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Abstract. A branch and bound global optimization method,  BB, for general continuous optimization problems
involving nonconvexities in the objective function and/or constraints is presented. The nonconvexities are
categorized as being either of special structure or generic. A convex relaxation of the original nonconvex problem
is obtained by (i) replacing all nonconvex terms of special structure (i.e. bilinear, fractional, signomial) with
customized tight convex lower bounding functions and (ii) by utilizing the  parameter as defined in [17] to
underestimate nonconvex terms of generic structure. The proposed branch and bound type algorithm attains
finite ! –convergence to the global minimum through the successive subdivision of the original region and the
subsequent solution of a series of nonlinear convex minimization problems. The global optimization method, BB, is implemented in C and tested on a variety of example problems.
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1. Introduction

A significant effort has been spent in the last five decades studying theoretical and algo-
rithmic aspects of local optimization algorithms and their applications in engineering and
science. Comparatively, there has been traditionally much less attention devoted to global
optimization methods. However, in the last decade the area of global optimization has at-
tracted a lot of interest from the operations research, engineering and applied mathematics
communities. This recent surge of interest can be attributed to the realization that there
exists an abundance of optimization problems for which existing local optimization ap-
proaches cannot consistently locate the global minimum solution. Furthermore, the steady
improvement in the performance of computers constantly extends the scope of problems
which are tractable with global optimization approaches.

Existing global optimization algorithms, based on their convergence properties, can be
be partitioned into deterministic and stochastic. The deterministic approaches include Lip-
schitzian methods [12], [13]; branch and bound procedures [2], [15], [1]; cutting plane
methods [32]; difference of convex functions and reverse convex methods [31]; outer ap-
proximation approaches [14]; primal–dual methods [29], [6], [7], [33], [4]; reformulation–
linearization [27], [28]; and interval methods [8]. Stochastic approaches, encompass among
others simulated annealing [26], genetic algorithms [10], [3], and clustering methods [25].
A number of books [23], [30], [24], [16], [5], [11] summarize the latest developments in
the area.

* Author to whom all correspondence should be addressed.
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Deterministic approaches typically provide mathematical guarantees for convergence
to an " –global minimum in finite number of steps for optimization problems involving
certain mathematical structure. On the other hand, stochastic methods offer asymptotic
convergence guarantees only at infinity for a very wide class of optimization problems.
It is the objective of this work to extend deterministic guarantees for convergence to a
very general class of continuous optimization problems and implement this procedure in
the # BB global optimization package. In the next section, a description of the global
optimization problem addressed in this paper is presented.

2. Problem Definition

The optimization problem addressed in this paper can be formulated as the following
constrained nonlinear optimization problem involving only continuous variables.$&%(') *�+-,/.

(P0)

subject to 021 +-,/.436587:9;3=<�7�>?>�>@7BAC�D +-,/.FEG5874HI3J<K7?>�>?>L7BMN ,OEGP,�QOER,SET,/U
Here x denotes the vector of variables,

*V+W,/.
is the nonlinear objective function, 021 +W,/. is

the set of nonlinear equality constraints and C�D +-,/.@7XHI3Y<�7�>?>�>Z7�M is the set of nonlinear in-
equality constraints. Formulation (P0) in general corresponds to a nonconvex optimization
problem possibly involving multiple local and disconnected feasible regions. It has been
observed in practice that existing path–following techniques cannot consistently locate the
global minimum solution of (P0) even if a multi-start procedure are utilized. For special
cases of (P0) involving bilinear or polynomial terms [6], [7], signomial terms [18], efficient
algorithms have been proposed for locating the global minimum solution. For the general
case, however, of minimizing a nonconvex function subject to a set of nonconvex equal-
ity and inequality constraints there has been comparatively little work in deriving global
optimization methods and tools.

Our approach is based on the convex relaxation of the original nonconvex formulation
(P0). This requires the convex lower bounding of all nonconvex expressions appearing in
(P0). These terms can be partitioned into three classes:

(i) convex,

(ii) nonconvex of special structure,

(iii) nonconvex of generic structure.
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Clearly, no convex lower bounding action is required for convex functions. For nonconvex
terms of special structure (e.g. bilinear, univariate concave functions), tight specialized
convex lower bounding schemes already exist and therefore can be utilized. Based on
this partitioning of different terms appearing in the objective function and constraints,
formulation (P0) is rewritten equivalently as follows:

$&%(') []\ +-,/./^O_D�`�a/b�c [d\D +-,/.�^4egf/h_ i�j h e_i�klj�i�m h n \
i o ipk(q i q i k (P)

subject to [ 1 +W,/.�^ _DK`�a�r c [ 1D +W,/.�^segf/h_ i�j h e_i�klj�i�m h n 1
i o i k q i q i k 7TEt59;3Y<�7�>�>?>L7?+vu�AT^FMw.

N ,x3RP87y,�QzET,{Et,/U
where c [ 1D +-,/. with

,{|~} q i��]� |�� 1D�� 7:9]3�5�7?>�>?>L7?+vu�AT^FMw.
Note that all nonlinear equality constraints 0 1 +-,/.�3�5 appearing in (P0) have been replaced
by two inequalities in (P). [ \ +-,/. is the convex part of the objective function; c [ \D +W,/.is the set of � \ generic nonconvex terms appearing in the objective function;

� \D is the
subset of variable

,
participating in each generic nonconvex term

H
in the objective; andn \i o i k q i q i�k the bilinear terms. Similarly, for each constraint

9
, there exists a convex part[ 1 +W,/. , � 1 generic nonconvex terms c [ 1D +-,/. , with

� 1D variables x per term, and the
bilinear terms

n 1 i o i k q i q i k . Additionally, linear equality constraints and variable bounding
constraints appear explicitly in the model (P). Clearly, for each optimization problem that
falls within formulation (P0) there exist several ways of reformulating it into (P). In the
current implementation of # BB the only nonconvex terms recognized as having special
structure are the bilinear terms. Work is currently under way to include in the set of
nonconvex terms of special structure additional nonconvex functions such as univariate
concave, signomial functions, and products of univariate functions [19]. In the next section
the derivation of a convex relaxation (R) of (P) is discussed.

3. Convex Relaxation

A convex relaxation of (P) can be constructed by replacing each generic nonconvex term,c [ 1D +-,/. , and each bilinear term,
n 1 i o i�k q i q i�k 7I9�3�587�>?>�>Z7�+�u2A6^�Mw.

