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Abstract

The Wilson equation for the excess Gibbs energy has found wide use in successfully rep-
resenting the behavior of polar and nonpolar multicomponent mixtures with only binary
parameters, but was incapable of predicting more than one liquid phase. The UNIFAC
and ASOG group contribution methods do not have this limitation and can predict the
presence of multiple liquid phases. The most important area of application of all these
equations is in the prediction of phase equilibrium. The calculation of phase equilibrium
involves two important problems: (i) the minimization of the Gibbs free energy, and
(ii) the tangent plane stability criterion. Problem (ii), which can be implemented as the
minimization of the tangent plane distance function, has found wide application in aiding
the search for the global minimum of the Gibbs free energy. However, a drawback of all
previous approaches is that they could not provide theoretical guarantees that the true
equilibrium solution will be obtained. The goal of this work is to find the equilibrium
solution corresponding to the global minimum of the Gibbs free energy. A proof that
the Wilson equation leads to a convex formulation for the minimization of the Gibbs
energy is provided so that a local optimization technique will always converge to a global
minimum. In addition, new expressions are derived for the molar Gibbs free energy
function when the UNIFAC, ASOG and modified Wilson equations are employed. These
expressions are then transformed so that application of a branch and bound based global
optimization algorithm originally due to Falk and Soland (1969) is possible. This allows
global solutions to be obtained for both the minimization of the Gibbs free energy and
the minimization of the tangent plane distance function. The algorithm is implemented
in C as part of the package GLOPEQ, GLobal Optimization for the Phase EQuilibrium
problem (McDonald and Floudas, 1994d). Results for several examples are presented.
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1 Introduction

Reliable prediction of phase and chemical equilibrium is extremely important in many separation
applications such as distillation towers and liquid-liquid extraction. The equation of Wilson (1964)
provided a much improved representation of vapor-liquid phase equilibrium for polar and nonpolar
multicomponent systems with binary parameters. However, the main drawback of the Wilson equa-
tion is its inability to predict liquid—liquid immiscibility. The modified Wilson equation of Tsuboka
and Katayama (1975) was one attempt to overcome this limitation by incorporating positive contri-
butions to the excess Gibbs free energy function through the addition of a volume term. The NRTL
equation of Renon and Prausnitz (1968) and the UNIQUAC equation of Abrams and Prausnitz (1975)
were important advances in the representation of vapor-liquid and liquid-liquid equilibrium. The
next important fundamental advance was the development of group contribution methods, namely
the UNIFAC equation of Fredenslund et al. (1975) and the ASOG equation of Kojima and Tochigi
(1979). In the absence of reliable experimental data, they represent a theoretically based approach
by which to obtain estimates of activity coefficients, and hence the prediction of phase equilibrium.

This work is concerned with seeking global solutions to the phase and chemical equilibrium prob-
lem. One approach is to minimize the Gibbs free energy function, assuming conditions of constant
temperature and pressure. A global minimum will then correspond to the true equilibrium solution.
Previous optimization approaches typically have employed Newton type methods so that the solu-
tions found are highly dependent on starting point, and local solutions can at best be guaranteed.
Seider et al. (1980) provide a review of these methods. Paules and Floudas (1989) utilized the
Global Optimal Search algorithm of Floudas et al. (1989). The tangent plane distance criterion
first proposed by Gibbs (1873) has also become an important problem in the search for equilibrium
solutions corresponding to a global minimum of the Gibbs free energy. Given an equilibrium solu-
tion that satisfies the condition of equipotentials, it is possible to determine if the Gibbs free energy
associated with this solution can be reduced to provide an improved solution. This is described fully
by Baker et al. (1982) and Michelsen (1982a, 1982b). A number of algorithms use the tangent plane
criterion in conjunction with the minimization of the Gibbs free energy. Gautam and Seider (1979)
used a combined phase—splitting algorithm to improve the reliability of their approach. Michelsen
(1982a, 1982b) proposed a two—stage approach where the compositions obtained from the stability
test were used to initiate the search for a solution with a lower Gibbs free energy. Swank and Mullins
(1986) provide a comparative review of these and other methods designed for use in the modeling of
distillation trays with more than one liquid phase. Sun and Seider (1994) use homotopy continuation
methods to obtain equilibrium solutions.

However, none of the above approaches can provide any theoretical guarantee that the global
minimum of the Gibbs free energy will be obtained in all cases. In more recent work, McDonald and
Floudas (1994a) showed how the Global OPtimization method (GOP) of Floudas and Visweswaran
(1990, 1993) could be used to guarantee obtaining e-global solutions when the liquid phase can
be modeled by the NRTL equation. A global optimization branch and bound algorithm of Falk



and Soland (1969) can be used to make the same guarantees for the UNIQUAC equation and this
is described in McDonald and Floudas (1994b). For the phase stability problem, McDonald and
Floudas (1994c) showed how global solutions could be obtained for the minimization of the tangent
plane distance function for challenging examples where the NRTL and UNIQUAC equations are
used. This allowed the verification of equilibrium solutions corresponding to global minima in the
Gibbs free energy function in reasonable time.

In this work, it will be shown that the Wilson equation leads to a convex formulation for the
minimization of the Gibbs free energy. This has the important implication that a local optimization
technique will always find a global minimum. Therefore, a global optimization algorithm is not
necessary. The difficulties associated with using the UNIFAC, modified Wilson or ASOG activity
coefficient correlations is that because of their complexity, multiple solutions may be obtained for the
phase equilibrium problem. One of these solutions will then correspond to a global minimum. Con-
ventional methods can provide no guarantee of finding the equilibrium solution, leading to erroneous
prediction of phase equilibrium. New properties and simplifications of the molar Gibbs free energy
functions are presented for these equations. By manipulating these expressions, they can be altered
into a form suitable for the application of a global optimization algorithm for both the minimization
of the Gibbs free energy and the tangent plane distance function. This represents the first approach
that can offer such theoretical guarantees.

In the following section, the two optimization problems of direct relevance to this work are
described. Then the analysis for the UNIFAC, Wilson, modified Wilson and ASOG equations is
presented. This shows how the molar Gibbs free energy functions are simplified and transformed
so that the branch and bound algorithm of Falk and Soland (1969) can be applied. The proposed
approach provides guarantees that the equilibrium solution corresponding to a global minimum in
the Gibbs free energy function can be obtained for this class of problems. The molar Gibbs free
energy functions are altered so that they are expressed as the difference of two convex functions,
where the concave portion is separable. This permits valid underestimators to be generated very

simply. Examples for all models analyzed are then presented.

2 Problem Description

It is required to obtain the equilibrium solution corresponding to a global minimum in the Gibbs
free energy for multicomponent and multiphase mixtures whose liquid phases can be modeled using
the UNIFAC, Wilson, modified Wilson or ASOG equations, and where the vapor phase is assumed
to behave ideally. The Gibbs function is the proper thermodynamic measure of equilibrium under

conditions of constant temperature and pressure. There are two problems of interest:
(i) Minimization of the Gibbs free energy.

