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Abstract. Recent advances in the theory of deterministic global optimization have resulted in the development
of very efficient algorithmic procedures for identifying the global minimum of certain classes of nonconvex
optimization problems. The advent of powerful multiprocessor machines combined with such developments make
it possible to tackle with substantial efficiency otherwise intractable global optimization problems. In this paper,
we will discuss implementation issues and computational results associated with the distributed implementation
of the decomposition–based global optimization algorithm, GOP, [5], [6]. The NP-complete character of the
global optimization problem, translated into extremely high computational requirements, had made it difficult to
address problems of large size.The parallel implementation made it possible to successfully tackle the increased
computational requirements in in order to identify the global minimum in computationally realistic times. The
key computational bottlnecks are identified and properly addressed. Finaly, results on an Intel-Paragon machine
are presented for large scale Indefinite Quadratic Programming problems, with up to 350 quadratic variables, and
Blending–Pooling Problems, with up to 12 components and 30 qualities.
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1. Introduction

The subject of the global optimization of nonconvex constrained problems has received sig-
nificant attention [3], [4]. The existing approaches can be largely classified as deterministic
and probabilistic. Deterministic methods include : Lipschitzian methods, [9]; Branch and
Bound methods, [1]; Cutting Plane methods, [7]; Difference of Convex Function methods,
[15]; Outer Approximation methods [10]; Reformulation-Linearization methods [14]; In-
terval methods, [8]. The probabilistic methods include among others : Random Searches,
[11]; Clustering methods, [13].

Recently, a deterministic primal-relaxed dual global optimization method was proposed
[5], [6], [17], for certain classes of nonconvex optimization problems. Employing duality
theory, a global optimization algorithm, GOP, was developed. Through a series of primal
and relaxed dual problems, that provide valid upper and lower bounds on the global solution,
the global minimum is identified. The algorithm was shown to attain finite $ -convergence
and $ -global optimality. Important theoretical properties, that exploit further the structure
of the Lagrange function, [16], significantly enhanced the performance of GOP.

In this paper we present a distributed implementation of GOP that enhances the computa-
tional efficiency of the method. The proposed approach is applied to large scale Indefinite
Quadratic Problems and large scale Blending and Pooling problems. Section 2 presents a
brief review of the GOP method. In Section 3 the computationally intensive tasks of the
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method are isolated and the proposed distributed computing implementation is discussed.
Section 4 addresses the application of the method to large scale Indefinite Quadratic prob-
lems, and Section 5 presents results on quadratically constrained problems that correspond
to large scale Blending and Pooling problems.

2. Review of the GOP Algorithm

The global optimization problem addressed by the GOP algorithm is stated as follows :
Determine an $ –globally optimal solution of:
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where
H

and
L

arenon–empty, compact, convex sets, : /<0=2M3N4 is an O – vector of inequality
constraints, and

B=/<0=2M3N4
is a P –vector of equality constraints. The function

.=/<0=2�354
, : /<0=2M3N4 ,

and
B=/<0=2M3N4

are continuous, piecewise differentiable and are given in analytical form inHRQ�L
. The variables

0
and

3
are defined such that the following Condition (A) is satisfied:
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, and for every
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and : /<0=2M3N4 are convex in
3

, and
B�/10�2�354

is affine
in
3

.

Making use of duality theory, a global optimization algorithm, GOP, was proposed for
the solution of the problem through a series of sub–problems that provide valid upper
and lower bounds to the global solution. The GOP is a decomposition-based algorithm
that decomposes the original problem into primal and relaxed dual subproblems. By
projecting on the

3
variables, the primal problem takes the form :
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At the same time, the solution of the primal problem provides Lagrange multipliersn�c
, o c , for the inequality and equality constraints respectively. The Lagrange multipliers

are subsequently used to formulate the Lagrange function p /<0=2M3q2�n h 2 o h 4�Cr.=/<0=2M3N4Ds
o h : /10�2�354,sIn h B=/<0=2M3N4 . By making use of several theoretical properties it was proved, [5],
[6], that the solution of the dual problem corresponds to the solution of a series of relaxed
dual problems in the

