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Abstract

Several approaches have been proposed for the computation of solutions to the phase
and chemical equilibrium problem when the problem is posed as the minimization of the
Gibbs free energy function. None of them can guarantee convergence to the ¢rue optimal
solution, and are highly dependent on the supplied initial point. Convergence to local
solutions often occurs, yielding incorrect phase and component distributions. This work
examines the problem when the liquid phase is adequately modeled by the Non-Random
Two Liquid (NRTL) activity coefficient expression and the vapor phase is assumed to
be ideal. The contribution of the proposed approach is twofold. Firstly, a novel and
important property of the Gibbs free energy expression involving the NRTL equation is
provided. It is subsequently shown that by introducing new variables, the problem can
then be transformed into one where a biconvex objective function is minimized over a
set of bilinear constraints. Secondly, the Global OPtimization (GOP) algorithm (Floudas
and Visweswaran, [13, 14]; Visweswaran and Floudas, [60, 61, 62]) is used to exploit these
induced properties of the formulation to guarantee convergence to an e-global solution,
regardless of the starting point. A geometrical interpretation is provided for a selected
smaller, but challenging, example. Numerous examples are presented which demonstrate

the broad applicability of the proposed approach.
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1 Introduction

The separation of fluid mixtures is a fundamental aspect of chemical process design. To accomplish
it effectively reliable thermodynamic models are required to describe the chemical and phase equilib-
rium between these fluids. Even when such models are available, problems may arise in attempting to
predict or estimate the number and type of phases, and the distribution of components within them
at equilibrium due to the possible unreliability of experimental data or the potential inadequacy of
the equilibrium models at hand.

A considerable literature has been generated on approaches to this problem. These divide into two
broad classifications. The first is equation based and is generally referred to as the stoichiometric
approach. Early work in this area, such as that of Brinkley [4], concentrated on solving the set
of nonlinear algebraic equations based on the equilibrium constant expressions and the material
balance equations. Sanderson and Chien [50] solved these equations using Marquardt’s [32] method
after reformulating the problem into an unconstrained nonlinear form. Xiao et al. [66] improved
the algorithm of Sanderson and Chien [50] by modifying the procedure with which the inner and
outer iteration loops are solved. These k-value methods are especially suited to certain classes of
problems that are not under consideration in this work. The book of Smith and Missen [52] provides
a thorough review and exposition of the work accomplished in this area.

The second fundamental approach explicitly minimizes (or maximizes) the thermodynamic func-
tion that defines the equilibrium condition. For many chemical engineering applications this function
will be the Gibbs free energy. White et al. [65] were the first to solve the problem using optimiza-
tion techniques. They considered ideal mixtures only and tested two methods, one of which was a
steepest descent method while the other relied on techniques of linear programming. It is known
as the RAND algorithm. Gautam and Seider [16] used Wolfe’s Quadratic Programming Algorithm
to compare its performance with the NASA (developed by Gordon and McBride [22]) and RAND
algorithms. These two algorithms were shown to be essentially implementations of Newton’s method.
The approach was extended by Gautam and Seider [18] to handle electrolytic solutions and by White
and Seider [64] to solve chemical equilibrium problems where some of the reactions may not be taken
at equilibrium. The possibility of convergence to a local solution could not be removed. George et
al. [19] used an allocation function in conjunction with Powell’s [45] method; it gives slower per-
formance than the method of Gautam and Seider [16]. Castillo and Grossmann [10] employ a local
optimization approach, the variable-metric projection method, and do not eliminate phases if the
mol numbers approach zero. Their approach is extended by Grossmann and Davidson [24] for the
case of restricted chemical equilibria. A review of these contributions is given by Seider et al. [51].

Soares et al. [53] used a Newton-Raphson method to solve the equilibrium problem. The selection
of initial conditions is crucial in order to avoid convergence to the trivial solution. Ohanomah and
Thompson [40, 41, 42] provide an extensive study on the implementation of the best algorithms
available in the literature for the phase equilibrium problem. Both stoichiometric and minimization

approaches were tested, and revealed that there are convergence problems for most algorithms when



an excess number of phases is assumed. It is interesting to note that the NRTL equation was not used
to model the liquid phases because it gave rise to multiple solutions corresponding to potentially false
miscibility gaps, highlighting the difficulty associated with its use. Lantagne ef al. [28] also tested
numerous methods including Newton, quasi-Newton, penalty function and SQP methods on a variety
of systems including solids and electrolytes. Greiner [23] presented an exact Newton implementation
based on the Brinkley-NASA-RAND algorithm that yields rapid quadratic convergence. It requires
a good initial guess which is provided by an approach based on linear programming, representing
a potential disadvantage in terms of finding the global solution. Lucia and Xu [31] investigated
issues of reliability and efficiency for quasi-Newton and Newton methods for several chemical process
applications including the calculation of extrema of thermodynamic functions. The importance of
good starting points was emphasized, and techniques for their automatic generation were presented.

Gautam and Seider [17] demonstrated how the performance of the RAND algorithm could be
considerably improved by using a phase-splitting algorithm in conjunction with it. Guesses for
postulated phases in unstable systems were obtained based on activity levels, and the method is
relatively insensitive to poor guesses in composition. Walraven and van Rompay [63] presented a
modification of the algorithm and reported improved overall performance. Baker et al. [1] formalized
the concept of phase stability and the tangent plane criterion as first introduced by Gibbs [20, 21]
and presented its proof. One advantage of the criterion is that the metastable region is recognized
as unstable. The authors point out the pitfalls involved in the prediction of the equilibrium state
and how the tangent plane criterion can help in testing if a given phase distribution corresponds
to the actual equilibrium state. Michelsen [36, 37] proposed an approach for the implementation
of the tangent plane criterion using a variety of computational techniques. Convergence to a local
solution is guaranteed, but there is the danger of predicting a stable phase distribution, when, in
fact, this is not the case. One advantage of the approach is that if a given phase configuration is
unstable then the solutions provide a reasonable guess for initiating the solution search in the new
phase space. Nagarajan et al. [38, 39] reformulated Michelsen’s method in terms of molar densities
and reported improvement in the robustness and speed of convergence of the algorithm. Castier et
al. [9] presented an algorithm that uses a stoichiometric formulation which automatically selects
the independent chemical reactions, and Michelsen’s [37] approach is used to test for the stability
of the obtained phase configurations. Special initialization schemes are necessary to avoid trivial
solutions. A review on the issue of phase-splitting is supplied by Swank and Mullins [58], where
liquid-liquid problems modeled using the NRTL equation were tested using various combinations of
available methods.

An important application of the phase equilibrium problem is that of non-ideal three-phase
distillation, of which numerous examples exist in the literature. Block and Hegner [3] were the first
to simulate a three phase distillation column and point out the dangers of misguided assumptions on
the number of phases that are present. Kovach and Seider [27] presented the first set of experimental
data for a three-phase heterogeneous azeotropic distillation column, and traced the temperature front

associated with the phase boundary. Cairns and Furzer in a recent series of papers [5, 6, 7] provide



extensive results on a 13-component column operating in the three phase region using an algorithm
based on Michelsen’s approach [36, 37] to predict phase stability throughout the column. The focus
of the work is on large-scale distillation simulation. Several thermodynamic models were tested and
a thorough review of the three-phase problems tackled in the literature is provided.

Sun and Seider [55] used a Newton-homotopy continuation algorithm to obtain the stationary
points of the Gibbs free energy surface. Sun and Seider [56] also apply homotopy techniques to
the phase stability problem to generate improved starting points that are used in the search for the
global minimum of the Gibbs free energy. This combined approach reduces the risk of failure, but
it is not possible to provide a theoretical guarantee that the global solution will be obtained in all
cases. The approach has been used successfully to predict the behavior of a difficult three phase
azeotropic distillation example.

Paules and Floudas [44] employ the Global Optimal Search algorithm of Floudas et al. [12] to find
the equilibrium solution. The main feature of this approach is the introduction of binary variables
to represent the potential presence or absence of a phase at equilibrium, in an attempt to avoid
the difficulties encountered at phase boundaries associated with singularities. Special techniques
were used to avoid convergence to metastable points where the Lagrange multipliers become linearly
dependent. The approach showed considerable promise but the main drawback is that the Lagrangian
functions cannot be guaranteed to provide lower bounds over the complete solution space, so that
no claims could be made on whether the obtained solutions were global.

Eubank et al. [11] provide an alternative way to predict fluid-phase equilibria, using an area
method that integrates the Gibbs energy of mixing curve rather than differentiating it. They cannot
guarantee convergence to the true solution if it lies at a composition bound, and the computational
effort increases as the square of the desired accuracy. Difficulties arise in extending the approach
beyond three components, and a maximum of two phases may be postulated.

It is observed that all the algorithms discussed share one drawback: there is no theoretical
guarantee of convergence to the true equilibrium solution — or even to a local minimum of the Gibbs
free energy in some cases. Caram and Scriven [8], Othmer [43] and Heidemann [25] show how even
simple forms of nonideality can lead to multiple equilibria in closed reacting systems. This represents
a serious disadvantage in attempting to describe phase equilibrium where chemical reaction may or
may not be occurring. A common problem in liquid-liquid equilibria is convergence to the trivial
solution where the mol fractions of all components in both phases are the same, i.e. an incorrect
homogeneous solution. Due to the complex and nonlinear nature of the models used to describe
the equilibrium situation, there may be several local solutions to the problem at hand. Thus, the
certainty of convergence to the global solution for conventional methods will be highly dependent on
starting point.

The main contribution of this work is to show that for ideal vapor phases and liquid phases
whose behavior may be predicted by the NRTL equation, attainment of an e-global solution can be
guaranteed from any starting point. ldeal vapor phases are easily incorporated. In terms of extending

the approach to nonideal vapor phases, it is possible to use the B-truncated virial equation which



provide the fugacity coefficients as bilinear functions of the composition and the GOP algorithm can
be used for this class of problems also. Further theoretical and algorithmic developments are needed
so as to extend the proposed approach to cubic equations of state, since the fugacities cannot be
explicitly calculated in terms of composition.

In the following section, the requisite thermodynamic background for the phase and chemical
equilibrium problem is provided, describing the assumptions that are made in this work. Then,
a general description of the Global OPtimization algorithm (GOP) of Floudas and Visweswaran
[13, 14] is given, outlining the required structure that a problem must possess in order to apply
it. The Gibbs free energy expression is analyzed in detail. An important property that simplifies
the objective function considerably is introduced. Then, it is described how new transformation
variables are introduced so that the problem will possess the structure required by the GOP. For the
NRTL equation, the simplifications and transformations of the original formulation yield a biconvex
objective function over a nonconvex set of equality constraints. The GOP algorithm can then be
employed to theoretically guarantee obtaining the e-global solution. This is an important class of
problems for which no previous approach is available that can guarantee attainment of the e-global
solution. Examples are presented and they show how convergence to the e-global solution is achieved
regardless of the quality of the supplied initial point. The results demonstrate the success of the

algorithm in finding equilibrium solutions for a variety of challenging problems.

2 Problem Formulation

In this section, a general outline of the phase and chemical equilibrium problem will be given. Some
important assumptions will be discussed along with comments on the range of applicability of the
proposed approach. The focus is on systems that attain equilibrium states under conditions of con-
stant temperature and pressure, where the global minimum value of the Gibbs free energy describes
the true equilibrium state. This represents the most common approach to the problem, although
other thermodynamic criterion can be used (e.g. maximize entropy under adiabatic conditions at

constant temperature). The problem may be stated as follows:

Given C components participating in up to P potential phases under isothermal and
isobaric conditions find the mol vector n that minimizes the value of the Gibbs free energy

while also satisfying the appropriate material balance constraints.

The set of components is represented by the index set C = {i} and the elements that constitute
these components are given by E = {e}. The set of phases is denoted by P = {k} where it is
composed of vapor and liquid phases, labeled P, and P, respectively, so that P = P, U P,. Thus,
for a multicomponent, multiphase system, the criterion of equilibrium dictates that the Gibbs free

energy function attain its minimum:

min G(n) = Zan,uf
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where n¥ is the number of moles of species i present in phase k, u¥ is the associated chemical
potential, often expressed through the use of fugacity coefficients described by fz-k for the mixture
and fik’0 for the pure component at the standard state. AGf’f represents the Gibbs free energy
of formation of component 7 in phase state k& at the system temperature (assuming that the Gibbs
energy content of the elemental species at the system temperature is zero).