(ii) Minimization of the tangent plane distance function (stability problem)



In terms of the notation to be used, the set of components is described by the set C = {i}, the set
of elements is represented by the set £ = {e}, and the set of phases is given by P = {k} where
P = Pr, U Py, with P, and Py denoting the liquid phases and vapor phase respectively. The vapor
phase is treated ideally in this work, although it is possible to extend the approach to treat cases
where the B—truncated virial equation of state can adequately represent vapor nonidealities. The
variables of the problem are n = {nf}, representing the number of mols of component 7 in phase &,
and the corresponding mol fractions = {z¥} defined as z¥ = n}/ DI 'n,;“ In addition, the phase
fractions are defined as ¢* = 3, n*/nT where n” is the total number of mols of substance in the
system.

The phase equilibrium problem then corresponds to globally minimizing the Gibbs free energy
function while satisfying the material balance constraints. The global solution to this problem

supplies the true phase and component distribution at equilibrium:

min G(n)

s.t. Z nf=nlvi (G)
keP
0<n< nT

where G(n) is the total Gibbs free energy of the system expressed in terms of mol numbers and n}
represents the total number of mols of component 7 in the system. If reaction occurs in the system,
then mass must be conserved over the elements so that the following linear constraint set replaces

the component mass balance constraints of (G):

ZZaemf:beVeEE (1)
1€C keP
where ae; is the number of gram—atoms of element e in component %, and b, the total number of
gram—atoms of element e in the system.
An equilibrium solution to (G) must satisfy the necessary first order equilibrium condition of
equipotentials, namely:
= kR (2)

The global minimum will obviously satisfy Eqn. (2). However, for the class of problems considered
here, there can be more than one solution satisfying Eqn. (2) corresponding to local extrema which
represent false predictions of phase equilibrium. This is the main difficulty associated with the phase
equilibrium problem and it is an area where the tangent plane criterion finds important application.
Solutions generated by solving (G) can be tested for stability with the tangent plane criterion, as
first suggested by Gibbs (1873). Denote the mol fractions in one of the phases of the equilibrium
solution to (G) as z = {z;}. Then for this equilibrium solution to correspond to a global minimum

of (G), the tangent hyperplanes to the Gibbs surface constructed at z must lie below this surface



everywhere. These hyperplanes are defined by the chemical potentials, u?(z) constructed at z.
The tangent plane distance function, F (), represents the difference between the Gibbs surface and
the tangent hyperplane. If this distance is negative anywhere over the feasible domain, then the
postulated solution represented by z is not the global solution of (G). Baker et al. (1982) supply a

detailed derivation and proof of the tangent plane criterion. The problem is given below:

)

min F(x) = g(z) — Z zp1d(2)

1eC
s.t. Zmi =1 (S)
2eC
0 S I, S 1V

7

This problem has the same essential structure as (G) and therefore previous approaches cannot
guarantee that a global solution will be obtained in all cases for (S) either. Recently, McDonald
and Floudas (1994c) showed how global solutions could be obtained for (S) when the liquid phases
are modeled using the NRTL or UNIQUAC equations. In other words, if a local approach finds a
nonnegative tangent plane distance function, then this does not imply that the equilibrium solution
associated with z corresponds to a global minimum of the Gibbs free energy.

Both problems (G) and (S) can be expressed in terms of the molar Gibbs free energy function
which is obtained by adding the excess Gibbs free energy, g¥(z), to the ideal Gibbs energy, g(z),

as follows:
9(z) = g'(z) + ¢%(z) (3)
I f
g'(z) _ JAG; ,
where RT - g;:cl{ RT +Inz, (4)

The Gibbs free energy per phase can be obtained by using mol numbers over mol fractions. A

summation of the Gibbs energies per phase then yields G(n).

3 Analysis for the UNIFAC Equation

In this section, the expressions for the molar Gibbs free energy function of the UNIFAC equation
will be supplied. New properties are described that allow this function to be transformed into the

difference of two convex functions where the convex function that is subtracted is separable.

3.1 Definition of the molar Gibbs energy

The UNIFAC group contribution model for predicting activity coefficients was proposed by Fre-
denslund et al. (1975), and is based on the UNIQUAC equation of Abrams and Prausnitz (1975).

The expressions of the activity coefficients are given in Appendix A. A full description of the model



can be found in Fredenslund et al. (1977). In what follows, the indices ¢ and 7 run over the set of
components C, and the indices [, m and n run over the set of groups G. The excess Gibbs free energy
function is composed of two contributions. The first is a combinatorial part, representing differences
in the size and shape of the molecules, and the second is a residual part, which is due to the energies
of interaction between them. The excess molar Gibbs free energy for the combinatorial part, gg(a:),

is given by Abrams and Prausnitz (1975) as:

E
gc(z) _ .{_ . [_i.] L E }
o —;mz nz; + |1 - Ja|Indi+ Sglnb; (5)

where z, ¢;, ¢; and 6; are defined in Appendix A. The residual molar excess Gibbs free energy

function, labeled gE(z), is given as:

E .
91}(;3) _ Zmiln”ﬁR - Zmizvli {lnI‘l —lnI‘gz)} )

el €C  leG

where vy, I'; and I‘gi) are defined in Appendix A. The definition of the molar Gibbs free energy

is given by the addition of the ideal portion and the excess combinatorial and residual portions as

follows:
g(z) _ g'(z)  gc(2)  gr(@)
RT RT RT RT
AG! z z ()
= i 2 1——q;|In¢; + —¢;1n 8, | T —T 7
;m{RT—I—[ 2f.l]rlqurQqu +l§;vz{z l]} (7)

where it is seen that the logarithmic mol fraction term of the ideal Gibbs free energy cancels with
the leading term of the excess combinatorial Gibbs free energy. This function is highly nonlinear and

nonconvex. The next section will demonstrate the underlying structure associated with Eqn. (7).

3.2 Transformation of the molar Gibbs free energy

The following property will help considerably in the analysis of the convexity characteristics of
Eqn. (7).

Property 3.1 Let p; be a positive parameter defined ¥ i. If the real-valued functions, f}(x) and
f3(z), are defined as follows:

Ly

. ZjP;
3

(i) f(z)= [Zmzpz] In [Zmzpz] (9)

then f}(x) and f*(zx) are both convex functions.

(i) fi(z)=giln



Proof: See McDonald and Floudas (1994c).
The individual terms of Eqn. (7) are now examined.
(i) Surface volume term (¢;)

Firstly, the following parameter is introduced:

z 1_1
o = 22 (10)

Ts

This parameter will always be positive. Then define A as:

A= Zz rr;In ¢, = Zz 7z In ————— Ti%s (11)
2€C 21€C %:CTJ:BJ
3

after substituting Eqn. (A.4). Note that A is seen to be convex by substituting r; for p; in Part (i)
of Property 3.1. Because 2 and r; are positive, A is the summation of convex and linear terms, that
is, it is a convex function.

The terms involving ¢, of Eqn. (7) can then be written as:

e

1eC

1- ng] Ing; = -A (12)

which is a concave, but nonseparable, function. In order that —A be expressed as the difference

of two convex functions, where the concave portion will be separable, the following definitions are

introduced:
2% = min {2f} (13)
= 24 Y[ - 2] (14)
1€C
o = 3 [ef - 2] VieC (15)
i

The following property gives the required result:

Property 3.2 If Ay and A_ are defined as follows:

24 E 'rzmzlng szz—}—g 20z ln ———— —E zl'rilnr; -z,
E TiZj

1€C 1€C 1€C jec 1€C

Ay

A- = Y izl + 20] - zilng;
1€C
then Ay and A_ are convex functions. Further, —A can be expressed as the difference of these two

convez functions:

—A= AL - A (16)



Proof: See McDonald and Floudas (1994b).

