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Abstract

Calculation of phase and chemical equilibrium represents a crucial phase in the modeling
of many separation processes. For conditions of constant temperature and pressure, a
necessary and sufficient condition for the true equilibrium solution is that (i) the total
Gibbs free energy of the system be at its global minimum, or (ii) the minimum of the
tangent plane distance function be nonnegative for all phase models used to represent the
system. In this work, the goal is to obtain equilibrium solutions corresponding to a global
minimum of the Gibbs free energy as efficiently as possible, for cases where the liquid
phase or phases can be modeled by the NRTL, UNIQUAC, UNIFAC, Wilson, modified
Wilson and ASOG equations. Vapor phases whose behavior can be described asideal can
also be handled. In achieving this goal, there are two distinct problems of relevance: (i)
the minimization of the Gibbs free energy, denoted (G), and (ii) the minimization of the
tangent plane distance function, or the tangent plane stability criterion, denoted (S). For
all these activity coefficient models, GLOPEQ (Global OPtimization for the Phase and
chemical EQuilibrium problem) can guarantee global solutions for problems (G) and (S),
but a combined algorithm employs them in tandem, using (G) to generate candidate
equilibrium solutions which can then be verified for thermodynamic stability by solving
(S). Two key features of the combined algorithm are that (i) as much information as is
possible is obtained from local searches, and (ii) it is preferable to verify a globally stable

equilibrium solution using the tangent plane criterion, as this problem contains fewer
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variables than the minimization of the Gibbs free energy. Results for several examples
are presented, and all but one of them are for the case of phase equilibrium, due to the

paucity of examples for reacting systems that employ excess Gibbs free energy models.

1 Introduction

The phase and chemical equilibrium problem is extremely important for predicting fluid phase
behavior for a very large number of separation process applications. The ubiquity of the flash
calculation in chemical engineering is just one example of its prevalence. Process simulators
need to be able to reliably and efficiently predict the correct number of phases that will exist
at equilibrium, and the distribution of components within those phases. However, the local
optimization approaches which are in common use can provide no theoretical guarantee that
the equilibrium solution will be obtained in all cases.

For chemical engineering applications, the thermodynamic function of foremost interest
is the Gibbs free energy as it can be used to describe equilibrium at conditions of constant
temperature and pressure. A global minimum of the Gibbs free energy corresponds to the true
equilibrium solution. Optimization methods have become increasingly popular since White et
al. (1958) minimized the Gibbs free energy for ideal systems, using what came to be known
as the RAND algorithm. Gautam and Seider (1979a) used Wolfe’s Quadratic Programming
algorithm and compared its performance to some other methods for the minimization of
the Gibbs free energy. For these calculations, phases could be eliminated as the algorithm
progressed but this could lead to incorrect prediction of the number of phases present at
equilibrium. Castillo and Grossmann (1981) used a variable metric projection method to
minimize the Gibbs free energy function. They proposed solving one problem for the maximum
possible number of phases that could be present in the system, thus avoiding elimination
of phases from consideration at an early stage of the algorithm. A review of these and
other contributions can be found in Seider et al. (1980). In a series of papers, Ohanomah
and Thompson (1984a,b,c) provide an extensive evaluation of several algorithms, including
Newton—based methods, for the computation of multiphase equilibria. The study highlighted
the difficulties generated when a large number of excess phases is assumed. Soares et al. (1982)
used Newton—Raphson based methods for the calculation of the three—phase flash problem.
Lantagne et al. (1988) presented a mixed penalty function method for the computation of
complex equilibria. Paules and Floudas (1989) used the Global Optimal Search of Floudas
et al. (1989) in an attempt to avoid convergence to local extrema of the Gibbs function.
However, all these approaches could not eliminate the possibility of converging to local or

constrained extrema of the Gibbs free energy function.



