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Abstract. A branch and bound global optimization method, o.BB, for general continuous optimization problems
involving nonconvexities in the objective function and/or constraints is presented. The nonconvexities are
categorized as being either of special structure or generic. A convex relaxation of the original nonconvex problem
is obtained by (i) replacing al nonconvex terms of special structure (i.e. bilinear, fractional, signomial) with
customized tight convex lower bounding functions and (ii) by utilizing the « parameter as defined in [17] to
underestimate nonconvex terms of generic structure. The proposed branch and bound type algorithm attains
finite e-convergence to the global minimum through the successive subdivision of the origina region and the
subseguent solution of a series of nonlinear convex minimization problems. The global optimization method,
aBB, isimplemented in C and tested on a variety of example problems.

Keywords: Global optimization, constrained optimization, convex relaxation

1. Introduction

A significant effort has been spent in the last five decades studying theoretical and algo-
rithmic aspects of local optimization algorithms and their applications in engineering and
science. Comparatively, there has been traditionally much less attention devoted to global
optimization methods. However, in the last decade the area of global optimization has at-
tracted alot of interest from the operations research, engineering and applied mathematics
communities. This recent surge of interest can be attributed to the realization that there
exists an abundance of optimization problems for which existing local optimization ap-
proaches cannot consistently locate the global minimum solution. Furthermore, the steady
improvement in the performance of computers constantly extends the scope of problems
which are tractable with global optimization approaches.

Existing global optimization algorithms, based on their convergence properties, can be
be partitioned into deterministic and stochastic. The deterministic approachesinclude Lip-
schitzian methods [12], [13]; branch and bound procedures [2], [15], [1]; cutting plane
methods [32]; difference of convex functions and reverse convex methods [31]; outer ap-
proximation approaches[14]; primal—dual methods[29], [6], [7], [33], [4]; reformulation—
linearization[27],[28]; andinterval methods[8]. Stochasticapproaches, encompassamong
others simulated annealing [26], genetic algorithms [10], [3], and clustering methods [25].
A number of books [23], [30], [24], [16], [5], [11] summarize the latest developmentsin
the area.
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Deterministic approaches typically provide mathematical guarantees for convergence
to an e—global minimum in finite number of steps for optimization problems involving
certain mathematical structure. On the other hand, stochastic methods offer asymptotic
convergence guarantees only at infinity for a very wide class of optimization problems.
It is the objective of this work to extend deterministic guarantees for convergence to a
very general class of continuous optimization problems and implement this procedure in
the BB global optimization package. In the next section, a description of the global
optimization problem addressed in this paper is presented.

2. Problem Definition

The optimization problem addressed in this paper can be formulated as the following
constrained nonlinear optimization problem involving only continuous variables.

min f(x) (PO)

p.9

subjectto hj(x) = 0, j=1,...,M

gk(x) S 0: k:]-: :K
Ax < ¢
x” < x < xV

Here x denotes the vector of variables, f(x) is the nonlinear objective function, k;(x) is
the set of nonlinear equality constraintsand gi,(x), k = 1, ..., K isthe set of nonlinear in-
equality constraints. Formulation (PO) in general correspondsto anonconvex optimization
problem possibly involving multiple local and disconnected feasible regions. It has been
observed in practice that existing path—following techniques cannot consistently locate the
global minimum solution of (PO) even if a multi-start procedure are utilized. For special
cases of (PO) involving bilinear or polynomial terms[6], [7], signomial terms[18], efficient
algorithms have been proposed for locating the global minimum solution. For the general
case, however, of minimizing a nonconvex function subject to a set of nonconvex equal-
ity and inequality constraints there has been comparatively little work in deriving global
optimization methods and tools.

Our approach is based on the convex relaxation of the original nonconvex formulation
(PO). Thisrequiresthe convex lower bounding of all nonconvex expressions appearing in
(PO). These terms can be partitioned into three classes:

(i) convex,
(if) nonconvex of special structure,

(iif) nonconvex of generic structure.



Clearly, no convex lower bounding action isrequired for convex functions. For nonconvex
terms of special structure (e.g. bilinear, univariate concave functions), tight specialized
convex lower bounding schemes aready exist and therefore can be utilized. Based on
this partitioning of different terms appearing in the objective function and constraints,
formulation (PO) is rewritten equivalently as follows:

N-1 N
n;in Co(x) + Z NCP(x) + Z b?yi/-’ﬂimz" (P)
keKD i=1 i'=it+1

—_

N-1 N
subjectto  CU(x)+ D NCi(x)+ Y. > blmizy, <0
kekKs i=1 i'=i+1
i=1,...,(2M + K)

Ax = ¢, x < x < %Y

where NC’i(x)withx € {ml : ieN,f}, 7=0,...,2M + K)

Notethat all nonlinear equality constraintsa; (x) = 0 appearingin (P0) have been replaced
by two inequalities in (P). C°(x) is the convex part of the objective function; NC}(x)
is the set of K° generic nonconvex terms appearing in the objective function; N is the
subset of variable x participating in each generic nonconvex term k in the objective; and
b?’i,zizi/ the bilinear terms. Similarly, for each constraint j, there exists a convex part
Ci(x), K/ generic nonconvex terms N Ci(x), with A variables x per term, and the
bilinear terms bff ez, Additionally, linear equality constraints and variable bounding
constraints appeé\r explicitly in the model (P). Clearly, for each optimization problem that
falls within formulation (PO) there exist several ways of reformulating it into (P). In the
current implementation of BB the only nonconvex terms recognized as having special
structure are the bilinear terms. Work is currently under way to include in the set of
nonconvex terms of special structure additional nonconvex functions such as univariate
concave, signomial functions, and products of univariatefunctions[19]. Inthe next section
the derivation of aconvex relaxation (R) of (P) is discussed.

