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Abstract

The Gibbs tangent plane criterion has become an important tool in determining the qual-
ity of obtained solutions to the phase and chemical equilibrium problem. The ability to
determine if a postulated solution is thermodynamically stable with respect to pertur-
bations in any or all of the phases is very useful in the search for the true equilibrium
solution. Previous approaches have concentrated on finding the stationary points of the
tangent plane distance function. However, no guarantee of obtaining all stationary points
can be provided. These difficulties arise due to the complex and nonlinear nature of the
models used to predict equilibrium. In this work, simpler formulations for the stability
problem are presented for the special class of problems where nonideal liquid phases can
be adequately modeled using the NRTL and UNIQUAC activity coefficient equations. It
is shown how the global minimum of the tangent plane distance function can be obtained
for this class of problems. The advantage of a global optimization approach is that if a
nonnegative solution is found, then it can be definitively asserted that the postulated solu-
tion is the globally stable equilibrium one, unlike available local algorithms. For the case
of the NRTL equation, the GOP algorithm of Floudas and Visweswaran (1990, 1993)
is used to guarantee obtaining e-global convergence to the global minimum. For the
UNIQUAC equation, a branch and bound algorithm based on that of Falk and Soland
(1969) is used to guarantee convergence to the global solution. The computational results
demonstrate the efficiency of both global optimization algorithms in solving a variety of

challenging problems.

*Author to whom all correspondence should be addressed.



1 Introduction

A persistently difficult problem in chemical engineering is the phase and chemical equilibrium problem
which is of crucial importance in several process separation applications. For conditions of constant
temperature and pressure, a global minimum of the Gibbs free energy function describes the true
equilibrium state. However, due to the presence of multiple solutions and the complexity of the
models employed, all previous approaches have been unable to provide a guarantee of obtaining
the global solution for the general equilibrium problem. Recently, McDonald and Floudas (1994a)
proposed a global optimization approach that will find a global solution for the minimization of the
Gibbs free energy function, when the liquid phase is modeled using the NRTL equation. McDonald
and Floudas (1994b) also applied a global optimization algorithm when the liquid phase can be
characterized by the UNIQUAC equation. The difficulty of finding the true equilibrium solution has
stimulated much interest in the phase stability problem. This is because a solution obtained from the
minimization of the Gibbs free energy can be tested for intrinsic thermodynamic stability by using
the Gibbs tangent plane criterion, as first proposed by Gibbs (1873a, 1873b). It also recognizes the
metastable region as unstable, a useful property in engineering applications.

Gautam and Seider (1979) used a phase-splitting algorithm in conjunction with the Rand method
to improve the performance and reliability of their approach. Baker et al. (1982) proved the Gibbs
tangent plane criterion for mixtures where the Gibbs free energy is a continuous first order function.
They demonstrated the problems associated with conventional stability criteria when several solutions
exist satisfying the condition of equal chemical potentials. Smith et al. (1993) have recently obtained
the necessary and sufficient conditions for stability of systems where chemical reaction may or may
not be taking place, using the Karush-Kuhn-Tucker (KKT) optimality conditions as the basis of
their consideration.

The work of Michelsen (1982a, 1982b), provided the first efficient implementation of the tangent
plane criterion. A two stage approach was proposed whereby the stability problem was used to gener-
ate initial points to be used in the search for a global minimum of the Gibbs free energy. Experience
revealed that if the postulated solution is indeed thermodynamically unstable, the solutions obtained
from the stability problem usually provide a good starting point for the new search. Sun and Seider
(1994) also used a two stage approach, and employed a homotopy algorithm in an attempt to obtain
the global solutions.

Swank and Mullins (1986) compared various methods for calculating liquid phase-splitting prob-
lems. The results showed that reliability could be increased but that there is no guarantee that phase
equilibrium will be calculated correctly in all cases. Nagarajan et al. (1991a, 1991b) reformulated
the stability approach replacing the mol numbers by mol densities, so that the Helmholtz free energy
is the proper thermodynamic function describing equilibrium. Gupta ef al. (1991) combined the
phase equilibrium problem and the stability problem to avoid singular Jacobians. Their approach is
guaranteed to converge to a stationary point. Eubank et al. (1992) integrate the Gibbs free energy

surface for a single hypothetical phase, obtaining a maximum area rather than a minimum tangent



plane distance. A maximum of three components and two phases may be postulated and convergence
cannot be guaranteed if the solution lies at a composition bound.

Even though the stability problem has been effectively used to improve the chances of finding the
true equilibrium solution corresponding to a global minimum of the Gibbs free energy, there is no
guarantee that it will be obtained. It is usually assumed that if a postulated solution is found to be
thermodynamically unstable, then a phase must be added or deleted. However, the true equilibrium
solution may in fact be a solution with the same number of phases as the postulated one, but with
a different distribution of the components within those phases.

In this work, it is shown how global solutions can be obtained for the phase stability problem for
the case when nonideal liquid phases can be modeled using the NRTL or UNIQUAC equations. This
is an important result because if a global approach shows that a solution satisfying the condition of
equal chemical potentials is stable with respect to all possible perturbations, then global stability
can be definitively asserted, i.e. the solution corresponds to a global minimum of the Gibbs free
energy. Firstly, an introduction to the problem is supplied, including a brief derivation of the tangent
plane stability criterion. The next two sections discuss how the formulations for the NRTL and
UNIQUAC equations can be altered from their original nonconvex forms into problems with special
structure. The NRTL can be transformed into a biconvex problem, while the UNIQUAC formulation
is expressed as the difference of two convex functions, where the concave portion is separable. It
will be shown how the recast formulations can be solved for e-global optimality by using available
global optimization algorithms. In the case of the NRTL equation, the GOP algorithm of Floudas
and Visweswaran (1990, 1993) is used to obtain global solutions. For the UNIQUAC equation,
the branch and bound algorithm of Falk and Soland (1969) is used to obtain global solutions to
the reformulated problem. Examples are provided in both cases which demonstrate the success in

generating the global solutions of the phase stability problem, regardless of starting point.

2 Problem Statement

Before discussing and deriving the tangent plane criterion, the motivation for its use is briefly out-
lined. This arises from consideration of the Gibbs free energy surface and the manner in which the
tangents to this surface can describe the nature of equilibrium. Consider a binary system that is
characterized by a single thermodynamic model, which is unspecified as yet, and it is assumed to be
first order continuous. Then a plot such as the one shown in Figure 1 is obtained where the molar
Gibbs free energy curve, g(y), is plotted versus the mol fraction, y, of one of the components. The mol
fraction of the second component is given by 1 —y. Suppose that a two—phase solution corresponding
to a local (not global) minimum of the Gibbs free energy function has the mol fraction of component
one in phase one denoted by 2! and in phase two by 2%, with associated chemical potentials u°(2?)
and u°(2%). Note that the superscripts refer to phases, not components. This local solution satisfies
the necessary first order condition of equal chemical potentials, so that p°(2!) = p°(2?). If the tan-

gents to the Gibbs surface are drawn at 2! and 22, then these correspond to the tangent plane to the



Gibbs free energy surface 7(2!) = 7(2?) = y14°(2!). This implies that points of common tangency
reveal multiple phases. Note that the tangent line associated with this local solution lies above the
Gibbs surface in a small region around y ~ 0.6, indicating thermodynamic instability. However, the
situation for the solution corresponding to a global minimum is pictured in Figure 2 obtained for a
different z' and 2% than before. In this case, the common tangent lies completely below the Gibbs
surface. For any mol fraction y that falls between z! and 22, the hypothetical single liquid phase
is unstable and will split into two phases with the compositions in each phase given by 2! and 22
respectively. The key characteristic is that if a tangent plane that lies completely below the Gibbs
free energy surface does exist, then the equilibrium solution corresponding to the global minimum
of the Gibbs free energy is given by the compositions at the points of tangency.

However, in the general multi-component, multi-phase problem there is no rigorous approach to
determine where the tangent plane touches the Gibbs free energy surface so that it always lies below
it. Rather, a point is picked on the composition space, which corresponds to some solution that
satisfies the condition of equipotentials, and the tangent plane arising from this solution is checked
to ensure that it lies below the Gibbs free energy surface for all feasible compositions. It will now
be briefly shown why negative tangent plane distances reveal instability. Assume that the system
in question is at constant temperature and pressure. Then the Gibbs free energy function is the
thermodynamic quantity of interest. If the index set C represents the components ¢ so that C = {<},
then consider a single phase with mol fractions z; and total mols n°. An infinitesimal number of mols
€ is split from the original phase to form two new phases, with the new phase having mol fractions
;, and the original phase now containing n® — € mols. The change in the Gibbs free energy arising

from this change is given as follows:

AG = G(e) + G(n® — €) — G(n°)

= D eyimi(y) + G(n”) - Zeyige—(; ~ G(n%
1eC ieC i,

= Y v {mlv) - wla)}
1eC

If this energy change is positive for all feasible values of y, then the Gibbs energy of the postulated
phase cannot be reduced by adding, deleting or changing the relative amounts of the various com-
ponents in the postulated solution, so that it is seen to be stable. On the other hand, if the energy
change is negative, then another solution must be sought which will have a lower value of the Gibbs
free energy function.