One of the main difficulties associated with minimizing the Gibbs free energy is the a
priori determination of the number of phases to be considered. If too few phases are allowed,
then convergence to constrained minima can occur; if too many are assumed, then numerical
problems may arise (e.g. Jacobian singularities in Newton—based methods), or convergence to
trivial or local extrema may occur. In this context, thermodynamic stability is a very useful
criterion of determining if a given solution corresponds to a local or a global minimum of
the Gibbs free energy. Gautam and Seider (1979b) incorporated a phase—splitting algorithm
with the RAND method, and it was reported to show a much greater degree of reliability for
systems with at least one partially miscible pair than by direct minimization of the Gibbs
free energy. Walraven and van Rompay (1988) proposed an improvement in the algorithm
of Gautam and Seider (1979b) for short—cut phase equilibrium calculations. Baker et al.
(1982) formalized the concepts of thermodynamic stability for multicomponent mixtures, the
fundamental principles of which had first been stated by Gibbs (1873). They proved that a
necessary and sufficient for an equilibrium solution to correspond to a global minimum of the
Gibbs free energy is that the tangent plane corresponding to this solution lie on or below the
Gibbs free energy surface for all possible values of the composition. The metastable region
is recognized as unstable. The authors did not present an implementation of the criterion.
Michelsen (1982a,b) proposed a two stage approach whereby the stability problem was used
to generate initial points for use in the search for an equilibrium solution with a lower value
of the Gibbs free energy. These methods have been found to be more reliable and robust than
minimizing the Gibbs function directly, as discussed by Swank and Mullins (1986) in their
review of algorithms specifically for use in distillation columns where more than one liquid
phase might form. Wu and Bishnoi (1986) used a Newton-Raphson method and employed a
liquid—phase stability test for the three—phase flash calculation. Nagarajan et al. (1991a,b)
reformulate Michelsen’s analysis in terms of molar densities to improve its reliability, but with
longer times. Gupta et al. (1991) consider the flash calculation and the stability problem
simultaneously. Eubank et al. (1992) integrated the Gibbs energy surface in order to derive
a necessary and sufficient condition for an equilibrium solution to be a global one. Sun and
Seider (1995) use a homotopy continuation algorithm to solve the phase stability problem.
These results are then used in the search for a lower value of the Gibbs free energy function.
However, the problem with all these approaches is that even though the likelihood of failure
can be reduced, there is no theoretical guarantee that the equilibrium solution will be obtained
in all cases.

It is important to realize that all of the approaches discussed above lead to a local solution
at best. In this sense, they are “local” techniques. Recently, global optimization has been

proposed and applied for the computation of phase and chemical equilibrium. McDonald



and Floudas (1995¢) use the Global OPtimization algorithm of Floudas and Visweswaran
(1990,1993) to obtain global solutions for the minimization of the Gibbs free energy when
the liquid phase is modeled by the NRTL equation. When the nonideal liquid phases can be
modeled using the UNIQUAC equation, McDonald and Floudas (1994a) show how the Gibbs
function can be transformed into the difference of two convex functions, so that application of
a variant of the branch and bound algorithm of (Falk and Soland, 1969) can be used. For cases
where the UNIFAC, Wilson, modified Wilson and ASOG equations can be used to calculate
liquid phase activity coefficients, McDonald and Floudas (1995b) show how the molar Gibbs
free energy functions can be transformed so the same algorithm can also be applied to these
formulations. McDonald and Floudas (1995a) show how global solutions can be obtained
for the phase stability problem when the liquid phases can be modeled using the NRTL or
UNIQUAC equations.

In this work, an algorithm is presented which is theoretically guaranteed to converge to the
global equilibrium solution, no matter how poor the supplied starting point. This is the key
contribution of the proposed work. In addition, an extensive array of examples is presented
for some very challenging examples that have been taken from the literature. The algorithm
itself is conceptually similar to the work of Gautam and Seider (1979h), and the approach
of Michelsen (1982b) in that it uses the tangent plane criterion to establish if the Gibbs free
energy of a current equilibrium solution can be reduced. The main difference is that global
optimization is used to solve the subproblems (G) and (S) (as opposed to local techniques),
thus allowing guarantees to be made at each step of the algorithm. In the next section, the
two problems at the heart of the phase and chemical equilibrium problem are briefly discussed.
Then the combined algorithm GLOPEQ is described in detail. Several examples are presented
and sample input and output files of GLOPEQ are shown.

2 Background of GLOPEQ

In what follows, the set of components is given by the set C' = {i}, the set of elements is
denoted by the set £ = {e}, the set of phases is described by P = P, U Py = {k}, where
P, and Py correspond to the liquid phases and vapor phase respectively. The variables used
in the problem formulations are (i) the mol numbers n = {n¥}, representing the number of
mols of component 7 present in phase k, (ii) the liquid mol fractions # = {z¥} defined as
ak=nk/¥; n?, and (iii) the vapor mol fractions y = {y*}, defined similarly. In addition, nT
is the total number of mols in the system, with n*¥ = 37, n¥ representing the number of mols of
substance in phase k. The parameter ¢* = n*/n7T is defined as the fraction of mass in phase

k so that ¥, ¢* = 1.