3. Convex Relaxation

A convex relaxation of (P) can be constructed by replacing each generic nonconvex term,
NCY(x), and each bilinear term, b ,,z;z;/, j = 0,...,(2M + K), with one or more
convex lower bounding functions.



3.1. Nonconvex Terms of Special Structure

Asitisshownin[2], thetightest possible cornvex lower bounding of abilinear termb; ;/z;z;/
inside some rectangular domain [z, 2{'] x [z%,2{] (convex envelope) corresponds to
the maximum of the following two linear cuts.

bi,i’mimi’ Z si,i’(mi; :l:l'/) = max (Y;»L:Ei/ + erlzl - Y'Z»LY;/L,

Yz + Y 2 - YY)

i3
Y% = min (biyi/ml-lf,biyi/mg),

where YL — min (biyilzil/, bi,i’zU):
i3

YZ.U = max (bi’i/:z:iL, bi,i’z’zU)’
YY = max (biyi/zﬁ,bi,i’zg)

sii1(z:, zy1) isthe convex envelope of b; ;z;z; inside the rectangular domain [zf, 27| x

2
[ziL,, mH] and therefore, it can become arbitrarily close to b; ;s @;z; for a small enough
rectangular domain.

It can be shown that the maximum separation between b; ; z;z;» and s; ;» inside the
domain [zF,zY] x [z£,2!/] can be at most one fourth of the area of the rectangular
domain multiplied by the absolute value of b; ;::

7,0 .

4

This maximum separation occurs at the middle point

L U L U
m ZT; ZT; z2m Ty i
" _t & v v
i 2 ’ I3 2

LeMMa 1 The maximum separation of the bilinear term zy from its convex envelope,
max (zLy +azyl — 2ty", 2Vy + 2y¥ — zUyU), insidetherectangle [zL, :Z:U] X [yL, yU]
occurs at the middle point

m :Z:L + :Z:U - yL +yU

xr :T, Yy =

and is equal to one fourth of the area of the rectangular domain,

(2" =) 6" =v")
4

Proof: This can be formulated as the following optimization problem.

max 2y — max (zLy + zyL - zLyL, zUy + sz - zUyU)
T

)



’J:U

yU

subjectto  z* z

<z <
y" <y <
By substituting in the objective function z = z” or z = zV ory = y* or y = yY the
maximum separation becomes zero. Thisimpliesthat for any point in the perimeter of the
rectangle [z%, V] x [y’,yY]| 2y matches its convex envelope and thus the point where
the maximum separation occurs must be an interior point. After replacing the max ,(-)
operator with the equivalent — min,, ,, —(-) operator and eliminating the max over the two
linear cuts at the expense of two new inequality constraints we have:

— min —zy+ 2z
@,y
subjectto z > zly+ zyl — 2Fyt
2z > aUy+zy’ — U7

:I:L U

<eo<
v <y <Y

z

Let u1, 42 > 0 be the multipliers associated with the two new inequality constraints.
Clearly, the multipliers associated with the variable bound constraints are zero since the
solution will be an interior point. The KKT conditions yield the following stationarity
conditions:

Bt pe—1 =

przt + poz? —z

py" + oy’ —y =
(—z+z"y +2y" —2"y") m
(—z+ 2%y +2zy” —2"y") o
M1, o 2>

o OO o o o ©

Clearly, at least one of p1, ps must be nonzero, leading to the following three cases:
(i) p =0, p2 =1
(i) p =1, p2 =0
(i) p1 > 0, pp > 0

If ug = 1 0r up = 1thenwe have —z + 2%y + zy” — 2y = 0or —z + 2Vy +
zy’ —2UyY = 0 respectively. Both cases (i) and (ii) lead to azero maximum separation
implying that they correspond to local minima. The single remaining case (iii) yields the
following linear system of equationsin w1, o, 2, v, 2

p1t+pp—1 =20



prz” 4 paz¥ —z =
piyE ey’ —y =
2t aly+ayt —alyt =

—z+ 2yt — UV =

o o o ©

Solution of this system gives:

zL—|—:1:U yL+yU :Z:UyL—i—:l:LyU 1

T= T VS T 2 T b= e = g
The maximum separation thereforeis

(zV — 2F) (37 — yF)

1 .

zy—z =

3.2. Nonconvex Terms of Generic Structure

The convex lower bounding of the generic nonconvex terms N C’i is motivated by the
approach introduced in [17]. For each one of the generic nonconvex functions,

NCj(x), j=0,...,2M +K), k € K
where NC’i(x)withx € {ml : ie/\/,ﬂ}, i=0,...,2M + K)

a convex lower bounding function N C*“"" can be defined by augmenting the original
nonconvex expression with theaddition of aseparableconvex quadratic functionof (z;, i €
N).

NC[*™(x) = NCi(x)

+ Z a?yk(xL,xU) (zZL—zl) (z?—zi), i=0,...,2M +K), k € K
i€N]

; 1
where agk(xL,xU) > max{O,—— min )\(x)}

xL <x<xV

Note that aff’  &re nonnegative parameters which must be greater or equal to the negative
one half of the minimum eigenvalue of the Hessian matrix of NC’i’“”“ over zF < z; <
2V, i € Nj. These parameters O‘g,k can be estimated either through the solution of an
optimization problem or by using the concept of the measure of a matrix [17]. The effect
of adding the extra separabl e quadratic term on the generic nonconvex termsisto construct
new convex functions by overpowering the nonconvexity characteristics of the original
nonconvex termswith the addition of theterms 2] , toall of their eigenvalues. These new



functions N C] onY defined over the rectangular domainszX < z; <2V, i e N,ﬁ involve

anumber of |mp0rtant properties. These propertiesare as fol lows:

2 ?