Baker et al. (1982) and Smith et al. (1993) provide extensive proofs that a necessary and
sufficient condition for a postulated solution to be an equilibrium one is that the tangent plane
distance function, denoted F(y) be nonnegative for all possible phases represented in the system,
with F(y) defined as follows:

Fly) = 3w {mly) - 13(2)} (1)

1eC



where u;(y) and pd(z) represent the chemical potentials calculated at y and z respectively. The
significance of the tangent plane criterion has been illustrated in Figures 1 and 2. The tangent
plane distance function is defined as the distance between the Gibbs surface and the tangent plane

constructed to this surface at z. This is summarized as follows:

e g(y) = Y wiupi(y) Molar Gibbs surface (for a single hypothetical phase)
1€C

e T(y) = X wpd(z) Tangent plane to this surface at z
1eC

e F(y) = g¢g(y)—7(y) Tangent plane distance function

Clearly, if the tangent plane lies completely below the Gibbs surface as in Figure 2, then the postu-
lated solution corresponds to a global minimum of the Gibbs free energy.
Previous approaches have concentrated on obtaining the stationary points of the tangent plane

distance function, which reduce to solving the set of nonlinear equations:

pi(y) — ui(z) = K (2)

subject to the feasibility constraints on y. If any of the solutions to this set of equations is negative,
then the postulated solution is unstable and an improved solution with a lower Gibbs free energy must
be sought. If all stationary points are found to be nonnegative, then it is assumed that the postulated
solution is stable. However, there are a number of difficulties associated with this approach. Firstly,
no guarantee of obtaining all stationary points can be provided so that even if no negative solutions
are obtained, the postulated configuration may be unstable. Also, the solutions obtained from the
stability problem are then used to initiate the search for a solution with a lower Gibbs free energy.
However, there is no way of telling which stationary points correspond to the global solution, so that
these guesses may in fact lead to local optima, or even infeasible solutions. Note that if homotopy
continuation methods are employed in an attempt to locate all stationary points, no theoretical
guarantee of identifying them can be provided, as the phase stability problem contains logarithmic
terms. Such guarantees can only be made for polynomial systems of equations.

In this work, a global optimization approach is introduced. The tangent plane distance function
is explicitly minimized. If a nonnegative global optimum solution is obtained, then the stability of
the postulated solution is guaranteed. The optimization formulation for the phase stability problem,

(S), is then given as:

min F(y) = 3w {m(v) - (2}

1eC
s.t. Zyi =1 (S)
1€C
0 <y <1




Difficulties arise in obtaining global optimum solutions for (S) due to the complex and nonlinear
nature of the models available to characterize u;(y) for nonideal phases. In this work, the situation
for nonideal liquid phases that can be modeled using the NRTL and UNIQUAC equations is ana-
lyzed. The next two sections demonstrate (i) how the formulations can be altered from their original
nonconvex forms into problems with special structure, and (ii) how deterministic global optimization

methods can be employed to obtain global optima.

3 Application to the NRTL equation

3.1 Formulation of F(y)

For conditions of constant temperature and pressure, the Gibbs free energy is the thermodynamic
function that defines equilibrium for the system. The ideal molar Gibbs free energy, labeled g7, for

any mixture of components is given as:

RT = Zyz + Zyz Iny; (3)

2€C

where y; represents the mole fraction of component %, and g; is the molar Gibbs free energy of pure
component ¢ referred to some standard state, as yet undefined. For liquid phases, non—ideality is
commonly predicted by using ezcess functions which describe the deviation of the system from ideal
behavior. Renon and Prausnitz (1968) derived the following expression for g¥, the excess molar

Gibbs free energy function:

gE %: Tﬂgﬂyj %: szgu'!/]

7 7
o Yi——> = Y 4
RT ; %;; Gy ; E Gy (4)

where 7;; are non-symmetric binary interaction parameters, G;; are parameters which depend on
another adjustable parameter, a;; (with a;; = 0 and a;; = aj;). The relationship between these
three parameters is given as G;; = exp (—a;;7;;) so that G,; can never be negative. It is possible to
have negative 7;;. This implies that there are three adjustable parameters per binary (7;;,7,04;).

The molar Gibbs free energy is given as the sum of the ideal portion and the excess portion:

9 _9 9 5)
RT RT RT

Substitution of Eqns. (3) and (4) into Eqn. (5) yields the following expression for the molar Gibbs
free energy of a single hypothetical phase:

; J%:Cﬂ'jgijyj
i yAG; +1ny; ————— 6
)= 5 {AGf iy} + 3w S Gou (6)
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and the chemical potentials of each component are calculated as:

T G5iY; G
,u,-(y):AGf—}—lny-—l—M—l— _Yig¥s T.._M VieC (7)
* : * Y Giivj ~ 3 Giu | 7 > Giim
jeC 7€ leC lec

where AGZ represents the Gibbs free energies of the pure components at the system temperature T,
constructed so that the Gibbs energy content of the elemental species is zero at T'. Notice that all
quantities associated with the Gibbs free energy (such as g(y), ui(y), F(y), AG{) have now been
made dimensionless by dividing by RT.

The tangent plane distance function can be written as:

Fly) = gy) = vini(z) (8)

ieC
ZCTijgijyj
= > w AGZ‘HHM‘FJEET—#?(Z) (9)
lec

By finding the global minimum of F(y) over the convex constraint set of the phase stability problem
(S), it is possible to determine whether the postulated solution represented by z is stable. If the
global minimum of (S) is negative, then a solution with a lower Gibbs free energy must be sought
by some other means. If a nonnegative value is obtained for the global minimum of F(y), then the
solution is stable, and the postulated solution describes the equilibrium state.

There are a number of difficulties associated with obtaining the global solution of the function
given in Eqn. (9). In order to demonstrate the structure of the stability problem, the convex terms
of the tangent plane distance function, labeled C¥(y), are collected together as follows:

M) =Y w{A6 + ny - (=)} (10)
1eC

Note that the terms y;lny; are convex, and the remaining terms are linear. This implies that the

objective function can now be written as:

> TiGisys
Flu) =)+ L u (11)
ieC %;J 1391

The nonconvexities in Eqn. (11) arise solely due to the excess Gibbs free energy term, and consist of

a summation of terms that each involves a linear term times a linear fractional term.

3.2 Transformations and Partitioning

Before proceeding with the analysis, the following optimization problem is briefly discussed:

min  f(z,y)

s.t. h(z,y)=0
9(z,y) <0
zeX,yeY



where X and Y are convex sets, and f(z,y), h(z,y) and g(z,y) are presumed to be continuous
and piecewise differentiable on X x Y. Floudas and Visweswaran (1990, 1993) have proved e-global

convergence for problems that satisfy the following Conditions (A):
o f(z,y) and g(z,y) are convex in z for all fixed y and convex in y for all fixed z,
o h(z,y)is affine in z for all fixed y, and affine in y for all fixed z,

e X and Y C V are nonempty, compact convex sets and a constraint qualification is satisfied,
where V = { y: h(z,y) = 0,9(z,y) < 0, for some z € X }.

By introducing new variables labeled A}, it is possible to change the nature of the nonconvexities
of Eqn. (11) so that the GOP algorithm (Floudas and Visweswaran, 1990, 1993) can be applied to

the phase stability problem:
Yi

Xp= —=
2. Y5iy5
jeC

VieC (12)

Substituting these variables into Eqn. (11) yields the following reformulated stability problem for
the NRTL equation (S-N) given below:

min Fly) =C"(y) + Z Yi - Z GigTij X

ieC jec
s.t. Xi-zgﬁyj =y Viel
j€ec (S-N)
dw=1
1eC

with Y={y:0<y <1 VieC}

Note that the constraints of Eqn. (12) have been rewritten so that they are of a bilinear form, rather
than linear fractional.

(S-N) reveals that there is a natural partition of the variables into two distinct subsets to ensure
that a convex subproblem remains if one of these subsets is held fixed. Suppose that the variables are
partitioned so that the original mol number variables belong to the set of y variables (i.e. ¥ — {y;}),
and the new introduced variables belong to the set of z variables (i.e. z < {A;}). Then Conditions
(A) required by the GOP (Floudas and Visweswaran, 1990, 1993) to guarantee e-global convergence
are satisfied. Examining the new formulation reveals that if the y variables are held constant, then
a linear objective function results subject to a linear set of constraints. If the X" variables are held
fixed, then a convex objective function is obtained subject to a linear set of equality constraints.
Thus, Conditions (A) of the GOP are satisfied. The GOP algorithm proceeds by iterating between
the primal problem, which supplies upper bounds on the global solution, and a set of relaxed dual
subproblems which yield lower bounds on the global solution. The relaxed dual subproblems are

derived through consideration of duality theory. These subproblems will now be discussed.