There are essentially two approaches that can be taken in order to obtain or confirm that
an equilibrium solution corresponds to a global minimum of the Gibbs free energy. The two

optimization problems associated with these approaches are:
(i) The minimization of the Gibbs free energy, and
(ii) The tangent plane criterion (minimization of the tangent plane distance function).

A discussion of their relative advantages and disadvantages motivates an implementation of
an algorithm that utilizes the relative merits of each approach to generate global solutions to
the phase and chemical equilibrium problem as efficiently as possible. Equilibrium solutions
can be guaranteed for liquid phases that can be adequately modeled by any of the following

equations:

e NRTL (Renon and Prausnitz, 1968)

UNIQUAC (Abrams and Prausnitz, 1975)

UNIFAC (Fredenslund et al., 1977)
e Wilson (Wilson, 1964)
e Modified Wilson (Tsuboka and Katayama, 1975)

e ASOG (Kojima and Tochigi, 1979)

Vapor phases that behave ideally or can be modeled using the B—truncated pressure explicit
virial equation are easily incorporated. At present, GLOPEQ is not capable of handling
phases whose fugacities are obtained using equations of state, because these quantities cannot
be obtained explicitly as functions of composition. The two individual problems of relevance

are now discussed.

2.1 Minimization of the Gibbs free energy

At constant temperature and pressure, the condition of equilibrium is that the Gibbs free

energy function attain its global minimum:

min G(n)
si. An—b=0 (G)
0<n<nT




where G/(n) is the total Gibbs free energy of a system containing C' components and P phases,
and the equality constraints A m — b = 0 correspond to the mass balances. These can take

either of the following two forms depending on whether reaction occurs in the system:

(i) Phase and chemical equilibrium (reacting system):

ZZaeinf:be V eeckE (1)
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where ag; represents the number of gram-atoms of element e in component 2 and b, the total

number of gram—atoms of element e in the system.

(ii) Phase equilibrium (no reaction):

keP
where n} represents the total number of mols of component 7 in the system.

The mol numbers at the global minimum of the Gibbs free energy function supply the true
distribution of components and phases at equilibrium. The total number of variables Ny of

Formulation (G) and the number of independent variables Ngy are then:
Ny =|C|-|P| and Negy =|C|-|P|—r

where r is the rank of the material balance matrix A. For the phase equilibrium problem,
r = |C] and r variables can always be obtained from the remaining Ney — r variables. Note
that Ngy is the most important indicator of difficulty for global optimization algorithms.

One of the main difficulties in solving (G) is selection of the number of phases P. The
phase rule supplies an obvious upper bound on the maximum number of phases that can be
present at equilibrium. However, for systems of several components, this rule is of limited use
as it can lead to a large number of potential phases that need be considered in the system,
This characteristic is usually associated with numerical difficulties. One approach is to elim-
inate phases (Gautam and Seider, 1979a), but then there is the possibility of converging to
a constrained minimum. On the other hand, assuming excess phases can lead to numerical
difficulties (Ohanomah and Thompson, 1984a). Paules and Floudas (1989) introduced binary
variables representing the existence or absence of a phase to circumvent this problem. How-
ever, none of these approaches can provide guarantees that the global solution to (G) will be
obtained.

McDonald and Floudas (1995¢) show how the GOP algorithm of Floudas and Visweswaran
(1990,1993) Visweswaran and Floudas (1990,1993) can be used to obtain global minima when



the liquid phase is modeled by the NRTL equation. For the case of the UNIQUAC equation,
McDonald and Floudas (1994a) show how a branch and bound algorithm of Falk and Soland
(1969) can be used to determine the global minimum of the Gibbs free energy. This same
algorithm can be used for the UNIFAC, ASOG and modified Wilson equations as shown by
McDonald and Floudas (1995b). Solving (G) using global optimization for these activity

coefficient correlations led to the following observations:

e To theoretically guarantee a global minimum for (G), the formulation can contain a large
number of variables, making a global optimization algorithm computationally expensive,

particularly for larger systems.

e When using global optimization to solve (G), the global solution is often generated at
an early stage in the procedure of the algorithm. This implies that in order to converge
to the global solution may require many additional iterations of the global optimization

algorithm.

