P10)
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mfgngmzja 7’_2a '7N
L U

yz_y’tgyi: 7’_3a aN
zf’_zingj, 1=4,...,N

Here A is the minimum eigenvalue of the Hessian matrix He of F and I is the identity matrix.
Problem (P9) was solved for N = 2,3 using local optimization techniques. Although no
guarantee for global optimality can be made, by performing multiple runs from different
initial points it appeared that ay;, ay;, a,; of value ~ 6 are sufficient for maintaining A non-
negative and consequently F convex. By assuming that the required values of as;,ay;,a.;
remain more or less unchanged with N, a number of examples have been solved 3 < N < 24
by employing the later transformation. By emloying the later transformation the Lagrange

function of the problem resumes the following form:

N-1 N
L(miayiaziaXia},'iaZ’i) = IIllIl Z Z
ZiyYiy2¢ i=1 j=it1
1
(% X7+ (% %7+ (G 2T
2

[(Xi = X5)2 + (Vi - Y5)* + (% - Z;)°°
N

+ Zazi(XiK - X;)(z: — Xi)
z;2

+ D@V - Yi)(u - Yi)

N
+ Y aui(Z8 - Zi)(z - Z)
1=4
It should be noted that the selection process of a,;,ay,a, is very important so as the

minimum possible values for these parameters are selected. Furthermore, the possibility of

eliminating some of these parameters for certain variable ranges is worth exploring.
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I N| EF| EY| e| E|er| E*|
8 |-20.633 | -19.683 | 0.01 [ 1.0 | 12 |-19.822
9 |-28.321 | -24.111 | 0.01 | 1.0 | 21 |-24.113
10 | -29.783 | -28.326 | 0.01 | 1.5 | 26 | -28.423
11 | -34.233 | -32.559 | 0.02 | 1.5 | 31 | -32.766
12 | -39.522 | -37.557 | 0.02 | 1.5 | 29 | -37.968
13 | -44.487 | -42.290 | 0.02 | 1.5 | 15 | -44.327
14 | -49.469 | -47.218 | 0.02 | 1.5 | 10 | -47.845
15 | -52.655 | -52.083 | 0.02 | 1.5 | 11 | -52.323
16 | -57.612 | -56.601 | 0.02 | 1.5 | 21 | -56.816
17 | -62.463 | -61.222 | 0.05 | 1.5 | 32 | -61.318
18 | -67.591 | -65.615 | 0.05 | 1.5 | 20 | -66.531
19 | -73.567 | -72.117 | 0.10 | 1.5 | 22 | -72.660
20 | -78.485 | -76.972 | 0.10 | 1.5 | 21 |-77.177
91 | -83.265 | -81.427 | 0.10 | 1.5 | 14 | -81.685
922 | -87.754 | -86.116 | 0.10 | 1.5 | 16 | -86.810
93 | -92.949 | -91.276 | 0.10 | 1.5 | 8 | -92.844
924 | -98.920 | -96.997 | 0.10 | 1.5 | 19 | -97.349

Table 1: Bounds and global minimum potential energies 8 < N < 24
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0

min

| Tmin_|

min

1 1

1 1

0.8909 | 0.8949
0.8458 | 0.8505
0.8135 | 0.8272
0.7885 | 0.7984
0.7680 | 0.7798
0.7508 | 0.7626
0.7360 | 0.7479
0.7230 | 0.7359
0.7115 | 0.7265
0.7011 | 0.7137
0.6918 | 0.7033
0.6832 | 0.6940
0.6753 | 0.6854
0.6681 | 0.6780
0.6613 | 0.6714
0.6550 | 0.6640
0.6491 | 0.6579
0.6435 | 0.6518
0.6383 | 0.6468
24 | 0.6334 | 0.6414

W o N o o Wl B
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Table 2: Lower bounds on 7,,;,
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Response to the Reviewer’s Comments

Our responses to the received comments have as follows:

Comment 1. The value of the parameter a is defined as the maximum of three
mutually exclusive possibilities over the region in which r; 5 is expected to vary.
Thus, there is an one to one correspondence between the region in which 7,
is defined and the parameter a, but not an one to one correspondence between
71,2 and a. Corrective action has been taken in the text in order to strengthen

and emphasize this point.

Comment 2. The afformentioned typographical errors have been detected and

corrected.

Comment 3. An extra section named “ Discussion on the structures” has been

added where a disscusion on the global minimum structures is presented.
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