3.3 The Primal Problem

The primal problem (P) is obtained by fixing the y variables such that y = y* € Y at some iteration
K. To ensure feasibility, the mol fraction constraint (3, y* = 1) must be satisfied. (P) is explicitly

given as:

min C(y") + > v Y Giymisd;

ieC jec

s.t. A Z gﬂy;‘ = yf" V 1€l
jec
Note that (P) has a linear objective function and constraints in the variables Aj, and is therefore
convex. Its solution provides an upper bound on the global solution because it represents a restriction

of the original problem. The definitions of the A" variables form a square set of equality constraints

so that (P) is simply a function evaluation.

3.4 The Relaxed Dual Problem

The primal problem yields an upper bound on the global solution. The relaxed dual subproblems
will yield valid lower bounds. A more detailed treatment of the theory can be found in Floudas and
Visweswaran (1990, 1993) and in McDonald and Floudas (1994a).

3.4.1 Formulation of the Lagrange function

The Lagrange function for use in the relaxed dual problem will supply underestimators of the Gibbs

surface in partitions of the feasible region. If the following steps are performed:
(i) Construct the Lagrange function from (S-N) as L(X,y,)) = f(X,y) + ATh(X,v),
(ii) Collect the X’ variable terms together,
(iii) Use the KKT conditions from the primal problem,
(iv) Construct a relaxation of the Lagrange function that allows for rectangular partitioning,
(v) Augment the set of X" variables with the new set denoted as X,

then the Lagrange function can be written as:
L(R,9,0%) = 305 B {{ G [y + %] - G [ra 25 ]} {mi - i+ Z yS (13)
1€C J#T

where 7 is the last member of the set of components so that y; =1 — > ;ccr %, with CR = C \ {z}.
The augmented set of variables is defined for each 7 € C as /&j = AX; V7 € CR. The derivatives of
Eqn. (13) with respect to the A’ variables are the qualifying constraints of the GOP, given by:

Gii(y) = Vg L(X,9,07) = {gji {Tji + Afy] — Gu [Tri + A;]} : {yj —yf } VieC,je CR (14)



The number of connected variables is the minimum number of X" or y variables that interact bilinearly
so that Noy = |C| — 1. Note that each qualifying constraints consists of a single term (y; — y¥),
allowing the y variable space to be partitioned into simple orthogonal regions. This is described in

the next section.

3.4.2 Partitioning of the y variable space

At any given iteration, the current regional lower and upper bounds for the y variables are {Eg} and
{Ug} respectively. This parent region is then divided into 2V¥CV subregions by the current point,
{y[}. The lower and upper bounds for these subregions are labeled {£] } and {l/] }, respectively.
The set of 2¥CV combinations is denoted CB. The parameter {sfl}, defined over CR x CB, gives

the subregion and the bounds as follows:

If s/'=+41 then (y—-y<)>0 = Ly =y~ , U] = U
V i€C
If s/'=-1 then (y;—y)<0 = Ly = Ly , U =y

A relaxed dual subproblem is solved within each of these subregions to generate a lower bound on
the global solution which is valid for that particular region. Successive refinements of the feasible
region will then lead to convergence to the global solution. A detailed discussion of the details of the
algorithm can be found in McDonald and Floudas (1994a).

Bounds on the set of A’ variables are required for the relaxed dual problem. The A" variables as
defined by Eqn. (12) are pseudolinear, that is, they are convex and concave. Thus there will be one

global minimum, denoted Lx,, and one global maximum, denoted Uy;,, as defined below:

U
U+ % 0L
J#e

Lr
EX Y.

.= and Uy, =
Ly + J%e:i Gyl

VieC (15)

The proof of the above result is supplied by McDonald and Floudas (1994a).

3.4.3 Setting the bounds on the X" variables

The X variables are set at their lower or upper bounds for the current iteration K, and the set
of previous iterations, denoted PL(K). This will depend both on the box region and the sign of
the premultiplying constant term of the qualifying constraints given by Eqns. (14). For the current
iteration, the sign of the box constraint terms are already set for any given box region by sfl. If
the combined sign of the terms are positive, then the corresponding X variable should be set to its
lower bound, while if it is negative, the X variable must be set at its upper bound to yield a valid
underestimation of the original problem. For the previous iterations, the combined sign is evaluated
through the premultiplying terms of Eqns. (14) evaluated at iteration K and the sign of the quantity
yX — yX, which validly determines the sign of y; — y~ in the current region. The detailed steps of

the algorithm are outlined in Appendix A.

10



3.5

Examples for the NRTL

Before describing the examples, it is necessary to make the following comments in relation to them:

(i) For examples where reaction does not occur, the Gibbs free energy of formation term for the

(i)

(iif)

vapor phase is removed through the following approximation:
AGH = AG)T + RTn P Vi eC (16)

In cases where the data has been obtained independently of the vapor phase, the saturated

pressure term can also be eliminated to minimize the dependence on physical data.

The postulated solutions used to test for stability are obtained from minimizing the Gibbs
free energy function, either locally or from the global optimization approach of McDonald and
Floudas (1994a). These solutions have a separate notation associated with them. The set of
phases is denoted P = Pr, U Py = {k}, where the liquid phases are designated Ly C Pr, and
the vapor phase is denoted as V = Py. For any postulated solution, the mol fractions of each
component i in some phase k are given by 2z, so that 3, 2F = 1V k € P. The parameter ¢*
corresponds to the fraction of total mass in phase k, so that 3, ¢* = 1. In the results tables
that follow, y} is the mol vector at a global solution, with 7* being the corresponding tangent
plane distance function. The numbers in parentheses below F* show the results of using the
NLP solver MINOS5.4 to solve the original nonconvex formulations from 100 randomly chosen
starting points, with the first number corresponding to the number of failures in obtaining a
negative tangent plane distance function when the postulated solution is a non-equilibrium one,
and the second number showing how many times the global solution was obtained. Ny is the
number of iterations, with the number in parentheses corresponding to the iteration number
at which the tangent plane distance function becomes negative. The number in parentheses
reported under the cpu time for the problems corresponds to the total cpu time consumed
before a negative tangent plane distance is obtained. Ng is the percentage of solution nodes

that are fathomed because the lower bound lies above the best current upper bound.

All computational runs were performed on a Hewlett Packard 9000/730 machine. The algo-
rithm is implemented in C as the package GLOPEQ (GLObal OPtimization for the Phase
EQuilibrium problem) which is also capable of minimizing the Gibbs free energy function us-
ing the same algorithms employed for the phase stability problem. The solver MINOS5.4 is
accessed as a subroutine. All cpu times reported represent the total real {ime taken to solve
any given phase stability problem to e-global optimality, where tolerances of ¢ = 10~° for the
NRTL equation and € = 10~° for the UNIQUAC equation were found to give a more than

satisfactory criterion of convergence.
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Example 1: n-Butyl-Acetate — Water

This example is small but challenging and is analyzed here at four different feed conditions. There
are two components and a maximum of two liquid phases, so that Comment (i) above applies. The

binary parameters of the system are given by Heidemann and Mandhane (1973) as:
Tio = 3.00498 , 191 = 4.69071 , a;5 = 0.391965

The explicit formulation for the phase stability problem expressed in terms of the original and

transformed variables is as follows:
min y;Iny; + y2lnys — ?/1#'(1)(2) - ’.Uz#cz)(z) + Gramay1 Ao + Ga17T21y2 X1

st XAy + Gy} =wn
Xy - {Gar1 + v2} = v2
y1—|—y2:1 ) 0§?/1:?/2§1

Note that there are two bilinear terms in the objective function, and two bilinear constraints, which
make the problem nonconvex. The Lagrangian constructed from any given primal problem at some

iteration K for use in the relaxed dual subproblems is then:
L(X,y,A\") = milnys +yalny, — o [,U«?(Z) + A{(] — Y {,ug(z) + )\5"]
+{y1 —yr ) AN AN = Gar [121 + AT} + A2 {Gra [112 + AF] = A5}

y1 is the only variable that interacts bilinearly with the X variable set, so that Ngy = 1 for this

example.

Geometric Interpretation

The performance of the GOP will now be illustrated for the case of an equimolar feed, so that the
total number of mols of each component is given as nf = nl = 0.5. The test candidate phase will
be a single liquid phase so that 23 = 23 = 0.5. These values of z substituted into Eqn. (7) yield
p3(z) = —0.06391 and p3(z) = 0.02875. The objective function is plotted in Figure 3 and reveals a
nonconvex curve with multiple stationary and inflection points. In fact, there are two local minima,
one of which is the global one, a local maximum and several inflection points, and the values of
y1 where these occur (excluding the maxima at the boundaries of the feasible region) are given in
Table 1. A local solver will converge at best to a local minimum, with no guarantee of obtaining
the global solution. For this case, if the global solution is not obtained, then all the other stationary
points yield a nonnegative objective function value, which would lead to the erroneous conclusion
that the single liquid phase is stable. In fact, when solving this problem using MINOS5.4, only 29
of 100 randomly selected starting points gave the global solution. This clearly demonstrates the

difficulties associated with application of the tangent plane stability criterion and highlights the
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need for a global optimization approach. The manner in which the GOP algorithm proceeds is now

demonstrated for the first iteration.