Difficulties in the use of Eqn. (1) arise due to the complicated expressions available for the
expressions for fugacity. The liquid phase is modeled through the use of activity coefficients where

the fugacity ratio is expressed as:
f.L
2

where z] denotes the mole fraction of species 7 in the liquid phase, and 7/ is the corresponding

activity coefficient at the system temperature and pressure. If the convention that Iny;, — 0 as
z; — 1 for the activity coefficient is assumed, then the standard state is conveniently taken as the
fugacity of the component in its pure state at the temperature and pressure of the system. For low
pressure systems, the variance of this quantity with pressure is often not significant.

The fugacity of the vapor phase can be expressed as a function of fugacity coefficients as follows:

I v v
L] = - - P 3
£ é; i (3)

where ¢! is the partial fugacity coeflicient, y;” represents the vapor phase mol fraction at a total

system pressure P. The standard state for the vapor phase is taken as an ideal gas at unit fugacity
at the system temperature where this quantity is usually equal to 1 atm. Occasionally the standard

state is given at values of fugacity that differ from one.

Material Balances

The objective function as described by Eqn. (1) must yield a solution that will satisfy the conservation
of mass requirements. These can take either of two forms depending on whether reaction occurs in
the system and introduce a set of linear equalities into the formulation.

(a) Elemental Constraints

For simultaneous phase and chemical equilibrium where reaction does occur, conservation of the

constituent atoms must be satisfied:

Y'Y aunt =b. V ecE (4)
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where a.; represents the number of gram-atoms of element e in component 2, and b, the total number

of gram-atoms of element e in the system.
(b) Mass Balance Constraints

These constraints are required for those systems where no chemical reaction takes place, and thus

conservation over the components need only hold:

Yonb = nl v icc (5)
keP

where n] is the total number of moles of component 7 in the beginning mixture.
For notational clarity, the material balance constraints for any system, reacting or non-reacting,

will be written in the following general form:
A-n—-b=0 (6)

where n represents the column vector of the component mol numbers, A is the appropriate elemental
or compound abundance matrix, and b is the column vector of the total amounts of elements or

compounds in the system.
Feasibility Constraints

Obviously a physically realizable solution requires that

0 < nfF < T VieC,keP (7)

2

where n” is the total number of mols in the system.
Standard State Data:

At this juncture, it is appropriate to discuss assumptions that can be made in regard to the standard
state data. If chemical reaction occurs in the system under investigation, then the Gibbs standard
free energies of formation are kept as they are in Eqn. (1). For nonreacting systems, it is possible to

remove certain constant terms from the objective function under two different scenarios:

Case I: If the system under consideration has no vapor phase postulated, and all the liquid phases
share the same standard state, then it is possible to eliminate the Gibbs free energy of formation

term due to the following observation:

S nfAGY = 3TAGH Y nf = Y AGHRT = & (8)
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where AG]”’ is the Gibbs formation energy for the liquid phase at the system temperature and

pressure and k; is a constant. The adjusted objective function, labeled Gj(n), now becomes:

fh n)—kK;
min  G;(n)=>" " nf{ JLO} _ Gl ng (9)
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where G(n) is defined by Eqn. (1).

Case II: If a vapor phase is present in the system, then the difference between the Gibbs formation
energies of the gas and liquid states can usually be adequately approximated by a saturated pressure

condensation term as follows:

AGH = AGY’ + RTIn P7*7 (10)

where P74" is the saturated vapor pressure for component 7. Stull ef al. [54] notes that Eqn. (10)
is valid for vapor pressures under 2 or 3 atm, but may require the use of fugacity coefficients for
systems that associate in the vapor phase. Defining k,; = 3, AG;’nl, the adjusted objective

function, labeled G,;(n), can now be written:

rk
min  G;(n) = Z Z nfIn P47 ‘|‘Z an{ ]Z,o
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G(n) — K&,
} RT (11)

with G(n) given by Eqn. (1). Thus, for phase equilibrium problems when only liquid phases are
postulated, Eqns. (9) or (11) can be used to represent the Gibbs free energy function; if a vapor
phase is present, then the function to be minimized is given by Eqn. (11). This minimizes the
dependence of the reported solutions on the standard Gibbs free energy of formation data.

In conclusion, the complete formulation of the phase and chemical equilibrium for ideal vapor
phases and liquid phases whose fugacities can be adequately modeled by the NRTL equation, is
given by minimizing the expression of Eqn. (1) subject to the material balance constraints supplied
by Eqn. (6) and the feasibility constraints of Eqn. (7). The variables of the formulation are the mol
numbers n¥. The mol fractions are eliminated by redefining them in terms of the mol numbers as
z; = n;/ ) ;m; V j for all phases. There are two important observations in regard to the optimization

formulation:
e The constraint set is of small size and linear.
e The only nonlinearity appears in the objective function as n;In f;/f°.

If the system is ideal then any local solution will be the global one. However, the main difficulty is that
due to the complex nature of the models used to predict fugacities, highly nonconvex functionalities
result. This may lead to local or trivial solutions that are not true equilibrium solutions, and may
lie far away from the correct optimal solution. The obtained solution will also be highly dependent

on the chosen starting point.



3 Review of the GOP

The requisite background for the global optimization algorithm of Floudas and Visweswaran [13, 14]

is now provided. The general form of the optimization problem of interest is given as follows:

min f(z,y)
3.7;. h(z,y) = 0
g(z,y) < O (12)
z € X
y €Y

where X and Y are convex sets, f(z,y) is the objective function to be minimized, and h(z,y) and
g(z,y) represent the vectors of equality and inequality constraints respectively. These functions are
assumed to be continuous and piecewise differentiable on X x Y. The GOP algorithm can be used

to determine an e-global solution for problems that satisfy the following conditions:

Conditions (A):
o f(z,y) and g(z,y) are convex in z for all fixed y and convex in y for all fixed z,
e h(z,y)is affine in z for all fixed y, and affine in y for all fixed z,

e X and Y are nonempty, compact convex sets and a constraint qualification (such as Slater’s)

is satisfied.

Two key concepts, namely transformations and partitioning, extend the classes of problems to which
the GOP algorithm may be applied. The transformation phase involves the introduction of new vari-
ables: this changes the form of the nonconvexities while still maintaining an equivalent formulation.
The next step is to partition this new augmented set of variables into two distinct subsets, z and
y, such that Conditions (A) will be satisfied. Floudas et al. [12] present one possible technique for
selection of the optimal choice of variable partitions at this step. By making use of these concepts,
Floudas and Visweswaran [13, 14] have demonstrated that the GOP algorithm can be applied to
general quadratic programming problems, quadratic problems with quadratic constraints, biconvex
programming problems with bilinear constraints, polynomial and rational polynomial programming
problems. In addition, it has been shown by Liu and Floudas [30] that the GOP can be applied to a
large class of general smooth mathematical programming problems (i.e. min F(z) s.t. G(z) < 0) by
converting them into the standard form given by (12).

Partitioning the variable set in this way allows the original problem to be decomposed into
a simpler subproblem if either one of the variable sets is held constant. The superscript & will

correspond to any given iteration of the algorithm in this section. If the y variables are held fixed at



the k£ ’th iteration so that y = y* in (12), then the resulting optimization problem is called the primal
problem (P). As will be shown in the next section, it is a simple matter to ensure that the primal
problem (P) will always be feasible for the phase and chemical equilibrium problem, and therefore the
issue of infeasible primal subproblems need not be considered. Note that (P) is a convex subproblem
because of Conditions (A), and any feasible local solution to it is a global solution, representing a
valid upper bound on the optimal solution of (12).

The next phase is to derive master problems that provide lower bounds on the global solution.

By formulating the dual of (12) and successively relaxing it, the relazed dual subproblem is obtained:

min up

nyY (13)
in L A >0, A

min (z,9,\p) V p2>0,

v

s.t. up

where L(z,y, A\, p) = f(z,y)+ A h(z,y)+ 1" g(z,y), and is the Lagrangian constructed from problem
(12), with A and p corresponding to the Lagrange multiplier vectors of its equality and inequality
constraints respectively. uj is a scalar. The details of the steps in the development of (13) may be
found in Floudas and Visweswaran [13, 14]. The inner relaxed dual subproblem at the & ’th iteration

is defined as:

: k k
min L(z,y, A" 1) (IRD)

where A\* and p* are the vector Lagrange multipliers obtained from the & 'th primal problem. Rather
than solving this very difficult optimization problem (it is an infinite programming problem in y), the
central basis of the GOP algorithm is to replace (IRD) with a set of relaxed dual subproblems that
validly underestimate the solution of problem (12). In order to accomplish this, the z and y variables
must interact in a bilinear fashion in the Lagrangian defined by (IRD). If the z variables appear in
a convex rather than linear form for fixed y, then the Lagrangian is linearized around z*, the value
of z from the k’th primal. For the phase and chemical equilibrium problem, it will be shown in the
next section that the interaction between the variables can be made to be purely bilinear, so that
this step is not required. This bilinear interaction is required in order that the so called qualifying
constraints, defined as the derivative of the Lagrange function with respect to the z variables, are
functions of the y variables alone. Let z = {z;}; then the vector of qualifying constraints from the

k ’th iteration, labeled g*(y), is made up of i elements as follows:
9*(y) = Val(z,y, 3" 4*) with gf(y) = Va, L(z,y, X", u¥) (14)

The set of connected variables, labeled C'V, is defined as those variables that interact bilinearly, or
equivalently, as those variables for which gzk(y) is a function of y. By setting these constraints greater
or less than zero, they form hyperplanes that partition the y variable space into subdomains. If N %,

is the number of z variables, and N, the number of y variables that interact with each other in a
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bilinear fashion, then the number of connected variables, N¢vy, is given as:
Nev =min{ NJ, , NJy } (15)

Each g%(y) can be set greater or less than zero, so that there are 2VCV ways in which the qualifying
constraints can combine to be of constant sign. The quantity sfl = +1 is used to decide whether a
given qualifying constraint is positive or negative: if sfl = 41, then gf(y) > 0, and if sfl = —1, then
gzk(y) < 0. B; represents one combination of qualifying constraints from the set C B, which contains
all possible 2McV such combinations. Thus, each B; has a unique vector {sfl} associated with it,
whose elements are comprised of +1.
If the z variables are constrained as z; < z; < z V %, then the linearization of (IRD) shows how
the bounds on the z variables can be set on the basis of the sign of the qualifying constraints:
Ixréi)I(l L(z,y, )\k,y,k) > L(mk,y, )\k,y,k) + ::Ié1§ 'EC:V gf(y) . [mz - mf] Yy (16)
S

The proof of this lemma follows from the convexity of L(z,y, A, u*) for fixed y and is given in
k
value if the (IRD) is to be validly underestimated. This is achieved by setting z, = z, so that the
k

i

Floudas and Visweswaran [13, 14]. If g¥(y) is positive, then z; — z¥ must be driven to its minimum

total term gF(y) - [zf — z;] will go to its minimum. Similarly, if g¥(y) is negative, then z; — z¥ must
be driven to its mazimum value, which is obtained by setting z; = z¥. Then, g¥(y) - [z¥ — z;] will
likewise be driven to its minimum. By replacing the z variables with their bounds in this manner for
each possible combination of qualifying constraints, (IRD) is validly underestimated for the complete
y variable space. This allows a set of 2¥CV relaxed dual subproblems to replace (IRD).