3
-space. The

3
-space is partitioned into sub–domains and each
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relaxed dual problem represents a valid underestimator of the original non–convex problem
for that particular domain. Each relaxed dual problem is associated with a combinationtDu

of bounds of those
0

variables that appear in bilinear,
0�3

, products in the Lagrange
function. These

0
variables are denoted as connected variables. Each relaxed dual problem

takes the form:
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The first family of constraints represents the Lagrange underestimating cut while the

next two families define the partitioning of the
3
-space. The constraints involving the

gradients of the Lagrange function are denoted as qualifying constraints. They define the
partitioning in the

3
-space. Furthermore a particular

0
variable is connected in and only

if :
� *#� p /10 v � 3�2�n	c�2 o c�4�� � �)�* � is a function of

3
. As it can be seen, solving the relaxed dual

problem in the
wJ�Z�

iteration is equivalent to setting the
0

variables to a combination of their
bounds,

tDu
, and solving for the corresponding domain of the

3
variables. Selecting the

minimum of all these problems and the corresponding solutions from previous iterations
a valid current lower bound on the global minimum is obtained. Once such a solution
has been identified, the values of the

3
variables are updated and the primal problem is

resolved. By solving the primal problem and updating the upper bound as the minimum
solution found, a monotonically non–increasing sequence of upper bounds is generated.
Solving the relaxed dual problems, a non-decreasing sequence of valid lower bounds is
generated due to the accumulation of the previous constraints. As a result, the GOP
algorithm attains finite convergence to an $ -global solution through successive iterations
between the primal and relaxed dual problems. Clearly, the computational bottleneck of
the algorithm manifests itself in the solution of �8���^� problems, where �J��� is the number
of connected variables. The connected

0
variables form a sub–set of the original

0
–type

variables. Additional theoretical properties, [16], allowed the substantial reduction of the
number of connected variables at each iteration of the GOP algorithm.

3. Critical Computational Issues

Based on the analysis just presented, we can clearly identify that the GOP algorithm can
potentially become very intensive from the computational point of view.

It was shown theoretically, [16], and observed computationally that obtaining tight bounds
on the optimization variables, for both the

0
–type as well as the

3
–type, is very helpful in

the convergence rate of the algorithm. As it is discussed in Section 3.1, in order to calculate
tight variable bounds one has to solve � / � * s � - 4 convex NLP’s, where � * and � - if the
total number of

0
–type and

3
–type variables respectively. Therefore, the search for tighter

variable bounds problems can be computationally improved is these problems are solved
in parallel.



4

The major computational bottleneck of the method is the solution of a potentially very
large number of relaxed dual problems at a given iteration, �8���^� . Therefore, major emphasis
has to be placed on the most efficient solution, from the computational point of view, of
this large number of convex or linear optimization problems. To this end, the development
of a distributed computing implementation of the solution of the relaxed dual problems is
of primary importance.

Finally, issues related to the routing of the appropriate data, once a lower bound has been
identified, will also be addressed. Such issues require the implementation of a parallel
routing/sorting algorithm.

Figure 8 depicts the basic steps of the distributed implementation of the GOP algorithm
and highlights the parallelized steps.

dual problems
Formulate the relaxed

Solve the relaxed
dual problems

Route the best
lower bound

Check for convergence

bounds problems
Solve the variable

Formulate the variable
bounds problems

Formulate and solve
the primal problem

Figure 1. Flow Diagram of distributed GOP



5

3.1. Updating the Variable Bounds

Based on the analysis of the GOP algorithm, the set of problems that have to be solved at
the

wJ�Z�
iteration, in order to provide a valid lower bounds on the global minimum, has the

following form :
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Therefore, one observes that the quality of the lower bound o  ¡ depends qualitatively

on the underestimating constraint on o v , and computationally on the number of problems
that have to be solved, ���?�^� . The following observations will establish the connection
between the quality of the variable bounds and the aforementioned issues. To determine
the number of connected variables at each iteration

w
we identify any sign changes of the

gradient of the linearization of the Lagrange function around the solution of the primal
problem,

0	c
, for the current bounds on

0
and

3
variables. To detect whether a particular

qualifying constraint changes sign, one has to identify upper and lower bounds on the
qualifying constraints over the interval of interest. Clearly, the sign of the qualifying
constraints, which detects the existence of a connected variable, is strongly affected by the
range of the variable bounds. Furthermore, it can be observed that the current Lagrange cut,o v´� p /<0 v � 2�3�2�n	c,2 o c�4�� � �)�* � , is the linearization of the Lagrange function at the solution of
the primal problem. Therefore, the quality of this underestimator strongly depends on the
quality of the corresponding variable bounds. Consequently, it is very important for the
computational efficiency of the algorithm, to obtain the tightest possible bounds of the

0
and the

3
variables.