, with one or more
convex lower bounding functions.
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3.1. Nonconvex Terms of Special Structure

As it is shown in [2], the tightest possible convex lower bounding of a bilinear term
n i o ipk q i q i�k

inside some rectangular domain � q Qi 7 q Ui��]� � q Qi k 7 q Ui k-� (convex envelope) corresponds to
the maximum of the following two linear cuts.n i o i�k q i q i�k&�R��i o i�k + q i 7 q i�k .s3 $����]�-� Qi�q ipk ^ � Qipk8q i�� � Qi � Qipk 7� Uiwq i k ^ � Uipk�q i � � Ui � Uipk��

where � Qi 3 $&%(' � n i o i�k q Qi 7Bn i o i�k q Ui � 7� Qi k 3 $&%(' � n i o i�k q Qi k 7Bn i o i�k q Ui k-� 7� Ui 3 $���� � n i o i k q Qi 7�n i o i k q Ui � 7� Ui�k 3 $���� � n i o i�k q Qi�k 7�n i o ipk q Ui�k ���i o i�k + q i 7 q i�k . is the convex envelope of
n i o i�k q i q i�k inside the rectangular domain � q Qi 7 q Ui � �� q Qi�k 7 q Uipk � and therefore, it can become arbitrarily close to

n i o ipk q i q i�k for a small enough
rectangular domain.

It can be shown that the maximum separation between
n i o i k q i q i k and

� i o i k inside the
domain � q Qi 7 q Ui � � � q Qi k 7 q Ui k � can be at most one fourth of the area of the rectangular
domain multiplied by the absolute value of

n i o i k :� n i o i�k � � q Ui � q Qi � � q Ui�k � q Qi�k �� >
This maximum separation occurs at the middle pointq��i 3 q Qi ^ q Uiu 7 q��i k 3 q Qi k ^ q Ui ku >
�/���g�¡ x¢

The maximum separation of the bilinear term

q�£
from its convex envelope,$��K� � q Q £ ^ q�£ Q � q Q £ Q 7 q U £ ^ q�£ U � q U £ U � 7 inside the rectangle � q Q 7 q U �8� � £ Q 7 £ U �

occurs at the middle pointq�� 3 q Q ^ q Uu 7 £�� 3 £ Q ^ £ Uu >
and is equal to one fourth of the area of the rectangular domain,� q U � q Q � � £ U � £ Q �� >
Proof: This can be formulated as the following optimization problem.$&���¤ o ¥ q�£ � $&��� � q Q £ ^ q�£ Q � q Q £ Q¦7 q U £ ^ q�£ U � q U £ U �
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subject to

q Q E q E q U£ QzE £ E £ U
By substituting in the objective function

q 3 q Q
or

q 3 q U
or

£ 3 £ Q
or

£ 3 £ U
the

maximum separation becomes zero. This implies that for any point in the perimeter of the
rectangle � q Q 7 q U � � � £ Q 7 £ U �¡q�£ matches its convex envelope and thus the point where
the maximum separation occurs must be an interior point. After replacing the $��K� ¤ o ¥ +@§¨.
operator with the equivalent

� $&%©' ¤ o ¥ � +ª§¨. operator and eliminating the $��K� over the two
linear cuts at the expense of two new inequality constraints we have:� $&%©'¤ o ¥ � q�£ ^¬«

subject to
« � q Q £ ^ q�£ Q � q Q £ Q« � q U £ ^ q�£ U � q U £ Uq Q E q E q U£ QzE £ E £ U

Let  h 7 /® � 5
be the multipliers associated with the two new inequality constraints.

Clearly, the multipliers associated with the variable bound constraints are zero since the
solution will be an interior point. The KKT conditions yield the following stationarity
conditions:  h ^  ® � <�365 h q Q¯^  ® q U � q 365 h £ Q�^ /® £ U � £ 365� � «°^ q Q £ ^ q�£ Q � q Q £ Q �  h 365� � «¡^ q U £ ^ q�£ U � q U £ U �  ® 365 h 7  ® � 5
Clearly, at least one of  h 7  ® must be nonzero, leading to the following three cases:

(i)  h 3R5�7  ® 36<
(ii)  h 3±<K7 /® 3R5
(iii)  hF² 587  ® ² 5
If  h 3O<

or /® 3O<
then we have

� «³^ q Q £ ^ q�£ Q � q Q £ Q 3 5
or

� «³^ q U £ ^q�£ U � q U £ U 3G5
respectively. Both cases (i) and (ii) lead to a zero maximum separation

implying that they correspond to local minima. The single remaining case (iii) yields the
following linear system of equations in  h 7  ® 7 q 7 £ 7ª« h ^  ® � <�365
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 h q Q ^  ® q U � q 365 h £ Q�^  ® £ U � £ 365� «´^ q Q £ ^ q�£ Q � q Q £ Q~365� «¡^ q U £ ^ q�£ U � q U £ UT365
Solution of this system gives:q 3 q Q ^ q Uu 7 £ 3 £ Q ^ £ Uu 7¬«µ3 q U £ Q ^ q Q £ Uu 7  h 3  ® 3 <u
The maximum separation therefore isq�£ � «µ3 � q U � q Q � � £ U � £ Q �� >
3.2. Nonconvex Terms of Generic Structure

The convex lower bounding of the generic nonconvex terms c [ 1D is motivated by the
approach introduced in [17]. For each one of the generic nonconvex functions,c [ 1D +W,/.@7:9]3�5�7?>�>?>L7?+vu�A¶^4Mw.B7·H¸| � 1

where c [ 1D +W,/. with
,{|O} q iw�]� |�� 1D/� 7:9;3�587�>?>�>Z7�+�u2At^sMw.

a convex lower bounding function c [ 1 o ¹vºv»�¼D can be defined by augmenting the original
nonconvex expression with the addition of a separable convex quadratic function of

+ q i 7 � |� 1D . . c [ 1 o ¹vºv»�¼D +W,/.:3 c [ 1D +W,/.^{_i `�½ r¾ # 1 i o D +W, Q 7ª, U . �
q Qi � q i � � q Ui � q i � 7�9;3�587�>?>�>@7?+vu�AT^sMw.@7¿H¸| � 1

À¿Á�Â�ÃZÂ # 1 i o D +-, Q 7ª, U . � $&���°Ä 5�7 � <u $&%(')�Å�Æ
)8Æ
)�ÇgÈ +-,/.?É
Note that # 1 i o D are nonnegative parameters which must be greater or equal to the negative

one half of the minimum eigenvalue of the Hessian matrix of c [ 1 o ¹vºv»2¼D over

q Qi E q i Eq Ui 7 � |�� 1D . These parameters # 1 i o D can be estimated either through the solution of an
optimization problem or by using the concept of the measure of a matrix [17]. The effect
of adding the extra separable quadratic term on the generic nonconvex terms is to construct
new convex functions by overpowering the nonconvexity characteristics of the original
nonconvex terms with the addition of the terms

u # 1 i o D to all of their eigenvalues. These new
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functions c [ 1 o ¹vºv»�¼D defined over the rectangular domains

q Qi E q i E q Ui 7 � |�� 1D involve
a number of important properties. These properties are as follows:

Property 1:. c [ 1 o ¹vºÊ»�¼D is a valid underestimator of c [ 1D .Ë q i | � q Qi 7 q UiÌ� 7 � |�� 1D we have c [ 1 o ¹vºv»2¼D +-,/.¬E c [ 1D +-,/.@>
Proof: For every

� 36<�7�>?>�>Z7 c we have � q Qi � q i � � q Ui � q i � E 5
and also by

definition # 1 i o D +-, Q 7ª, U . � 5
. Therefore,

Ë�,{| � , Q 7@, U � 7 c [ 1 o ¹vºÊ»�¼D +W,/.ÍE c [ 1D +-,/.@>
Property 2:. c [ 1 o ¹vºÊ»�¼D +-,/.

matches c [ 1D at all corner points.