Assume that the algorithm has progressed K iterations. Before solving the set of 2NCV relaxed
dual subproblems, the Lagrangians to be included from previous iterations must be determined
by establishing which of the qualifying constraints from the previous iterations are satisfied at the
current value of y = y*. For any previous iteration k, the sign of ¢g*(y*) decides the bound at
which the corresponding z variables should be set, and this combination is denoted 2% . Tf these
Lagrangians are included in the formulation, along with the vector of qualifying constraints, g*(y)
for all £ = 1,2,...,K — 1, then the relaxed dual subproblem for any given combination of bounds
B from the set C'B, is defined as follows:

( )

15161{9 uB
“B
s.t. .
“B Z L(mB] 7y7>‘kuu'k)

ph? (K, Br) = < () >0 if gh(y")>0vi p VE=1,2,... K1 (RD)
g¥(y) <0 if gh(y™) <0V
)

i

v
h
—~

8
3

=
>~
=

®
=

KB
gf(y) >0 if st =41V4
gf(y) <0 if ' = -1V34
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It is convenient to store these solutions at the K ’th level of a tree, where this level contains 2NVcv
nodes. Each node kg is seen to correspond to a subdomain of the y variable space as defined by its
qualifying constraints. These nodes are defined over the set (K, CB). The next step is to determine
a new lower bound. This is done by choosing the infimum of available lower bounds obtained as
solutions from all previous relaxed dual subproblems. The value of y associated with this node

%41 for the next iteration, and the node is then discarded from future consideration.

supplies y

Thus, the solution procedure dictates that iteration between the primal problem (P) and the set of
relaxed dual subproblems of type (RD) until the lower and upper bounds meet within some specified
tolerance, ¢, yields the global solution of (12). A conceptual outline of the GOP algorithm is given
in Figure 1. The criteria required to guarantee e-global convergence and optimality are established
as follows: if (i) Conditions (A) are satisfied, (ii) the set of multipliers of the primal problem is
nonempty and bounded, and (iii) Y C V, where V = {y : h(z,y) =0, g(z,y) < 0 for some z}, then
for any given € > 0, the GOP algorithm terminates in a finite number of steps to an e-global solution
of (12). The proof of this can be found in Floudas and Visweswaran [13, 14]. In the following section,
it will be demonstrated how the phase and chemical equilibrium problem can be converted into a
form that satisfies the required conditions stated above, and how the GOP algorithm is specifically

applied to it.

4 Analysis for the NRTL Equation

Renon and Prausnitz [48] derived the following equation for the liquid—phase activity coefficient

based on Scott’s Two—-Liquid theory and using the assumption of Non—Randomness:

> T35t > 1G15T0
gz i L 5 lec e .
lni_Jec + L EY PR Viel 17
7 > Gz J%(:J Z Gz | ¥ > Gz (17)
jec lec

where 1, is the activity coefficient at mol fraction z;, 7;; are non-symmetric binary interaction pa-
rameters, G;; is a parameter introduced for notational convenience and is based on another adjustable
binary parameter o;; (with a;; = 0) which does have the property of symmetry (o;; = aj;). Then
7;; and G;; are defined as:

945 — 935

T = T po (18)

Gij = exp(—ay;Ti;) (19)

where g;; is the energy of interaction between the pair i — 5. Note that 7;; can be negative but
G;; is always positive. One important feature of the NRTL equation is its capability of representing
liqguid-liquid immiscibility for multicomponent systems with only binary parameters. There are three
such parameters for each binary pair.

In this section, the Gibbs free energy expression is analyzed for the case of an ideal vapor phase

and liquid phases modeled using the NRTL activity coefficient expression. Eqn. (17) yields exactly the
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same expression for mol numbers as for mol fractions. Substitution of Eqn. (17) into Eqn. (2) yields
the correct liquid phase fugacity term, after rewriting the mol fractions in terms of mol numbers.
Eqn. (3) is assumed to define the vapor phase fugacity with ¢ = 1. Again, the mol fractions are
written in terms of the vapor mol number variables. Substitution of the resultant vapor and liquid

phase fugacity equations into Eqn. (1) gives the Gibbs free energy function as follows:

. AGHS k
min G(n) = > Y n¥ G + In nzk

i€C keP RT 2 n;
jeC (20)
k

%:c TjiGjiny Giink > 1;Giny
k 7 1777 . leCc
+ Z Z T S Gunk + Z S Gk Tij — S Gink
. ; ,
1€C kEPy, jec Jr'y JeC lec 7' fee YA

where G(n) = G(n)/RT (i.e. dimensionless G). Note that the pressure term associated with the
fugacity of the vapor phase has been incorporated into the Gibbs energy of formation term, i.e.
AG;” = AG;/’f + RT In P. This is done in order to collect the linear terms of the objective function.

4.1 Analysis of Gibbs free energy function:

It would appear that G(n) is a complex, highly nonconvex expression. However, the situation is

considerably improved by the following property:

Property 4.1 For each phase k € P, the following relation is true:

- Goimk
%:C T5i5iny Gink 2Tl Gijnf
k)7 k 7 lec
dom T 2L (D A — =0 (21)
; Gjink : : Giin Giim
¢ j%:c o B 7€0 zgc 7 lé 7

Proof: See McDonald and Floudas [33].

Illustration: An illustration for the two component case, i.e. {i1,i3} € C, is now provided to
demonstrate the usefulness of Property 4.1. The phase superscript & is dropped for clarity of presen-
tation. In what follows, it is seen that instead of summing across the rows, the columns are traversed
extracting the common term }; Gjin;. In addition, the mol number variable to the immediate right
of the minus sign in Eqn. (21) is swapped with the first mol number variable of the numerator of the

postmultiplying term in braces.

2. T4iGgin; > TG
Z n d 1€C Zn Z Gijng it
) - )
. Gjim; . ; Giin Gijn
ieC j%%, 7 e jeC lg] J Z;C J

_ [ T21G21M2 ] [ T12G127M2 ]
= m || tn | ——

ny + Go1mo Giam1 + ny
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- [ ny T21G21M2 ] . [ Giama T12G12M1 ]
(n1 + Ga1na) (1 + Gaina) (G1am1 + ma) (G12m1 + n2)

C [ Ga111 T21G21Mm2 ] o [ Ty T12G12M1 ]
(n1 + Ga1na) (1 + Gaina) (G1am1 + m2) (G12ma + n2)
= 71 LT {7'21g21n2 —ny- 7721%17»2 — Gaing - 77—21%17’/2 }
n1 + Ga1na ny + Go1no ny + Ga1mo
1 T12G12M1 T12G12M1
+ 7-n-{7gn—gn-7—n-7}
Giama +mg 1271272 P Glams + g 2" Giamy + ma
- Y G .{1_Lg21nz}
n1 + Ga1na 1oy ny + Ga1mag
1 Giam1 + ny }
Giamy +mg 2T Giam1 + ng

= 0

This property reduces the complexity of Eqn. (20) greatly, and it brings the advantage of having

bilinear, rather than trilinear, fractional functions in the expression for the objective function. O

Property 4.2 IfC* is defined as follows:

AGY’ nk
ck=Y nf L +In— VkeP (22)
o RT j%:c n;

then the quantity 3. C* is convez.
k

Proof: The quantity C* corresponds to the ideal Gibbs free energy for any given phase k, and its
convexity is a well established property (for example, see White et al. [65]). A summation of these

convex terms over the set of & phases will obviously be convex. |

This means that the objective function can now be written as a combination of a convex portion,

and a nonconvex portion:

. Gijrijn®
min G(n) = Y 0F+ 3 Y by S (23)
keP 1€C keP;, i€C 24 I3

The nonconvexities now lie solely in the term to the right of the plus sign. The following NonConvex

Formulation (NCF) is a new formulation:

min  G(n)
st. A-n —b=0 (NCF)

0 <n<n”
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where G(n) is defined by Eqn. (23) and is a much simpler form for the Gibbs free energy function
than that given by Eqn. (20).

4.2 Transformations and Partitioning

It is now convenient to introduce new variables in order to change the nature of the nonconvexities
in the objective function. Having augmented the variable set in this way, it is then partitioned into
two variable subsets, so that Conditions (A) of the GOP are satisfied. If the following new variables
are introduced:

nk

75

jec

then the transformed objective function becomes:

min G(¥,n) = ZC’“ + Z Z nk Zgijnj‘ll? (25)
keP 1€C kEP;, jec

This is now subject to the transformation constraint Eqn. (24) in addition to the material balance
constraints as defined by Eqn. (6). Eqn. (24) is reformulated so that this constraint will be of bilinear

form as follows:
T8N Giink b = nf VieC,keP (26)

jec

The objective is to partition the variable set into two subsets so that if either of these subsets is held
constant, an optimization problem with simpler structure remains. An examination of Eqn. (25)
leads to the conclusion that the obvious partition of variables is that in which the y variable set

contains the mol vector, with the z variable set containing the new transforming variables:

Yy — {'n,f} =n T — {‘I’f} =v (27)

Notice that if the mol number variable set is held constant, a linear objective function results. On the
other hand, if the transformed variable set is held constant, a convex objective function is obtained.
The equality constraints are of bilinear form and so will yield linear terms if either of the subsets is
held constant. It should be noted that the material balance equations depend on the mol numbers
alone, and therefore have no interaction with the z variable set. Thus, Conditions (A) of the GOP
are satisfied. The form of the nonconvexities of the objective function have been changed, and the
price paid for obtaining this structure is that additional bilinear constraints have been introduced

into the system.

4.3 The Primal Problem

The primal problem is defined as the subproblem that results when the y variable set is held fixed.

In what follows, overbars on variables represent the values that are held fixed during solution of any
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given primal problem, which is defined as follows:

min G’( Sp,’ﬁ) = ZC_’“+Z Z ﬁf{zgijﬁj‘:[/?}

keP 1€C kEP;, jel

5.1, \Ilf-{Zgjmf}:ﬁf VieC,keP,

jeC

J
n represents the current value of the mol numbers (the y variable set). The primal problem (P)
is always feasible provided that the mol vector satisfies the material balance constraints which are
functions of the y variables alone. Hence they can be carried directly to the relaxed dual subproblems.
This is the reason the material balance constraints are not included in (P). Notice that (P) is merely
a function evaluation as the z variable set is completely specified by = through the set of equality
constraints of (P).

It will be necessary to use the Karush-Kuhn-Tucker (KKT) conditions for the primal problem in

proceeding sections. The Lagrangian as constructed from the primal problem for fixed 2 is given as:

keP 1€C keP;, jeC

L(¥,n,A) = Z C_k—l—z Z ’fbf{z gij’rij‘:[/?}
FEE e {et S -]

i€C keP;, jecC

where Ay is the multiplier associated with the corresponding constraint that defines the z variable
\I’f The evaluation of the KKT conditions for the primal yields:

Vg L(¥,n,A) = Z gj'i’rji'ﬁ? + Agr - Z gji'r_l,? =0 VielC,k €P, (29)
Jjec jeC

The Lagrange multipliers from the primal are then explicitly calculated as:
Y Gjityitiy
jeC

> gjiﬁf

jeC

A‘I’f:_ Vi eC,k € P, (30)
If a given phase k disappears so that n¥ = 0 V 4, then the denominator of Eqn. (30) approaches
0. In this case, Agx = 0 V % for the phase k& will ensure that the KKT conditions of the primal
problem are satisﬁeld, as the corresponding constraints of the primal are \I’f -0 =0YVY+z This
eliminates the problem of obtaining unbounded Lagrange multipliers. Thus, the multipliers from
any primal problem are nonempty and bounded for all ¥y € Y, a required condition to guarantee e-
global convergence. Clearly, the evaluation of the primal problem and the corresponding multipliers

amounts to simple function evaluations.
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4.4 The Relaxed Dual problem

The primal problem establishes upper bounds on the solution. The relaxed dual subproblems supply
lower bounds on the global solution. Their basic structure has been described in Section 3. Because
the derivation of the Lagrangian is somewhat involved, it will be illustrated throughout the devel-
opment for the simple case of a binary system comnsisting of a single liquid phase. The Lagrange

function for this simple example is now given.

Illustration: There are two components and one phase, so that n; and n, represent the variables
of the problem. If the linear terms are neglected, then the convex portion C of the Gibbs free energy
is defined by Eqn. (22) as:

Tip
+nyln
n1 + N n1 + N

C=n1ln
The Lagrange function can then be written as:
LN®,n,A) = C+ni%-Giamiz +n2¥1 - Gy

+ A AY[n1 4+ Gaune | —ni} 4+ Ay - {¥2 [ Giang + 12 | — na}

The derivatives of this Lagrange function with respect to the z variables will be required, and for

fixed n = n, they are given as:

Vg, L(¥,n,A) = 7ig-GiaTi2 + A1 - [ 1 + GarRa |
Vg, L(¥,n, ) 71 - Ga1To1 + Az - [ Giafia + iz |

It will now be shown how this Lagrange function can be manipulated so as to replace the (IRD)

problem defined in Section 3. a

4.4.1 Derivation of the Lagrangian

The first step in deriving the Lagrangian is to separate and collect all the z variable terms so their

interaction with the y variable set can be examined. For any fixed A = X:

L(¥,n, A Z Z \I’k {Z gJJﬁn + }\‘Pk Z gﬂn } + Z ck Z Z nfj\q,k (31)

icC keP; jec jec kcP icC keP; '
This corresponds to the Lagrange function of the (IRD) of Section 3. It differs from the one of
Eqn. (28) in that it is written for any y. By subtracting Eqn. Set (29) written for A = X from the
terms within the curly braces of Eqn. (31) and collecting the terms in n¥* together, the following

expression is obtained:

L(¥,n, ) Z Z \I/’“{Zgﬂ [TJZ—I—)\W] ['n,j —'ﬁﬂ} + ZC’“—Z Z nfj\q,f (32)

icC kePy, jec keP i€C keP;,
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Evaluating the gradients of the Lagrangian given by Eqn. (32) with respect to the z variables gives:
gf(y):V@fL(!P,n,;\):Zgﬂ [sz‘l’j\\yf] [n?—'ﬁﬂ Vi elC,k € P, (33)

jec
These are the qualifying constraints written in terms of the y variables and describe the fundamental
nature of the interaction of the two variable subsets. Notice that each z variable multiplies a sum-

mation of y variables in Eqn. (33), so that these constraints form hyperplanes that partition the y

variable space.