In order to identify the tightest possible variable bounds, we have to calculate the maxi-
mum and minimum possible values of all the variables within the current domain of interest.
Based on the partitioning induced by the GOP algorithm, the domain of interest for the
solution of the relaxed dual problem, is defined by three set of constraints : (a) origi-
nal convex constraints, (b) Original convexified constraints, and (c) previous qualifying
constraint. Sets (a) and (b), define implicitly the range of variables with respect to the
original problem. Obviously, any convex constraint, that is convex inequality and/or affine
equality, will not alter the convexity characteristics of the problem and thus can be used.
Any convexification of the original non–convex constraints will be an overestimation of
the feasible region, and it would restrict the domain for the purpose of identifying tighter
variable bounds. In addition, the current domain of interest, over which the new lower
bound will be sought, is implicitly defined by the set of the previous qualifying constraints.
Hence, the optimization problems, whose solution will define the current tightest possible
lower and upper bounds of the optimization variables is:
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It was also observed computationally that the frequency at which these problems are

solved can be treated as a decision variable. In other words, for certain classes of problems,
(e.g. indefinite quadratic), computing tight bounds once at the very beginning was adequate,
whereas for other classes of problems, (e.g. pooling and blending), the variable bounds had
to be updated at each iteration. It is clear that the total number of variable bounds problems
that have to be solved are � / � * s � - 4 , implying that for large scale optimization problems
the framework of distributed computing is needed. With respect to the implementation,
first we identify whether it is worth solving the bounds problems in parallel (a minimum of
10 problems per processing element is assumed). Then, the vector of variables is divided
into smaller groups and these groups are assigned to nodes who are responsible for solving
the variable bounds problems associated with variables. The master node is then collecting
the partial vector. The collection process has an unavoidable sequential character but the
gains from solving the variable bounds in parallel outperform any potential performance
degradation.

3.2. Solving the Relaxed Dual Problems

The parallel solution of the relaxed dual problems aims at addressing the need to reduce
the computational burden associated with the solution of � ��� � problems at each iteration.
At each iteration a large number of problems are solved, and probably a large number of
them will be feasible and will represent valid lower bounds for that particular domain. As
the algorithm proceeds and better lower and upper bounds are generated, most of these
solutions will not be needed. Nevertheless, every feasible solution that is generated has to
be stored at least temporarily, in order to guarantee the convergence of the GOP algorithm.
As a result, an efficient implementation of the GOP needs to address the issues related to the
storage of the generated solutions. Parallel computing architectures can address effectively
this problem allowing for the distributed storage of the generated lower bounding solutions.

Based on the theoretical analysis of the method, it is clear that all the relaxed dual
problems that have to be solved, have the same functional form, and only the bound
combinations of the

0
–type variables will be different. Therefore, what distinguishes

one relaxed dual problem problem from the others is the bound combination at which
the linearization will be computed, as well as the qualifying constraints that have to be
included. As can be seen in Figure 2, the

3
–domain is partitioned based on the signs of the

qualifying constraints. In this simple illustration we assume that there exist 2 connected
variables that give rise to four bound combinations, that is four possible sign combinations
of the qualifying constraints. A particular node in our parallel architecture will be solely
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responsible for solving the primal problem and preparing all the necessary data for the
formulation of the relaxed dual problems. Subsequently, each node, based on the number
of connected variables that have been identified, determines whether it will be responsible
for solving any relaxed dual problems. The next step will be, for every node, to proceed
on the solution of the relaxed dual problems corresponding to the bound combinations that
have been assigned to it. Once the assigned problems have been solved, all the feasible
solutions are stored in the local CPU’s and only the best lower bound generated at each
processing element is being propagated to the “master” node. This issue brings us naturally
to the third implementational issue associated with the distributed implementation of the
GOP algorithm, that is the routing of the best lower bound.