Proof: Let
, ¹ be a corner point of � , Q 7@, U � then for every

� 3¸<K7?>�>?>@7 c + q Qi � q ¹i .F35
or
+ q Ui � q ¹i .Î3 5

. Therefore, c [ 1 o ¹vºÊ»�¼D +-,�Ï�.Ð3 c [ 1D +W, ¹ . in either case.

Property 3:. c [ 1 o ¹vºÊ»�¼D +-,/.
is convex in

q i | � q Qi 7 q Ui � 7 � |�� 1D .
Proof: It is a direct consequence of the definition of the parameters # 1 i o D +W, Q 7@, U . , (See
[17]).

Property 4:. The maximum separation between the nonconvex term of generic structurec [ 1 o ¹vºv»2¼D and its convex relaxation c [ 1D is bounded and proportional to the positive
parameters # 1 i o D and to the square of the diagonal of the current box constraints.$��K�)�Å8Æ�)8Æ
)�Ç Ñ c [ 1D +W,/. � c [ 1 o ¹vºv»2¼D +W,/.ÊÒ3 <� _i `?½ r¾ # 1 i o D +-, Q 7ª, U . �

q Ui � q Qi � ®
Proof: $��K�)�Å8Æ�)8Æ
)�Ç Ñ c [ 1D +W,/. � c [ 1 o ¹vºv»2¼D +W,/.ÊÒ3 $��K�)�Å8Æ�)8Æ
)�Ç � _i `�½ r¾ # 1

i o D +W, Q 7@, U . � q Qi � q i � � q Ui � q i �3 � $�%(')�Å�Æ�)8Æ
)�Ç _i `�½ r¾ # 1
i o D +W, Q 7@, U . � q Qi � q i � � q Ui � q i �3 <� _i `�½ r¾ # 1

i o D +-,�Q�7ª,/U¦. � q Ui � q Qi � ®
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Property 5:. The underestimators constructed over supersets of the current set are always
less tight than the underestimator constructed over the current box constraints for every
point within the current box constraints.

Proof: See [17].

Clearly, the smaller the values of the positive parameters # 1 i o D , the narrower the separation
between the original nonconvex terms and their respective convex relaxations will be.
Therefore fewer iterations will also be required for convergence. To this end, customized# parameters are defined for each variable, term and constraint. Furthermore, an updating
procedure for the # ’s as the size of the partition elements decreases is currently under
investigation.

This type of convex lower bounding is utilized for nonconvex functions which lack any
specific structure that might enable the construction of customized convex lower bounding
functions. Clearly, the # –based convex lower bounding can be applied to bilinear terms
as well without having to introduce additional variable and constraints. However, in this
case the maximum separation will be larger than the one based on the linear cuts. More
specifically, the maximum separation for the # convex lower bounding scheme is,� q U � q Q � ® ^ � £ U � £ Q � ®Ó >
This is always greater than� q U � q Q � � £ U � £ Q ��
unless

q U � q Q 3 £ U � £ Q
. Based on the aforementioned convex lower bounding

procedures for bilinear terms and generic nonconvex terms, a convex relaxation (R) of (P)
is proposed.$&%(') [ \ +-,/./^ _DK`�a b c [ \D +W,/. (R)^ _i `�½ b¾ # \i o D +W, Q 7@, U . � q Qi

� q i � � q Ui � q i � ^ � \i o i k
subject to [ 1 +W,/.�^ _DK`Ôa r c [ 1D +W,/.^ # 1 i o D +-, Q 7ª, U . _i `?½ r¾ �

q Qi � q i � � q Ui � q i � ^ � 1 i o i k EÕ587
9;3Y<�7�>�>?>L7?+vu�A¶^4Mw.



9� 1 i o i k � $��K� Ñ � 1 o Qi q i�k ^ � 1 o Qi k q i�� � 1 o Qi � 1 o Qi k 7
� 1 o Ui q i k ^ � 1 o Ui k q i�� � 1 o Ui � 1 o Ui k 7 Ò 7:9;3�587�>�>?>L7?+vu�A¶^4Mw.

where � 1 o Qi 3 $�%(' Ñ n 1 i o i�k q Qi 7�n 1 i o i�k q Ui Ò�7� 1 o Qi�k 3 $�%(' Ñ n 1 i o i�k q Qi�k 7�n 1 i o i�k q Ui�k Ò�7� 1 o Ui 3 $��K� Ñ n 1 i o i k q Qi 7Bn 1 i o i k q Ui Ò 7� 1 o Ui�k 3 $��K� Ñ n 1 i o ipk q Qi k 7Bn 1 i o i�k q Ui k ÒN ,Ö3×P87±,�Q{ET,�ET,/U
and c [ 1D +W,/. with

,S|S} q i:�°� |¯� 1D � 7w9;3�587�>�>?>L7?+vu�A¶^4Mw.
Formulation (R) is a convex programming problem whose global minimum solution

can be routinely found with existing local optimization solvers such as MINOS5.4 [22].
Formulation (R) is a relaxation of (P) and therefore its solution is a valid lower bound on
the global minimum solution of (P).

In the next section, we will see how this convex lower bounding formulation (R) can be
utilized in a branch and bound framework for locating the global minimum solution of (P).

4. Global Optimization Algorithm, Ø BB

A global optimization procedure, # BB, is proposed for locating the global minimum
solution of (P) based on the refinement of converging lower and upper bounds. Lower
bounds are obtained through the solution of convex programming problems (R) and upper
bounds based on the solution of (P) with local methods.