Iteration 1: Choose an initial point of y} = yi = 0.5 which gives an upper bound of F(y') = 0.

The parent region is divided in two, and a relaxed dual subproblem is solved in each.

Region 1: The box bounds are: 0.5 < y; < 1.0 (and hence 0.0 < y, < 0.5). This implies that
(y1 —yi) > 0. Solving the relaxed dual problem in this region yields a global solution of y; = 0.7788

with a corresponding lower bound of pj = —0.1861.

Region 2: The box bounds are: 0.0 < y; < 0.5 (and hence 0.5 < y» < 1.0). This implies that
(y1 — y1) < 0. The global solution of the relaxed dual is y; = 0.1910 with a corresponding lower
bound of p3 = —0.2469. The underestimators for Regions 1 and 2 are drawn in Figure 4.

At the second iteration, Region 2 of Iteration 1 yields the next parent region, so that again 2
relaxed dual subproblems are solved to give two additional lower bounds. The algorithm proceeds
in this way until the infimum of all remaining lower bounds is within € of the current best upper
bound. For this particular problem, convergence occurs after 12 iterations. The total time taken by
the algorithm was 0.06 cpu sec, and 8 nodes were fathomed. The actual solution is given in Table 2.
Note also that F7* becomes negative at an early stage of the algorithm so that it could be terminated

because the postulated equilibrium solution is clearly unstable.

Other feed conditions

The algorithm was also tested for three other feed conditions, with different values of {n}}. The
stability test was initiated in all cases by a single liquid phase solution, with z; = 'n,zT/ P n? Y 1.
The only difference between the formulations will then be the values calculated for uf(2). This leads
to negative tangent plane distances in all cases and these results are also shown in Table 2. The
first and last feed conditions (n7 = 0.5 and n¥ = 0.65) are seen to be the most difficult. The
local searches show a large number of failures in terms of predicting that the one phase solution is
unstable. This is also reflected in the fact that a negative tangent plane distance is not obtained
until the fourth iteration in both cases. On the other hand, the middle two feed conditions are much
less challenging, with the local searches showing no failures in predicting instability. However, for

n? = 0.1, the global solution was obtained only 5 times out of 100.

Local LL solution

When the Gibbs free energy is minimized to attempt to obtain the global solution, the four feed
conditions yield a strong local LL solution which satisfies the first order conditions of equal chemical
potentials. This solution is given in Table 3 and can be used to test the algorithm. The mol fractions

in the two phases are the same for all four feed conditions as they lie along the same tieline so that
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only the phase fractions differ. Obviously the tangent plane distance function is negative and a plot
of the Gibbs surface and the tangent plane is provided in Figure 1. As for the illustrative example,
notice that if a local solver converges to a stationary point other than the global minimum, then it
will incorrectly confirm a false equilibrium solution. The global minimum is at y; = 0.59425 with
F(y*) = —0.0007, indicating instability of the local LL solution. The algorithm takes 30 iterations

to converge to this solution using a total of 0.15 cpu sec, while 45% of the nodes were fathomed.

Global LL solution

All four feed conditions share the same mol fractions for the equilibrium solution corresponding to
a global minimum of the Gibbs free energy, and these are also supplied in Table 3. The postulated
global solution will obviously yield a nonnegative tangent plane distance over the full mol fraction
space and this is pictured in Figure 2 where the tangent plane lies below the Gibbs surface over the
feasible composition range. For a starting point of y] = 0.75, the global solution of zero is obtained
after 36 iterations with the algorithm consuming a total of 0.16 cpu sec, while 43% of the nodes were
fathomed. The time taken to verify the equilibrium solution is not significantly greater than that

taken to establish instability for the other non-equilibrium postulated solutions.

Example 2: Toluene — Water — Aniline

This example is taken from Castillo and Grossmann (1981) and features three components at a
temperature of 298K and a pressure of 1 atm. Bender and Block (1975) supply the parameters for this
example and these are shown in Table 4. The phase rule indicates that there are a maximum of three
phases. Paules and Floudas (1989) found that this example displayed troublesome characteristics
in terms of convergence to the trivial solution. It demonstrates why the stability analysis is such a
valuable tool because by solving the stability problem for a postulated trivial solution, there is the
possibility of obtaining a negative tangent plane distance indicating that it is false.

Starting with a trivial solution, the global solution for the given feed conditions is supplied in
Table 5. The global solution is obtained after 16 iterations with a total time of 0.18 cpu sec. Note
that the tangent plane distance function becomes negative at the first iteration, indicating instability
after only 0.001 cpu sec.

If the equilibrium solution corresponding to a global minimum of the Gibbs free energy is tested
for stability, the tangent plane distance function will of course be nonnegative over the complete
feasible region. In this case the global solution of zero is obtained after 85 iterations and the GOP

algorithm takes a total time of 0.94 sec. In addition, 68% of the nodes were fathomed.

Example 3: n-Propanol — Water — Butanol

This system was first studied by Block and Hegner (1976) in their study of three phase distillation
towers. It contains one partially miscible pair between water and m-butanol. The required binary

parameters are given in Table 6 and it should be noted that these are independent of temperature,
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so that consideration of a vapor phase is meaningless. Walraven and Rompay (1988) also studied
this example for a variety of feed conditions to test their phase splitting algorithm, and two of these
source feeds were used to examine the performance of the global optimization algorithm:

Condition (i): {n]} = {0.160,0.800,0.040}

Condition (ii): {nf} = {0.052,0.800,0.148}
Condition (i) corresponds to a relatively easy example that lies within the immisiscibility region,
while Condition (ii) lies close to the plait point, and is therefore very challenging.

A local solver will not be able to guarantee obtaining the global solution from any given starting
point. The results for Condition (i) are shown in Table 7, for both the trivial solution and the global
solution as the postulated equilibrium solutions to be tested for stability. With a one phase solution
postulated, there were no failures by the local solver in predicting instability although the global
solution to the stability problem was only obtained 31 times out of 100 randomly selected starting
points. Table 8 shows the results for Condition (ii) where the difficulty of the problem is reflected
in the increased computer time required to establish stability. There were also a large number of
failures (60 out of 100) when the stability problem was solved locally using MINOS5.4. Notice that
the time required to verify instability is very small. Obviously, as soon as a negative tangent plane
distance is found, the algorithm can be stopped. However, for the stable solutions the cpu time
required to confirm an equilibrium solution is more punitive. It should be noted that the iteration
at which the tangent plane distance function becomes negative occurs in the first iterations with
a correspondingly low cpu usage. This will have important implications when the tangent plane
criterion is used to test solutions obtained from the minimization of the Gibbs free energy because

the concern is determining if this distance is negative.

4 Application to the UNIQUAC Equation

4.1 Formulation of F(y)

Anderson and Prausnitz (1978) proposed the following expression for the excess Gibbs free energy:

Z Ys 111 —|— Z 4 s ln Z q;¥: In (Z 6’ Tﬂ) (17)

1€C 1.€C 1‘ 1€C jec
where r;, ¢; and qz'- are pure component structural parameters, 7;; is a binary interaction parameter,
z is a lattice coordination number, and ¢;, 6; and 6} defined as follows:
o .
b= —_ viec
%:c TiYj
J
b = 2% viccC

2. 95Y;
jel

Loy,
o= 2% vicc
Z‘ijj
jec
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Collecting the terms involving ¢; and substitution of Eqns. (17) and (3) into Eqn. (5) leads to the

following expression for the (dimensionless) molar Gibbs free energy:

9(y) = Z Yi {AG{ + [1 - %qi] In ¢; + gqi Inb; — g/ ln Z O;Tji} (18)

ieC jeC

The chemical potentials for each component are defined as:

pi(y) = AGT + [1 - ng'] In ¢; + ng' In6; +1; — ﬁ > Ly

! ! ! ! TZJG.;
+¢; — ¢;1n Z 705 — 4 Z ~ g (19)
jec jeo 2 0mi
leC
where [; is given as:
lizg-(n—qi)—('ri—l) VieC (20)
In addition, the following new parameter is introduced:
Zg. — 1
oF = 22 >0 VieC (21)

T3
This parameter is always positive. If the terms involving ¢;, 6; and 6. are fully expanded, then the
tangent plane distance function for the UNIQUAC equation is obtained by substituting Eqn. (18)
into Eqn. (8) to yield:

Ty, 2 %y 2, T

iYs iYi € 0

Fly) = E ¥i { AG! — z['r;1n + giln =2 — gl T —— — W0z 22

W) e > Ty 2 > 435 > 4y (=) (22)
jeC jeC je€C

F(y) as defined above is clearly nonconvex. McDonald and Floudas (1994b) present various trans-
formations and properties that allow this function to be expressed as the difference of two convex
functions where the concave portion is separable. The results are summarized in the foregoing, but

firstly, new parameters are introduced to aid in this process, defined as follows:

2 = min{zf) (23)
s (24)
ieC
2z = Z[zf—zﬁ] Viel (25)
I#e
pi = gitrilz+2]] viel (26)

These new parameters allow the convex portion of the reformulated tangent plane distance function
to be defined as:

C'(y) = Z Yi {AGf - ;L?(Z) —z'r;1n 7'1-}
1€C
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The reformulated stability problem for the UNIQUAC equation (S-U) can then be written:

)

min  F(y)=C"(y) - > _ wivilny

2€C
1€C
with yeY={y,:0< 3y <1 Vi €C}

7
This objective function is composed of the difference of two convex functions, where the convex

function that is subtracted is separable in ¥;, and is minimized over the convex set Y. This structure

will be fully exploited in solving (S-U).