Property 1:. NC’j’”"“ isavalid underestimator of NC’i.

Ve, € [zF,2Y], iec N wehave NC} " (x) < NCi(x).

2!

Proof: For every i = 1,...,N we have (zf — ;) (2 —2;) < 0 and aso by
definitionagyk(xL,xU) > 0. Therefore,V x € [XL,XU], NC)™"(x) < NCj(x).

|
Property 2:. N C’i’”’“’(x) matches N C’i at al corner points.
Proof: Letx® beacorner point of [xL,x"] thenforevery i = 1,..., N (2 — zf) =
0 or (zV —=zf) = 0. Therefore, NC]°""(x°) = NCi(x°) in either case.
|
Property 3:. NCJ“"(x)iscovexinz; € [zF,2V], ie Ni.

Proof: Itisadirect consequence of the definition of the parameters aff k (xF, xY), (See

[17]). u

Property 4:.  The maximum separation between the nonconvex term of generic structure
NC*™" and its convex relaxation N ¢ is bounded and proportional to the positive

parametersa’ , and to the square of the diagonal of the current box constraints.

ot (0wt )
= Z Z x XU)( —zZ-L)Z
ZEJ\/]

Proof:

max (NC’i (x) — NC’i’COM(x))

xL<x<xV

= max - Z agyk(xL,xU) (zf — ;) (2 — ;)

xIL<x<xV .
iEN]

= — min Z a{yk(xL,xU) (zf — z;) (2V — =)

xL <x<xV .
iEN]

1 ;
=2 Z agyk(xL,xU) (zZU —zZ»L)z

iEN]



Property 5:.  The underestimators constructed over supersets of the current set are always
less tight than the underestimator constructed over the current box constraints for every
point within the current box constraints.

Proof: See[17]. ]

Clearly, the smaller the values of the positive parameters ag.' & the narrower the separation
between the original nonconvex terms and their respecti\/e convex relaxations will be.
Therefore fewer iterations will also be required for convergence. To this end, customized
o parameters are defined for each variable, term and constraint. Furthermore, an updating
procedure for the &'s as the size of the partition elements decreases is currently under
investigation.

This type of convex lower bounding is utilized for nonconvex functions which lack any
specific structure that might enabl e the construction of customized convex lower bounding
functions. Clearly, the a—based convex lower bounding can be applied to bilinear terms
as well without having to introduce additional variable and constraints. However, in this
case the maximum separation will be larger than the one based on the linear cuts. More
specifically, the maximum separation for the o: convex lower bounding schemeis,

(2" o)’ + (v —y")’
. .

Thisis always greater than

(zU _ mL) (yU _ yL)
4

unless z¥ — 2z = ¢Y — y. Based on the aforementioned convex lower bounding
procedures for bilinear terms and generic nonconvex terms, a convex relaxation (R) of (P)
is proposed.

min  C°(x)+ ) NCi(x) (R)
keke
+ Z oy (x x) (2 — @) (2 —=i) + 5?,2"
iENY

subjectto  Ci(x)+ Y NCi(x)



. . - o
s, > max(YiJ’ oo+ Y e, =YY",

73!

Y9 Vg 4+ ¥i¥ s, - }gj’UYj}’U,) , i=0,...,(2M + K)

.- ]
where  Y/" = rnln( “,z “,zU)
L : U
Y)" = rnln(“,m,, “,z,)
Yl.]’U = max (b] Jzk b “ zZU)
U
Y)" = max (b] l,:z: 7 “,zq)
Ax = ¢, xF < x < %Y

and  NCi(x)withx € {:1: : ieNg}, j=0,...,(2M + K)

Formulation (R) is a convex programming problem whose global minimum solution
can be routinely found with existing local optimization solvers such as MINOS5.4 [22].
Formulation (R) is arelaxation of (P) and therefore its solution is avalid lower bound on
the global minimum solution of (P).

In the next section, we will see how this convex lower bounding formulation (R) can be
utilized in abranch and bound framework for locating the global minimum solution of (P).

4. Global Optimization Algorithm, BB

A global optimization procedure, aBB, is proposed for locating the global minimum
solution of (P) based on the refinement of converging lower and upper bounds. Lower
bounds are obtained through the solution of convex programming problems (R) and upper
bounds based on the solution of (P) with local methods.

Asit has been discussed in the previous subsection, the maximum separation between the
generic and bilinear nonconvex termsand their respective convex lower bounding functions
is bounded. For the generic nonconvex terms this maximum separation is proportional
to the square of the diagonal of the rectangular partition element and for the bilinear
terms proportional to the area of the rectangular domain. Furthermore, as the size of the
rectangular domains approaches zero, these maximum separations go to zero aswell. This
implies that as the current box constraints [x”, xV] collapseinto a point; (i) the maximum
separation between the original objective function of (P) and its convex relaxation in (R)
becomeszero; and (ii) by the same argument, the maxi mum separation between the original
congtraint set in (P) and the one in (R) goes to zero as well. This implies that for every
positive number ¢; and x there always exists a positive number é such that by reducing
the rectangular region [x©,xY] around x so as ||x¥ — x|| < §é differences between the
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feasible region of the original problem (P) and its convex relaxation (R) become less than
;. Therefore, any feasible point x° of problem (R) (even the global minimum solution)
becomes ét least € ;—feasible for problem (P) by sufficiently tightening the bounds on x
around this point.