McDonald and Floudas (1994b) describe these transformation steps in detail. The key point is that
the concave term —.A has now been expressed as the difference of two convex functions, where the

concave portion (—.A_) is separable.

(ii) Surface area terms (6;)

Define B as:

z
B = EZqia:ilnei (17)
2eC

Note that B is seen to be convex by substituting g; for p; in Part (i) of Property 3.1. Because z and
g; are positive, B is the summation of convex and linear terms, that is, it is a convex function. No

further transformations are required.
(iii) Residual activity coefficient terms (I')

Before proceeding with the analysis, the following new parameters are introduced so as to simplify

the notation of the development:

B = Y QmUmi¥mi (18)
meG

v(i) = Z’l}lirgi) (19)
leG

In order to examine the structure of Eqn. (6), the definition of the residual activity coefficient will be
expanded out in terms of the mol fractions. The first step is to substitute Eqn. (A.8) into Eqn. (A.10)

to redefine the group area fractions in terms of the mol fractions as:

% z; Qv % z;Quu;
G)l _ 1€ — € (20)
2T ) QmUmg Y. Tig;
1€C  meG eC

noting that the denominators of X; cancel. The following property provides an important simplifi-
cation of Eqn. (6):

Property 3.3

Om¥im
Zmizvlin 1_2267‘11’ =0 (21)
€G

1€C  leG meG
n

Proof: See Appendix B.



The effect of Property 3.3 is that a large number of nonconvex bilinear fractional terms are removed
from the definition of gZ(z). The remaining logarithmic term of Eqn. (A.9) that involves @; can

then be expanded as:

T Y QmUmi¥Ymi D Ty

G) ¥ ;= 1€C meG — 1€C 29
2 Ot = e o Yo (22)
1€C  meG 1eC

The simplification of Property 3.3 combined with Eqn. (22) means that the residual excess Gibbs

free energy can now be formulated as:

E .
91}22(;’3) = Z z; Z vy {ln I''—1In sz)}

1€C leG
= — Z z; Z v Q1 ln Z Om¥mi — Z z; Z vy In I‘gz)
1€C leG meG 1€C leG
_EC 015
= .
= =Y Y v@lni=— -z
i€C  1eG 2 Tl
jecl
= Z z; Z v Q1 1n Z q;T; — E z; Z v Q1 1n Z T ;015 — Z z;v®)
1€C leG JeC 1€C leG JeC 1€C
95 () ; (3)
BT Z z;q; In Z T;q; — Z z; Z v Q1 ln Z T — Z ;v (23)
1€C 1€C 1€C leG JeC 1€C

Eqn. (23) is a new expression for the residual excess Gibbs free energy defined in terms of the
mol fractions. It represents a much simpler expression than that customarily employed as Eqn. (6)
although it is still a nonconvex function. To progress further, the following definitions of the terms

in Eqn. (23) are made:

C = Z z;q; In Z z;q; (24)

1eC 2eC
D= — Z z; Z vQ1 1n Z T (25)
1€C leG JeC

Note that C is convex by simply substituting g¢; for p; in Part (ii) of Property 3.1. The term D is
nonconvex but can be transformed into the difference of two convex functions as is shown in the

following property.

Property 3.4 Define Dy and D_ as follows:

Dy = Z T; Z'Ulinln EmTZJ%

€C  leG jec

Z gz;Inz;

1eC

D_



then Dy and D_ are convex functions. Further, D can be equivalently expressed as the difference of

these two functions:

D=D, - D_ (26)

Proof: Simply add the term D_ to D to give D,. By subtracting the same term, the equality of
Eqn. (26) is seen to be valid. The result follows from the fact that D, is convex by Part (i) of
Property 3.1, because all the parameters involved in the definition of D are positive. D_ is also

convex and separable because g; is never negative.

Thus, the original expression for the molar Gibbs free energy has been recast as the difference of two

convex functions:

9(z) Y @AGI+{A; +B+C+ Dy} —{A - D}
1€C

= CU(:B) - Z‘Pi -z;Ilnz;

1eC

where

Inr; + qzlnqZ I )} + 24 ZTimian"'imi
ieC i€C

cY(z) = pE {

1€C

+ z; iz In —— 4+ = ¢:z;ln ————
Z E T3T; Z E 45T 4

1€C jec 1.€C
+ Z I;q; In Z T;9; + Z Z; Z vl'LQl In ————
i€C ieC ieC leG E JUlJ
jec
ad g = nla 4 b

Note that CU(z) is convex since it is a summation of convex and linear functions. The parameters
(; are never negative so that the excess Gibbs free energy is now expressed as the difference of two

convex functions.

4 The Wilson and modified Wilson Equations

4.1 Analysis for the Wilson Equation

Wilson (1964) proposed the following expression for the excess Gibbs free energy function:

E
=Y ziln ) ziAy (27)
ieC jeC
where A;; is a nonsymmetric binary interaction parameter between 7 and j with A;; = 1. This

represented an important advance in the representation of vapor-liquid equilibrium for a very large

10



number of systems. To obtain the expression for the molar Gibbs free energy, Eqn. (27) is substituted
into Eqn. (3) to yield:

9(z) _ , f
T _;mz AG; +1n (28)

T

>zl
jec

Note that the logarithmic terms of Eqn. (28) are convex by Property 3.1. The Gibbs function is
therefore the summation of linear and convex terms, that is, it is convex. This is confirmation of the
well known fact that the Wilson equation cannot predict liquid-liquid immiscibility. One property
of convex functions is that the linearization of the function at any point will always underestimate
the function. In the context of the tangent plane criterion (Baker et al., 1982), it is obvious then
that any tangent drawn to the Gibbs surface will always underestimate it, which implies as a direct
consequence that the Wilson equation cannot predict liquid phase splitting. Thus, there is no need

for global optimization techniques for the Wilson equation. Any local minimum of the Gibbs free

energy function will be a global one.

4.2 Analysis for the Modified Wilson Equation

There have been a number of attempts to extend the Wilson equation so that it can predict the
appearance of more than one liquid phase. Wilson (1964) suggested multiplying the excess Gibbs
function by a number greater than one. Extension to multicomponent mixtures is unsatisfactory
however. The modified Wilson equation, proposed by Tsuboka and Katayama (1975), was one
attempt to overcome this limitation of the Wilson equation, and they derived the following expression

for the excess Gibbs free energy using local volume compositions;

gE(m)——Zm-anm-A--—l—Zm-anm- . 29
RT 1 gLz p iPji (29)

ieC jec e jec
where \ \
o ) . g
Ay = pi;exp ——2 7 with py; = —
7 ©] t] .
RT v;

where );; is a binary interaction parameter for an ¢ — j pair, and v; is the molar liquid volume
of component 7. There are two interaction parameters per binary. Substitution of Eqn. (29) into

Eqn. (3) gives the following expression for the molar Gibbs free energy function:

g(iI}) _ f Z;
ieC jec jeC
The nonconvex term of Eqn. (30) involves the volume ratios and this term is defined as:
A= "z;In ) zpj (31)
ieC jeC
The following property allows the nonconvex function A to be transformed into the difference of two

convex functions:

11



Property 4.1 If Ay and A_ are defined as follows:

As = Z [ijpji] In [Z“’jf’ji] + szjpﬁlnm

ieC | jeC jeC 1€C j#1 ec
A_ = Zmilnmi . iji
ieC JFi

then Ay and A_ are convex functions. Further, A can be expressed as the difference of these two

convezx functions:

A=A, — A_ (32)
Proof: See Appendix C.