4.2 Branch and Bound Algorithm

For problems of similar structure to (S-U), a branch and bound algorithm was proposed by Falk
and Soland (1969), which forms the basis of the algorithm used in this work. The basic idea is
to successively refine the feasible region, solving convex subproblems in these subregions, and thus

generating a nondecreasing subsequence of lower bounds that will converge on a global solution of
(S-0).
4.2.1 Generating convex underestimators of F(y)

For any given partition of the feasible region defined as:
Eiﬁ’yiSUj Viel (27)

then a valid lower bound on the objective function is supplied by the convex envelope of F(y) defined
in (S-U). The convex envelope of the separable concave term —y; In y; is denoted ¥;(y;), and is simply

the affine function that joins the endpoints for y; as defined by Eqn. (27):

LE L] —UP InUP

\I’i(yi) = —,Ci. In ,Ci + P _ [P
Y. Y.

] -] viec (28)

Then the convex envelope of the concave function will be given by the sum of these individual affine

functions. The following problem will then yield the convex envelope of F(y) and provides a valid
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underestimation of the global solution in the current region:

min  CY(y)+ Y @:i¥i(w)
ieC
s.t. Zyi =1 (UES)
i€C
Ly <y < U,

For successive refinements of the feasible region, the lower bound supplied by (UES) will be tighter
than that supplied by any of its predecessor nodes, creating a nondecreasing subsequence of lower

bounds on the global solution. A local solution to (UES) is a global one.

4.2.2 Partitioning scheme for the y variable space

The notation in this section is the same as for the NRTL equation. As discussed by McDonald and
Floudas (1994b), Np hyperplanes are chosen to partition the current region with 1 < Np < N¢v,
and Ngy = |C|—1. Np is a user specified parameter. The larger it is, the tighter will be the bounds
created in a given region, but the number of subproblems solved for that iteration will be increased.
Thus, 2VP box regions are created at every iteration, and an underestimating subproblem of type
(UES) is solved in each to generate a valid lower bound on the global solution.

The current region is partitioned along the Np edges with the largest distances, labeled &,
between the concave function and its convex envelope evaluated at y¥. Horst and Tuy (1990)
proved that the algorithm used in this work (which allows Np to vary) converges finitely to an
e-global global solution of (S-U) if the subdivision rule just described is used.

The parameter H; is used to decide if the current region will be partitioned along the facet of
the n-rectangle involving y;. If H; = 1, then the side of the n-rectangle associated with y; will be

partitioned, while if H; = 0, then it will not. This is summarized below:

|
N
B

If s -H;=+1 then (y;—y*)>0 = Ly =y , U, =
If s’'-H; =—1 then (vi—yf)<0 = Ly = Ly, U] = y° VicC,jcCR
If s’ H;= 0 then LE = L3, Ur = Ur
Some key characteristics of the algorithm are:
¢ Only one underestimating function is required per node.
e The current region can be partitioned using a variable number of hyperplanes.

e Each subproblem is unconstrained, except for the simple box bounds on the variables.
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It proceeds by solving (S) locally with F(y) given by Eqn. (22) to give an upper bound on the global
solution. The current region is then partitioned by hyperplane(s) passing through the current point,
and 27 subproblems of type (UES) are solved to yield a lower bound on the global solution in that
particular subregion. If these solutions lie above the best upper bound, they are fathomed; otherwise
they are added to the set of solution nodes. Then, the infimum of all available lower bounds is
chosen as the node for the next iteration, so that the mol fraction solution associated with this node
becomes the current point. Before returning to solve (S) locally, a check for convergence is done.

The detailed steps of the branch and bound algorithm are presented in Appendix B.

4.3 Examples for the UNIQUAC equation

The same comments that were made in Section 3.5 are also applicable here.

Example 4: Toluene — Water

This first example is taken from Lantagne et al. (1988) where the modified version of the UNIQUAC
equation is used, as the system contains water. There are a maximum of two phases, both assumed to
be liquid, and the pure component structural data as well as their associated parameters introduced
to change the form of the objective function are given in Table 9. The two binary interaction

parameters are supplied as:
T19 = 0.09867 , 791 = 0.59673

The following definitions are also required:

zy; = min { 27,25 }
— 2 =3.53316

2% = zy 4 (27 — zy) + (23 — 23)
= 2)' =6.52174

This allows the convex portion of the objective function to be written as:

CU('!/l:'!/2) = [—#(1)(2) - 257"1 In 7‘1] + v [—Mg(z) - 257‘2 In 7‘2]
n
+ 2% [riy1 + roye|In[riyr + raye] + 2z iy Iln ————
™Y1 + T1Y2
z q1Y1 z q2Y2
+ sayiln———— 4 Sgaypln ————
2 QY1+ @y 2 a1Y1 + Y2
0N P
+ (o + gyl In [g191 + gau2] + qrya In + g3z In

Y1+ T2105Y2 T1291%1 + 9592

The explicit separable D.C. formulation is given as follows:

min CU(yhyz) — ¥ [yl In ?/1] — P2 [yz In yz]
st. y1+y=1
0< y1,92 <1

19



It is seen that the nonconvexities of the problem lie in the separable concave portion of the objective
function. If the trivial solution is tested for stability, Table 10 gives the resulting chemical potentials,
while Figure 5 shows the objective function as a nonconvex curve that represents the tangent plane
distance function for this case. Note that there is a local maximum of zero at y; = 0.5, but this
is the largest value the objective function takes. Thus, it is a relatively easy problem, as any local
solver will converge to one of the two local minima that yields a negative tangent plane distance, and
so correctly identify that the one phase solution as unstable. This will not be the case in general,
where the global solution of the stability problem may be the only stationary point with a negative
distance.

If the postulated solution is the global LL solution, which is also given in Table 10, then the
tangent plane distance function will be nonnegative everywhere, and this is shown in Figure 5.
Again it is a nonconvex curve, and the branch and bound algorithm correctly identifies the global
solution in 62 iterations, with the GOP algorithm consuming a total time of 0.35 cpu sec. The global
solutions of the stability problem for both these cases are given in Table 10, along with the usual
computational results. The iteration at which the tangent plane distance function becomes negative

occurs very early, reflecting behavior already seen in the case of the NRTL equation.

Example 5: Ethylene glycol — Lauryl Alcohol — Nitromethane

This example was studied by Null (1970) who used the extended version of the van Laar equation
to model the activity coefficients. Chakravarty et al. (1985) supplied the coefficients for use in
the UNIQUAC equation and these are given in Table 11. The pure component data is supplied in

Table 12. Two sets of feed conditions are analyzed:

Condition (i): {n]} = {0.4,0.3,0.3}
Condition (ii): {n]} = {0.2,0.3,0.5}

There are three potential liquid phases and a vapor phase is not considered. For each feed condition,
three postulated solutions obtained from the minimization of the Gibbs free energy are tested, cor-
responding to the trivial one phase solution, a local LL solution and the global LLL solution. These
solutions are supplied in Tables 13 and 14, with their corresponding chemical potential values.

It should be noted that Sun and Seider (1994) report the local LL solution given in Table 14 as
the global solution for Condition (ii). The stability analysis yields a tangent plane distance function
of F* = —0.027 for this case, indicating that this postulated solution is not the equilibrium one.
When solved locally 100 times, MINOS5.4 had 44 failures in terms of identifying that this local LL
solution is not the equilibrium one. The actual global LLL solution has the same mol fractions in
each of the three phases as for Condition (i); only the phase fractions change with ¢*1 = 0.608 and
@2 = 0.363. The stability formulation is therefore exactly the same as it was for Condition (i), and
is therefore not shown in Table 14.

This example demonstrates the inherent dangers of using local approaches for the phase stability

problem. It also again shows that the branch and bound algorithm ascertains instability at a very
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early iteration. The full results for both sets of feed conditions are given in Tables 13 and 14 and

again clearly indicate the greater computational expense required to verify equilibrium solutions.

Example 6: SBA — DSBE — Water

This system involves the modeling of the ARCO SBA-II tower for the dehydration of secbutanol using
di-sec-butyl-ether. Kovach and Seider (1987a, 1987b) have performed extensive dynamic analysis of
the column itself. There is a temperature gradient in the column that represents the addition of an
extra liquid phase. The phase boundaries are very sensitive to all of the parameters used to model
the system.