Thenext step, after establishing an upper and alower bound on the global minimum, isto
refinethem. Thisisaccomplished by successively partitioning theinitial rectangular region
into smaller ones. The number of variables along which subdivision is required is equal
to the number of variables x participating in at least one nonconvex term in formulation
(P). The partitioning strategy involves the successive subdivision of a rectangle into two
subrectangles by halving on the middle point of the longest side of the initial rectangle
(bisection). Therefore, at each iteration alower bound of the objective function of (P) is
simply the minimum over all the minimaof problem (R) in every subrectangle composing
theinitial rectangle. Therefore, a straightforward (bound improving) way of tightening the
lower bound isto halve at each iteration, only the subrectangle responsible for the infimum
of the minima of (R) over al subrectangles, according to the rules discussed earlier. This
procedure generates a nondecreasing sequence for the lower bound. An nonincreasing
seguence for the upper bound is derived by solving locally the nonconvex problem (P) and
selecting it to be the minimum over all the previously recorded upper bounds. Clearly, if
the single minimum of (R) in any subrectangleis greater than the current upper bound we
can safely ignore this subrectangle because the global minimum of (P) cannot be situated
inside it (fathoming step).

Because the maximum separations between nonconvex terms and their respective convex
lower bounding functions are bounded and continuous functions of the size of rectangular
domain, arbitrarily small e; feasibility and €. cornvergence tolerances are reached for a
finite size partition element.

The basic steps of the proposed global optimization algorithm are as follows:

STEP 1 - Initialization

A convergence tolerance, €., and afeasibility tolerance, ¢, are selected and the iteration
counter Iter is set to one. Current variable bounds x™ /%", xV-Tt" for the first iteration
are set to be equal to the global onesx™2P  xUBD | ower and upper bounds LBD, U BD
on the global minimum of (P) areinitialized and an initial current point x*7**" is selected.

STEP 2 - Local Solution of Nonconvex NLP and Update of Upper Bound GY 2P

The nonconvex optimization problem (P) is solved localy within the current variable
bounds x PP | xUBD |f the solution fli<r, of (P) ise;—feasible the upper bound U BD is
updated as follows,

UBD = min (UBD, f{i%)

local

STEP 3 - Partitioning of Current Rectangle

The current rectangle [x%/%, xV:Tter] is partitioned into the following two rectangles
(r=1,2):



r L Iter U,Iter B r L Iter U,Iter
T T T T
1 1 1 1
L,Iter U,Iter L,Iter U, Iter
L Tter (IZIter + % Tier ) ( Tter T % Tier ) U,ITter
T ! T
[iter 2 2 [Iter
L Iter U,Iter L Iter U,Iter
L TN TN . L TN N .
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where I’**" corresponds to the variable with the longest side in the initial rectangle,

U,Iter

)

lIter

L Iter
= argmax|z —z;
g

STEP 4 - Update of o ,’sinside both subrectanglesr=1,2
The positive parameterSa{yk (xU-Tter xE.Iter) gre updated inside both rectangles r=1,2.
STEP 5 - Solution of (R) inside both subrectanglesr=1,2

The convex optimization problem (R) is solved inside both subrectangles (» = 1, 2)
using any convex nonlinear solver (e.g. MINOS5.4 [22]). If asolution I/ is |ess than

sol
r.Iter

the current upper bound, U BD then it is stored along with the solution point x_;

STEP 6 - Update Iteration Counter Iter and Lower Bound LBD
Theiteration counter isincreased by one,

Iter «— Iter + 1

and the lower bound LB D is updated to the minimum solution over the stored ones from
previousiterations. Furthermore, the selected solution is erased from the stored set.

g Tter!
LBD =1
! Iter' : I
where I = min i, r=1,2, I=1,...,Iter — 1.
r I

STEP 7 - Update Current Point x> /**™ and Current Bounds x*7*¢" xV:T*e" onx
The current point is selected to be the solution point of the previously found minimum

solutionin STEP 6,

r! Tter’
sol

Xc,Iter - x

and the current rectangle becomes the subrectangle containing the previously found solu-
tion,
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L Iter U Iter’ T
xr T
1 1
L,Iter! U, Iter’
[XL,Iter,XU,Iter] L.Iter! (xl“er, +xl“er, ) , if ¢ =1
jIter! 2
L Iter’ U Iter’
TN TN J
[ L Iter U Tter' 7
Zq Zq
1 1
L Iter U Iter L,Iter U,Iter .
z’iy i:l‘l'i7 ] = (xl”erl +xl“”’ U Iter' |, if o =2
2 jiter!
L Iter’ U, Iter’
N N

STEP 8 - Check for Convergence

IF (UBD — LBD) > e, thenreturnto STEP 2

Otherwise, e .—convergence has been reached and the global minimum solution, and solution
point are:

f* - fc,Iter”

1
<* Xc,Iter

where Iter” = arg{fc’l) = UBD, I= 1,...,Ite1"}.
I

A mathematical proof that the proposed global optimization algorithm converges to the
the global minimum is based on the analysis of standard deterministic global optimization
algorithms presented in [16] as shownin [17] and [18].