The excess Gibbs free energy function can then be expressed as the difference of two convex functions

as follows: (@)
g\r T Z

where

CT(;B) = Z T; AG{ +1n #ﬂ&ﬂ + Z [ Z a:jpji] In [Z a:jpji]

1eC jeo 1€C | j€C jeC
-
J
+ DD wipsln =
ico i > Tipn
J leC

with ¢ = > pi
i#i
The expression for CT(z) when expressed in terms of the mol numbers will contain an extra term
arising from the denominator of the equation z; = n;/ 3, n;. For the corresponding expression for
the total Gibbs free energy expressed in mol numbers, simply replace z; by n; in the definition of
CT; then the term >-jn;ln i n; must be subtracted from CT. This is the only model for which this

extra term is required.

5 Analysis for the ASOG Equation

The origin and underlying basis of the Analytical Solution Of Groups (ASOG) method is described in
the monograph of Kojima and Tochigi (1979), which concentrates on vapor-liquid phase equilibrium.
Tochigi et al. (1980) discuss the application of the ASOG method to liquid-liquid equilibria. It is

now described in detail.

12



5.1 Model Definition

The activity coefficient expression is assumed to be made up of two contributions, one associated
with the size of the molecules, the other with the various groups that make up the molecules, so
that:

Iny; =Iny +Inyf (34)

The contributions of both these terms is now described.

(i) Size Contribution:

A Flory-Huggins type term describes the size contribution of molecule 7 as follows:

V4 v;
ln'yf: miln”yf = In—=+1- = 35

iez; > vz 2. Vjt; (3)
Jjec JjeC

where v; is the number of atoms other than hydrogen in the molecule %, and z; is the mol fraction of

component % in the liquid solution. The excess molar Gibbs free energy function is then defined as:

TR | L N P (36)
cC E Z;jV; Z ZjV;
' jEC jeC

The following property simplifies Eqn. (36):

Property 5.1

3 S N (37)

E TV
1€l jec 773
Proof: Simply expand out the sum as follows:
2 T
pOETD SRR i LR
iec  ieC Z Li¥i  iec 2 Tivi o
jec
This completes the proof. O

At this point, it is convenient to add the ideal Gibbs energy function to the excess molar Gibbs

energy associated with the size contribution to yield:

I E
g (z)  g5()
+ = z;lnz; + ;ln ———
RT RT g;, g(:: E T;v;
T;V;
= z;ln = = A (38)

13



This has been done because A as defined by Eqn. (38) is convex due to Property 3.1.

(i1)) Group Contribution:

The notation and definitions for the residual activity coefficient are very similar to that used for the
UNIFAC equation. One major difference is in the definition of v;; which for the ASOG equation
represents the number of atoms other than hydrogen in group [ in molecule ¢. The group residual

activity coefficient is defined by the Wilson (1964) equation with the mol fractions replaced by group

fractions: x
mml
lnI‘l: —ln;Xmalm—}—l— Z m (39)
€G meG neG

where aj,, is the group interaction parameter between groups ! and m; and X; is defined by Eqn. (A.8)
as for the UNIFAC equation. The temperature dependence of the group interaction parameters is
described by:

Toim

In am = My + T (40)

where T is the temperature of the system in K. The parameters my,, and ny, are tabulated for a
number of groups in the monograph of Kojima and Tochigi (1979).
The excess molar Gibbs free energy of the group contribution is given by Eqn. (6). The following

parameters are defined so as to simplify the foregoing analysis:

o = g (41)

leG

D = Y UmiGim (42)

meG

Eqn. (6) can be simplified for the ASOG equation using the following property.

Property 5.2

X'm. ™m

2€C leG meG neG

Proof: Note the similarity of Eqn. (43) to Eqn. (21) for the UNIFAC equation. The proof is obtained
by setting @; = 1V [ and swapping the indices on the binary interaction parameters in Appendix B.
O

The terms of Eqn. (43) are thus removed from the Gibbs free energy expression. The remaining

logarithmic term of Eqn. (39) can then be written in terms of the parameters of Eqns. (41) and (42)

as.
20T Y. UmiGim I HYE
cC  meG ieC
E Xma'lm = = = (44)
DT D Uni >z
meG e mec e
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This allows the excess Gibbs free energy associated with the group terms to be written as:

E .
g%(ji:) = Z z; Z v {ln T'y)—1In sz)} (45)

2eC leG
3 0y
= — Zmlzvhln €0 Zmzzvhln I‘( ) (46)
i€C  1eG %;J ziv) i€C  1eG
= Z :t:z"vz'-s In Z :Ilz"l);-s — Z Ty Z VI In Z :Ej’f)lj — Z :czv(z) (47)
2eC 2eC 2eC leG JeC 2eC

Note that this is very similar to Eqn. (23). The following definitions are made to better see the
structure of Eqn. (47):

B = Z z;0° In Z zvP (48)

1eC 2eC
C = - Z z; Z v In Z ;015 (49)
ieC  leG jec

The term B is convex by Property 3.1. The term C as defined by Eqn. (49) is nonconvex. To
transform it into the difference of two convex functions, where the cocave portion is separable, the

following property is used.

Property 5.3 Define Cy and C_ as follows:

Cy = Zmzzvhlnz ey

€eC  leG
C_ = vamiln:ci
1€C

then C4+ and C_ are convex functions. Further, C can be equivalently expressed as the difference of
these two functions:

C=Cy—C_ (50)

Proof: Set @; = 1 in the proof of Property 3.3. ad

5.2 Expression for the molar Gibbs free energy

This means that the excess molar Gibbs free energy for the group interaction portion can be written

as:
M:A—I-B—}—C -C (51)
RT o
= — Z ;- T;Inz; (52)
1€C
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where

CHz) = PR {AG{ +Iny; — v(i)}

1€C
+ Zmzln —}—va anmv —}—Zmzthln
ieC ; Vi iec ieC ieC  1eG E z 01
and ¢; = v

6 Branch and Bound Algorithm

In the preceding sections, the expressions for the molar Gibbs free energy were transformed so that the
final formulations were cast in the form of the difference of two convex functions, where the concave
portion was separable. This allows application of a branch and bound algorithm first developed by
Falk and Soland (1969). McDonald and Floudas (1994b) and McDonald and Floudas (1994c) have
described this algorithm in detail when the liquid phase is modeled using the UNIQUAC equation for
nonideal liquid phases. It works by partitioning the initial feasible region into subdomains in which
the convex envelope of the Gibbs free energy or the tangent plane distance function is constructed so
as to provide valid underestimators of the global solution. A sequence of nondecreasing lower bounds
is then generated until e-global convergence is obtained. The variations of the original algorithm and
its generalization are discussed in the book of Horst and Tuy (1990). In the discussion to follow, the
algorithm is described in terms of a general set of variables @ = {z;}, so that the problem of interest

is of the following form:

mln C(z Z ;s In z;

st. 0 <z §uz Vi
Az—-b=0

(DC)

7/
where the last equation is the linear constraint set representing the mass or elemental constraints for
the minimization of the Gibbs free energy, or the mol fraction constraints for the minimization of the
tangent plane distance function, and u; is the appropriate upper bound depending on the problem

being solved.