0 1 2

34

y

Domain 2 (+ -)

1

y 2

3
4

2
1Domain 1 (- -)

Domain 3 (- +)

Domain 4 (+ +)

Figure 2. Parallel Solution of the Relaxed Dual Problems.½J¾�¿DÀ �fÁ�ÂÄÃ#ÅgÆ)Ç#Æ^È,É�ÆZÊNÉ�Ë=Ì`ÍDÆ®Î ¾�¿DÀ �ZÁ�ÂÄÃ#ÅgÆ�Ç,Æ<È#É8Æ�Ê5É�Ë�Ï'Í

3.3. Routing of the Best Lower Bound

Poor data communication in parallel architectures can create substantial bottlenecks, thus
degrading the overall performance of the algorithm. Based on the previous section it is
clear that for the “master” node to proceed with the solution of the next primal problem only
information related to the best lower bound is needed. Furthermore, it is rare to envision
a situation in which hundreds of processing elements attempt to, almost simultaneously,
access a particular node in order to provide certain data. The queuing problems that would
arise will be very significant. Therefore, we implemented a routing algorithm which would,
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steps, where

¤
is the number of nodes, transmit to node

@
the best lower

bound. In pseudo-code form, the implemented algorithm is as follows :

if(mod(node, 2) > 0)
send lower_bound to (node-1)

else{
flag = 1
mult = 4
while(flag == 1){

recv lower_bound
compare/update lower_bound
if(mod(node, mult) > 0){

send lower_bounds to (node-mult/2)
flag = 1

}
mult = 2 * mult

}
}

Figure 3, depicts a situation in which processing nodes
Ò�2 7�7�7 2�Ô , through a series of

“transimit” and “receive-compare” operations communicate the minimum of
Ô

numbers to
node unit

@
.

t=1

t=0

t=2

10

transmit receive-compare

6 8125

7 2 1 8

62

1

7

0 1 2 3 4 5 6 7

t=3

7 2 61

12

1

Figure 3. Routing of the Best Lower Bound

Each processing element will either receive a lower bound from another processing
element and compare it with its current best, or it will transmit its current best lower bound
to another processing element, whose index is defined by the particular algorithm we have
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implemented. The positive features of such an implementation are that the generated
solutions are stored locally and only a very small number of data is transmitted through the
network. The last message that will be received by node “

@
” will contain the current best

lower bound.

4. Large Scale Indefinite Quadratic Problems

In this section, we will consider the application of the distributed version of the GOP algo-
rithm to large scale Indefinite Quadratic Optimization problems. The generic formulation
of [12] is considered. According to that formulation the optimization problem is stated as
follows:

%'&)(*#+ -8}»Õ�Ö /<0=2�354DC
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By construction, we generate half of the eigenvalues,
n � , positive and half negative.

Reportedly, this is the most difficult problem to address since the solution, unlike strictly
concave problems, may not lie on a vertex point. Several runs, for different problem sizes,
were performed and the results are analyzed with respect to (i) the effect of the linear
constraints, and linear variables; (ii) the effect of linear constraints; (iii) the effect of linear
variables. Finally, some very computationally intensive tasks are discussed. In all runs we
denote by

�
the number of linear variables, O the number of linear constraints, and ¬ the

number of quadratic variables.

4.1. Combined Effect of the Linear Constraints and Linear Variables

The first set of computational results aims at demonstrating the effect on the performance
of the GOP for different values of

�
and O . Typical results are tabulated in Table 1.