As it has been discussed in the previous subsection, the maximum separation between the
generic and bilinear nonconvex terms and their respective convex lower bounding functions
is bounded. For the generic nonconvex terms this maximum separation is proportional
to the square of the diagonal of the rectangular partition element and for the bilinear
terms proportional to the area of the rectangular domain. Furthermore, as the size of the
rectangular domains approaches zero, these maximum separations go to zero as well. This
implies that as the current box constraints Ù , Q 7ª, U�Ú collapse into a point; (i) the maximum
separation between the original objective function of (P) and its convex relaxation in (R)
becomes zero; and (ii) by the same argument, the maximum separation between the original
constraint set in (P) and the one in (R) goes to zero as well. This implies that for every
positive number "ªÛ and x there always exists a positive number Ü such that by reducing
the rectangular region Ù , Q 7@, U�Ú around

,
so as Ý , U � , Ý E Ü differences between the
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feasible region of the original problem (P) and its convex relaxation (R) become less than"@Û . Therefore, any feasible point
, ¹ of problem (R) (even the global minimum solution)

becomes at least "@Û –feasible for problem (P) by sufficiently tightening the bounds on
,

around this point.
The next step, after establishing an upper and a lower bound on the global minimum, is to

refine them. This is accomplished by successively partitioning the initial rectangular region
into smaller ones. The number of variables along which subdivision is required is equal
to the number of variables x participating in at least one nonconvex term in formulation
(P). The partitioning strategy involves the successive subdivision of a rectangle into two
subrectangles by halving on the middle point of the longest side of the initial rectangle
(bisection). Therefore, at each iteration a lower bound of the objective function of (P) is
simply the minimum over all the minima of problem (R) in every subrectangle composing
the initial rectangle. Therefore, a straightforward (bound improving) way of tightening the
lower bound is to halve at each iteration, only the subrectangle responsible for the infimum
of the minima of (R) over all subrectangles, according to the rules discussed earlier. This
procedure generates a nondecreasing sequence for the lower bound. An nonincreasing
sequence for the upper bound is derived by solving locally the nonconvex problem (P) and
selecting it to be the minimum over all the previously recorded upper bounds. Clearly, if
the single minimum of (R) in any subrectangle is greater than the current upper bound we
can safely ignore this subrectangle because the global minimum of (P) cannot be situated
inside it (fathoming step).

Because the maximum separations between nonconvex terms and their respective convex
lower bounding functions are bounded and continuous functions of the size of rectangular
domain, arbitrarily small " Û feasibility and " ¹ convergence tolerances are reached for a
finite size partition element.

The basic steps of the proposed global optimization algorithm are as follows:

STEP 1 - Initialization

A convergence tolerance, " ¹ , and a feasibility tolerance, " Û , are selected and the iteration
counter Þ�ßZà�á is set to one. Current variable bounds

, Q o â@ãWäÊå 7ª, U o âªã-ävå for the first iteration
are set to be equal to the global ones

, Q�æ�ç 7@, U�æ�ç
. Lower and upper bounds è�é]ê 7�ë é]ê

on the global minimum of (P) are initialized and an initial current point
, ¹Lo â@ãWävå is selected.

STEP 2 - Local Solution of Nonconvex NLP and Update of Upper Bound ì U�æ/ç\
The nonconvex optimization problem (P) is solved locally within the current variable

bounds
, Q�æ�ç 7@, U�æ/ç

. If the solution
* â@ãWävåí ºL¹vî í of (P) is " Û –feasible the upper bound

ë é]ê is
updated as follows,ë é]ê 3 $�%(' � ë é]ê 7�* â@ãWäÊåí ºZ¹vî í �

STEP 3 - Partitioning of Current Rectangle

The current rectangle � , Q o â@ãWäÊå 7ª, U o âªã-ävå � is partitioned into the following two rectangles+ á 3µ<K7Bu2. :



11ïðððððððñ
q Q o â@ãWäÊåh q U o â@ãWäÊåh...

...q Q o â@ãWäÊåí¨òvó(ôvõ � ¤ Å2ö òvó©ôÊõ÷ òvó©ôÊõ m ¤ Ç�ö òvó(ôÊõ÷ òvó©ôÊõ �®
...

...q Q o â@ãWäÊåe q U o â@ãWäÊåe

ølùùùùùùùú 7
ïðððððððñ
q Q o âªã-ävåh q U o â@ãWäÊåh...

...� ¤ Å2ö òvó(ôvõ÷ òvó(ôvõ m ¤ ÇKö òvó©ôÊõ÷ òvó(ôvõ �® q U o â@ãWäÊåí¨òvó(ôÊõ
...

...q Q o âªã-ävåe q U o â@ãWäÊåe

ølùùùùùùùú
where û â@ãWäÊå corresponds to the variable with the longest side in the initial rectangle,û â@ãWäÊå 3 ��ÃLü�$��K�i Ñ q U o â@ãWäÊåi � q Q o âªã-ävåi Ò
STEP 4 - Update of # 1 i o D ’s inside both subrectangles r=1,2

The positive parameters # 1 i o D +W, U o â@ãWäÊå 7ª, Q o â@ãWäÊå . are updated inside both rectangles r=1,2.

STEP 5 - Solution of (R) inside both subrectangles r=1,2

The convex optimization problem (R) is solved inside both subrectangles
+ á 3T<K7Bu2.

using any convex nonlinear solver (e.g. MINOS5.4 [22]). If a solution û åLo âªã-ävåý º í is less than
the current upper bound,

ë édê then it is stored along with the solution point
, åZo â@ãWäÊåý º í .

STEP 6 - Update Iteration Counter Þ�ßZà�á and Lower Bound è¦é]ê
The iteration counter is increased by one,

Þ�ßZà�á¸þ � Þ�ßZà�á ^×<
and the lower bound è�édê is updated to the minimum solution over the stored ones from
previous iterations. Furthermore, the selected solution is erased from the stored set.è�é]ê 3 û å k o â@ãWäÊå ký º íÀ¿Á�Â�ÃLÂ û å k o â@ãWäÊå ký º í 3 $�%('åZo â û åLo âý º í 7 á 3Y<�7�u87 Þ 3Y<�7�>?>�>Z7 Þ�ßZà�á � <K>

STEP 7 - Update Current Point
, ¹Lo â@ãWäÊå and Current Bounds

, Q o â@ãWävå 7@, U o â@ãWäÊå on
,

The current point is selected to be the solution point of the previously found minimum

solution in STEP 6,, ¹Lo â@ãWävå 3ÿ, å k o âªã-ävå ký º í
and the current rectangle becomes the subrectangle containing the previously found solu-
tion,
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� , Q o âªã-ävå 7@, U o â@ãWävå � 3
ïðððððððððñ
q Q o â@ãWäÊå kh q U o âªã-ävå kh...

...q Q o â@ãWäÊå kí òvó(ôvõ k Ñ ¤ Å2ö òvó(ôÊõ k÷ òvó(ôÊõ k m ¤ Ç�ö òvó(ôÊõ k÷ òvó(ôvõ k Ò®
...