6.1 Convex Underestimation

The convex envelope of a separable concave function is simply the line that joins the endpoints of
the function in the current partition, with Lfi and UE representing these lower and upper bounds
on the x variables. How these domains are determined will be discussed in the next section. The

convex envelope of the separable concave portion of (DC) is labeled ¥; and is defined as:

LBl B —uBimu?

= —£BIncB + o ] |ei- LB viecC (53)
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This is simply the equation of the line that joins the endpoints of the function in the given box
partition. The convex portion of the objective function of (DC) need not be underestimated (the
convex envelope of a convex function is the function itself), so the problem that provides a valid

underestimation of the global solution in this partition, labeled (UES), is given as follows:

min C‘|‘Z§0i v,

UES
sit. LB <a<uf vi (UES)

Az—b=0

Vs

(UES) is a convex problem and a local optimization solver can be used to find its global minimum.

6.2 Partitioning scheme

Given a partition, it has been shown how to obtain a lower bound on the global solution within it.
To construct the partitions so that convergence to the global solution will be achieved is relatively
simple. At the start of every iteration, assume there is a current point, ¥, about which partitioning
will occur, and a parent region with associated regional bounds on the variables as {Eﬁ.,l/{ﬁ}. This
parent region is divided into two or more box regions, with associated box bounds denoted {Eﬁ,UE .
The parent region is therefore partitioned by a set of Np orthogonal hyperplanes passing through
the current point, so that 2P box regions are created at every iteration. Np must be at least one.
To decide about which facets of the n-rectangle the partitioning will occur, the distance, labeled §;,

between the function and its convex envelope at the current point is used:
6; = ‘—a:f{ InzX — \Ilz(a:ZK)‘

The larger this distance the greater the need for further refinement along this edge. As long as
the partitioning occurs along the variable with the largest §; then the branch and bound algorithm
will converge to an e-global solution of (DC), as proved by Horst and Tuy (1990). Of course, the
partitioning can occur along additional facets of the current n-rectangle. The trade—off is then tighter
underestimators for higher Np, but a fewer number of subproblems need be solved for lower Np.
The user can choose the value of Np which can vary from one iteration to the next.

The parameter s?l is used to determine the box bounds for a given problem (UES). where Bj is
one possible combination of the box bounds from the set of all possible combinations C B. For the
Np variables with the largest values of §;, s?l = 11, depending on the current box region. If s?l =0

then no partitioning will take place around le . The partitioning scheme is then as follows:

If s?l:—l—l then (z; -zK)>0 = Eﬁ = K | uB :Uff

2

If sfl:—l then (z;—zf)<0 = 2B =B ,ul = ¥ VieC

z; 2

If s7'= 0 then B = (B ub = uf
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The cardinality of the set CB is then seen to equal 2V7. A brief description of the algorithm at some

iteration K is now provided:
1. Use z¥ to evaluate C(z¥) — 3, ¢;zX InzX to yield an upper bound on the global solution.
2. Solve an underestimating problem of type (UES) in each of the 27 box regions.
3. Store the solutions of (UES) if they lie below the current best upper bound.

4. The region associated with the infimum of all available lower bounds supplies 2%+ and the

parent region for the next iteration.

Note that at the first iteration, the initial parent region comnsists of the entire feasible region, defined
by the simple rectangular bounds on the = variables. For a detailed discussion of the algorithm, see
McDonald and Floudas (1994b).

7 Computational Results

In this section, several examples are considered. They are implemented in C as part of the package
GLOPEQ (GLobal Optimization for the Phase and chemical EQuilibrium problem). All times repre-
sent total time to convergence using a Hewlett Packard HP9000/730 machine. GLOPEQ is capable
of (i) minimizing the Gibbs free energy function — solving problem (G), (ii) minimizing the tangent
plane distance function — solving problem (S), and (iii) generating the global minimum of the Gibbs
free energy function using a combination of both these algorithms in order to maximize efficiency.
Feature (iii) of GLOPEQ is described in McDonald and Floudas (1994d).

7.1 Examples for the UNIFAC
Example 1: n-Butyl-Acetate — Water

This binary example has been studied by several authors. Heidemann and Mandhane (1973) calcu-
lated binary parameters using the NRTL equation, as did Block and Hegner (1976) in their study of
three—phase distillation towers. There are two potential liquid phases at a temperature of 298K and
1 atm pressure. This example is interesting as it contains a small number of components but yields
multiple local solutions satisfying Eqn. (2), as discussed by McDonald and Floudas (1994a). The
structural and binary interaction parameters for the UNIFAC equation were obtained from Mag-
nussen et al. (1981). There are four groups and these are shown in Table 1 along with the notational
parameters of Eqns. (18)—(19).

The molar Gibbs free energy function as defined by Eqn. (3) can be used to calculate the actual
k

Gibbs free energy of a single liquid phase by replacing the mol fractions z; by the mol numbers n} in
a phase k. The problem of the minimization of the Gibbs free energy is then seen to be exactly the
same in structure as the minimization of the tangent plane distance function. The difference is in

the increased number of variables in the problem due to the incorporation of two phases. The mass
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balance constraints of (G) replace the summation of mol fraction constraints of (S). When GLOPEQ
is used to minimize the Gibbs free energy for two postulated liquid phases, the global LL solution is

obtained in 461 iterations and a total time of 5.3 cpu sec. This solution is supplied in Table 2.

Example 2: Water — n-Propanol — n-Hexane

This example was given in Appendix 2 of Fredenslund et al. (1977) as an example of liquid-liquid
phase equilibrium calculations. The temperature was 311 K and two feed conditions are considered
here as (i) n] = {0.5,0.3,0.25}, and (ii) n = {0.5,0.5,0.25}. A two phase solution is obtained
by Fredenslund et al. (1977) for both these feed charges. In this work, there is an equilibrium
solution with three liquid phases that has a lower value of the Gibbs free energy for both feed
conditions. Solutions satisfying the first order conditions of equal chemical potentials are given
in Table 3 and Table 4 for Conditions (i) and Conditions (ii) respectively, and there are three
solutions reported for each set of conditions, two local LL and one global LLL, and they are given
in order of decreasing Gibbs free energy. The local equilibrium solutions reported by Fredenslund
et al. (1977) are marked with a dagger. The values of the corresponding value of the Gibbs free
energy are given as G* in these tables. Also supplied are the values of the chemical potentials
associated with these solutions which were used in this example to test the minimization of the
tangent plane distance function. For Conditions (i), and using wd(z) associated with the local
LL solution reported by Fredenslund et al. (1977), the global solution of F* = —0.00728 with mol
fractions * = {0.93118,0.06872,0.00010}, indicating instability and was obtained in 10990 iterations
and 139 cpu sec. For the other local LL solution of Table 3, the global minimum was 7* = —0.06108
with mol fractions * = {0.00223,0.05710,0.94066} and was obtained in 1220 iterations and 13.4
cpu sec. Similarly, using the local LL solution for Conditions (ii) with the lowest value of the Gibbs
free energy, the global minimum of the tangent plane distance function is 7* = —0.08406 with z* =
{0.00199,0.05192,0.94609}, obtained in 902 iterations and 10.5 cpu sec. Using the chemical potentials
associated with the local LL solution reported by Fredenslund et al. (1977), the global minimum
of the tangent plane distance function is 7* = —0.00293 with =* = {0.92633,0.07355,0.00012},
obtained in 13083 iterations and 185 cpu sec. This example is particularly tough as there is a
strong local minimum with 7* = 0.0. If a local optimization technique converges to this solution,
it will mistakenly report that the local LL solution is stable when this is not the case. MINQOS5.4
converged only 35 times in every 100 to the negative value of 7*. This is an unacceptable degree of
unreliability and emphasizes the need for a global optimization approach. To verify that the global
minimum of the tangent plane distance function associated with the LLL solution was nonnegative,
the algorithm took 16012 iterations to converge to the global solution of F* = 0.0 in 253 cpu sec
for both Conditions (i) and Conditions (ii). Note that only the phase fractions differ at the global
minimum of the Gibbs free energy function. The mol fractions are identical so that the same values
for p(z) are obtained.