5. Implementation of BB

One of the key characteristics of the «BB method isthat it is a generic global optimization
method for constrained optimization problems involving only continuous variables. The
algorithmisimplementedin C and at this point the user has the capability of selecting from
four different types of functional forms to define the optimization model. These forms
include (i) linear, (ii) convex, (iii) bilinear, and (iv) nonconvex terms. The original data
are pre—processed so that any linear part in the model, (i.e. linear constraints and linear
cuts), are identified at the very beginning thus reducing the amount of time that is needed
to set up the problem in subsequent stages of the algorithm. The user has the capability to
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supply the values for the parameters o which are defined for each variable: = 1,..., N
participating in term & € K/ and constraint (or objective function) 5 = 0,..., M. In
principle, tailoring the o parametersfor each variable, term and constraint generatestighter
convex underestimatorsthan by simply defining asingle generic « for all the variablesand
nonconvex terms. Furthermore, the user a so decides al ong which variables branching will
be performed. These variables are typically the onesthat appear in at least one nonconvex
term.

Theinformation required by the user, in the current implementation, consists of an input
file and a set of user specified functions.

e Input File : Thisfile provides, in a user—friendly format, information such as (i) the
number of variables and constraints; (ii) the number of different functional forms (i.e.
linear, convex, bilinear, and nonconvex) appearing in the model; (iii) the actual linear
and bilinear entries; (iv) values for the parameter aﬁyk for each variable, term, and
constraint or objective function; and finally (v) the variables along which branching
will be performed.

o User Specified Functions : The nonlinear, (i.e. convex and nonconvex), terms of the
formulation haveto be explicitly provided by theuser inaform of aC or F77 subroutine.
Here the user specifies, for each function (as defined in the input file), the convex and
nonconvex terms.

An €efficient parsing phase which would significantly simplify the problem input and
declaration is currently under development and is going to be incorporated in the version
of &BB. Further work isin progresstowardsthe evaluation of customized parametersa: for
different partition elements.

6. Computational Studies
The BB method has been tested on a variety of nonlinear optimization problems which

are described in the following subsections. The selected convergencetoleranceis10~* and
computational requirements are reported for an HP—730 workstation.

6.1. Bilinearly Constrained Optimization Problems

The simplest type of norHinearities present in the formulation are bilinear terms in either
the objective or the constraint set. Thefirst three examplesto be considered arethe Haverly
Pooling Problems [9]. The three instances of of the Haverly Pooling problems are the
following:

o Coasel:

maz 9z + 15y — 64 — 16B — 10(c; + ¢y)



14

st. Po+P,—A—B =0
z—P,—-C, =0
y—PFP,—-Cy, =0
pP, +2C; — 2.5z < 0
pP, +2C, — 1.5y < 0
pP,+pP,—3A—-B =0
z < 100
y < 200

Inthisfirst instance, there are three linear equality constraints, two bilinear inequalities
and one bilinear equality. The three bilinear constraints will be underestimated using
linear cuts[2]. Thereisatotal of 9 continuousvariables, however, branchingisrequired
on only three of them, (i.e. p, Py, P,), which participate in the bilinear terms. The
algorithm converges to the global minimum in about 2.7 seconds and a total of 89
nodes of the complete binary tree are expanded. This means that 89 lower bounding
problems were solved to meet the selected convergence tolerance of 10~3. The global
minimum solutionislocatedat: p =1, B= P, = C, = 100,y = 200,C, = A = 0.

Casell :

Thisproblemisidentical to Casel, except that the upper bound on variablez ischanged
from 100 to 600. The global minimumisnow at: p = 3,4 = P, = C, = 300,z =
600,C, = B = 0. Thesolution is found in about 3.0 seconds and a total of 97 nodes
areinvestigated.

Caselll :

In Caselll, thevalueof thecoefficient of B inthe objectivefunction ischanged from 16
to 13. The solution, located in about 2.2 seconds, isp = 1.5, A = 50, B = 150, P, =
200,y = 200, P, = z = 0, and atotal of 91 nodes needed to be investigated.

6.2. Bilinearly Constrained with Bilinear Objective Optimization Problems

The next degree of difficulty isto consider bilinearitiesin both in the objectiveaswell asin
the constraint set. As such an example we will consider the following formulation which
describes the optimal design of a separation system involving three mixers, a splitter, a
flash unit, and a column. The optimization problem is defined as follows:

min — 87.5z; — 316.5625z 25 — 352.3438z 124 — 143.52125 — 1752,
— 271.87bzsx3 — 307.8125z924 — 62.52925 + 1250z + 50z7



15

s.t. 13.9375zz3 + 13.9688z 124 — x4 + 25z 25

+13.125z523 + 12.8125z524 4+ 252 — 225 < 15
—2bz123 — 2bzaws + 62527 < 0O
2bz 23 4 2bzyxs — 62.527 < 0
—2bz1z4 — 2bTos 4+ 62525 < 0
2bz124 4+ 2bzozs — 62.525 < 0
31.25z1z5 — 2.6875z1z5 — 11.1563z 124
+37.5z925 — 0.625z923 — 9.6875z52,4 0

IAIA

—30111235 =+ 25232 =+ 29375132233 — 359375122234 — 25232125
251‘.1 — 139375%1%3 — 1396881311‘.4 — 251‘.11‘.5
+251§2 — 13125132133 — 1281251&22}'4 — 25232125 S 18
This problem involves seven variables and branching is required in all of them. Conver-
gence to the global minimum solution (z; = 0.3200,z; = 1.0000, z3 = 0.7920,z4 =

0.0629,z5 = 0.0000,z¢ = 0.0033,z7 = 0.0418), takes 28.5 seconds and requires the
solution of 153 linear programming subproblems.