...q Q o â@ãWäÊå ke q U o âªã-ävå ke

ølùùùùùùùùùú
7 %�� á�� 3±<

� q Q o â@ãWävåi 7 q U o âªã-ävåi � 3
ïðððððððððñ
q Q o âªã-ävå kh q U o â@ãWäÊå kh...

...Ñ ¤ Å2ö òvó(ôÊõ k÷ òvó(ôÊõ k m ¤ Ç�ö òvó(ôÊõ k÷ òvó(ôvõ k Ò® q U o â@ãWäÊå kí¨òvó(ôÊõ k
...

...q Q o âªã-ävå ke q U o â@ãWäÊå ke

ø ùùùùùùùùùú
7 %�� á�� 3Ru

STEP 8 - Check for Convergence

IF
+Zë é]ê � è�é]ê . ² " ¹ , then return to STEP 2

Otherwise, " ¹ –convergence has been reached and the global minimum solution, and solution
point are: *�� þ � * ¹Lo â@ãWävå k k, � þ � , ¹Lo â@ãWäÊå k kÀ¿Á�Â�ÃLÂ Þ�ßZà�á ��� 3 �2ÃZüâ
	 * ¹Lo â . 3 ë é]ê 7 Þ 3Y<�7�>?>�>Z7 Þ�ßZà�á�� >

A mathematical proof that the proposed global optimization algorithm converges to the
the global minimum is based on the analysis of standard deterministic global optimization
algorithms presented in [16] as shown in [17] and [18].

5. Implementation of Ø BB

One of the key characteristics of the # BB method is that it is a generic global optimization
method for constrained optimization problems involving only continuous variables. The
algorithm is implemented in C and at this point the user has the capability of selecting from
four different types of functional forms to define the optimization model. These forms
include (i) linear, (ii) convex, (iii) bilinear, and (iv) nonconvex terms. The original data
are pre–processed so that any linear part in the model, (i.e. linear constraints and linear
cuts), are identified at the very beginning thus reducing the amount of time that is needed
to set up the problem in subsequent stages of the algorithm. The user has the capability to
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supply the values for the parameters # which are defined for each variable

� 3x<�7�>?>�>Z7 cparticipating in term
H | � 1 and constraint (or objective function)

9�3S5�7?>�>�>Z7�A
. In

principle, tailoring the # parameters for each variable, term and constraint generates tighter
convex underestimators than by simply defining a single generic # for all the variables and
nonconvex terms. Furthermore, the user also decides along which variables branching will
be performed. These variables are typically the ones that appear in at least one nonconvex
term.

The information required by the user, in the current implementation, consists of an input
file and a set of user specified functions. Input File : This file provides, in a user–friendly format, information such as (i) the

number of variables and constraints; (ii) the number of different functional forms (i.e.
linear, convex, bilinear, and nonconvex) appearing in the model; (iii) the actual linear
and bilinear entries; (iv) values for the parameter # 1 i o D for each variable, term, and
constraint or objective function; and finally (v) the variables along which branching
will be performed. User Specified Functions : The nonlinear, (i.e. convex and nonconvex), terms of the
formulation have to be explicitly provided by the user in a form of a C or F77 subroutine.
Here the user specifies, for each function (as defined in the input file), the convex and
nonconvex terms.

An efficient parsing phase which would significantly simplify the problem input and
declaration is currently under development and is going to be incorporated in the version
of # BB. Further work is in progress towards the evaluation of customized parameters # for
different partition elements.

6. Computational Studies

The # BB method has been tested on a variety of nonlinear optimization problems which
are described in the following subsections. The selected convergence tolerance is

<?5 f�� and
computational requirements are reported for an HP–730 workstation.

6.1. Bilinearly Constrained Optimization Problems

The simplest type of non–linearities present in the formulation are bilinear terms in either
the objective or the constraint set. The first three examples to be considered are the Haverly
Pooling Problems [9]. The three instances of of the Haverly Pooling problems are the
following: Case I :��� q���q ^�<�� £ ��� N � < � é � <?5�+�� ¤ ^�� ¥ .
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In this first instance, there are three linear equality constraints, two bilinear inequalities
and one bilinear equality. The three bilinear constraints will be underestimated using
linear cuts [2]. There is a total of 9 continuous variables, however, branching is required
on only three of them, (i.e. � 7!� ¤ 7!� ¥ ), which participate in the bilinear terms. The
algorithm converges to the global minimum in about 2.7 seconds and a total of 89
nodes of the complete binary tree are expanded. This means that 89 lower bounding
problems were solved to meet the selected convergence tolerance of

<?5 f�" . The global
minimum solution is located at : � 3Y<�7 é 3#� ¥ 3 [ ¥ 3Y<?5�5�7 £ 3�u�52587 [ ¤ 3 N 3�5 . Case II :

This problem is identical to Case I, except that the upper bound on variable

q
is changed

from 100 to 600. The global minimum is now at: � 3  7 N 3$� ¤ 3 [ ¤ 3  5�5�7 q 3� 5�5�7 [ ¥ 3 é 3µ5 . The solution is found in about 3.0 seconds and a total of 97 nodes
are investigated. Case III :

In Case III, the value of the coefficient of é in the objective function is changed from 16
to 13. The solution, located in about 2.2 seconds, is � 3Y<�>��87 N 3%�2587 é 3J<&��587!� ¥ 3u25�5�7 £ 3 u�5�5�7'� ¤ 3 q 3�5 , and a total of 91 nodes needed to be investigated.

6.2. Bilinearly Constrained with Bilinear Objective Optimization Problems

The next degree of difficulty is to consider bilinearities in both in the objective as well as in
the constraint set. As such an example we will consider the following formulation which
describes the optimal design of a separation system involving three mixers, a splitter, a
flash unit, and a column. The optimization problem is defined as follows :$�%(' � Ó)( >*� q h �� < � >�� � u+� q h q " �, ��u�>  �  Ó q h q � � < �  >�� q h q�- � < ( � q ®� u ( <�> Ó)( � q ® q " �� 5 ( > Ó <?u+� q ® q � ��� u8>�� q ® q�- ^ <?u+��5 q�. ^��25 q�/