The UNIFAC equation is therefore capable of predicting very complex behavior and this example
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demonstrates the difficulty of obtaining the equilibrium solution corresponding to a global minimum
in the Gibbs free energy. It should be noted that it is experimentally known that there are two lig-
uid phases. Magnussen et al. (1981) observed that the UNIFAC equation could predict extraneous
liquid phases for systems containing propanol. For this reason, they obtained interaction parameters
for both 1-propanol and 2-propanol. If the LL interaction parameters of Magnussen et al. (1981)
are used, then a solution with two liquid phases is obtained. When the equilibrium solution corre-
sponding to a global minimum of the Gibbs free energy is used to calculate the chemical potentials,
minimization of the tangent plane distance function took 13390 iterations and 207 cpu sec for Con-
ditions (i) and 13945 iterations and 224 cpu sec for Conditions (ii). These solutions are reported in

Table 5 for the two feed charges considered.

Example 3: Ethanol — Benzene — Water

This is a commonly studied example in the literature due to the importance of the dehydration
of ethanol using benzene as an entrainer. Kovach and Seider (1983) used the UNIQUAC equation
to model this azeotropic distillation tower. The authors reported multiple steady states for this
column. This system was also studied by Cairns and Furzer (1990) who emphasize the importance
of modeling the third liquid phase in the column. In fact, they found that the two phase solution
associated with the column actually led to the prediction of infeasible temperatures at the top of
the tower. This emphasizes the need for reliable prediction of phase equilibrium. The UNIFAC
interaction parameters were obtained from Gmehling et al. (1982). The saturated pressures were
calculated using the data of Reid et al. (1977). For a feed charge of n] = {0.20,0.35,0.45}, the global
minimum Gibbs free energy is attained at a value of —1.235895 with two liquid phases and a single
vapor phase. This solution is given in Table 6 along with the associated chemical potentials and
local LL and LV solutions. If the tangent plane distance function is minimized using the chemical
potentials associated with the local LL solution, convergence to the global minimum F* = 0.0
with takes 419 iterations and 5.2 sec. This solution is unstable with respect to a vapor phase, and is
therefore not the globally equilibrium solution. For the LV solution, a global minimum of the tangent
plane distance function is attained at 7* = —0.02445 with =* = {0.00480,0.99138,0.00381}, taking
252 iterations and 3.2 cpu sec. To converge to F* = 0.0 with * = {0.00565, 0.99054,0.00381} using
the chemical potentials corresponding to a global minimum of the Gibbs free energy function took

410 iterations and 5.0 cpu sec.

7.2 Examples for the Wilson equation
Example 4: Esterification Reaction

This example is for an esterification reaction involving an equimolar mixture of ethanol and acetic

acid reacting reversibly to form ethyl-acetate and water:

EtOH + HAc = FEtAc + H,0
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It has been used to test several proposed methods in the literature, including those of Sanderson and
Chien (1973), George et al. (1976), Castillo and Grossmann (1981), Lantagne et al. (1988), Castier et
al. (1989), Xiao et al. (1989), and Paules and Floudas (1989). The liquid phase has been modeled by
the above authors using the Wilson activity coefficient model. Xiao et al. (1989) used the UNIQUAC
model which does not account for the polymerization of acetic acid in the vapor phase. McDonald
and Floudas (1994a) obtained NRTL parameters using infinite dilution coeficients calculated from
the Wilson equation. Data for the liquid activity binary parameters used in the Wilson equation
are taken from Suzuki et al. (1969). These are supplied in Table 7. These parameters do take
into account the formation of dimers and trimers of acetic acid in the vapor phase. Stoichiometric
information is supplied in Table 8.

The vapor Gibbs free energies of formation were calculated for the vapor phase by integrating
the van’t Hoff equation from 298 K to the temperature of the system:

OAGS /T AHY
oT T2

where AH?T is also a function of temperature and is calculated from Kirchoff’s equation. The

(54)

required heat capacity data is obtained from Reid et al. (1977). These Gibbs free energies of
formation for the vapor phase are given in Tables 9 and 10 for the two temperature conditions
studied here and the saturated pressures are calculated using the Antoine coefficients supplied by
Xiao et al. (1989).

There are 4 components and there can only be one liquid phase as the Wilson equation canont
predict the formation of additional liquid phases. At 355 K the global solution contains a liquid and
a vapor phase and this solution is given in Table 9. At 358 K, the global solution is a single vapor
phase as shown in Table 10. Any solution found must be checked to ensure that the equilibrium
constant, K., as expressed for the vapor phase matches the experimental one as reported by Stull

et al. (1969) at the temperature of the system:

K _ HErac KEy0 (55)

rTZIM —
Heiom HaAc

For example, as pointed out by George et al. (1976), Sanderson and Chien (1973) report a liquid-
vapor solution which violates the chemical reaction constraint by an order of magnitude. Because
the vapor phase is assumed to behave ideally, the chemical potentials of Eqn. (55) can be replaced
by mol numbers so that for T = 355 K, K,z = 33.12, which agrees well with the value of 31.75 as
reported by Stull ef al. (1969). At T' = 358 K K, = 31.80 which also agrees excellently with the
value of 31.75 reported by Stull et al. (1969).

Example 5: The modified Wilson equation

A binary liquid-liquid example for methanol and cyclohexane is considered. Tsuboka and Katayama

(1975) supply the parameters for this example and at a temperature of 298 K they are:

A3 =0.30384, Ay = 0.09517, p12 = 0.374
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The global minimum of the Gibbs free energy function contains two liquid phases and is supplied in

Table 11. It was obtained in 141 iterations and 1.9 cpu sec.

7.3 An Example for the ASOG equation
Example 6: Toluene — n-Heptane — Acetonitrile

This example was tested by Tochigi et al. (1980). The binary interaction parameters are supplied
by Kojima and Tochigi (1979). The introduced parameters of the ASOG are given in Table 12. The
global solution has two liquid phases and it is given in Table 13. If two liquid phases are postulated
then the global solution to the minimization of the Gibbs free energy is obtained in 1407 iterations

and 43.5 cpu sec.