Kovach and Seider (1988) reported vapor-liquid and liquid-liquid equilibrium data for the system
SBA-DSBE-H;0. UNIQUAC interaction coefficients were obtained that adequately modeled the
VL and LL equilibrium data separately, but not both. Thus, compromise coefficients were found
which could accurately represented the data and they are given in Table 15. Widagdo et al. (1992)
plotted the phase diagrams for 5 trays in the column. They reveal the sensitivity of the lower trays
in the column as the phase regions shrink further together. The data for the Antoine equation used
to calculate the saturated pressures is supplied by Kovach and Seider (1987b). The temperature,
pressure and feed mol fractions for the components are given for these 5 trays in Table 17. The vapor
phase is presumed to behave ideally. Two additional sets of conditions studied by Sun and Seider

(1994) on tray 28 were also examined, and these are discussed first.

Feed Condition (i) on Tray 28

A comprehensive set of local minima satisfying equality of chemical potentials were used as postulated
solutions to test the phase stability algorithm for {n]} = {0.40,0.04,0.56}, with the temperature
and pressure as for Tray 28. These correspond to the one-phase liquid solution, a local LV solution,
a local LL solution and the global LLV solution. The chemical potentials arising from these mol
fractions are given in Table 18. As the quality of the solution increases, there is a commensurate rise
in the time taken to obtain the global solution to the stability problem. The local LL solution yields a
nonnegative tangent plane distance function, which indicates stability with respect to perturbations
in the two liquid phases; however, if this solution is tested for stability with respect to the formation
of a vapor phase, then a negative tangent plane distance function is obtained, indicating that the
postulated solution containing only liquid phases is not the true equilibrium one. Note that the local

LV solution was the only one that led to failures when the problem was solved locally.

Feed Condition (ii) on Tray 28

The feed conditions are given as {n}} = {0.1,0.1,0.8}. In this case the global solution has one vapor
and one liquid phase. Some selected other local postulated solutions (trivial L and local LL) are
given in Table 19 with their calculated chemical potentials and computational results. Again, the

local LL solution yields a nonnegative tangent plane distance function, but if this solution is tested
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for the formation of a vapor phase, a negative tangent plane distance is obtained, showing that this

solution is unstable with respect to the formation of a vapor phase.

Conditions on all 5 trays

The results for the five trays at the original feed conditions in the column itself are given in Table 20.
These were obtained using the trivial one phase liquid solution as the postulated solution. Again, the
tangent plane distance becomes negative at an early stage of the algorithm. There were no instances
of failure when the problem was solved 100 times locally using MINOS5.4 on any of the trays, but
the global solution was not obtained in all cases. A negative tangent plane distance was obtained at
the first iteration on all trays, showing how little cpu time is required to verify instability for these
five trays. Notice that as one proceeds down the column (tray 2 is at the top of the column), the
cpu times and number of iterations increase, indicating that the most difficult trays lie at the lower
end of the column.

Table 21 shows the results when the solution corresponding to a global minimum of the Gibbs
free energy function is used to generate the tangent plane distance function. The global solutions
on all five trays are LLV solutions. The stability test for the ideal vapor phase obviously yields a
nonnegative global solution in all cases. Therefore, because the only phase types considered are ideal
vapor and liquid phases that can be described by the UNIQUAC equation, this means that it can
be definitively asserted that the solutions shown in Table 21 are the equilibrium ones. Note that the

fathoming rate remains high.

5 Conclusions

It has been shown how global solutions can be obtained for the phase stability problem, when non-
ideal liquid phases are modeled using the NRTL and UNIQUAC equations. In the case of the NRTL
equation, a biconvex objective function was minimized over a bilinear set of constraints, and the
GOP algorithm (Floudas and Visweswaran, 1990, 1993) was used to obtain global solutions. For
the UNIQUAC equation, a number of changes were made in the way the objective function was
structured so that it could be recast as the difference of two convex functions, where the concave
part was separable. A branch and bound algorithm (Falk and Soland, 1969) was then used to guar-
antee obtaining global solutions to this problem. The advantage of a global optimization approach
is that if the tangent plane distance function of a postulated equilibrium solution can be asserted
to be nonnegative, then this solution corresponds to a global minimum of the Gibbs free energy.
The computational results also demonstrate the efficiency of the algorithms, noting that the most
challenging example takes under half a minute of real time. This is the first approach that can guar-
antee a postulated solution is a globally stable equilibrium one for this important class of problems.
McDonald and Floudas (1994c) show how the same guarantees can be made for other models such as
the UNIFAC, ASOG, Wilson, T-K-Wilson for the liquid phase, and the B—truncated virial equation

for non—ideal vapor phases.
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Appendix A

In what follows, kg represents any node of the solution tree, with k; representing a temporarily
assigned node used in the selection of previous Lagrange functions. S represents the current node
under consideration at any given iteration and is obviously a leaf node. The parent of any of these
nodes is simply indicated by p(ks). The X’ variable bound sets for some B; are denoted XB for
the current iteration K, and XB for previous iterations K € PL(K). The set I  represents the
iteration number K, at which a particular node kg is generated. The complete algorithm for the

NRTL equilibrium model is now given.

STEP 0: Initialization

Initialize K =0, £ =0 ,U; =1V 4, PU =400, Ml = —00, Sc = R, ks = . Select 4° and ¢.
STEP 1: Primal Problem

Evaluate F(y*) and store A* , y™. If F(y™) < PY, solve (S-N) locally to give F*.
Update PU = min [PV, F(y¥), F*.

STEP 2: Select previous Lagrangians

Set PL(K) =10,k = Sc.
while ( k&, # R )
do K = I, , PL(K) = PL(K) UK , ks = p (ky).

STEP 3: The Relaxed Dual Phase

(1) Choose a combination of qualifying constraints, B;, from the set C'B.
Use s?l and Rg{L",U"} to calculate B{L?,U{?}, and hence {Lg,,Us,}.

Set ¥B and X3 and solve (RD) to give u} and y*.
min iy

“B
~RK

st pp > L(ABT Y%, gy, 05)

e > Lg(XB" yK y2E) v K e PL(K)
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dow=1

1eC
(i) If u¥ > PY — ¢, then fathom solution.

(ii) If u*, < PYU—¢, then set ks = ks+1, p(ks) = Sc, In, = K, u*s = p*,, v*s = y*, Rp {L®, UT} =
B{L?,U"}.

(2) Choose another set of bounds B; from CB and return to (1).

If there are no remaining unchosen B; in C B, then proceed to Step 4.
STEP 4: Select mol vector for next iteration

Select infimum of all ,u,ljf-,,s, and set S = kg, the associated node.

Set ,yK+1 — ysc’ ML = M;C’ RK+1{£R’UR} — RSC{ER’UR}‘
STEP 5: Check for convergence
Check if |PY — M*| < e. If true, then STOP; otherwise set K = K + 1, and return to Step 1.

It has been shown how all the conditions required to guarantee e-global convergence of the GOP
algorithm are satisfied (Floudas and Visweswaran, 1990, 1993).

Appendix B

The complete branch and bound algorithm for the minimization of the tangent plane distance func-

tion when the liquid phase is modeled using the UNIQUAC equilibrium model is now given.
STEP 0: Initialization

Select an initial mol vector y* = 0 and convergence tolerance ¢.

Initialize £ = 0,0 =1, PV = +o0 , MF = —c0, Sc = R, ks =0, {H;} =0, Np = 0.
STEP 1: Primal Problem

Evaluate F(y®). If F(y™) < PY, solve (S-U) locally to give F*.
Update PU = min [PV, F(y*), F*.
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STEP 2: Convex underestimation phase

(1) Choose a combination of box bounds, By, from the set CB.
Use s?l, H; and R {L",U"} to calculate B{L® ,UF}.
Construct ¥;(y;) based on B{L?,U{”} and solve (UES) to give u* and y*.

(i) If u* > PU — ¢, then fathom solution.

(ii) If up* < PY — ¢, then set ks = ks + 1, p (ks) = Sc, u*s = p*, v*s = y*, Re {L7UT} =
B{L?,U"}.
(2) Choose another set of bounds B; from CB and return to (1).

If there are no remaining unchosen B; in C B, then proceed to Step 3.
STEP 3: Select mol vector for next iteration

Select infimum of all M’f;, and set S = kg, the associated node.

Set y}(+1 — ysc, ML — #;C, R}(+1{ER,UR} — RSC{)CR,Z/{R}.

Choose 1 < Np < Negy. Set D ={i} =C , {H;} = 0.

form=1,...,Np
{’L*} — argll)naxl
Hix =1
D = D\{+}

end

—yIny; — ¥, (y)]

STEP 4: Check for convergence
Check if |PY — M*| < e. If true, then STOP; otherwise set K = K + 1, and return to Step 1.