Based on these results the following observation can be made : as long as
c�é�ç� � Ò andç � � Ò

the GOP algorithm identifies the global minimum with maximum efficiency.The
GOP algorithm takes two iterations and solves only two primal problems and two relaxed
dual problems. Qualitatively, this implies that, for this particular structure of problems
such a combination of the parameters forces the solution to lie close to a vertex point. The
GOP algorithm, identifies that fact very efficiently and converges in the minimum number
of iterations.
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Table 1. Combined Effect of m and k. N =
m+n, M = m + 2(k+n).

k m n N M CPU(s)

80 120 100 180 480 4.49
100 100 100 200 500 5.42
100 200 200 300 800 10.3
100 300 100 200 700 9.38
150 150 250 400 950 12.3
200 200 100 300 800 6.26
200 200 200 400 1000 7.86
200 200 220 420 1040 17.4
200 200 250 450 1100 4.50
200 300 100 300 900 5.08
300 300 100 400 1100 9.58
400 200 100 500 1200 13.2

Table 2. Effect of m. n = 100, k =
200.

m ê±ë1ì Itn PE CPU(s)

1 0 2 2 2.45
5 5 18 32 30.1
10 9 30 32 96.3
20 8 4 32 44.5
40 8 4 32 60.1
60 3 4 4 11.3

100 0 2 2 5.42
200 0 2 2 5.76
300 0 2 2 7.62

4.2. Effect of the Number of Linear Constraints

The next computational experiment aimed at isolating the effect of the linear constraints in
the behavior of GOP. The computational results have been tabulated in Table 2 for constant
values of

�`C � @#@ , and ¬ CíÒ�@,@
.

As it can be seen, increasing the number of linear constraints results in an increase in the
computational effort initially. This can be seen by observing both �J� � as well as the number
of the required interactions. As O increases though the addition of linear constraints in the
feasible region increases the number of vertices in the polytope and as a result the GOP
becomes once again very efficient in determining the global minimum with minimal effort.
The results are also depicted in Figure 4.
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Table 3. Effect of k. n = 100, m =
100.

k ê±ë1ì Itn PE CPU(s)

0 1 2 2 3.17
20 1 2 2 3.80
40 3 2 2 6.30
60 3 2 4 11.3
80 4 2 8 28.1
90 1 2 4 7.45

100 1 2 2 5.42
130 5 2 32 32.2.
150 6 2 32 41.8
200 6 2 32 54.2
300 9 3 32 192.
400 10 2 32 198.

4.3. Effect of the Number of Linear Variables

The effect of increasing the number of linear variables in the behavior of the GOP is more
complex. The computational results of Table 3 indicate the complex nature of the effect of
the value of

�
.

It is clear from Figure 5 that
�

has a non monotonic effect and eventually, the larger
the value of

�
the more difficult the problem becomes. It should be pointed out that the

difficulty, in terms of GOP, is expressed through the number of connected variables, ��� � ,
and the number of iterations for the GOP to converge. The CPU is an indication as well,
but for the large problems of Section 4.1 the large CPU time were due to the large size of
the resulting convex sub-problems that had to be solved.
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Figure 5. Effect of ð
Table 4. Some computationally intensive tasks.

k m n ê±ë1ì Itn PE CPU(s)

30 20 100 9 54 32 100.
20 20 150 7 7 64 14.0
20 20 200 16 60 64 1847
300 100 200 8 3 32 54.0
50 50 220 10 3 64 31.6
50 50 250 14 16 64 796.
50 50 275 16 3 64 1800
50 50 300 17 3 64 3260
75 75 300 15 3 64 942.
75 75 350 11 3 64 209.

4.4. Effect of the Number of Nonlinear Variables

Finally, the last set of computational experiments deals with certain instances which are
computationally very intensive in terms of the connected variables and number of iterations.
The results have been summarized in Table 4.

It is important to notice from Table 4 the fact that although the absolute size of the
problems might not be that large (

�`CAñ,@
, O C � @ , and ¬ C\Ò�@#@

for instance) the difficulty
of the problem is noticeable both in terms of the number of iterations required as well as
in terms of the number of connected variables. Note that for all the representative runs
of Table 4 the relations between

�
, O , and ¬ that define an “easy” problem for GOP are

violated. By combining the theoretical advances of the GOP, along with the distributed
implementation of the algorithm we were able to address problems of significant size.



13

As a last qualitative remark we will observe the computational requirements, in terms
of the total CPU time, as a function of the the number of connected variables. As can be
seen from Figure 6 there exists a linear relationship between the logarithm of the CPU time
and the number of connected variables, �J� � as expected since the number of relaxed duals
increases exponentially with �J� � .