6.3. Nonlinear Unconstrained Optimization Problems

The next degree of difficulty consists of optimization problems with nonconvexities in the
objective function and simple variable bound constraints. An example corresponding to
arobust control synthesis problem which has been very challenging to solve for the local
solver MINOSS.4 is addressed. The problem isformulated as follows:

where Mi = (pops — pipha)” + (13 + popa)’
My = {1+ (po — ps)ps — (b1 — pe)pa}” + {p2 — ps)pa

+ (u1— ,M6),M3}2
2{sin(—5w) — 3wcos(—5w)}

He (Bw)? + 1
s = 2{cos(—5w) + 3wsin(—5w)}
’ (3w)* +1
= o5{u_w 3w — ew }
by = (ew)? + 1
_ 1+ 3ew” 3ew

szn(—zgw) + zowcos(—zzw)
(z2w)?+1

M1 = 21
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cos(—zzw) — zowsin(—zzw)

M2 I

(z2w)? + 1
0.00 < w < 1.00
1.00 < z; < 3.00
2.00 < 24 < 4.00
4.00 < 25 < 6.00

The following two cases for the parameter e are considered.

1. e = 3.00: Theprobleminvolvesonly four variables, however, after 100 multi-start runs
using thelocal solver MINOS5.4[22], the globa minimum wasidentified only 5times.
The method BB consistently located the global minimum solution z; = 3,2z, =
2,z3 = 4,w = 0.6670 with an objective function value of -2.8765. Computational
requirementsfor different values of « are shownin Table 1. Apparently, thereisavery
strong local minimum solution with a value of -2.7072, and a corresponding solution
vector ; = 3,z = 2,z3 = 6, w = 0.0 which was most of the time the convergence
point of the local solver MINOS5.4.

Table 1. Results for
therobust control synthesis
problem e = 3.00.

=] Niter CPU (S')

0.50 16 0.61
0.75 17 0.62
1.00 18 0.67

2. €= 10.5101 : Thisselectionfor the parameter e makesthe problem even more difficult
for the local solver MINOS5.4 to generate the global minimum solution. In fact, in
only one out of 100 times was the local solver able to find the global minimum
located at zy = 3,22 = 4,z3 = 6, w = 0.0959 with an objective function value
of -1.0507. A very strong local minimum of -1.000 located at z; = 2.806842, z, —
3.126284, z3 = 4.183029, w = 0.0 again dominated the reported solutions by thelocal
solver. Computational results are shown in Table 2.

6.4. Linearly Constrained Nonlinear Optimization Problems

Theexamplesof this section aretakenfrom[20]. They correspond to threevery challenging
phase equilibrium problems, and are defined asfollows: Given i components participating
in up to k potential phases under isothermal and isobaric conditions find the mole vector
n that minimizes the value of the Gibbs free energy while satisfying appropriate material
balance constraints.
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Table 2. Results for
therobust control synthesis
probleme = 10.5101.

=] Niter CPU (S')
0.50 203 5.94
0.75 488 149
1.00 511 16.2

e Probleml:

The first physical system describes the phase equilibrium of a systems containing
n-Butyl-Acetate — Water. The formulation isasfollows:

min G; = nilnn] + nilnnl — [0l + nllin[n] + nl]
2, 97 2

n?ln ni + nilnn; — [n? + ng]ln [n% + n%]

1
U

+ +

1
G127'12”1W
ny + Giang

2
N3

P
n; + Giang

+

2
Gia71207
s.t. n% + n% =0.5

nd +n2 =05

1,1 .2 2
0 <nj,ny,ni,n; <0.5

1
7+ G217a1m,

1
5 + G1aT1amy

1
n

1 1
ny + Gaing
1
U’

1 1
ny + Giang

The terms of the form nin(n) have been shown to be convex [20]. Therefore, the
optimization problem contains an objective function that has a convex term and four

additional non—convex terms.

The global minimum solution is presented in Table 3.

Table 3. Global minimum of examplel.

Computational results are

obj n% n? n% ng
Global -0.00202 0.00071 049929 0.15588  0.34412
shown in Table 4.

Problem I1:

The second system describes the phase equilibrium of the ternary system n-Propanol
— n-Butanol —Water. The minimization of the Gibbs free energy takesthe form :
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Table 4. Results for the
first phase equilibrium ex-
ample.

=] Niter CPU (S')

010 18 0.41
025 49 0.99
050 105 2.46
min G; = nlinn! + nllnnl + nlinnl — [n! +nl + ndlin[n! + nl + nd)
+ nlinn? + nilnni + nilnnd — [n? +nZ + nllin [n? + n2 4+ n3]
1 1
1 N3 n3
+ nq[G1a712 + G373
il ny + Giani + Gaang nd 4+ Gianl + Gagnl
1 1
1 n1 n3
+ n5|Go1191 + G373
2| nl + Gainl + Gain} ni + Gisni + Gaznl
1 1
1 ni N3
+ n3|G31731 + G32732
al nl + Gainl + Gainl ni + Giani + Gsond
2 2
2 n3 n3
+ ni[Giam2 + G13713

7 2 7 7 7
n; + Giang + Gaang n? + Gi3n? + Gagnl

ni n3
2
+ n5[Garm + Ga3Tas
21721 7 2 2 237235 2 2
ny + Gong + Gzing nz + Gi3nj + Gazn;
2 2
n n
2 1 2
+ n3[Gs173 + G32732
1 2 2 25 2 2
ny + Gong + Gzing ns + G1ani + Gaang
9
s.t. n%—}—n%:nf, Ogn%,nlgnf

n%—}—ng:ng, 0§n%,n§§ng
né‘}'ng:ng: Ogné:ngsng
Theextremely difficultinstancewithn! = {0.148,0.052, 0.800},duetothevery small

objective value difference between the global and a local solution, was successfully
solved.