Tllustration — continued: Collecting the z variables of L!( ¥, n, A) yields:

Lz( !I/,n,;\) =C - nlj\l - ’ngj\g
+ Uy {naGoimar + M [n1 + Garna |} + ¥a - {n1Gramia + A2 [ Gorng + 2 |}

For any given primal problem, the KKT conditions yield Vg, L(¥,n,A) = 0V 7 and are clearly sat-
isfied for A = X. Subtracting these derivatives from the terms within the curly braces of L( ¥, n, A)

allows the terms multiplying the z variables to be written in the form nf — #¥. After collecting the

terms in n; together, the following result is obtained:

Lg(g’:nai):()—nl;\l—nz;\z
+ U {Mlm -]+ G [T+ A ] [n2 — 72 ]}
+ ‘1,2'{G12[7'12‘|‘5\2][’71:1—’7_111]—}-5\2[71,2—'71,2]}

The qualifying constraints are then defined as:

Vg, L(¥,n,A) = 5\1[”1 — 71 |+ Ga1 [721-|-5\1 ] [m2 — 7g |
V\IJQL(EI’:’"J,;\) = Gia [le-i—;\z] [ m1 —’7L1]+5\2[n2 — 7y |
The form of these constraints will be changed in the following. |

The next important step in the development is to obtain a much simpler set of partitioning hyper-
planes. This is achieved by simply augmenting the set of z variables, so that each one of these new
z variables will interact with a single y variable, rather than a summation of them. This augmented

set of variables, denoted {‘i’fj}, is defined for each {%,k} € C x P, as follows:
vk — gk :
¥k =9k vjecC (34)

2

The z variables are now allowed to appear within the innermost summation of Eqn. (32) to yield an
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equivalent Lagrangian defined as follows:

) = 558 w3} o)

1€C keP;, | j€C

P Yty Y nf{zgijnj@;?}

keP 1€C kePy, jecl

Eqn. Set (30) has been used to modify the terms involving 5\\1,;; to the right of the minus sign of
Eqn. (32). This has been done solely to demonstrate that if n — 7, then the Lagrangian equals the
objective function value supplied by the primal at 7. This is a statement of strong duality theory.
Eqn. (35) now supplies the new form of the qualifying constraints, labeled g{;(y), obtained from the
modified Lagrangian of Eqn. (35) as:

35(y) = Vgr L(z,9,0) = Gsi |15 + Ags| - [nf — k| VieC,jeC, kePp, (36)
2] ?

Thus, each qualifying constraint is now a function of a single y variable, with the important result
that the partitioning hyperplanes are now orthogonal to each other, and partition the y variable

space into n-rectangles (i.e. simple boxes). The number of connected variables is given as:

Nev

min { N%,, N,

min { |C]?-|P.| , C|-|P.| }
|- |P,|

where the braces signify the cardinalities of the appropriate sets. Therefore, it is evident that
augmenting the set of = variables in such a way does not increase the number of connected variables.

The key point to note about Eqn. (36) is that each qualifying constraint shares the same basic
form, defined as (n;c — ﬁf) The only difference is the expression that premultiplies this term. These
are constants that depend on the parameters of the NRTL model and information from the primal in
the form of the Lagrange multipliers. Eqn. (7) delineates the feasible region as an n-rectangle. The
initial parent region is described by this n-rectangle, and its bounds are represented by R{L% 1%},
where £ = {Efk} and U® = {Uﬁ} comprise the regional bounds for the variables {n¥}. Upon
choosing an initiai point {ﬁf}, this I;arent n-rectangle is partitioned by Ngy orthogonal hyperplanes
passing through {n*}, so that 2YCV new m-rectangles are created. Within each of these new n-
rectangles, the sign of (n® — 7%) will be constant V i € C , k € P,. The bounds for each of
these n-rectangles are described as the boz bounds, denoted B{LB,UB}, with £B = {Efk} and
LB = {Ufk} representing the individual box bounds for the variables {n¥}. The set of all ptossible

combinations of box bounds is denoted by CB, with its 2YCV members individually referred to as

B;. The parameter sil is used to delineate each of these box regions and is defined over C x P, X CB.
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It determines the partition of the y variable space for any given B; as follows:
If sﬁl = 41 then nf — ﬁf
If s;'=-1 then nF—ak

A IV

0 } Vie C,k € P,

0

Figure 2 shows how sfkl is used to create these regional and box bounds at the first iteration for
the case of 2 connected variables, with C = {41,153} and P, = {k;}. The initial point generates 4
subdomains denoted B; through Bj.

This implies that it is possible to construct Lagrangians that validly underestimate the global
solution in each of these n-rectangles, within which an individual relaxed dual subproblem is solved.
If the solution is greater than the current best upper bound obtained from the primal problem, it
may be fathomed (i.e. discarded); otherwise, it is added to the set of candidate lower bounds. The
infimum of all such solutions supplies the point for the next iteration, where this single n-rectangle
will again be partitioned into 2VCV n-rectangles to supply additional lower bounds on the final
solution. In the context of Figure 2, suppose the infimum of the 4 lower bounds lies in By. At the
next iteration, Bj is divided into 4 regions, and so on.

A convenient way of describing this partitioning of the y variable space in the branch and bound
approach is through the use of a tree structure. The starting point is represented by the root node,
labeled R, and it generates 2V nodes at the first level of the tree. One of these leaf nodes becomes
the next iteration node, in turn generating a further 2¥cv additional nodes, and so on. This is
illustrated in Figure 3 for two connected variables where the nodes for the first three iterations are
numbered 1 through 12. Note that a maximum of 22 nodes are generated at each iteration and that
at any given iteration K, all generated solution nodes share the same parent node. Such a structure

has certain advantageous features, namely:

(i) The qualifying constraints are a single set of box bounds on the variables, rather than sets of

constraints generated from current and previous iterations.

(ii) Each n-rectangle is a refinement of its parent n-rectangle so that the regional bounds for a given
node are supplied by the box bounds of its parent node. This has the important implication

that any given Lagrangian will be valid in any future n-rectangles that it spawns.

(iii) Because of (ii), retrieving previous Lagrangians, labeled Kp, for use in the current relaxed
dual subproblem is especially simple. A backward depth-first traversal through the solution
tree from the current node to the root node, extracting the relevant information required to
construct the Lagrangian at each node along the path, generates the set of valid Lagrangians,

denoted PL(Kp). This set of Lagrange functions is included in each relaxed dual subproblem.

Point (iii) above brings the extremely important computational advantage that each relaxed dual
subproblem contains relatively few Lagrangians from previous iterations. This is because a La-
grangian is not included for all previous iterations, but only for those whose nodes define the current

node as a subdomain in the y variable space. This is shown in Figure 3 where only one Lagrangian
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from previous iterations is used at both the second and third iteration. Thus, each relaxed dual sub-
problem can be both generated and solved efficiently. The manner in which the z variable bounds

are obtained and set on the basis of the qualifying constraints will now be described.

4.4.2 Evaluating z variable bounds

It is necessary to establish upper and lower bounds on the z variables within any given n-rectangle
defined by B{L”,U”}. Recall that {¥*} are defined as linear fractionals. Any linear fractional is
a pseudolinear function, that is, it is pseudoconvex and pseudoconcave. Thus, there is one local
minimum and one local maximum that satisfy the KKT optimality conditions, and these will be
unique global extrema. By examining the KKT conditions V¢ € C , V k € P, for the following
problem:

min  UF sz E% < 'n,f < Uf? Vjel (37)

the global minimum value for each ¥¥ in B{L? U} can be evaluated and is labeled Lgr. —¥¥ is
minimized subject to the same constraints to obtain the corresponding maximum, /y». Appendix A

shows that the globally valid lower and upper bounds for \I’f (and hence \i’fj) within the n-rectangle
defined by B{LB,UB} are given as:

EB UB
Lgr = and Ugr = 38
i £B+2gﬂuk “ T UE Ty Gy LF (3
™ j#1 ™ J#i

4.4.3 Setting the bounds on the z variables

The final expression for the Lagrange function collects the terms in n to yield:

L( !I/n)\ ZZ{[ n; ﬁf]-Z‘i’;ﬂ-[gij{ﬁj-l-jxq,f}]}-l-zck—zZ nfj\\pf (39)

JjeC keP i1€C keP;,

For some B; € CB, it is required to set the bounds on \Il for the current iteration, K, and the set

of previous iterations, Kp. Two quantities decide whether the z variables are set at their lower or

upper bounds. The first of these is the sign of the term n*

and the second is the parameter Eﬁ,

z variables in Eqn. (39) as follows:

— 7k for current and previous iterations,

used to determine the sign of the term that post—multiplies the

+1 if G [Tij+5\q,k ] >0
—1 otherwise

If the combined sign of these terms is positive, then the z variable is set to its lower bound, and if

it is negative, then the z variable is set to its upper bound so that the corresponding terms in the

Lagrange functions are validly underestimated. For the current iteration, K, sgcl clearly determines

the sign of n¥ — while for for the set of previous iterations, PL(Kp), the sign of the quantity

1, 3
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(nk)E — (nF)KP properly determines the sign of n¥ — (7%)X” in the current region. In summary, the
following set of steps performed for each {7,7,k} € C x C x P, provide the correct bounds on the z

variables:

Current Iteration, K:

If (5F)K.s0' =41 then (‘i’fz)BlA = Ly

J

U‘I/k

J

If (55)% s = -1 then (¥%)B"

It (sh)Xr [ (75K — (@h)Kr | = 41 then (¥5)B7 = Ly

It (sh)Kr [ (@)K — (@F)Kr | = -1 then (¥5)5 = Uy

Illustration — conclusion: The new set of z variables is defined as:
‘i’11 = ‘1’12 =¥; and ‘1’21 = ‘i’zz =¥,
Collecting the variables in n; together gives the final Lagrange function as:
L4( U,n, ) =C —mA; — na)y
+ {ni—-m }{@11-5\14—\1’21-%2[7124—5\2] }
+ {ny—ny }{‘i’lz'gzl [Tz1+5\1]+‘i’22'5\2}

Each term in n; multiplies multiple a summation of terms involving the z variables. The bounds on

these z variables are set in the manner just described in this section. |

4.5 Global Optimization Algorithm for the NRTL model

In what follows, kg represents any node of the solution tree and the set of nodes is labeled Ng. k;
is a temporary node used in the generation of the set of previous Lagrange functions, PL(Kp). S¢
represents the current node under consideration at any given iteration and is obviously a leaf node.
The subscript C denotes any parameter associated with the current iteration. The parent of a node
is simply indicated by p. The set I, represents the iteration number at which the particular node

ks is generated. The complete algorithm for the NRTL equilibrium model is now given.
STEP 0: Initialization

Select 7n° and e. Set K =0, Se =R, ks=0, PV = +0 , Ml = —c.
Initialize Ro{LR,UR} (viz. LE, = 0; UE = 7).
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STEP 1: Primal Problem

Evaluate (P) to give G(7%). Store K K, (Eﬁ)K
If G(2*) < PU solve (NCF) locally to give G*.

Update PYV = min [PU , G(RX), G* ]
STEP 2: Select previous Lagrangians

Set PL(Kp) =10, k; = Sc.
while (k; # R )
do
Kp = I,
PL(Kp) = PL(Kp)U Kp
ke = p (k)

end
STEP 3: The Relaxed Dual Phase

(1) Choose a combination of qualifying constraints, B; from the set C'B.
Use sgcl and Rc{LE,U"} to calculate B{LB,UB} and {E\Irf’uxlrf}-

Kp

. BK R
Set !PBZ and !I/Bl and solve the following problem (RD) to give u} and n*:

\

min g

~ BK _
st pp > Lo(7n, XF)

gkp

ps > L(¥ " ,n,NS") ¥ Kp € PL(Kp)

LB < ok < uB vieC,kep

~ BI\"

where Lo( & l,n,AK) is given by Eqn. (39).