8 Conclusions

New properties of the molar Gibbs free energy function for nonideal liquid phases that are modeled
using the UNIFAC, modified Wilson and ASOG equations have been presented. Simplifications and
transformations were also provided for these equations which allow the Gibbs function to be expressed
as the difference of two convex functions where the concave portion is separable. These have provided
new expressions that allow the application of a global optimization algorithm for the minimization of
the Gibbs free energy function and the tangent plane distance function. This algorithm guarantees
convergence to an e-global solution to both of these problems. The Wilson equation is shown to lead
to a convex formulation of the Gibbs free energy. The package GLOPEQ (McDonald and Floudas,

1994d) was used to obtain global solutions for a variety of examples.
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Appendix A

The activity coefficient, 7;, is assumed to be composed of combinatorial and residual contributions:
Invy; =Iny? + Iny8 (A1)

The combinatorial activity coefficient is given as follows:

c ¢ |z b; bi
In :lnm—i—l— §qilna—|—li— m—ijezgzjmj (A.2)

where z is a lattice coordination number usually taken as 10, 8; and ¢; are the molecular surface

area and volume fractions respectively, and given by:

&%z
6, = —* A.3
> 45T (A.3)
jeC
T;Z;
> TiT;

jeC

¢ = (A.4)

where ¢; and r; are the surface area and volume constants associated with each component ¢ and are

defined as:
=Y wiQ and ri=) uviR (A.5)

leG leG
where @); and R; are the group surface area and volume constants respectively and vy; represents the
number of groups of type [ in molecule <. I; is another pure component parameter that is defined in

the following way:

I, = 9 (ri —q)— (r; — 1) (A.6)

The residual part of the activity coefficient is given by the following equation:

Inyf = Z Vg5 [ln I'i'—1In I‘gi) ] (A.7)
leG

where I'; is the residual activity coefficient of group [ in molecule ¢ and I‘gi) is this quantity in the
reference state of pure %, which ensures that In-y; — 0 as z; — 1. These residual activity coefficients
are supplied as functions of the effective group fractions, Xj, defined as:
Z;J Tl
Xi= —— VI!1eG A8
> Y oitm (48)

1€eCmeG

The residual activity coefficient is given by the following equation:

m¥im
InT;=@Q;q1~-1n Z OmVmi — G)G)ifll ViedG (Ag)
meG meG n%:G n=nm
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where ®; is the group surface area fraction defined as:

QX

O = ———— VieG A10
> QnXn (8.10)

meG

The binary group interaction parameter ¥y, is given as:
Alm

Yim = - Al
im = exp (- 22 (A.11)

where aj,, measures the energy of interaction between the groups [ and m. It is not symmetric so
that aim # ami and it is assumed to be independent of temperature. Eqn. (A.9) is also valid for I‘gz)
by setting X; = 1 with X, = 0.
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Appendix B

It is required to prove the following relation:

'f'n-W m
Z z; Z'Ulin = Z z; Z'Ulin . Z 6)6)7&] (B.1)
ieC  leG ieC  leG meG n%:G n*nm

Firstly, the terms involving the area fraction on the RHS of Eqn. (B.1) are expanded:

E mivami‘I’lm
I (B.2)
E G)TL‘I’nm E L E anni\I’nm
€G

meG mEG Tt nec

Then the following series of steps are used:

(i) Extract the denominator of Eqn. (B.1) to give Eqn. (B.3). This has the important effect of

changing the order of indexing from ¥y, to ¥,,; in the numerator.

(ii) This change in the order of indexing implies that the two terms involving ¥,,; cancel, as the

indices m and n run independently of each other, so that Eqn. (B.4) is obtained.

E mivami‘Ijlm
1€C
Zmizvli@l ‘ Z Zem'i E anni\I’nm

€C  leG meG cC  nea
1
I€G L3, 7t L Wi Tl iec meG jec
1
= Z E T E Qnvni ¥ ' Zmz Z Umi@m¥mi - ijQl'vlj
I€G L3, 7t L Wi Tl e meG jEC
= Z Z zjQuv; = ZmiZleu (B.4)
leG jeC ieC  leG
Eqn. (B.4) is therefore equal to the LHS of Eqn. (B.1), and the proof is complete. O
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Appendix C

The term A of Eqn. (31) is defined as:

A= Zmianmjpﬁ (Cl)

ieC jeC

A term is added and subtracted from Eqn. (C.1) as follows:

Zmianmjpﬁ (C.2)

ieC jec
= Yz ) zipi+ YD zipilnd mp— Y Y zipiln Y mpy
ieC jec i€C j£ leC i€C j£4 leC
= [ > mjpji] In [ > mjpﬁ} -3 Y zipjiln ) mipu (C.3)
ieC | jeC jeC 1€C j#i leC

The last term of Eqn. (C.3) is then transformed by adding and subtracting the following term:

=33 zipjiln Y zipu

i€C j#i lec
= =" Nzl Y mpn+ Y. Y zipiilnz; - Y Y zipjilnz,
i€C j#i lec 1€C j#14 1€C j#14
= P5ZIln ————— z;pplnz;
;; 53 L3 lgjml’oh g{;; iPj 3
= , PiT; In ——— z;Ilnz; - , P (C.4)

Substitution of Eqn. (C.4) into Eqn. (C.3) then yields the final result:

Emianmjpﬁ (C.5)

ieC jec
Z [ijpﬂ] In [EmeJ’] + ZZpﬂmJ In ———— E . 2::1:1111:1:Z Zpﬂ (C.6)
ieC | jeC jeC i€C j£i = '0“ ieC j#i

The first term of Eqn. (C.6) is convex by Part (ii) of Property 3.1. The second term is also convex
using Part (i) of Property 3.1 as pj; is always positive. The summation of these convex functions
is itself a convex function and corresponds to the definition of Ay in Eqn. (32). The third and last
term of Eqn. (C.6) corresponds to the definition of A_ supplied by Eqn, (32) and is clearly a concave

and separable function. This completes the proof. O
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UNIFAC data for n-Butyl-Acetate (1) — Water (2)

% v Ot (Vi)
Component CH, CH, CH;COO H,0
CsH1205 (1) | 4.196 | —0.00108 | 7.52678 (3) | 7.52678 (1) | 1.82245 (1) | 0.50477 (0)
H,0 (2) 1.4 0 0.44374 (0) | 0.44374 (0) | 1.43001 (0) | 1.40000 (1)

Table 1: Data for Example 1

Solution for n-Butyl-Acetate (1) — Water (2)
G* = —0.03407 , T = 298K, P = 1.0 atm
Feed Liquid I Liquid IT
Components (mols) z! z}!
CeH120, (1) 0.50 091717 0.00036
H,0 (2) 0.50 0.08283 0.99964
¢* 0.544979 0.455021

Table 2: Global Solution for Example 1
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Solution for Water (1) — n-Propanol (2) — n-Hexane (3)
nl ={0.5,0.3,0.25}, T = 311K, P = 1.0 atm

Solution Liquid T | Liquid IT | Liquid IIT
Components (G*) p2(2) :c{ :sz mZ-HI
H,0 (1) Local LL || —0.03388 | 0.92236 | 0.10717 (—)
C3H,OH (2)| (—0.19155) || —0.59875 | 0.07749 | 0.45793 (—)
CeH14 (3) 0.02007 | 0.00015 | 0.43490 (—)
o* 0.45268 | 0.54732 (—)
H,0 (1) Local LL § || —0.02527 | 0.62647 | 0.00277 (—)
C3H,OH (2) | (—0.20626) | —0.60830 | 0.35571 | 0.06520 (—)
CeH14 (3) —0.04454 | 0.01781 | 0.93203 (—)
¢* 0.75905 | 0.24095 (—)
H,0 (1) | Global LLL || —0.03385 | 0.45295 | 0.00282 | 0.92272
C3H,0H (2)| (—0.20792) || —0.59902 | 0.48501 | 0.06676 | 0.07715
CeH14 (3) —0.04518 | 0.06204 | 0.93042 | 0.00013
oF 0.51700 | 0.22139 | 0.26161

i Solution obtained by Fredenslund et al. (1977)