Convergence to an e-global solution of (DC) by the above algorithm has been proven by Horst and
Tuy (1990).
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Nature of SP/IP Y1

Global Minimum || 0.0042
Local Minimum 0.500
Local Maximum || 0.160
Inflection Point 0.025
Inflection Point 0.279
Inflection Point 0.706
Inflection Point 0.895

Table 1: Stationary points for Example 1

Solutions for n-Butyl-Acetate (1) — Water (2) at T, P = 1 atm

Feed p(2) y* F* cpu N; | Nr

Component || (mols) (—) (—) (—) (sec) | (—) | (%)

CsH1205 (1) 0.50 —0.06391 || 0.00421 | —0.03247 | 0.06 12 33
H,O0 (2) 0.50 0.02875 || 0.99579 | (71/29) (0.02) (4)

CsH1205 (1) 0.10 0.18825 | 0.96345 | —0.21419 | 0.07 14 50
H,0 (2) 0.90 | 0.02412 | 0.03655 | (0/5) | (0.001)| (1)

CeH1,05 (1) 020 | —0.10252 || 0.00380 | —0.07427 | 0.05 | 9 | 28
H,0 (2) 0.80 | 0.07088 | 0.99620 | (0/100) | (0.01) | (1)

CeH1,05 (1) | 0.65 | —0.02708 || 0.94131 | —0.00671 | 0.11 | 22 | 48
H,0 (2) 0.35 | —0.01910 || 0.05869 | (87/13) | (0.001) | (4)

Table 2: Data and solutions for Example 1 with one liquid phase postulated
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Solutions for n-Butyl-Acetate (1) — Water (2) for all feed conditions

z z}? p(2) y* F* cpu N; | Nr
Comp. | Solution (—) (—) (—) (—) (—) (sec) | (=) | (%)
1=1 Local LL 0.93514 | 0.00456 | —0.03523 || 0.59425 | —0.00070 | 0.15 32 45
1=2 | ¢"1 =0.21001 | 0.06486 | 0.99544 | —0.00398 || 0.40575 | (25/75) | (0.002) | (1)
1=1 Global LL 0.59199 | 0.00456 | —0.03642 || 0.59199 0.0 0.16 36 43
i=2 | ¢™ =0.33271 | 0.40801 | 0.99544 | —0.00398 || 0.40801 |  (-) ) | )

Table 3: Data and global solutions for Example 1

Toluene (1) — Water (2) — Aniline (3)
Components 25 || 2 | Tij Tii 055 = 0
C,Hg — Hy,O 12493035 | 7.77063 | 0.2485

C7Hs - CsH;N || 1|3 | 1.569806 | 0.03509 | 0.3000
Hy0 - CgH7N || 2| 3| 4.18462 | 1.27932 0.3412

Table 4: Binary data for Example 2
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Solutions for Toluene (1) — Water (2) — Aniline (3) at T, P = 1 atm

L

z; z; p(2) yr F* cpu N; Ng
Comp. | Solution (—) (—) (—) (—) (—) (sec) | (—) | (%)
1=1 Trivial L 0.29989 ( —0.28809 || 0.00007 | —0.29454 0.18 16 68
i=2 | ¢" =1.0 [ 0.20006 | ( 0.20158 | 0.99686 | (31/69) | (0.002) | (1)
1=3 0.50005 ( —0.59336 || 0.00307
1=1 Global LL || 0.34674 | 0.00009 | —0.38371 || 0.00009 0.0 0.94 85 66
i=2 | ¢" = .865 | 0.07584 | 0.99495 | —0.00461 || 0.99495 |  (-) ) | )
1=3 0.57742 | 0.00496 | —0.47388 || 0.00496

Table 5: Data and global solutions for Example 2

n-Propanol (1) — n-Butanol (2) — Water (3): 7;; and a,; dimensionless

Components ¢ 1|7 Tij Tii o = ajj
C3HzO - C4H100 | 1|2 —0.61259 0.71640 0.30

C3Hz0O - H,0 113 —0.07149 2.7425 0.30

C4H,00 - H,0 213 0.90047 3.51307 0.48

Table 6: Binary data for Example 3
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Solutions for n-Propanol (1) — n-Butanol (2) — Water (3) at 7', P = 1 atm
' | at | me) v F cou | N; | Np
Comp. | Solution (—) (—) (—) (—) (—) (sec) | (—) | (%)
1=1 Trivial L 0.16 (—) —0.71239 || 0.01905 | —0.01161 | 0.62 53 67
1=2 ¢ =1.0 0.80 (—) —0.00681 || 0.97154 | (0/31) | (0.002) | (1)
1=13 0.04 (—) —2.56507 || 0.00941
1=1 Global LL || 0.26390 | 0.02214 | —0.69700 || 0.02214 0.0 2.37 213 64
i=2 | ¢" =.570 | 0.67456 | 0.96645 | —0.02023 || 0.96645 |  (-) ) | )
1=13 0.06154 | 0.01141 | —2.46114 || 0.01141
Table 7: Data and global solutions for Example 3, Conditions (i)
Solutions for n-Propanol (1) — n-Butanol (2) — Water (3) near plait point
z z” w(2) A F cpu | Ny | Np
Comp. | Solution (—) (—) (—) (—) (—) (sec) | (=) | (%)
1=1 Trivial L 0.052 (—) —1.80016 || 0.03599 | —9.85 x 107° | 4.98 | 549 57
1=2 ¢ =1.0 0.800 (—) —0.04875 || 0.84967 (60/40) (0.02) | (1)
1=13 0.148 (—) —0.93380 || 0.11434
t=1 | Global LL || 0.05509 | 0.03707 | —1.80055 || 0.03707 0.0 7.09 757 51
i=2 | ¢M =.828 | 0.79043 | 0.84620 | —0.04880 || 0.84620 ) ) | )
1=13 0.15447 | 0.11673 | —0.93341 || 0.11673

Table 8: Global solutions for Example 3, Conditions (ii)
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Toluene (1) — Water (2)

Parameter 1=1 1=2
g 2.97 1.40
q 2.97 1.00
T 3.92 0.92
l; 1.83 —-2.32
zf 3.53316 | 6.52174
2y 2.98858 0
Vs 28.53522 7.0

Table 9: Pure component data for Example 4

Solutions for Toluene (1) — Water (2) at T = 295K, P = 1 atm

7 | u(2) y* F* cpu | N; | Np
Comp. | Solution (—) (—) (—) (—) (—) (sec) | (—) | (%)
1=1 Trivial L 0.5 (—) 0.00007 || 0.00049 | —0.61887 | 0.19 39 42
i=2 | ¢ =10 05 (—) | 061839 | 0.99951 | (0/68) | (0.04)| (1)
1=1 Global LL | 0.95642 | 0.00089 | —0.03864 | 0.95642 0.0 0.30 62 38
i—2 | ¢ = .478 | 0.04358 | 0.99911 | —0.00088 || 0.04358 | (=) @ | e

Table 10: Global solutions for Example 4
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Ethylene Glycol (1) — Lauryl Alcohol (2) — Nitromethane (3)

7;; = exp (—Au;;/RT) with T in K

Components %j 1|7 Au;i/R Auji/R
CyHgOy — C15Hy60 112 247.20 69.69
CyHgOy — CH3NO, || 1|3 54.701 467.88
C12H260 — CH3NO, || 2 | 3 305.52 133.19

Table 11: Binary data for Example 5

C32HeO4 (1) — C12H260 (2) - CH3NO; (3)
Parameter 1=1 1=2 1=3
% =q 2.2480 7.3720 1.8680
T4 2.4088 8.8495 2.0086
l; —0.6048 —0.4620 —0.3056

Table 12: Pure component data for Example 5




Solutions for Ethylene Glycol (1) — Lauryl Alcohol (2) — Nitromethane (3) at T'= 295K, P = 1 atm

z; z; z; wl(2) v F* cpu Ny Np
Comp. | Solwtion | (—) | &) | O | O | ©O | & |t )] @)
1=1 Trivial L 0.4 (—) (—) —0.09120 || 0.75425 | —0.11395 | 10.70 753 70
i=2 | ¢ =10 | 03 | (—) | (—) | —0.66963 || 0.00222 | (10/86) | (0.07) | (1)
i=3 03 | (—) | (—) | 0.00187 || 0.24353
1=1 Local LL .27078 | .61986 (—) —0.27095 || 0.02334 | —0.05877 | 10.97 788 70
i=2 | ¢ =.630 | .47302 | .00562 | (—) | —0.55375 || 0.00173 | (72/28) | (1.17) | (4)
1=3 .25620 | .37452 (—) 0.03965 0.97493
1=1 Global LLL || .27899 | .02776 | .69280 | —0.23994 || 0.27899 0.0 29.70 | 2144 69
i=2 | ¢ =0.608 | .49191 | .00206 | .00399 | —0.54068 || 0.49191 | () @ | O
1=3 ¢ =0.029 | .22910 | .97018 | .30321 | —0.02161 || 0.22910