For these reasons, the phase stability problem presents many advantages, which will be dis-

cussed in the next section.

2.2 Tangent Plane Stability Criterion

Any equilibrium solution to (G) must satisfy equality of chemical potentials corresponding to
the first order necessary condition of equilibrium For nonideal systems, there may be multiple
solutions satisfying equality of chemical potentials, corresponding to local extrema of the
Gibbs free energy function and a sufficiency condition is required. This is provided by the
tangent plane criterion.

Let the mol fractions of one of the phases corresponding to an equilibrium solution be
represented by z = {z;}. Then, the tangent constructed at z must lie everywhere below
the Gibbs surface for the equilibrium solution to correspond to a global minimum of the
Gibbs free energy, as first shown by Gibbs (1873). Baker et al. (1982) supply a proof of
this criterion for the phase equilibrium problem when the Gibbs function can be represented
as a continuous first order function. Smith et al. (1993) have generalized the necessary and
sufficiency conditions for an equilibrium solution to correspond to a global minimum of the

Gibbs free energy for the phase and chemical equilibrium problem. The tangent plane stability



criterion is defined as the following problem:

min F(x) = g(x) — ) v (2)

1eC
s.t. Z z, =1 (S)
ieC
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where F(a ) represents the tangent plane distance function calculated as the difference between
the Gibbs surface, g(x) and the tangent plane constructed using p?(z), the chemical potential
of component ¢ evaluated at z corresponding to the mol fractions in one of the phases of the
candidate solution. Nonnegativity of the tangent plane distance function for all phase types
in the system provides a necessary and sufficient condition for the equilibrium solution to
correspond to a global minimum of the Gibbs free energy.

(S) is itself a difficult and challenging problem. The complexity of the expressions used
for g(«) mean that there may be multiple local solutions. Often, there will be a local solution
with a zero value for the tangent plane distance function, when the global solution has in fact
a negative value. Thus local approaches may make incorrect predictions in relation to the
thermodynamic stability of candidate equilibrium solutions. McDonald and Floudas (1995a)
discuss the application of global optimization to the solution of (S) when the liquid phases
are modeled by the NRTL or UNIQUAC equations. McDonald and Floudas (1995b) apply
the branch and bound algorithm of Falk and Soland (1969) to obtain global solutions to (S)
for problems where the UNIFAC, modified Wilson or ASOG equations can be used to model
the nonideal liquid phase. For the tangent plane criterion, the total number of variables and

the number of independent variables are defined respectively as follows:
NV = |C| and NCV = |C| —1
The following comments can be made in relation to Problem (S):

e No matter how many phases are present in the candidate equilibrium solution being
tested for thermodynamic instability, the number of variables in (S) does not change for

a particular problem.

e If a negative tangent plane distance function is found, then (S) can be terminated at

once as the candidate solution is then unstable.

The second point above raises an important distinction between the approach proposed in this

work, and that taken by researchers such as Sun and Seider (1995). In their work, if a negative



tangent plane distance is found, these solutions are used as a starting point for a search for a
new equilibrium solution which will have a lower Gibbs free energy value, the assumption being
that the equilibrium mol fractions will be closely approximated by the solution of (S) (see, for
example, Cairns and Furzer, 1990). However there is no guarantee that the correct equilibrium
solution will be obtained using this starting point. In addition, even if an improved solution
is found, then there is still no guarantee that this is the true global solution. The approach of
Michelsen (1982b) uses a descent method for the Gibbs free energy minimization, which with
good initial estimates from (S), is highly reliable (Swank and Mullins, 1986), although there
is no theoretical guarantee that it will converge to a solution with a lower Gibbs energy. In
this work, the solutions obtained from (S) are not used as first estimates for the subsequent
search for a lower value of the Gibbs free energy. A global optimization algorithm is used to
minimize the Gibbs free energy until an improved equilibrium solution is found, which will
then be tested for stability. This process is repeated until an equilibrium solution is generated
which leads to a nonnegative tangent plane distance function when (S) is solved, as determined
by a global optimization algorithm. Other approaches cannot make such a claim as at best a

solution satisfying the necessary condition of equilibrium can be obtained.