15� > ß >t<  > �  ( � q h q " ^ <  > � � Ó�Ó q h q � � q � ^ u+� q h q -^I<  >�<?u)� q ® q " ^ <�u8> Ó <�u)� q ® q � ^Fu+� q � u q - E±<��� u)� q h q " � u)� q ® q " ^ � u8>�� q�/ EG5u)� q h q " ^Fu)� q ® q " ��� u8>�� q / EG5� u)� q h q � � u)� q ® q � ^ � u8>�� q�. EG5u)� q h q � ^Fu)� q ® q � ��� u8>�� q�. EG5 <K>lu)� q h q�- � u8> � Ó)( � q h q " � <2<�>�<�� �) q h q �^  ( >*� q ® q�- � 58> � u+� q ® q " � � > � Ó+( � q ® q � EG5�0 5 q h q�- ^Fu)� q ® ^4u � >  ( � q ® q " �1 �8> �  ( � q ® q � � u+� q ® q�- EG5u+� q h � <  > �  ( � q h q " � <  > � � Ó�Ó q h q � � u+� q h q -^´u)� q ® � <  >�<?u+� q ® q " � <?u8> Ó <?u)� q ® q � � u+� q ® q�- E±< Ó
This problem involves seven variables and branching is required in all of them. Conver-
gence to the global minimum solution

+ q h 3x58>  u25�5�7 q ® 3S<K> 525�52587 q " 3 58> ( � u�587 q � 358>l5 � u � 7 q�- 3Ö5�> 525�52587 q�. 3{58>l5�5  ) 7 q�/ 3{58>l5 � < Ó .
, takes 28.5 seconds and requires the

solution of 153 linear programming subproblems.

6.3. Nonlinear Unconstrained Optimization Problems

The next degree of difficulty consists of optimization problems with nonconvexities in the
objective function and simple variable bound constraints. An example corresponding to
a robust control synthesis problem which has been very challenging to solve for the local
solver MINOS5.4 is addressed. The problem is formulated as follows:$�%('¤ o 2 �43 3 �65 + A hA ® .

7 0�à�á�à A h 3 +  ®  " �  h  � . ® ^ +  h  " ^  ®  � . ®A ® 398 <�^ +  ® �  - .  " � +  h �  . .  �): ® ^;8  ® �  - .  �^ +  h �  . .  "<: ® . 3 u=8 ���?> + � � 7 . �1 7 �!@ � + � � 7 . :+  7 . ® ^ < - 3 u=8&�!@ � + � � 7 ./^  7 ����> + � � 7 . :+  7 . ® ^ < � 3658>��A8  7 � " 7+ " 7 . ® ^�< : " 3658>��A8 <�^  " 7 ®+ " 7 . ® ^�< : h 3 q h
����> + � q " 7 .�^ q ® 7 �!@ � + � q " 7 .+ q ® 7 . ® ^�<
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/® 3 q h �!@
� + � q " 7 . � q ® 7 ���?> + � q " 7 .+ q ® 7 . ® ^�<58>l525µE 7 Eµ<�>l5�5<�>l525µE q h E  > 525u8>l525µE q ® E � > 525� >l525µE q

" E � > 525
The following two cases for the parameter " are considered.

1. " 3  >l5�5 � The problem involves only four variables, however, after 100 multi-start runs
using the local solver MINOS5.4 [22], the global minimum was identified only 5 times.
The method # BB consistently located the global minimum solution

q h 3  7 q ® 3u�7 q " 3 � 7 7 3 58> �)� ( 5 with an objective function value of -2.8765. Computational
requirements for different values of # are shown in Table 1. Apparently, there is a very
strong local minimum solution with a value of -2.7072, and a corresponding solution
vector

q h 3  7 q ® 3Ju�7 q " 3 � 7 7 3µ5�> 5 which was most of the time the convergence
point of the local solver MINOS5.4.

Table 1. Results for
the robust control synthesis
problem !CB�D�E F!F . GIH�JLKNM CPU (s.)

0.50 16 0.61
0.75 17 0.62
1.00 18 0.67

2. " 3$OQPV>SR)OQP<O �
This selection for the parameter " makes the problem even more difficult

for the local solver MINOS5.4 to generate the global minimum solution. In fact, in
only one out of 100 times was the local solver able to find the global minimum
located at

q h 3  7 q ® 3 � 7 q " 3 � 7 7 3O5�> 5 � � �
with an objective function value

of -1.0507. A very strong local minimum of -1.000 located at

q h 3¸u8> Ó 5 � ÓK� u�7 q ® 3 >�<?u � u ÓK� 7 q " 3 � >�< Ó  5�u � 7 7 3�5�>l5 again dominated the reported solutions by the local
solver. Computational results are shown in Table 2.

6.4. Linearly Constrained Nonlinear Optimization Problems

The examples of this section are taken from [20]. They correspond to three very challenging
phase equilibrium problems, and are defined as follows: Given i components participating
in up to k potential phases under isothermal and isobaric conditions find the mole vector
n that minimizes the value of the Gibbs free energy while satisfying appropriate material
balance constraints.
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Table 2. Results for
the robust control synthesis
problem !CBUTVF�E WXTVF�T . GIH�JLKNM CPU (s.)

0.50 203 5.94
0.75 488 14.9
1.00 511 16.2

 Problem I:

The first physical system describes the phase equilibrium of a systems containing
n-Butyl-Acetate – Water. The formulation is as follows :

$&%('ZYì â 3 > hh û >[> hh ^ > h® û >\> h® � Ù > hh ^ > h® Ú û > Ù > hh ^ > h® Ú^ > ® h û >[> ® h ^ > ®® û >\> ®® � Ù > ® h ^ > ®® Ú û > Ù > ® h ^ > ®® Ú^ ì h ®'] h ® > hh
> h®> h® ^ ì h ® > h® ^ ì]® h ]?® h

> h® > hh> hh ^ ì ® h > h®^ ì h ®'] h ® > ® h
> ®®> ®® ^ ì h ® > ® h ^ ì h ®V] h ®

> hh
> h®> h® ^ ì h ® > h®� > ß > > hh ^ > ® h 3 58>��> h® ^ > ®® 3 58>��5¯E > hh 7 > h® 7 > ® h 7 > ®® E 58>��

The terms of the form

> û > + > . have been shown to be convex [20]. Therefore, the
optimization problem contains an objective function that has a convex term and four
additional non–convex terms.

The global minimum solution is presented in Table 3. Computational results are

Table 3. Global minimum of example I.

obj ^�__ ^Q`_ ^A_` ^Q``
Global -0.00202 0.00071 0.49929 0.15588 0.34412

shown in Table 4. Problem II:

The second system describes the phase equilibrium of the ternary system n-Propanol
– n-Butanol – Water. The minimization of the Gibbs free energy takes the form :
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Table 4. Results for the
first phase equilibrium ex-
ample. GIH�JLKNM CPU (s.)