Table 13: Data and solutions for Example 5, Conditions (i)
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Solutions for Ethylene Glycol (1) — Lauryl Alcohol (2) — Nitromethane (3) at T'= 295K, P = 1 atm

ziL1 ziL2 wl(2) vl F* cpu Ny Np
Comp. | Solution (—) (—) (—) (—) (—) (sec) | (—) | (%)
1=1 Trivial L 0.2 (—) —0.50936 || 0.01254 | —0.22827 | 7.31 544 68
1 =2 ¢t = 1.0 0.3 (—) —0.54294 || 0.00113 (0/77) (0.07) (1)
1=3 0.5 (—) 0.21650 0.98633
1=1 Local LL 0.29672 | 0.03001 | —0.20102 || 0.71540 | —0.02700 | 13.43 957 70
i=2 | ¢ = .637 || 0.46950 | 0.00211 | —0.56343 || 0.00336 | (44/56) | (0.21) | (2)
1=3 0.23378 | 0.96788 | —0.02272 || 0.28124

Table 14: Solutions for Example 5, Conditions (ii)




SBA (1) - DSBE (2) — Water (3)
7i; = exp (—Awu;; /RT) with T in K , R = 1.9872

Components j 1|7 Augj Auj;

C3HgO - C4Hq100 || 1| 2| —193.140 | 415.850

C3HgO - H,0 113 ] 424.025 103.810

C4H.00 - H,0 2| 3| 315.312 | 3922.500

Table 15: Binary data for Example 6

SBA (1) - DSBE (2) — Water (3)

Parameter | 1 =1 1=2 1=3

9 3.6640 | 5.1680 | 1.4000
q 4.0643 | 5.7409 | 1.6741
T; 3.9235 | 6.0909 | 0.9200

Table 16: Pure component data for Example 6

SBA (1) - DSBE (2) — Water (3)
Tray | Temperature | Pressure
(=) (K) (atm)
28 363.20 1.170
25 362.35 1.166
7 361.67 1.145
5 361.58 1.143
2 361.50 1.140

Table 17: Temperatures and Pressures for Example 6
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Solutions for SBA (1) — DSBE (2) — Water (3) on Tray 28

ziL1 ziL2 zY wl(z) v F* cpu Ny Np
Comp. | Solwtion | () | ) | & | @ | @ | & || O] ®
1=1 Trivial L 0.40 (—) (—) —1.05176 || .03446 | —0.07354 | 5.66 390 70
1 =2 ¢t = 1.0 0.04 (—) (—) —1.83427 0.0 (0/31) (0.08) (1)
1=3 0.56 (—) (—) —0.31851 || .96554
1=1 Local LV .43309 (—) 33352 | —0.94108 || .04907 | —0.02858 7.57 532 69
i=2 | ¢+ =.668 | .02200 | (—) | .07616 | —2.41798 | 0.0 | (71/29) | (0.23) | (2)
1=3 .54491 (—) 59032 | —0.37012 || .95093
1=1 Local LL .51963 | .05616 (—) —0.92395 || .51963 0.0 17.63 | 1299 68
i=2 | ¢ =.742 | 05392 | 0.0 | (—) | —2.25146 || .05392 | (-) @ | @
1=3 .42645 | 94384 (—) —0.40123 || .42645
1=1 Global LLV || .51802 | .05667 | .34024 | —0.92115 || .51802 0.0 17.87 | 1306 67
i=2 | ¢"=0.723 || .05110 | 0.0 | .08762 | —2.27779 || .05110 |  (-) @ | @
1=3 ¢z =0.242 || .43088 | .94333 | .57214 | —0.40139 || .43088

Table 18: Data and solutions for Example 6, Conditions (i) on Tray 28
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Solutions for SBA (1) — DSBE (2) — Water (3) on tray 28

2t |22/ p(2) y! F* cou | Ny | Np
Comp. | Solution || (—) | (—) =) | )| ) | Geo) | (—) | (%)
1=1 Trivial L 0.10 (—) —2.95686 || .00554 | —1.57107 | 3.90 273 68
1 =2 o1 = 1.0 0.10 (—) 0.55366 .96516 (0/81) (0.08) (1)
1 =3 0.80 (—) —0.00551 || .02930
1=1 Local LL .35241 02801 | —1.23873 || .35241 0.0 13.83 | 1020 70
i=2 | ¢ =.222 || 45059 | 0.0 | —1.42186 || .45059 (-) ) |
1 =3 19700 | 97199 | —0.38841 || .19700
1=1 Global LV || .01955 | .19682 | —1.46848 || .01956 0.0 5.06 352 71
i=2 | ¢"1 =546 | 0.0 | .22036 | —1.35554 | 0.0 () ) | ()
1 =3 98045 | .b8282 | —0.38291 || .98044

Table 19: Data and solutions for Example 6, Conditions (ii) on Tray 28
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Solutions for SBA (1) — DSBE (2) — Water (3) on five trays

zi=mn/ p(z) yr F* cpu N; | Nr
Comp. | Tray | (—) (—) (—) (—) (sec) | (=) | (%)
1=1 28 | 0.40307 | —1.08878 || 0.03110 | —0.09081 | 5.36 | 362 71
i=2 0.05150 | —1.73926 || 0.0 (0/31) | (0.08) | (1)
1=3 0.54543 | —0.29940 || 0.96890
1=1 25 | 0.35184 | —1.41935 || 0.01571 | —0.23644 | 3.20 219 70
i=2 0.12553 | —1.38417 | 0.0 (0/35) | (0.08) | (1)
1=3 0.52263 | —0.17587 || 0.98429
1=1 7 0.33452 | —1.55739 || 0.01227 | —0.31322 | 2.87 190 70
Q=2 0.18212 | —1.41597 | 0.0 (0/47) | (0.08) | (1)
1=3 0.48336 | —0.12255 || 0.98773
1=1 5 0.31392 | —1.64307 || 0.01049 | —0.35782 | 2.63 180 71
i=2 0.20360 | —1.39570 || 0.0 (0/62) | (0.08) | (1)
1=3 0.48248 | —0.07983 || 0.98951
1=1 2 0.31286 | —1.65110 || 0.01035 | —0.36364 | 2.59 178 70
i=2 0.21005 | —1.40490 | 0.0 (0/62) | (0.08) | (1)
1=3 0.47709 | —0.07707 || 0.98965

Table 20: Feed data and solutions for Example 6 (one liquid phase postulated)
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Solutions for SBA (1) — DSBE (2) — Water (3) on five trays

Ly

Ly

% Z z pe (2) cou | Ny | Nr
Comp. | Solution (—) (—) (—) (—) (sec) | (—) | (%)
1=1 Tray 28 0.51802 | 0.05667 | 0.34024 | —0.92114 || 19.67 | 1306 | 67
1=2 | ¢" =0.607 || 0.05110 0.0 0.08762 | —2.27779
t=3 | ¢ =0.159 || 0.43088 | 0.94333 | 0.57214 | -0.40139
1=1 Tray 25 0.52037 | 0.04401 | 0.30236 | —1.04217 || 16.41 | 1172 | 69
1=2 | ¢ =0.394 || 0.15429 0.0 0.13931 | —1.81712
1=3 | ¢ =0.141 || 0.32534 | 0.95599 | 0.55833 | -0.42883
1=1 Tray 7 0.48182 | 0.03759 | 0.28014 | —1.13669 || 15.26 | 1082 | 70
1=2 | ¢ =0.345 || 0.24579 0.0 0.16430 | —1.67032
t1=3 | ¢ =0.062 | 0.27239 | 0.96241 | 0.55556 | -0.45201
1=1 Tray 5 0.45250 | 0.03474 | 0.26923 | —1.17847 || 14.48 | 1050 | 70
1=2 | ¢ =0.365 || 0.29858 0.0 0.17512 | —1.60852
1=3 | ¢"2 =0.095 | 0.24892 | 0.96526 | 0.55565 | -0.45390
1=1 Tray 2 0.44619 | 0.03419 | 0.26708 | —1.18954 || 15.16 | 1065 | 70
1=2 | ¢ =0.464 || 0.30924 0.0 0.17717 | —1.60002
1=3 | ¢"2 =0.160 || 0.24457 | 0.96581 | 0.55575 | -0.45678

Table 21: Solutions for Example 6, global solution postulated

40




T.P. and g(y)

Molar Gibbs Energy and T.P.

0.05

0.04 +

0.02 +

0.01 -+

-0.01 +

-0.02 +

-0.04

Figure 1: Hlustration of stability for non-equilibrium case
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T.P. and g(y)
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Figure 2: Hlustration of stability for equilibrium case
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Figure 3: Plot of F(y;) for Example 1
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Figure 4: Plot of F(y) and underestimating Lagrangians for Iteration 1

44



Tangent Plane Distance Function

04 ¢
Stable
0.2 +
0 : ; -~/
0.1 0.5 7 0.9

Unstable

F(y)

Figure 5: Plot of F(y) for Example 4, trivial and global solutions postulated
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