3 Description of GLOPEQ

As has been discussed, there are two possible methods of employing global optimization in
order to obtain an equilibrium solution corresponding to a global minimum of the Gibbs free
energy function. The first requires globally minimizing the Gibbs free energy function. For
rigorous determination of phase and chemical equilibrium, the maximum allowable number
of phases as determined by the phase rule must be considered. However, for systems of
several components, this may lead to a global optimization problem with a large number of
variables. Consider a five-component system where no reaction occurs. There may exist up
to five liquid phases, although it is highly unlikely that this number of phases will exist at
equilibrium. However, this number of phases must be considered in order to theoretically
guarantee that a global solution will be obtained. This will lead to a global optimization
problem with 25 variables.

The second approach involves verifying that an equilibrium solution corresponds to a
global minimum of the Gibbs free energy, using the tangent plane criterion. No matter how
many phases are present in the candidate equilibrium solution, the stability test will always
contain the same number of variables, that is, the number of components in the system.
It is more preferable to employ this problem than minimizing the Gibbs free energy since

it contains fewer variables and thus demonstrates better lower bounding characteristics and



faster convergence.

A striking illustration of the points just discussed is motivated by an example studied
by McDonald and Floudas (1994a), taken from Castillo and Grossmann (1981). It involves
three components (benzene, acetonitrile and water) with a potential of two liquid phases and
a vapor phase at a temperature of 333 K and a pressure of 0.769 atm. Direct minimization
of the Gibbs free energy using the GOP and assuming two liquid phases and a vapor phase
takes approximately 6000 iterations and 770 cpu sec to converge to the global LIV solution.
However, if this global solution is tested for thermodynamic stability using the tangent plane
criterion, then 80 iterations are required to establish that the global solution of the tangent
plane distance function is nonnegative. The time taken to verify that this is the global
solution is 0.76 cpu sec. Thus, it is clear that verifying a globally stable solution can represent
enormous computational savings. This is one of the main motivating factors behind the
development of GLOPEQ. The question of how to obtain candidate equilibrium solutions
remains. They can be generated using local or global searches for minima of the Gibbs free
energy function. Globally solving (G) is expensive but strategies to avoid solving it to e-global
convergence are easily implemented. An obvious one is to employ local searches because
they are computationally cheap. This provides the opportunity to find a better candidate
equilibrium solution at an early stage of the search. In addition, as observed by McDonald and
Floudas (1995¢), the global solution of (G) will often be generated at a relatively early stage
of the algorithm. If an improved equilibrium solution is found with a lower Gibbs free energy
value, then the algorithm is terminated and this solution is tested for thermodynamic stability
using the tangent plane criterion. The main characteristics of GLOPEQ are summarized as

follows:
(i) As much information is obtained from local searches as is possible.

(ii) Global minimization of the tangent plane distance function is preferable to global min-

imization of the Gibbs free energy function.

The algorithm is now described in full.

3.1 The combined algorithm in GLOPEQ

In what follows, the current phase configuration is denoted as P, and signifies how many
liquid phases are present in the current configuration and if there is a vapor phase present.
This is denoted as P = [;V, where [ is the number of liquid phases present, and v = 0
or 1, depending on whether a vapor phase is present. P* is the phase configuration of the

equilibrium solution obtained thus far with the lowest Gibbs free energy value of G5 and
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associated mol numbers nj. (S); and (S)y, signifies the stability problem (S) for the case when
the liquid and vapor phase is being checked for stability, respectively, with associated tangent
plane distance function values F} and Fj,. At this point, it will be helpful to distinguish
between local and global searches: a local search means solving either (G) or (S) using a
random starting point using MINOS5.4 as a nonlinear solver. This will generate an extremum
solution that may of may not be the global solution to (G) or (S). Solving (G) or (S) globally
implies using a global optimization algorithm as described in McDonald and Floudas (1994a;
1995a,b,c) to generate the global solution. It is important to distinguish these global solutions
of problems (G) and (S) from the true equilibrium solution, which is the “global” solution

that is being sought.

3.1.1 Initialization

In this phase, the best possible equilibrium solution is generated by using a number of local
searches. For fixed temperature and pressure, the maximum number of liquid phases that can
be present at equilibrium is ', the number of components in the system. For reacting systems
this may be further reduced by the number of independent reactions occurring in the system.
Thus, the initial phase configuration is chosen as P = LgV. The Gibbs free energy function
is then minimized (i.e. (G) is solved) using local searche(s). The number of local searches is
set by the user and is labelled kg. The best solution obtained from the kg local searches is

then denoted GGj. The mol number solution associated with G is stored as n}.