0.10 18 0.41
0.25 49 0.99
0.50 105 2.46

$&%(' Yì â 3 > hh û >[> hh ^ > h® û >\> h® ^ > h" û >\> h" � Ù > hh ^ > h® ^ > h" Ú û > Ù > hh ^ > h® ^ > h" Ú^ > ® h û >[> ® h ^ > ®® û >\> ®® ^ > ®" û >\> ®" � Ù > ® h ^ > ®® ^ > ®" Ú û > Ù > ® h ^ > ®® ^ > ®" Ú^ > hh Ù¨ì h ® ] h ®
> h®> h® ^ ì h ® > hh ^ ì " ® > h" ^ ì ha" ] hN"

> h"> h" ^ ì ha" > hh ^ ì]® " > h® Ú^ > h® Ù¨ì]® h ]?® h
> hh> hh ^ ì]® h > h® ^ ì "�h > h" ^ ìd® " ]?® "

> h"> h" ^ ì ha" > hh ^ ì]® " > h® Ú^ > h" Ù¨ì "�h ] "�h
> hh> hh ^ ì]® h > h® ^ ì "�h > h" ^ ì " ®'] " ®

> h®> h® ^ ì h ® > hh ^ ì " ® > h" Ú^ > ® h Ù¨ì h ®b] h ®
> ®®> ®® ^ ì h ® > ® h ^ ì " ® > ®" ^ ì ha" ] hN"

> ®"> ®" ^ ì ha" > ® h ^ ì ® " > ®® Ú^ > ®® Ù¨ì ® h ] ® h
> ® h> hh ^ ì ® h > ®® ^ ì "�h > ®" ^ ì ® " ] ® "

> ®"> ®" ^ ì ha" > ® h ^ ì ® " > ®® Ú^ > ®" Ù¨ì "�h ] "�h
> ® h> hh ^ ì]® h > ®® ^ ì "�h > ®" ^ ì " ® ] " ®

> ®®> ®® ^ ì h ® > ® h ^ ì " ® > ®" Ú� > ß > > hh ^ > ® h 3 >�c h 7w5dE > hh 7 > ® h E >�c h> h® ^ > ®® 3 > c ® 7w5dE > h® 7 > ®® E > c ®> h" ^ > ®" 3 > c " 7w5dE > h" 7 > ®" E > c "
The extremely difficult instance with

> c i 3d8Ô58>�< � Ó 7�58>l5+��u27�58> Ó 5�5 : ,due to the very small
objective value difference between the global and a local solution, was successfully
solved.

The global minimum solution is presented in Table 5.

Table 5. Global minimum of example II.

obj ^A__ ^=`_ ^A_` ^Q`` ^�_e ^Q`e
Global -0.27081404 0.0456 0.0063 0.6550 0.1450 0.1280 0.0200

Computational results are presented in Table 6.
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Table 6. Results for the sec-
ond phase equilibrium prob-
lem. GfH�JLKNM CPU (s.)

0.025 208 7.10
0.05 320 10.4
0.10 772 24.6

 Problem III :

The final example describes the phase equilibrium of Toluene – Water.«=gh 3
-Vhbi f�hå i «Qg® 3 -VhNj f/hå j3  >*�  ) < � 3 � >���u�< (��«=gk 3 $&%©' 8X«=gh 7@«Qg® :3F«=gh3  >*�  ) < �«=lw3F«=gk ^ +W«Qgh � «=gk .�^ +-«Qg® � «Qgk .3F«=g®3 � >*�2u�< (��«=mh 3F«=g® � «Qgk «=m® 3F«=gh � «Qgk3 u�> � Ó�Ó � Ó 3 5

n h 3;o � h ^ á h §@«=l 3 u Ó >��  ��u2un ® 3;o �® ^ á ® §@«=l 3 ( >l5
$&%('�Yì ò 3 >qp h } � « gh á h�r ' á h ^ « u o h�r ' o h � >qp ® } � « g® á ® r ' á ® ^ « u o ® r ' o ® �^×« l � á h > hh ^ á ® > h® � r ' � á h > hh ^ á ® > h® � ^¬« mh á h > hh r '

> hhá h > hh ^ áÔ® > h®^×« l � á h > ® h ^ á ® > ®® � r ' � á h > ® h ^ á ® > ®® � ^¬« mh á h > ® h r '
> ® há h > ® h ^ áÔ® > ®®^ « u o h > hh r '

> hho h > hh ^so ® > h® ^
« u o ® > h® r '

> h®o h > hh ^so ® > h®^ « u o h > ® h r '
> ® ho h > ® h ^so ® > ®® ^ « u o ®

> ®® r '
> ®®o h > ® h ^so ® > ®®^ � o � h > hh ^so �® > h® � r ' � o � h > hh ^so �® > h® � ^so � h > hh r '

> hho � h > hh ^ ]?® h o �® > h®^to �® > h® r '
> h®] h ® o � h > hh ^so �® > h®
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^ � o � h > ® h ^so �® > ®® � r ' � o � h > ® h ^so �® > ®® � ^so � h > ® h r '
> ® ho � h > ® h ^ ]?® h o �® > ®®^to �® > ®® r '

> ®®] h ® o � h > ® h ^so �® > ®®� n h � > hh r ' > hh ^ > ® h r ' > ® h � � n ®´� > h® r ' > h® ^ > ®® r ' > ®® �
s.t. > hh ^ > ® h 3�5�>*�> h® ^ > ®® 3�5�>*�5dE > hh 7 > h® 7 > ® h 7 > ®® E 5�>��

The global minimum solution is presented in Table 7.

Table 7. Global minimum of example III.

obj ^ __ ^ ` _ ^ _` ^ ``
Global -0.01975944 0.0004 0.4996 0.4772 0.0228

Computational results are shown in Table 8.

Table 8. Results for
the third phase equilibrium
problem. GIH�JLKNM CPU (s.)

0.50 51 1.95
0.75 55 2.08
1.00 63 2.27

6.5. Nonlinearly Constrained Nonlinear Optimization Problems

The problems of this section involve nonconvex terms of generic structure in both their
objective function and constraints. Two examples will be presented, a small one in order
to illustrate all possible combinations of functional forms that can be present in a general
nonconvex optimization problem, and a larger one in order to illustrate the applicability of
the method on a real–world problem. Example I: This example is taken from the manual of MINOS5.4 [22]. The formulation

is as follows :$&%(' + q h � <�. ® ^ + q h � q ® . ® ^ + q ® � q " . " ^ + q " � q � . � ^ + q � � q - . �
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The # BB input file for this problem is shown in the appendix. This examples involves
linear, convex, bilinear, and non–convex terms. The global minimum solution along
with four local solutions are shown in Table 9. Computational requirements for

Table 9. Global and local minima of example I.

obj v _ v ` v e v�w v�x
Global 0.0293 1.1166 1.2204 1.5378 1.9728 1.7911
Local 1 27.8719 -1.2731 2.4104 1.1949 -0.1542 -1.5710
Local 2 44.0221 -0.7034 2.6357 -0.0963 -1.7980 -2.8434
Local 3 52.9026 0.7280 -2.2452 0.7795 3.6813 2.7472
Local 4 64.8740 4.5695 -1.2522 0.4718 2.3032 4.3770

different values of # are presented in Table 10.