2

3

4

5

6

7

8

6 8 10 12 14 16 18

l
n
(
T
I
M
E
)

NIc

Figure 6. Time vs. êlëóò
Summarizing, the computational results for indefinite quadratic problems we can observe

that :

ô problems of 400 linear variables, 100 nonlinear variables, 200 linear constraints, and
500 bound constraints can be solved in 13.2 s. as shown in Table 1.

ô increasing the size of the linear linear constraints makes the problem easier for the
GOP (e.g., problems with 300 linear constraints, 200 linear variables, 100 nonlinear
variables require 7.6 s.)

ô increasing the number of linear variables to 400 while maintaining 100 nonlinear
variables and 100 constraints increases the CPU to 198 s., and

ô problems that correspond to increasing the number of nonlinear variables up to 350 can
still be solved with reasonable computational effort, as it is shown in Table 4.

5. Large Scale Blending and Pooling Problems

In this section we will discuss the solution of a specific formulation of pooling/blending
problems using the GOP. Such problems are very often encountered in various chemical
processes. They describe the situation in which a set of components ( ¬�¯ ¨ OiP ) with
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given level of certain qualities ( ¬�õ © ª�² ) is to be mixed in a given number of pools ( ¬�P ¨�¨ ² )
in order to produce a number of products ( ¬�P ¥ ¨ · ) with prespecified characteristics. The
situation is described in Figure 7.

32

q
11

y12

y
24

z22

z34

q

component i

C1

C3

C2

P2

P1

P1

P2

P3

P4

product jpool l

Figure 7. Pooling/Blending Problems

We use the reformulation proposed by [2] in which one considers the fractional flow
rates õ ��� . We address a generalized version of the blending and pooling problem in
which every component stream is allowed to directly reach any pool as well as any
product. According to that assumption, the blending and pooling problem can be
defined as follows:
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Clearly, this corresponds to a quadratically constrained problem with a quadratic ob-
jective function. Different instances of randomly generated Blending and Pooling
Problems based on the above reformulation were generated and solved. Typical results
are shown in Table 5.

Table 5. Blending and Pooling Problems

ncomp nprod npool nqual nvar ncon êlë1ì PE CPU(s)

5 5 3 5 55 186 15 64 15.3
10 4 4 9 96 300 15 64 36.3
10 4 4 16 96 356 15 64 42.0
10 4 4 18 96 372 16 64 39.0
10 4 4 25 96 428 16 64 44.9
10 4 5 30 110 468 20 64 843.
12 4 4 9 112 336 16 64 37.3
12 4 4 25 112 464 16 64 50.1
12 4 4 30 112 504 16 64 44.9
12 4 5 4 128 330 20 64 869.

The total number of variables for each instance is ¬ e ª ¥ C ¬�¯ ¨ O¼P Q ¬�P ¥ ¨ · s ¬�P ¨�¨ ² Q¬�P ¥ ¨ · s ¬�¯ ¨ OiP Q ¬�P ¥ ¨ · and the total number of constraints ¬�¯ ¨ ¬ C � Q ¬�¯ ¨ OiP s¬�P ¥ ¨ · s � Q ¬�P ¥ ¨ · s � Q ¬�P ¨�¨ ² Q ¬�õ © ª�² s � Q ¬�P ¥ ¨ · . The distributed implementation
of the GOP allowed us to address problems with 20 connected variables, which require
the solution of 1,048,576 relaxed dual problems, in very realistic computational times.
For instance, as can be seen from Table 5 pooling problems of 128 variables and 330
constraints can be solved within 840–870 s., even though they have 20 connected
variables.

6. Conclusions

In this paper, the distributed implementation of a decomposition–based global opti-
mization algorithm, GOP, was presented. The main computational bottlenecks of the
method were identified and these are comprised of (i) the distributed solution of a set
of convex problems providing tight variable bounds, (ii) the distributed solution of the
relaxed dual problems that provide valid lower bounds on the global minimum, and
(iii) communication issues related to the routing of the necessary data. An efficient
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parallelization on the Intel Paragon machine was developed and results for large scale
problems were presented. These include large scale Indefinite Quadratic Problems
with up to 350 quadratic variables, as well as Blending–Pooling Problems with up to
12 components and 30 qualities.
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