The global minimum solution is presented in Table 5.

Table 5. Global minimum of examplell.

i 1 2 1 2 1 2
obj ny nj n; n; ng ng

Global -0.27081404 0.0456 0.0063 0.6550 0.1450 0.1280 0.0200

Computational results are presented in Table 6.
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Table 6. Resultsfor the sec-
ond phase equilibrium prob-
lem.

=] Niter CPU (S')

0.025 208 7.10
0.05 320 10.4
010 772 24.6

Thefinal example describes the phase equilibrium of Toluene —Water.

5¢1—1 5¢a—1
o = 2=l of = =1
= 3.53316 = 6.52174
2f, = min { 2f, 24 )
— zf
= 3.53316
z* =25 + (27 — z3) + (25 — 23;)
= z§
= 6.52174
2 =25 — 28 25 = 2" — 25
= 2.98858 =0
o1 =¢)+r - 2* = 28.53522
o2 =¢q5+ 71y 2" =17.0
: A T R z T R z
min G; = nj {_21 rilnr; + qu lnql} g {—22 rolnrs + qu lnqg}
1
n
+ 2* [rin} + rond] In [ring + rand] + 2frniIn ————
11 + Ta2Ng
2
+ z* [rinf + rond] In [rind 4+ ron3] + zPriniIn %
TNy + ra2n;
1 1
2 1 n 2 1 ny
+ zqiniln———— + —gengln —— 22—
27 T ginl +gand T 277 7 qinl + qond
2 2
zZ 9 ni zZ 9 N3
+ —ginfln———— + —gen5ln ————
27 g+ gan T 27 7 qin? + gon?
1
n
+ [gin} + ¢on3] In [gini + ghnd] + ¢injln ———
1M + 214514
1
+ qén% In "

1,1 1.1
T12911] + g5M5
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+ [¢in? + ghn2] In [gin? + ghn2] + ¢in?ln

2
N3

/2
+ ¢gynsln —=———
! on2 1,2
T12911] + g515

2
ni

T2 1.2
1Ny + T21g5M5

— [n% lnn% + nf lnn%] — 9 [n% In 'né + ng lnng]

sit.
nl +n? =05
nd+n2 =05

1,1 .2 2
0 < ny,nyni,n; <05

The global minimum solution is presented in Table 7.

Table 7. Global minimum of examplelll.

i 1 2
obj nj ng

Global  -0.01975944 0.0004 0.4996

1
L

0.4772

2
5

0.0228

Computational results are shown in Table 8.

Table 8. Results for
the third phase equilibrium
problem.

=] Niter CPU (S')

0.50 51 1.95
0.75 55 2.08
1.00 63 227

Examplel: Thisexampleistakenfrom the manual of MINOS5.4 [22]. Theformulation

isasfollows:

6.5. Nonlinearly Constrained Nonlinear Optimization Problems

The problems of this section involve nonconvex terms of generic structure in both their
objective function and constraints. Two examples will be presented, a small one in order
to illustrate al possible combinations of functional forms that can be present in a general
nonconvex optimization problem, and alarger one in order to illustrate the applicability of
the method on a real—world problem.

min (z1 — 1)* + (21 — ©2)° + (22 — 23)° + (23 — 24)* + (24 — 25)"
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stz +z5+zh
2

Ty — 23+ x4

Li1Ts5

= 3v2+2
= 2v/2-2
= 2

21

The BB input file for this problem is shown in the appendix. This examples involves
linear, convex, bilinear, and non—convex terms. The global minimum solution along
with four local solutions are shown in Table 9.

Table 9. Global and local minima of examplel.

obj

Global 0.0293
Local 1  27.8719
Local 2 44.0221
Local 3  52.9026
Local 4 64.8740

z1

1.1166
-1.2731
-0.7034

0.7280

4.5695

z2

1.2204
24104
2.6357
-2.2452
-1.2522

z3

1.5378
1.1949
-0.0963
0.7795
0.4718

T4

1.9728
-0.1542
-1.7980

3.6813

2.3032

Z5

1.7911
-1.5710
-2.8434

2.7472

4.3770

different values of « are presented in Table 10.

Table 10. Computational

results for examplel.

=] Niter CPU (S')
005 35 13.87
025 81 30.80
050 335 99.76

Computational requirements for

Example Il: This test example addresses an optimal blank nesting problem involving
important industrial applications. The objective is to minimize the “scrap” metal and

the problem is formulated as follows:

min wp
01,02,Ac,Ay,w,p

st. w = w —ws
wq Z yz('z: 0’21:2
wa S qu, (1,—1,2
(ri+7)” < (2 —=2}) + (uf
ri <Y S w—T
<yl < w-r
N, N, N,

]
sa,_.
N
™
L
N
]
8
-
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where

&
I

o
A
Il

= cos(62),

{1,1%,2},V4,5€ {1...N,}
C1T; — S1Y;

s12; + C1y;

c1z; —s1Y; +p

s12; + C1y;

cax; — Say; + Az

saz; + c2yi + Ay

cos(6y), sin(6,)
sin(6:)

S =

89 =

The results of local minimization runs from 50 randomly generated starting points
using MINOS 5.4 [22] are shownin Table 11. Theglobal solutionisidentified by «BB
in 250 iterations and 3,153 seconds of CPU time. It is shown, along with some local
solutionsin Table 12.

Table 11. Sample Local Runs

As can be seen from these results, in only two out of the 50 runs the global minimum

isidentified.