(i) If u} > PY, then fathom solution.
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(ii) If u% < PY, then set ks = ks + 1, p(ks) = Sc , Ir. = K, p*s = p% , 7Fs = n* and
R {LB,URY = B{LB ,UP}.

(2) Choose another set of bounds B; from CB and return to (1).

If there are no remaining unchosen B; in C B, then proceed to Step 4.
STEP 4: Select mol vector for next iteration

ME = argrgflin ,u,ks; set S¢ = kg, the associated node. Set Ny, = Ni, \ Sc.
kg

Set ¥+l = nSc | Rg 1 {LB,UR} = Rs {LB, UR}.

STEP 5: Check for convergence

Check if ‘PUI;# -

< e. If true, then STOP; otherwise set K = K + 1, and return to Step 1.

It has been shown how all the conditions required to guarantee e-global convergence of the GOP
algorithm are satisfied, and the proof is supplied in Floudas and Visweswaran [13, 14].

The main computational effort lies in solving the relaxed dual subproblems. There is a very
simple way to reduce the number of connected variables. The material balance constraints appear
affinely in the relaxed dual formulation. The material balance matrix represented by A has rank r
so that » mol number variables can be written in terms of the others. In other words r connected

variables are eliminated. Thus, the number of connected variables is now given as:

For the phase equilibrium problem r = |C|. For cases where only liquid phases are considered,
the material balance constraints are used to eliminate these r variables from interacting with the z
variable set. This is shown in the illustrative example in the next section.

Another computational aid is the fact that at a given stage of the algorithm, if the current point
matches a previous point for some (or all) 2 € C', k € P, , then there is no need for a partitioning
hyperplane in that dimension. This reduces the number of relaxed dual subproblems to be solved
at that iteration. A significant number of relaxed dual subproblems are typically eliminated in this

way.

4.6 Illustrative Example: n-Butyl-acetate — Water

The application of the GOP to a simple two component, two phase example is now considered. This
illustrative example was studied by Heidemann and Mandhane [26] to demonstrate the potential
complexities of the NRTL equation. It features two components, n-butyl-acetate (1) and water (2),

at a temperature of 298K and a pressure of 1 atm. There are two possible liquid phases and they
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are modeled using the NRTL equation. Both phases share the same standard state, so that G, as
defined by Eqn. (9) supplies the Gibbs function to be minimized. The required binary parameters

were obtained from Heidemann and Mandhane [26]:
T12 = 3.00498 , 791 = 4.69071 and Gip = 0.30794, Gy = 0.15904

The nonrandomness constant used to calculate G;; is 13 = g1 = 0.39196 The initial mixture charge
is equimolar (n; = 0.5V ¢) and no reaction occurs in the system. It appears to be a simple example
but there are multiple stationary points and local solutions. In fact, there is a local minimum and
a local maximum, in addition to the global solution. There is also a line of trivial solutions that
represents physical one phase behavior, but mathematically yields two phase solutions, that is, the
mol fractions are the same in each distinct phase. These solutions are given in Table 1 where the
superscript I represents the first liquid phase. The mol numbers for the second liquid phase, denoted
by the superscript I1, are obtained as n,” = n] —n; V . The Gibbs free energy surface as a function
of the mol numbers in liquid phase I is pictured in Figure 4, where the various local solutions are
shown, with the trivial solutions lying along the line defined by »{ — nj = 0. Lin [29] employed
a successive continuation method to solve the problem and trace all possible solution branches. In
this manner, all the local and global extrema were obtained. However, there is no guarantee that
a local solver will obtain the global solution, and the trivial solution or other local optima may be
found. To illustrate this point, when (NCF) was solved using MINOS5.4 from 100 randomly selected
starting points, the global solution was found in only 13 cases. The strong local minimum solution
was found in 5 cases, and the trivial solution was obtained in the remaining 82 cases. This example
therefore serves as an excellent demonstration tool for the proposed global optimization approach:
it is challenging and it can be represented in three dimensional space.

In what follows the superscript I is dropped for the first liquid phase. The mass balance con-
straints are then given as:
é]

ni1+ni' =n] and mny+mny =nj

These can be used to reduce the number of connected variables to Ngy = 2 by substituting them into
the terms involving niH within the curly braces of the Lagrange function defined by Eqn. (39). Thus,
a maximum of four relaxed dual problems must be solved at each iteration. The convex portion of

the objective function for the first liquid phase is defined as:

st Tip
Cl=niln—— +nyln
n1 + no n1 + no

with C'' similarly defined for the second phase, then the explicit Lagrange function for use in the
relaxed dual is as follows:
L(¥,n,A) = C+C" —md —mpda — ni' A" —ny' 2y
{n1—n1}- {‘i’115\1 + ‘i’21g12 [712 + 5\2] — ﬁ;\f - 51912 [712 + 5\51]}
{ng —ma} - {‘i’12g21 [721 + 5\1] + ‘i’zzj\z - ‘i’{égzl [721 + S\{I] . ééj\;}

+ +
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Notice that the terms on the first line are convex with the linear terms involving A arising from the
inclusion of the right hand side of Eqn. (26) in the Lagrange function. The interaction between the
z and the y variable sets on the next two lines is purely bilinear. The derivatives of the Lagrangian
with respect to the z variables yield linear functionalities in the y variables allowing the y space to

be partitioned in a very simple manner.

INITIALIZATION : Choose a center starting point: 7; = n{ /2 =0.25, 7 = ny /2 = 0.25.

ITERATION 1: The initial parent n-rectangle, labeled R{L",U/"},is defined as the complete feasible

region and the primal is solved (a function evaluation) to give a first upper bound of —0.01758. All

the relevant information is supplied in Table 2. The parent n-rectangle is divided into 4 box regions,
and a relaxed dual problem is solved in each. These 4 regions are shown in Figure 5 where the
larger solid dots signify the current point of the iteration, while the smaller solid dots represent the
locations of the solutions of the relaxed dual problems in the relevant subdomains. For Iteration 1,

the qualifying constraints are also explicitly supplied in Figure 5.

Region 1: The box bounds are: 0.25 < n; < 0.5, 0.25 < ny < 0.5. The z variable bounds in this
box region as calculated from Eqns. (38) are given in Table 3. Their actual levels in the Lagrangian
are given in Table 4. As an illustration of how these bounds are set, consider the z variable \1’21: the

quantity (n; — 1) is positive in Region 1. In addition:
Gia [T12 4 A2 = 0.7075 > 0

Therefore, the combined sign of this term will be positive. The z variable is set to its lower bound
in this case, so that By = £€2 = 0.6189, ensuring that the lower bound times a positive quantity
will always provide a valid lower bound in the box region for this term. By performing the same
analysis for each of the z variables, it is ensured that the Gibbs surface is validly underestimated in
each box region of interest.

The Gibbs surface in this region is shown in Figure 6 along with its underestimating Lagrangian.
Notice that (i) the Lagrangian matches the Gibbs surface at the current point 7 = {0.25,0.25}, (ii)
that it underestimates the Gibbs surface at all points, and (iii) that it is clearly convex. The solution
of the relaxed dual lies in the bottom left hand corner of Figure 6 at a vertex of the box region, and
is given as:

ni =ny =05 with pj =-0.4261

Region 2: The box bounds are: 0 < n; < 0.25, 0.25 < ny < 0.5. The Gibbs energy surface and the
corresponding Lagrangian are shown in Figure 7. In this case the solution lies in the interior of the

box region and is:
n] = 0.1028 , n3 = 0.3972 with puj = —0.2303

26



Region 3: The box bounds are: 0.25 < n; < 0.5, 0 < ny < 0.25. The solution is given as follows:
ni = 0.3972, ny; = 0.1028 with p* = —0.2303
Region 4: The box bounds are: 0 < mn; < 0.25, 0 < ny < 0.25 with solution:
n=0,n; =0 with p*= -0.4261

Note that Regions 3 and 4 yield the same lower bounds as Regions 2 and 1 respectively and that
the y variable levels in these regions are equal to {n; — n}} where {n}} represents the appropriate
solution from either Region 1 or 2. This is due to the fact that a starting point in the center of
the feasible region was chosen so that the Lagrangian yields equivalent expressions for {n;} as for
{n] — n;}, implying that Regions 3 and 4 may be discarded from future consideration. For other

starting points this property will not hold.

ITERATION 2: The infimum of all obtained relaxed dual solutions supplies the parent region for
this iteration as Region 1 of Iteration 1, with a lower bound of —0.4261. This solution is then
deleted from the candidate set of lower bounds. All information in regard to the primal is given
in Table 2. The current point is # = {0.5,0.5} and thus the upper bound given by the primal
does not change, that is, it also lies along the hyperplane of trivial solutions. Only one region
need be considered in this case as the current point lies on a vertex of the parent region. For this
reason, the box region is the same as it was for Region 1 of [teration 1 as shown in Figure 5. Two
Lagrange functions are required and superscripts on brackets indicate iteration number. For the
Lagrange function to be generated from the first iteration, (7;)? — (%;)! = 0.5—0.25 > 0 for ¢ = 1, 2.

2 = n; — 0.5 < 0 for the current iteration. By way of illustration, for the Lagrange function

n; — (’T_L,L)
of the first iteration, (¥1;)' = Uy, = 0.9263 as (A)* < 0 and n; — 0.25 > 0; while for the current
iteration, (¥17)% = Lg, = 0.7587 as (A)? < 0 and n; — 0.5 < 0. For both these cases, (A;)X < 0.
The Gibbs surface and the supremum of the Lagrangian generated in Region 1 of Iteration 1 and

the current one are plotted in Figure 8. The solution lies in the interior of the feasible region:
n] = 0.3796, n3 = 0.3704 with p3 = —0.2221

This lower bound lies below the current best upper bound and is added to the set of relaxed dual

solutions.

ITERATION 3: Region 2 of Iteration 1 contains the infimum of all remaining lower bounds as

—0.2303 and is deleted from the set of candidate solutions. The new parent region is therefore
defined as: 0 < n; < 0.25, 0.25 < ny < 0.5, with a current point # = {0.1028,0.3972}. This point
yields a primal value of 0.00507 implying that the current best upper bound does not change. It
is divided into 4 box regions as is illustrated in Figure 5. The box bounds for these regions along

with the corresponding solutions are supplied in Table 5. The locations of these solutions in the y
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variable space can also be seen in Figure 5. There are two Lagrangians for each box region, one from
Region 2 of Iteration 1 which is the same for all 4 box regions, and one from the current iteration.
The supremum of both these Lagrangians is plotted for all 4 regions along with the Gibbs surfaces

in Figure 9.

ITERATION 4: The infimum of all remaining lower bounds is obtained from Iteration 2 as —0.2221.
This solution is then deleted from the set of relaxed dual lower bounds. The parent region for this
iteration is defined as: 0.25 < n; < 0.5, 0.25 < ny < 0.5, with a current point 7 = {0.3796,0.3704}.
This point yields a primal value of —0.01754 so the current best upper bound does not change. 4

relaxed dual problems must be solved and each of these contains 3 Lagrangians, two constructed
from Iterations 1 and 2 (common to all 4 subproblems), and a third which is based on the particular
box region under consideration. The box bounds are given in Table 6 together with the solutions of
each of the relaxed dual problems. The 4 box regions and the location of these solutions is shown in

Figure 5.

For Iteration 5, the next parent region is given by Region 1 of Iteration 4, which is the infimum
of all available relaxed dual solutions. 4 relaxed dual problems are again solved, each containing 3
Lagrange functions. The algorithm proceeds in this manner until the infimum of all the remaining
lower bounds is within € = 0.0005 of the best upper bound. For this particular problem and starting
point, convergence occurs after 107 iterations. A local solver will not converge to the global solution
from the initial point considered above. The progress of the upper and lower bounds is charted in
Table 7. The total cpu time required was 1.23 sec, and a total of 359 relaxed dual subproblems were

solved. 57% of these solutions were fathomed.

4.7 Examples

Before discussing the examples, some general comments in relation to the problems and systems

considered are now made:

(i) All computational runs were performed on a Hewlett Packard 9000/730 machine. The GOP is
implemented in C as part of the package GLOPEQ (GLobal Optimization for the Phase and
chemical EQuilibrium problem). MINOS5.4 is accessed as a subroutine. The cpu times reported
represent the total real time taken by the algorithm. Unless otherwise stated, convergence is
deemed to have occurred when the relative tolerance is less than ¢ = 0.0005. This tight a

tolerance ensures that that global solution is generated well before final convergence occurs.