Table 3: Solutions for Example 2 at Conditions (i)
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Solution for Water (1) — n-Propanol (2) — n-Hexane (3)
n! ={0.5,0.5,0.25}, T = 311K, P = 1.0 atm

Solution Liquid T | Liquid IT | Liquid IIT
Components (G*) p2(2) :c{ :sz mZ-HI
H,0 (1) Local LL | —0.03235 | 0.19565 | 0.93223 (—)
C3H,OH (2) | (—0.31402) | —0.61847 | 0.52760 | 0.06767 (—)
CeH14 (3) 0.04557 | 0.27675 | 0.00010 (—)
o* 0.72257 | 0.27743 (—)
H,0 (1) Local LL § || —0.03040 | 0.48006 | 0.00280 (—)
C3H,OH (2)| (—0.32765) || —0.60242 | 0.46729 | 0.06618 (—)
CeH14 (3) —0.04494 | 0.05265 | 0.93102 (—)
¢* 0.83224 | 0.16776 (—)
H,0 (1) | Global LLL || —0.03385 | 0.45295 | 0.00282 | 0.92272
C3H,0H (2)| (—0.32773) || —0.59902 | 0.48501 | 0.06676 | 0.07715
CeH14 (3) —0.04518 | 0.06204 | 0.93042 | 0.00013
oF 0.79569 | 0.16190 | 0.04241

i Solution obtained by Fredenslund et al. (1977)

Table 4: Solutions for Example 2 at Conditions (ii)
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Solution for Water (1) — n-Propanol (2) — n-Hexane (3)

T =311K, P=1.0 atm

Solution Feed | Liquid I | Liquid II
Components (G*) p2(2) ny z! zl!
H,O0 (1) Global LL || —0.04933 | 0.50 | 0.22781 0.85570
C3H,OH (2) | (—0.39268) || —1.11367 | 0.30 | 0.38067 | 0.14062
CeH1s (3) —0.13565 | 0.25 | 0.39152 0.00367
PF 0.60442 | 0.39558
H,O (1) Global LL | —0.05055 | 0.50 | 0.37951 0.82571
C3H,OH (2) | (—0.61464) || —1.10665 | 0.50 | 0.41115 0.16830
CesH1s (3) —0.14415 | 0.25 | 0.20934 | 0.00599
¢* 0.95409 | 0.04591

Table 5: Example 2 using parameters of Magnussen et al. (1981)
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Solution for Ethanol (1) — Benzene (2) - Water (3)
nt = {0.20,0.35,0.45}, T = 338K, P = 1.0 atm
Solution Liquid I | Liquid II | Vapor
Components (G*) p(2) a:{ mz-H Y

CyHs0H (1) | Local LV | —1.71936 | 0.22661 (—) 0.17918
CeHs (2) | (—1.23329) || —0.47832 | 0.00506 (—) 0.61982
H,0 (3) —1.60446 | 0.76833 (—) 0.20100
oF 0.43890 (—) 0.56110

C,HsOH (1) | Local LL | -1.52310 | 0.00612 | 0.30357 (—)

CeHs (2) | (—1.23481) || —0.50381 | 0.99016 | 0.00802 (—)

H,0 (3) —1.67523 | 0.00372 | 0.68841 (—)

o* 0.34820 | 0.65180 (—)
C,Hs0H (1) | Global LLV || —1.59634 | 0.27208 | 0.00565 | 0.20264
CeHs (2) | (—1.23589) || —0.50349 | 0.00663 | 0.99054 | 0.60442
H,0 (3) —1.64535 | 0.72129 | 0.00381 | 0.19294
o* 0.56228 | 0.21160 | 0.22612

Table 6: Solutions for Example 3

Ethanol (1) — Acetic Acid (2) — Ethyl Acetate (3) — Water (4)

A;j EtOH HAc EtAc H,0
EtOH 1.0 2.28180 0.76670 0.15347
HAc 0.27558 1.0 0.61790 0.26838
FEtAc 0.55046 0.89277 1.0 0.12353
H,0 0.92038 1.22642 0.14907 1.0

Table 7: Binary data for Example 4




Data for the elemental mass constraints

0e; | EtOH | HAc | EtAc | H50 be
C 2 2 4 0 2.0

6 4 8 2 5.0
0 1 2 2 1 1.5

Table 8: Elemental abundance parameters for Example 4

Ethanol (1) — Acetic Acid (2) — Ethyl Acetate (3) — Water (4)

Solution: G* = —90.7816 with 7 = 355K, P = 1 atm.

Liquid Vapor AG!’

Component | (mol fraction) (mol fraction) (cal/mol)

EtOH (1) 0.04898 0.08289 —37.0918

HAc (2) 0.20419 0.06570 —87.3031

EtAc (3) 0.11719 0.45408 —72.8406

H,O (4) 0.62965 0.39733 —54.0234
| Totalmols |  0.09970 0.90030 | (—)

Table 9: Global solution for Example 4 at T=355K
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Ethanol (1) — Acetic Acid (2) — Ethyl Acetate (3) — Water (4)

Solution: G* = —89.8003 with 7 = 358K, P = 1 atm.

Liquid Vapor AGE/J

Component | (mol fraction) (mol fraction) (cal/mol)

EtOH (1) (—) 0.075313 —36.9228

HAc (2) (—) 0.075313 —87.1561

EtAc (3) (—) 0.424687 —72.5494

H,0 (4) (—) 0.424687 —53.9903
‘ Total mols ‘ 0.0 ‘ 1.0 ‘ (—)

Table 10: Global solution for Example 4 at T' = 358K

Solution for Methanol (1) — Cyclohexane (2)
G* = -0.07439 , T = 298K, P = 1.0 atm
Feed Liquid I Liquid II
Components (mols) ! z}!
CH;0H (1) 0.50 0.12496 0.82760
CeH12 (2) 0.50 0.87504 0.17240
ok 0.46624 0.53376
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Table 11: Global Solution for Example 5




ASOG data for Toluene (1) — n-Heptane (2) — Acetonitrile (3)

Component | g¢; v(®)

CH, H,0
C:Hy (1) 7 | 0.08258 | 5.53812 (1) | 7.17921 (6) | 2.71045 (0)
C:His (2) | 7 0 7.00000 (7) | 8.25446 (0) | 1.14072 (0)
CHsN (3) | 3 |0.60779 | 3.14273 (1) | 3.31677 (0) | 2.16296 (2)

Table 12: Data for Example 6

Solution for Toluene (1) — n-Heptane (2) — Acetonitrile (3)
nT = {0.10,0.45,0.45}, T = 313K, P = 1.0 atm
Solution Liquid I Liquid II
Components (G*) z! zi!
CrHs (1) | Global LL | 0.12298 0.06115
CrHys (2) | (~0.36916) | 0.64165 0.12603
CeHys (3) 0.23537 0.81282
oF 0.62831 0.37169

Table 13: Solutions for Example 6
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