Table 10. Computational
results for example I. GIH�JLKNM CPU (s.)

0.05 35 13.87
0.25 81 30.80
0.50 335 99.76

 Example II: This test example addresses an optimal blank nesting problem involving
important industrial applications. The objective is to minimize the “scrap” metal and
the problem is formulated as follows:$�%('y i o y j o z ¤ o z�¥�o 2�o { 7I�� > ß > 7 3 7 h � 7 ®7 h � £ îi 7 � 3Y<�7�u7 ® E £ îi 7 � 3Y<�7�u+ á i ^ á 1 . ® E6+ q îi � q�|1 . ® ^ + £ îi � £=|1 . ®á i E £ hi E 7 � á iá i E £ ®i E 7 � á ie~}_ i�j h

q hi E e�}_ i�j h
q ®i E e�}_ i�j h

q h mi
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The results of local minimization runs from 50 randomly generated starting points
using MINOS 5.4 [22] are shown in Table 11. The global solution is identified by # BB
in 250 iterations and 3,153 seconds of CPU time. It is shown, along with some local
solutions in Table 12.

Table 11. Sample Local Runs

Run No. obj. fun. Run. No. obj. fun.

0 299.230856 (0) 1 299.230856 (0)
2 Failure 3 350.065316 (0)
4 Failure 5 344.095172 (0)
6 350.065316 (0) 7 350.065316 (0)
8 344.095172 (0) 9 Failure
10 350.065316 (0) 11 Failure
12 Failure 13 350.065316 (0)
14 350.065316 (0) 15 Failure
16 350.065316 (0) 17 350.065316 (0)
18 350.065316 (0) 19 Failure
20 Failure 21 350.065316 (0)
22 Failure 23 Failure
24 344.095172 (0) 25 235.721608 (0)
26 299.230856 (0) 27 Failure
28 Failure 29 Failure
30 Failure 31 235.721608 (0)
32 Failure 33 350.065316 (0)
34 350.065316 (0) 35 350.065316 (0)
36 350.065316 (0) 37 Failure
38 344.095172 (0) 39 350.065316 (0)
40 350.065316 (0) 41 Failure
42 350.065316 (0) 43 350.065316 (0)
44 350.065316 (0) 45 Failure
46 350.065316 (0) 47 350.065316 (0)
48 Failure 49 Failure

As can be seen from these results, in only two out of the 50 runs the global minimum
is identified.
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Table 12. Local and global solutions� � _ � ` � v �V� � �
235.721608 2.755873 5.897465 -12.660181 -3.62188 8.394903 28.079134

299.230856 2.783586 5.925179 -14.000000 0.000000 13.283868 22.525884

344.095172 2.315182 5.456775 -13.767864 0.000000 15.000000 22.939678

350.065316 2.362680 5.504273 -14.000000 0.000000 14.004254 24.997070

7. Conclusions

In this paper, the global optimization method # BB, is introduced for solving continuous
constrained nonlinear optimization problems with nonconvexities both in the objective
function and constraints. These nonconvexities are partitioned as either of special struc-
ture, if there exist tight convex lower bounding functions for them, or otherwise generic. A
convex relaxation of the original problem is then constructed by (i) replacing all nonconvex
terms of special structure (i.e. bilinear) with customized tight convex lower bounding
functions and (ii) by utilizing the # parameter, as defined in [17], to underestimate noncon-
vex terms of generic structure. # BB attains finite " –convergence to the global minimum
solution through the successive partitioning of the feasible region coupled with the solution
of a series of nonlinear convex minimization problems. The key feature of # BB is that it is
applicable to a large number of optimization problems. Comparisons with other methods
on test problems indicate the efficiency of # BB.
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Appendix

Sample Ø BB Input File

# Note:
# (1) Lines starting with a "#" or "!" are comment
# lines.
# (2) Empty lines are ignored.
# (3) Fields can be separated by any non-zero
# number of spaces or tabs.
#
BEGIN mhw4d # Problem name
OBJTYPE Nonconvex # Type of objective function
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CONTYPE Nonconvex # Type of constraints
NXVAR 5 # Number of X variables
NCON 5 # Total number constraints
EPSA 1.0E-05 # Absolute conv. tolerance
EPSR 1.0E-03 # Relative conv. tolerance
YSTART -1 # Type of starting point desired
OBJCONST 0 # Constants in the objective
USERFUNC default
#
# Rows section
# this section will perform a complete description
# of all the rows in the problem.
# A row is defined by
# 1. a number
# 2. a relationship type ( <=, >= , == )
# 3. a RHS value
# 4. number of linear terms
# 5. number of convex terms
# 6. number of bilinear terms
# 7. number of nonconvex terms
# All constraints should appear in this section
# and all constraints are assumed to have a default
# linear. This will help the consistency
# of the model and the handling of the different
# formulations.
# Format :
# Row_No Row_sense RHS_Value Linear_terms
# Convex_terms Bilinear_terms Nonconvex_terms
#
ROWS 5
0 -1 0.0 1 1 0 1 0
1 -1 6.242641 1 1 0 1 0
2 -1 -6.242641 1 0 0 1 0
3 -1 0.828427 2 0 0 1 0
4 -1 -0.828427 2 1 0 0 0
5 0 2.0 0 0 1 0 0
#
# Columns section
# Format :
# Row_Number X-Index Y-Index Coefficient
#
# The objective function is denoted by Row Number 0.
#
COLUMNS 0
0 1 0 0.0
1 1 0 1.0
2 1 0 -1.0
3 2 0 1.0
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3 4 0 1.0
4 2 0 -1.0
4 4 0 -1.0
5 1 5 1.0

#
# Bounds Section
# Format:
# Bound_Type X-Index Y-Index Value
#
BOUNDS 10 # Total number of bounds specified = 2

L 1 0 -6.5
L 2 0 -6.5
L 3 0 -6.5
L 4 0 -6.5
L 5 0 -6.5
U 1 0 6.5
U 2 0 6.5
U 3 0 6.5
U 4 0 6.5
U 5 0 6.5

#
# Alpha Section
# Format:
# Obj. Function / Constraint X-Index Value
#
#
# Case (a) : all alphas will correspond to the
# same fixed values
# ALPHA -1
# 0 0 10.0
# Case (b) : user specified alphas

ALPHA 9
T1 1 1 0.25
T1 1 2 0.25
T1 1 3 0.25
T1 1 4 0.25
T1 1 5 0.25
T2 2 3 0.25
T3 3 2 0.25
T3 3 3 0.25
T4 4 3 0.25
BRANCH 5
V1 1
V2 2
V3 3
V4 4
V5 5
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END
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