It should be noted that GLOPEQ can be used to minimize the Gibbs free energy function
when the liquid phase nonidealities are modeled using the Wilson, T-K-Wilson, UNIQUAC,
UNIFAC and ASOG equations. GLOPEQ is also capable of obtaining the minimum of the
tangent plane distance function for any of these equations. The tangent plane stability analysis

originally introduced by Gibbs [20, 21] is a very useful way of determining if a postulated
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(i)

(iif)

solution is the equilibrium one. For this set of problems, Ngy = |C| — 1, so that the number
of connected variables is of the order of components in the system rather than the number of
components times phases. This makes it possible to verify equilibrium solutions for systems
with a larger number of components in significantly reduced computational time. The same
properties developed here are also applicable for minimizing the tangent plane distance function
for nonideal liquid phases modeled by the NRTL equation. McDonald and Floudas [35] describe
the global optimization approach for the tangent plane criterion for systems modeled using the
NRTL or UNIQUAC equation. In addition, GLOPEQ utilizes the minimization of the Gibbs
free energy in conjunction with the tangent plane stability analysis to generate equilibrium
solutions for all the above activity coefficient correlations as efficiently as possible, as well
as being able to solve these optimization problems individually. This is fully described in
McDonald and Floudas [34].

Any problem where more than one liquid phase is postulated will have a degenerate set of
trivial solutions where the component mol fractions in each of the liquid phases are the same.
If one of these points is used to initiate the search for a solver such as MINOS5.4, then it will
be unable to move from the trivial solution because it corresponds to a local minimum. This
characteristic has already been observed in the illustrative example. All the examples in this
section show such behavior and this has proven to be a major problem for Newton—based local
optimization algorithms. The results show that in all cases, the GOP successfully obtains the

global solution when supplied with such a trivial solution initial point.

If no reaction occurs in the system, then G, or G,;, as defined by Eqn. (9) and Eqn. (11)
respectively, are the forms of the objective function that will be minimized. Unless otherwise
stated, the saturated pressures for all compounds are calculated from the tabulations of Reid
et al. [47].

For a nonreacting system where the temperature and pressure are specified, the maximum
possible number of phases present at equilibrium is equal to the number of components in the
system. For the examples considered in this work, this means that there are a maximum of
two liquid phases and a potential vapor phase because the conditions under consideration are

in the vicinity of the bubble point.

It is possible to incorporate a simple local search technique into the framework of the global
optimization algorithm. If the primal function value is less than the current best upper bound at
any given iteration, MINOS5.4 is used to solve (NCF) as a nonconvex nonlinear programming
problem, using the current mol numbers {7*} as a starting point. If the resulting solution
supplies a Gibbs free energy level less than the current best upper bound, then PY is updated
to equal this new solution. This is done because typically a point close to the global solution
is generated at a relatively early stage of the algorithm, but this solution is not refined until a

later point in the solution procedure. The advantages of such a strategy are obvious: immediate
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refinement of solutions (local or global) will occur with the attractive benefit of improved upper
bounds at an earlier stage of the algorithm. This also means a greater number of solutions
will be fathomed. In summary, the local search is an efficient way in which to generate valid
and improved upper bounds, independently of the global optimization algorithm. Regardless
of whether this technique is used, the global solution will be generated in the same number of

iterations.

(vi) When a solution is obtained that contains liquid phase(s) only, a stability check on an incipient
ideal vapor phase is performed to establish if the obtained solution is stable with respect to

the formation of a vapor phase. This is described in more detail below.

Stability criterion for the vapor phase: If the global solution in a nonreacting system involving
liquid phase(s) has been obtained, where the mol fractions in one of the liquid phases are labeled
z = {z}, then a necessary and sufficient condition (Baker et al. [1]) for the stability of this solution
with respect to the potential formation of a vapor phase is that the following function, F(y), be

nonnegative for all feasible values of mol fractions:
F(y) = 3w { m(y) - #d(2) } > 0 (41)
1eC
where y = {y;} are the vapor mol fraction variables of the formulation, p;(y) is the chemical potential

of the vapor phase at composition y, and p?(z) is the chemical potential of the liquid phase for

component ¢ at mol fraction z with 7;(z) calculated from Eqn. (17).

Lemma 4.1 Define the function F(y)/RT with y > 0 as follows:

J (y) Z AT
B ic Yi {111 Py, — In Pis -'yi(z) : zz-} (42)
then f(y)/RZ iS CONveL.

Proof: The quantity y; In y; is convex. A summation of these terms will also be convex. The pressure
term can be extracted from the logarithmic term and therefore appears linearly in the formulation
along with the chemical potential terms for the liquid phase, uf(z). The summation of convex and

linear terms will itself be convex, i.e. F(y)/RT is convex. o

Note that in progressing from Eqn. (41) to Eqn. (42), Eqn. (10) has been used so that the terms

involving AG;" cancel. If (8) is designated as the following formulation:

min% s.t. g;yizl,ogyigl VieC (S)

then it is clear that any local solution of (S) will be a global one due to Lemma 4.1 because the

objective function and the feasible region are convex. This implies that a local solver can be used to
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obtain global solutions to (S). Note that for any given phase configuration involving liquid phases,
the resulting solution as obtained by using the GOP is guaranteed to be global. Theorem 3 of Baker
et al. [1] proves that if the solution of (S) yields a nonnegative objective function level, then a vapor
phase will positively not form. In the case where it is unknown if the liquid phase solution is a global
one. this claim cannot be made and represents an important advantage of the proposed approach
as it is possible to perform a globally valid stability check for the vapor phase. If the optimal
value is negative, then a vapor phase must be postulated and the equilibrium calculations reworked.
Unlike other methods that utilize the results from solving the stability problem, the global approach
described here does not use the results obtained from solving (S). Rather, a global optimization

problem involving the vapor phase is solved to obtain the equilibrium solution.

4.7.1 Example 1: LL Equilibrium for Toluene — Water

The first example is a binary one involving toluene and water taken from Castillo and Grossmann
[10]. The conditions are 298K and 1 atm pressure. There are two postulated liquid phases sharing
the same standard state so that G, given by Eqn. (9) is the objective function to be minimized.
The nonconvexities of the problem are relatively weak, but it does posses a degenerate line of trivial
solutions where a mathematical two phase solution is found, corresponding to a single phase physical
solution. A local solver such as MINQOS5.4 will fail to move from this local solution if it is used to

initiate the search. The binary parameters are obtained from Bender and Block [2] as:
T12 = 4.93 , T21 — 777, Q192 = Qg1 = 0.2485

An equimolar charge is assumed (0.5 mol for each component) and no reaction takes place in the
system. There are a total of 4 connected variables for this problem. However, it is possible to
eliminate the variables of the second phase through the mass balance constraints, i.e. n;" =n] —n/

for {i1,75}. The number of connected variables is then given as:
New = [C]-|P] — r
= 2:2-2 =2
Thus, a maximum of 22 = 4 relaxed dual subproblems must be solved at each iteration.

From a starting point in the center of the feasible region, the GOP algorithm converges to the
global solution in 7 iterations, and the solution is given in Table 8. From this initial point, a local
solver may be unable to find the global solution. For example, any Newton—based method will not
move from this local minimum. Only 23 relaxed dual subproblems were solved and 13 of these were

fathomed (i.e. the supplied lower bounds lay above the current best upper bound). The total time

taken to obtain the global solution was 0.07 cpu sec.

4.7.2 Example 2: LL Equilibrium for Toluene — Water — Aniline

This example consists of a non-reacting three component system and was investigated by Castillo

and Grossmann [10]. The system is at a temperature of 298K and a pressure of 1 atm. Both liquid
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phases are modeled using the NRTL activity coefficient equation. The parameters for this model
were obtained from Bender and Block [2] and are supplied in Table 9. There are two potential liquid
phases so that the adjusted objective function, é], defined by Eqn. (9) will be used. The feed charge
is given in Table 10. No reaction occurs so that the rank of the material balance matrix is given by

the number of components. The number of connected variables is then:

Ney = [C|-|P|— r
= 3-2-3
= 3

This implies that there are 2° = 8 relaxed dual subproblems to be solved at every iteration.

This example displays strong trivial solution convergence characteristics as pointed out by Paules
and Floudas [44]. In applying the GOS technique, Paules and Floudas [44] found that convergence to
the correct solution could still not be guaranteed for all starting points. A variety of restart techniques
were invoked and extra Lagrangians were included to avoid convergence to the metastable trivial
solution. Using these aids, only one starting point failed to converge to the non-trivial solution. In
this work, when (NCF) was solved locally as a nonconvex programme using MINOS5.4, convergence
to the trivial solution occurred for 13 out of 100 randomly generated initial points. These difficulties
are in large part due to having two phases described by exactly the same mathematical equations,
so that a local technique will have difficulty moving from the hyperplane of trivial solutions.

Supplied with an initial trivial solution, the algorithm converges to the global solution in 74
iterations. A total of 461 relaxed dual subproblems were solved and the percentage of total fathomed
solutions was 82%. The optimal solution is given in Table 10, featuring a toluene-rich phase and a
water-rich phase. When the stability problem (S) was solved using this global solution, it was found

to be stable with respect to the incipient vapor phase.

4.7.3 Example 3: LL Equilibrium for n-Propanol — n-Butanol — Water

This system was one of two studied by Block and Hegner [3] in their modeling of three phase
distillation towers. n-Butanol and water form the only partially miscible binary pair (i.e. it is a
Type I system) with a relatively small domain of immiscibility. The binary parameters as obtained
by them for use in the NRTL equation are supplied in Table 11. G, supplies the objective function to
be minimized, and Noy = 3. Block and Hegner [3] conducted the liquid phase splitting computations
independently of the vapor phase i.e. the parameters have no dependence on temperature. It is
therefore meaningless to consider a vapor phase for this example. Walraven and van Rompay [63]
subsequently used this problem in order to test their phase splitting algorithm for a number of
different feed charges.

Two source feeds from the work of Walraven and van Rompay [63] were examined, and these
charges are given in Table 12. The first of these lies well within the immiscibility region — {n]} =
{0.04,0.16,0.80} — and therefore causes little problem for a local solver. However, the second con-
sidered source charge of {n;} = {0.148,0.052,0.800} lies close to the plait point, an area in which
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it is notoriously difficult to obtain the correct equilibrium solution. The trivial solution objective
function value is -1.1919705, while the two phase global solution has an objective function value of
-1.19197186, a difference of only 1.1-107°! Solving (NCF) using MINOS5.4 succeeded in obtaining
the global solution from only 8 out of 100 random starting points. Nonetheless, the GOP algorithm
generated the global solution for this very difficult problem when supplied with a trivial solution
starting point. This clearly demonstrates the effectiveness of the algorithm in generating global
solutions for extremely challenging problems.

The equilibrium solutions for the two sets of conditions considered here are given in Table 12,
along with some selected computational results. N, is the number of iterations required to converge
to the global solution, and N is the percentage of solutions that are fathomed. The difficulty of the
problem when the source charge is close to the plait point is evident in the increased computational

effort required to obtain the equilibrium solution for this case.

4.7.4 Example 4: LL Equilibrium for Ethanol — Ethyl acetate — Water

This system was the second example studied by Walraven and van Rompay [63]. Soares ef al. [53] also
examined this system in their analysis of three phase flash calculations and supplied the constants
for use in the Antoine equation. The NRTL binary parameters were supplied by van Zandijcke and
Verhoeye [59] and are given in Table 13. Ethyl-acetate—water is the single partially miscible binary
pair of the system (i.e. a Type I system). The objective function is given by G,; with Noy = 3. A
single source feed was selected from Walraven and van Rompay [63], with {n]} = {0.04,0.30,0.66}
at a temperature of 343.15K. The algorithm shows similar performance for the other sets of feed
charges and are therefore not reported here.

The global solution is given in Table 14 along with its associated computational requirements. A
stability analysis on a perturbing ideal vapor phase reveals that the LL configuration is stable with

respect to the potential formation of a vapor phase.