Run No. obj. fun. | Run. No. obj. fun.
0 299.230856 (0) 1 299.230856 (0)
2 Failure 3 350.065316 (0)
4 Failure 5 344.095172 (0)
6 350.065316 (0) 7 350.065316 (0)
8 344.095172 (0) 9 Failure
10 350.065316 (0) 11 Failure
12 Failure 13 350.065316 (0)
14 350.065316 (0) 15 Failure
16 350.065316 (0) 17 350.065316 (0)
18 350.065316 (0) 19 Failure
20 Failure 21 350.065316 (0)
22 Failure 23 Failure
24 344.095172 (0) 25 235.721608 (0)
26 299.230856 (0) 27 Failure
28 Failure 29 Failure
30 Failure 31 235.721608 (0)
32 Failure 33 350.065316 (0)
34 350.065316 (0) 35 350.065316 (0)
36 350.065316 (0) 37 Failure
38 344.095172 (0) 39 350.065316 (0)
40 350.065316 (0) 41 Failure
42 350.065316 (0) 43 350.065316 (0)
44 350.065316 (0) 45 Failure
46 350.065316 (0) 47 350.065316 (0)
48 Failure 49 Failure
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Table 12. Local and global solutions

f 61 62 dz dy w P

235.721608 2755873 5.897465 -12.660181 -3.62188  8.394903  28.079134

299.230856 2.783586 5.925179 -14.000000 0.000000 13.283868  22.525884

344.095172 2.315182 5.456775 -13.767864 0.000000 15.000000 22.939678

350.065316  2.362680 5.504273 -14.000000 0.000000 14.004254  24.997070

7. Conclusions

In this paper, the global optimization method BB, is introduced for solving continuous
constrained nonlinear optimization problems with nonconvexities both in the objective
function and constraints. These nonconvexities are partitioned as either of specia struc-
ture, if there exist tight convex lower bounding functionsfor them, or otherwise generic. A
convex relaxation of the original problem isthen constructed by (i) replacing all nonconvex
terms of specia structure (i.e. bilinear) with customized tight convex lower bounding
functionsand (ii) by utilizing the « parameter, as defined in [17], to underestimate noncon-
vex terms of generic structure. BB attains finite e—convergence to the global minimum
solution through the successive partitioning of the feasible region coupled with the solution
of aseries of nonlinear convex minimization problems. The key feature of aBB isthat it is
applicable to alarge number of optimization problems. Comparisons with other methods
on test problems indicate the efficiency of o.BB.
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Appendix
Sample aBB Input File

# Not e:

# (1) Lines starting with a "#" or
# lines.

# (2) Enpty lines are ignored.

#

#

#

are comment

(3) Fields can be separated by any non-zero
nunber of spaces or tabs.

BEG N mhw4d # Probl em nane
OBJTYPE  Nonconvex # Type of objective function
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CONTYPE  Nonconvex # Type of constraints

NXVAR 5 # Nunmber of X vari abl es

NCON 5 # Total nunber constraints

EPSA 1. OE- 05 # Absol ute conv. tol erance

EPSR 1. 0E-03 # Rel ative conv. tol erance
YSTART -1 # Type of starting point desired
OBJCONST O # Constants in the objective

USERFUNC def aul t

Rows section

this section will performa conplete description

of all the rows in the problem

A row is defined by

1. a nunber

2. arelationship type ( <= >=, ==

3. a RHS val ue

4. nunber of linear terns

5. number of convex terms

6. nunber of bilinear termns

7. number of nonconvex terns

Al'l constraints should appear in this section

and all constraints are assumed to have a default

l[inear. This will help the consistency

of the nodel and the handling of the different

formul ati ons.

For mat

Row No Row sense RHS Val ue Linear _terns
Convex_terms Bilinear_terns Nonconvex_termnms

HHHFEHHEHFHEHFEHEFEHEFHEHFHFHFH TR

ROAS 5
0 -1 0.0 1 1 0 1 O
1 -1 6.242641 1 1 0 1 O
2 -1-6.242641 1 0 0 1 O
3 -1 0.828427 2 0 0 1 O
4 -1-0.828427 2 1 0 0 O
5 0 2.0 0O 0 1 0 O
#
# Col ums section
# Format :
# Row_Nunber X- I ndex Y- I ndex Coef fi ci ent
#
# The objective function is denoted by Row Number 0O
#
COLUWNS 0
0 1 0 0.0
1 1 0 1.0
2 1 0 -1.0
3 2 0 1.0
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3 4 0 1.0
4 2 0 -1.0
4 4 0 -1.0
5 1 5 1.0
#
# Bounds Section
# Format :
# Bound_Type X-1ndex Y-Index Val ue
#
BOUNDS 10 # Total nunber of bounds specified = 2
L 1 0 -6.5
L 2 0 -6.5
L 3 0 -6.5
L 4 0 -6.5
L 5 0 -6.5
u 1 0 6.5
u 2 0 6.5
u 3 0 6.5
u 4 0 6.5
Uu 5 0 6.5
#
# Al pha Section
# Format :
# Obj. Function / Constraint X-Index Value
#
#
# Case (a) : all alphas will correspond to the
# sane fixed val ues
# ALPHA -1
# 0 O 10.0
# Case (b) : user specified al phas
ALPHA 9
T1 110.25
T1 12 0.25
T1 1 30.25
T1 1 4 0.25
T1 15 0.25
T2 2 3 0.25
T3 3 2 0.25
T3 3 3 0.25
T4 4 3 0.25
BRANCH 5
Vi1
V2 2
V3 3
V4 4

V5 5
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END
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