4.7.5 Example 5: LL Equilibrium for n-Butanol — Water — n-Butyl-acetate

This example was studied by Block and Hegner [3] to simulate a column that utilizes a top phase
separator. A water rich stream is removed at the top of the column and the organic phase is refluxed
back to the column. The NRTL binary parameters are given in Table 15. These parameters are
temperature independent as was the case in Example 3 so there is no need to consider a vapor phase.
The problem was solved for the conditions in the top phase separator and the corresponding feed
charge is {n}} = {0.14,0.64,0.22}, as shown in Table 16. G,; defined the objective function that
was minimized and Ngy = 3.

The global solution for the feed charge under consideration is supplied in Table 16. The water
rich phase composes 52% of the top phase separator exit stream. The algorithm took 105 iterations

and a total time of 2.01 cpu sec to obtain this solution. The fathoming rate was 67%.
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4.7.6 Example 6: LLV Equilibrium for Benzene — Acetonitrile — Water

This example is taken from Castillo and Grossmann [10]. It features three components involving a
liquid phase, a vapor phase, and a potential second liquid phase. The parameters for the NRTL are
supplied in the original work of Castillo and Grossmann [10]. They supply values for g;; — g;; so that
7;; is calculated using Eqn. (18) with R = 1.9872 cal/K/mol. Table 17 supplies the parameters for

use in the equation G,; = exp (—oy;7;;). Three sets of conditions are considered in this work.
Conditions (A): T = 333K, P = 0.769 atm

In this work, an LLV global solution is obtained and is given in Table 19 along with a local LL
solution. The mol fractions of the equilibrium solution obtained here agree reasonably well with
those reported by Castillo and Grossmann [10], although the amount of mols in each phase differs
significantly. There are six connected variables for this example, meaning that a maximum of 64
relaxed dual subproblems must be solved at each iteration, but typically a much fewer number of
subproblems are solved. Using a relative convergence tolerance of 0.001, the global solution was
obtained in 5842 iterations, consuming a total time of 766 cpu sec. 94% of the solutions were
fathomed.

Conditions (B): T =333 K, P =1 atm

In this case, the pressure is too high to favor the formation of a vapor phase and an LL solution is
obtained, as shown in Table 19. It should be noted that this solution also corresponds to a local LL
solution for Conditions (A). This solution was obtained in 52 iterations consuming a total time of
1.19 cpu sec. The fathoming rate was 77%. The solution obtained here agreed very closely with that
provided by Castillo and Grossmann [10], suggesting that the discrepancies of the results reported
here for Conditions (A) and Conditions (C) are due to the vapor phase. A stability check for an
incipient vapor phase gave a solution of zero, confirming that a vapor phase is not present at the

equilibrium solution.
Conditions (C): T = 300K , P = 0.1 atm

This work finds an LV equilibrium solution which is given in Table 20 along with another local LL
solution. An LV solution is also reported by Castillo and Grossmann [10] and Lantagne et al. [28]
and the results are in good agreement. If two liquid phases and a single vapor phase are postulated,
then the GOP algorithm takes 655 iterations and a total time of 118 cpu sec to converge to the global
solution with a fathoming rate of 86%. If a single liquid phase is postulated so that Ngy = 3, then

convergence occurs in 34 iterations taking 0.88 cpu sec (e = 0.0001).
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4.7.7 Example 7: LV Esterification Reaction

This example involves the esterification reaction between ethanol and acetic acid to form ethyl acetate
and water. It has been used extensively in the literature to test a variety of equilibrium calculation
methods including those of Sanderson and Chien [50], George et al. [19], Castillo and Grossmann
[10], Lantagne et al. [28], Castier et al. [9], Xiao et al. [66], Gautam and Seider [17] and Paules
and Floudas [44]. Suzuki ef al. [57] obtained the binary parameters for use in the Wilson activity
coefficient equation, and these parameters account for the formation of dimers and trimers of acetic
acid in the vapor phase. All the above authors use this set of parameters except for Xiao et al.
[66]. In this case, the UNIQUAC equation was employed with parameters derived from the UNIFAC
model of Fredenslund et al. [15]. However, this does not account for the polymerization of acetic
acid in the vapor phase.

In this work, binary parameters are required for the NRTL equation and these are obtained from
infinite dilution activity coefficient information. An estimate of these quantities for each binary pair

can be obtained from the Wilson equation as:
Iny7°*=1—-InAj3—Ap; and Inv° =1-1InAy — Ass

where A;; is the Wilson interaction parameter for the binary ¢ — j obtained from Suzuki et al. [57].
a;; = 0.3 provides a reasonable estimate for the nonrandomness constant for all binary pairs and on
this basis, unique values can be determined for 715 and 72; (see Renon and Prausnitz [49]) using the

following pair of equations:
Ti2 = Iny3° — To1exp (—aa721) with 791 =1Iny° — Taexp (—a12712)

The values of 7;; obtained by this procedure are provided in Table 21. The elemental abundance
matrix, ae;, as well as the vector of total amounts of the elements, b., are supplied in Table 22.

The Gibbs free energies of formation for the vapor phase were calculated by integrating the van’t
Hoff equation. Kirchoff’s equation was used to calculate the enthalpies of formation with the required
heat capacity data taken from Reid et al. [46]. Table 23 supplies the Gibbs free energies of formation
for the vapor phase. The Gibbs free energy of formation for the liquid phase was calculated using
Eqn. (10) with the parameters for use in the Antoine equation taken from Xiao et al. [66].

There are 4 connected variables for this example so that a maximum of 16 relaxed dual subprob-
lems are solved at each iteration. At a temperature of 355K and for a relative convergence tolerance
of 0.00005, the LV global solution is obtained in 173 iterations taking a total time of 8.53 cpu sec.
The fathoming rate was 60%. The equilibrium solution is given in Table 23. Because the vapor
phase is assumed to behave ideally, the chemical reaction equilibrium constant, K, is expressed as:
YEtAcYH,0
YEtOHYH Ac
This agrees well with the value of 33.55 reported by Xiao et al. [66] despite the fact that the inter-

action coefficients were obtained in a rudimentary manner. The compositions also agree reasonably

well.
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At a temperature of 358K, the liquid phase disappears. The Gibbs free energies of formation
for the vapor phase at this temperature are given in Table 24, along with the mol fractions at
equilibrium for the vapor phase global solution. In this case K, = 31.80 which agrees closely with
the value of 31.75 computed by George ef al. [19]. With a liquid and a vapor phase postulated,
the GOP algorithm computes the equilibrium vapor phase solution in 54 iterations, with a total cpu

time of 3.7 sec.

5 Conclusions

A global optimization algorithm has been proposed to solve the phase and chemical equilibrium
problem when the liquid phase can be modeled by the NRTL equation and the vapor phase is
considered ideal. The proposed approach guarantees finding the global solution for this class of
problems. A simplification of the objective function was provided that should prove very useful
when employing the NRTL equation. Transformation variables were introduced in order to induce
the structure required by the GOP algorithm to assure convergence to an e-global solution. This
structure features a biconvex objective function subject to a bilinear set of equality constraints.
Numerous examples were presented which demonstrate the effectiveness of the algorithm in solving
several phase equilibrium problems of varying degrees of difficulty. For systems that can be modeled
using the Wilson, T-K-Wilson, UNIQUAC, UNIFAC and ASOG equations, new properties have
been derived which allow the application of a branch and bound global optimization algorithm to
also guarantee obtaining e-global solutions. McDonald and Floudas [33] provide the analysis for
the UNIQUAC equation. The package GLOPEQ uses the minimization of the Gibbs free energy
in tandem with the tangent plane stability analysis to guarantee obtaining equilibrium solutions for

all systems that can be modeled using the equations listed above, as described by McDonald and
Floudas [34].
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Appendix A

This Appendix shows how global lower and upper bounds can be automatically generated for the
z variables {\I’f}, which are linear fractional functions. In what follows, the phase superscript k& is

dropped. The problem is then:

n;
min ¥V; = ———
> Gjing
J
s.t Ln,—m; <0 —>,u,JL- Vjedl

njg—Up, <0 — pj Vjel

where {L,,,,Un;} are the lower and upper box bounds on the mol number variables, and {x;} and

{p]} are the multipliers associated with the corresponding inequality constraints. Recall that G;; > 0.
The KKT conditions yield:

1 Gjin v o1 :
e Syt =0 Vi el Al
Sy [0 S| TP ’ -
7 7
i [Ln,—mi] =0 vjec (A.2)
i [nj—tn| =0 vjec (A.3)
piami 20 VjeC (A4)

where e; = 1if j = ¢, and e; = 0 otherwise.

If any n; lies in the interior of the box constraints, then both multipliers must be zero, i.e.
p; = w; = 0 in order to satisfy Eqns. (A.2) and (A.3). However this would imply violation of
Eqn. (A.1) so the variables must be at either their lower or upper bounds. It will now be shown how
it can be decided a priori at what bounds the mol number variables should be set to ensure the z
variables attain their global lower and upper bounds within the defined box region.

By examining the sign of the term in square brackets of Eqn. (A.1), it is possible to determine
for each j that one of the bounding inequality constraints must be active, while the other cannot.

There are two cases for which the analysis is performed:

Case I: 3 =1

> Gjing
Gjini | _ 5#

When j=1+¢ then e;j — =
SOimi | 3 Gams
e AT FRA

>0

This term is always positive so that u must be nonzero to satisfy Eqn. (A.1). Eqn. (A.2) implies
that n; = L,;. Then, Eqn. (A.3) shows that n; — U,, < 0 so that p/ = 0. Thus, when j = 4, n;

must be at its lower bound if ¥; is to be minimized.
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Case II: 5 #1

Gini | _ Guni

Y Gani | Y Gam;
7 7

When j#% then |[e; <0

This term is always negative implying that uf must be nonzero to satisfy Eqn. (A.1). Eqn. (A.3)
implies that n; = Uy, . Eqn. (A.2) reveals that £, —n; < 0 so that u; = 0. Thus, for the case j # 1,
n; must be at its upper bound in order to minimize ¥,.
Therefore, the global lower bound for any variable ¥, constrained within the box bounds {L,,, Uy, }
is given by:
min ¥; = kn, (A.5)
Lo, + J‘_Z; Gji Un,

A similar analysis to obtain the maximum of ¥; by minimizing —¥; subject to the same box con-

straints yields the global maximum as:

Un,

uni + E g]z ['n]
J#

(A.6)

max¥, = min -V, =

In this manner, the global lower and upper bounds on the z variables can be obtained for any given

box bounds on the mol number variables. O
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Solution for n-Butyl-Acetate (1) — Water (2)
T =298K, P=1.0 atm

Feed Liquid I Liquid II Gy

Components (mols) (mols) (mols) (—)
CeH1202 (1) 0.50 0.00071 0.49929 -0.02020
H,O (2) 0.50 0.15588 0.34412 (Global minimum)
CeH1202 (1) 0.50 0.00213 0.49787 -0.01961
H,O0 (2) 0.50 0.46547 0.03453 (Local minimum)
CeH1202 (1) 0.50 0.00173 0.49827 -0.01730
H,O0 (2) 0.50 0.37544 0.12456 (Local maximum)

Table 1: Solutions for Hlustrative Example

Parent region information Multiplier levels
Iteration || L7 2 Uy | Ly, Ty Uy, M A A AL
1 0 0.25 0.5 0 0.25 | 0.5 | —0.6436 | —0.7075 | —0.6436 | —0.7075
2 0.25 0.5 0.5 | 0.25 0.5 0.5 | —0.6436 | —0.7075 0 0
3 0 |0.1028 | 0.25 | 0.25 | 0.3972 | 0.5 | —1.7848 | —0.2219 | —0.1855 | —1.6323
4 0.25 | 0.3796 | 0.5 | 0.25 | 0.3704 | 0.5 | —0.6302 | —0.7207 | —0.6853 | —0.6687
Table 2: Primal information for Illustrative Example
Liquid phase I Liquid phase II
Region | L5, | g, | L&, | UG | Loy |Ugn | Loy | Ui
1 0.7587 | 0.9263 | 0.6189 | 0.8666 0 1 0 1
2 0 0.8628 | 0.7646 1 0.8628 1 0 0.7646

Table 3: z variable bounds for Iteration 1
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Liquid Phase I Liquid Phase II
Region || ¥y, 2P ¥y gy | WL | O | BI | BIE
1 0.9263 | 0.7587 | 0.6189 | 0.8666 | 0 1 1 0
2 0 0 1 1 1 1 0 0
Table 4: z variable levels for Iteration 1
Box bounds Solutions
Region Ly Uy Ly Uy, n} n; T
1 0.1028 | 0.25 | 0.3972 0.5 0.25 | 0.4775 | —0.0778
2 0 0.1028 | 0.3972 0.5 0.0315 | 0.4541 | —0.0803
3 0.1028 | 0.25 0.25 | 0.3972 || 0.1828 | 0.3712 | —0.0551
4 0 0.1028 | 0.25 | 0.3972 || 0.0226 | 0.25 | —0.1086
Table 5: Relaxed dual information for Iteration 3
Box bounds Solutions
Region | L7 Uy Ly Uy, ni ny pw*
1 0.3796 0.5 0.3704 0.5 0.4416 | 0.4333 | -0.1095
2 0.25 | 0.3796 | 0.3704 0.5 0.2563 | 0.3989 | -0.0861
3 0.3796 0.5 0.25 | 0.3704 || 0.4173 | 0.25 | -0.0925
4 0.25 | 0.1028 | 0.25 | 0.3704 || 0.3144 | 0.3105 | -0.0456

Table 6: Relaxed dual information for Iteration 4
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Iteration ME P(n)
1 -0.42615 | -0.01758
2 -0.23027 | 0.00507
3 -0.22209 | -0.01754
4 -0.10955 | -0.01752
47 -0.02501 | -0.01980
73 -0.02169 | -0.01988
86 -0.02082 | -0.02002
90 -0.02048 | -0.02018
92 -0.02039 | -0.02019
107 -0.02020 | -0.02020

Table 7: Progress of bounds for Illustrative Example

Solution for Toluene (1) — Water (2)

T =298K, P=1.0 atm

Feed Liquid I Liquid II G*
Components (mols) (mols) (mols) (—)
C-Hg (1) 0.50 0.00005 0.49995 -0.00127
H,0 (2) 0.50 0.49872 0.00128 (Global minimum)

Table 8: Global Solution for Example 1
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Toluene (1) — Water (2) — Aniline (3): 7;; and o;; dimensionless

Components 25 || 2 | J Tij Tii o5 = 0
C7Hg — H,0 112 4.93035 7.77063 0.2485

C7Hg —CgH7N || 1|3 1.59806 0.03509 0.3000

HyO —CgH7N || 2|3 4.18462 1.27932 0.3412

Table 9: Binary data for Example 2

Toluene (1) — Water (2) — Aniline (3)
Solution: G* = —0.3574 with T = 298K, P = 1 atm.

Liquid I Liquid II Feed

Component (mols) (mols) (mols)
CzHg (1) 0.29949 0.00001 0.2995
H,O (2) 0.06551 0.13429 0.1998
CeH7N (3) 0.49873 0.00067 0.4994

| Totalmols |  0.86485 0.13515 0.9987

Table 10: Global solution for Example 2

n-Propanol (1) — n-Butanol (2) — Water (3): 7;; and o,; dimensionless

Components ¢j 1|7 Tij Tii o = ajj
C3HzO - C4H100 | 1|2 —0.61259 0.71640 0.30

C3HzO - H,0 113 —0.07149 2.7425 0.30

C4H,00 - H,0 213 0.90047 3.51307 0.48

Table 11: Binary data for Example 3

47




Solutions for n-Propanol (1) — n-Butanol (2) — Water (3) at 7', P = 1 atm

Feed Liquid I | Liquid II G, cpu | N; | Nr
Component (mols) (mols) (mols) (—) (sec) | (—) | (%)
C3HgO (1) 0.040 0.0049 0.0351 -1.24112 6.27 | 313 67
C4H100 (2) 0.160 0.0095 0.1505
H,O (3) 0.800 0.4153 0.3847
C3HzO (1) 0.148 0.1280 0.0200 -1.1919716 | 29.95 | 1490 | 27
C4H100 (2) 0.052 0.0456 0.0064
H,0 (3) 0.800 0.6549 0.1451

Table 12: Global solutions for Example 3
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Ethanol (1) — Ethyl Acetate (2) — Water (3)
gsj in cal/mol (7;; = ¢i;/RT and o;; dimensionless

Components j 1|7 9ii — G5; 9ji — Gis 055 = Qjj
CyHgO — C4HgOy | 1 | 2 —480.377 1148.848 0.10

CyHgO — H,0 113 —53.732 1166.524 0.30

C4HgO, — Hy0 213 611.817 1869.890 0.30

Table 13: Binary data for Example 4
Solutions for Ethanol (1) — Ethyl Acetate (2) — Water (3)
T = 343.15K, P = 1 atm
Feed Liquid I Liquid II GA}*] cpu Ny Np

Component (mols) (mols) (mols) (—) (sec) | (—) | (%)
CyHgO (1) 0.040 0.0165 0.0235 -1.07738 | 3.02 153 72
CsH100 (2) 0.300 0.0382 0.2618
H,0 (3) 0.660 0.5319 0.1281

Table 14: Global solution for Example 4

n-Butanol (1) - Water (2) — n-Butyl Acetate (3): 7;; and o;; dimensionless

Components 5 1|7 Tij Tii o5 = 0

C4H,00 - H,O 112 0.90047 3.51307 0.48
C4H100 - CgHq150 || 1|3 1.15161 —0.30827 0.30

Hy,0 - CgH120 213 5.04652 1.75717 0.34
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n-Butanol (1) — Water (2) — n-Butyl-Acetate (3)
Solution: G*, = —0.91601 at T, P = 1 atm
Liquid I Liquid II Feed
Component (mols) (mols) (mols)
C4H100 (1) 0.13603 0.00397 0.140
H,0 (2) 0.16661 0.47339 0.640
CsH1202 (3) 0.21891 0.00109 0.220
| Totalmols | 052155 0.47845 1.000
Table 16: Global solution for Example 5
Benzene (1) — Acetonitrile (2) - Water (3)
Components ij 7 9i5 — 945 95 — Gii Qij = Oy
300K 333K 300K 333K 300K 333K
Ce¢Heg — CH3N 2| 693.61 | 998.2 92.47 65.74 | 0.67094 | 0.88577
Ce¢Hg — HyO 3| 3892.44 | 3883.2 | 3952.2 | 3849.57 | 0.23906 | 0.24698
CH3N - H,0 3| 415.38 | 363.57 | 1016.28 | 1262.4 | 0.20202 | 0.3565

Table 17: Binary data for Example 6
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Solutions for Benzene (1) — Acetonitrile (2) — Water (3)
T = 333K, P =0.769 atm

Feed Liquid I Liquid II Vapor G,
Components (mols) (mols) (mols) (mols) (—)
CsHe (1) 0.34483 0.23946 0.00073 0.10464 -1.40852
CyH3N (2) 0.31034 0.22701 0.02169 0.06163 (Global LLV)
HyO (3) 0.34843 0.03365 0.26235 0.05242
CesHes (1) 0.34483 0.00096 (—) 0.34387 -1.39785
C,HsN (2) | 0.31034 0.02416 (—) 0.28618 | (Local LV)
HyO (3) 0.34843 0.15562 (—) 0.19281
Table 18: Solutions for Example 6: Conditions (A)
Solution for Benzene (1) — Acetonitrile (2) — Water (3)
T =333K, P=1.0 atm
Feed Liquid I Liquid II G7,
Components (mols) (mols) (mols) (—)
CeHes (1) 0.34483 0.34401 0.00082 -1.40782
C,HsN (2) | 0.31034 0.28651 0.02383 | (Global LL)
H,O (3) 0.34843 0.03785 0.31058

Table 19: Global solution for Example 6: Conditions (B)
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Solutions for Benzene (1) — Acetonitrile (2) — Water (3)
T = 300K, P =0.10 atm

Feed Liquid I Liquid II Vapor G*,
Components (mols) (mols) (mols) (mols) (—)
CeHs (1) 0.34483 0.000003 (—) 0.344827 -3.41234
C,H;N (2) | 0.31034 0.000490 (—) 0.309850 | (Global LV)
H,O0 (3) 0.34843 0.015858 (—) 0.332572
CsHs (1) 0.34483 0.34431 0.00052 (—) 12.86435
C,HsN (2) | 0.31034 0.28569 0.02465 (—) (Local LL)
H,0 (3) 0.34843 0.03310 0.31533 (—)

Table 20: Solutions for Example 6: Conditions (C)

Ethanol (1) — Acetic Acid (2) — Ethyl Acetate (3) — Water (4)

Tij EtOH HAc EtAc H,0
EtOH 0.0 1.3941 0.6731 —0.2019
HAc —1.0182 0.0 0.0070 —0.4735
EtAc 0.1652 0.5817 0.0 1.7002

H,0 2.1715 1.6363 1.9257 0.0

Table 21: Binary data for Example 7

Data for the elemental mass constraints
Qe; | EtOH | HAc | EtAc | H,0 be
C 2 2 4 0 2.0

6 4 8 2 5.0
o 1 2 2 1 1.5

Table 22: Elemental abundance parameters for Example 7
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Ethanol (1) — Acetic Acid (2) — Ethyl Acetate (3) — Water (4)

Solution: G* = —90.7795 with T = 355K, P = 1 atm.

Liquid Vapor AGY!
Component | (mol fraction) (mol fraction) (cal/mol)
EtOH (1) 0.03980 0.07830 —37.0918
HAc (2) 0.20181 0.06984 —87.3031
EtAc (3) 0.08163 0.44147 —72.8406
H,O (4) 0.67676 0.41038 —54.0234
| Totalmols |  0.04964 0.95036 | (—)

Table 23: Global solution for Example 7 at T=355K

Ethanol (1) — Acetic Acid (2) — Ethyl Acetate (3) — Water (4)

Solution: G* = —89.8003 with 7T = 358K, P = 1 atm.

Liquid Vapor AG!?

Component | (mol fraction) (mol fraction) (cal/mol)

EtOH (1) (—) 0.075313 —36.9228

HAc (2) (—) 0.075313 —87.1561

EtAc (3) (—) 0.424687 —72.5494

H,0 (4) (—) 0.424687 —53.9903
‘ Total mols ‘ 0.0 ‘ 1.0 ‘ (—)

Table 24: Global solution for Example 7 at T = 358K
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Figure 1: Conceptual outline of the GOP algorithm

54



12
B, | B,
| | By
X S, ={+1+1}
 Initial Point ,
S, =1+1-1}
B4 B3 n,
‘ :
n, ny

By
S, ={-1-1}

Figure 2: Example for two connected variables

55



ROOT NODE

K=1: o e }p:R

Kzeagew

Figure 3: Tree structure for solution storage

56



G(n)

o
S 3
© o

0

T

W
!
n(2)

=
1\

AN
Tl
}gk\\-“é

§§§i§
I
L

'

W
\
\

=

Figure 4: Gibbs energy surface for llustrative Example
57



n,

n=0.25-

n,

0.3972

Figure 5: Box region and solution locations

* Ny
W= -04261
] 05 ‘
H,=-02303 B2 | By | By
. ; :
: i .
np- 025<0 | ny- 0.25>0 Hg=-02221
Ny 025>0 | n,- 025>0 |
n- 025<0 | ny- 0.25>0
n,- 025<0 | n,- 0.25<0
By | Bs n, n,
ﬁl_= 0.25 ) 05
Iteration 1 Iteration 2
n,
*
Hs=-0.0803
! *\f,=-0.0778 | !
o | !
B, ! B ! 1 | e |i,=-0.1095
,,,,,, S { =-0.0861 B, ! By
By By ® x| 0.3704 Ho L S S
4 3 8 u6§=-o.0551 B4 Bs
i | 1= -0.0456 | o i
- - et O e e
! ! N
W= -0.1086 5= -0.0925
| M | M
I I
0.1028 0.3796
Iteration 3 Iteration 4

58

in the y variable space



|

,,..

)
,

)
)
)
I

\

)
)
)

\
...

)
)
)

)
)
0
)

0
)
)
)

0
0
)
)

0
}
)
)
)

)
)
)
)

)
)
)
)
)

0
y
)
)

)
|

)
|

)

|
|
.

)

J
)
)
)
)

.
)
)
J
)

“

J
)
‘,

~\

J
)

)
)

|

i

)

il

i

G(n)

..w
i
i\

\

Figure 6: Gibbs surface and Lagrangian for Region 1 of Iteration 1

59



A
i
A
.%g
t\o\\‘

,,“”.w“..
,”,."..

%
y

%
N

)
....

n(2)

n(1)

Figure 7: Gibbs surface and Lagrangian for Region 2 of Iteration 1
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Figure 9: Gibbs surfaces and Lagrangians for Iteration 3
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