3.1.2 Stability Check

The stability check phase tests if the current candidate solution (which satisfies the necessary
conditions of equal chemical potentials) is stable with respect to perturbations in both the
liquid and vapor phases (if a vapor phase is postulated.) For many problems the conditions of
temperature (or pressure) will be such that a vapor phase cannot exist and (S),, need not be
solved. The first step is to calculate the tangent plane as represented by pf(z). The following
procedure is undertaken for solving the stability problem:

1. Solve (S) locally kg times. Store the minimum of these solutions as Fj = argn;lin}—*.

s

2a. If F§ > 0, then solve (S) globally. If 7* < 0 at any point in this search proceed to next
phase.

2b. If 5 < 0, then proceed to next phase.

The first step is to solve (S) locally kg times using MINOS5.4 as the local optimization solver.
If at this phase, a negative TPDF is found, then this portion of the program is exited and

11



an equilibrium solution with a lower Gibbs value must be sought. The procedure for this
eventuality is described in the next section. On the other hand, if a nonnegative TPDF 1s
obtained from the local search phase, then (S) must be solved globally. If the TPDF is still
nonnegative, then the current solution is stable with respect to perturbations for this phase
type. It is apparent that if a negative value for the tangent plane distance function is obtained
at any point, then it is clear that the current best solution is unstable, and a new solution
must be sought. It has been noted by McDonald and Floudas (1995a) that when solving (S)
globally, if the actual global solution is negative, it is usually obtained at an early iteration
which is a very useful characteristic. Both liquid and vapor phases must be checked for
stability at this point. For ideal vapor phases, the stability formulations are convex and only
one local search is required to establish if they are stable. If these checks yield nonnegative
TPDF’s then GLOPEQ can terminate as this is precisely a necessary and sufficient condition
for stability of the postulated solution. Otherwise, an equilibrium solution with a lower Gibbs

free energy value must be sought, as is now described.

3.1.3 Improving the value of the Gibbs energy

Phase 1: Choosing P and Py

Before proceeding to solve (G), the phase configuration P for use in the current search must be
selected. The procedure adopted here is simple, and other schemes are certainly possible. The
basic idea is to build up the number of liquid phases present in the system. On the first pass, it
is assumed two liquid phases will be present, that is [ = 2. If the current best solution contains
a vapor phase, or the stability check with respect to an incipient vapor phase gave a negative
TPDF, then a vapor phase is assumed present, that is v = 1. It should be noted that for the
local search phase, the phase configuration remains the same as P = LgV;. On subsequent
passes, [ is incremented by 1. This strategy which builds up the liquid phases ensures that
the global solution will not be missed. For example, if the global solution contains one liquid
phase, then the global search with [ = 2 will attain the single phase global minimum with
a mathematical two phase solution where the mol fractions in both phases will be the same,

while it actually corresponds to a physical one phase solution.
Phase 2: Minimization of the Gibbs free energy

Firstly (G) is solved locally. If no decrease in the Gibbs free energy is effected, then a global

search must be initialized using the phase configuration decided upon in Phase 1. If at any
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point an improved solution is obtained, the global optimization algorithm is terminated, and
this improved solution is tested for stability by returning to Section 3.1.2 as described above.

A diagrammatic summary of GLOPEQ is provided in Figure 1. In the best case scenario,
the global equilibrium solution will be generated using local searches, so that only (S) need be
solved globally. In this case, only one global optimization problem will be solved. The worst
case scenario consists of GLOPEQ iterating between solving (G) and (S) globally. The latter

case rarely occurs.

3.2 Summary

A summary of the combined algorithm is now given.

Step 1. Initialization:

Set P = L¢Vi and solve (G) locally kg times to obtain G. Store n} and set [ = 1.

Step 2. Stability check:

Calculate p(z) using nk.

2a. Vapor phase: If v = 0, solve (S);, to yield Fy.
2b. Liquid phase: Solve (S); locally to yield F7. If F7 > 0, solve (S); globally to yield
Fi.

Check for stability:
If 77 > 0 and F3; > 0 then STOP.
Otherwise proceed to Step 3.

Step 3. Gibbs search:

Phase 1: Select P
(i) If f <0, then set { =1+ 1.
(ii) If 7y < 0 then set v = 1.

Phase 2:

(i) Solve (G) locally. If G* < G% found, update P* and GOTO Step 2.
(ii) Solve (G) globally with P = L;V,. If G* < G, update P* and GOTO Step 2.

13



4 Examples

The algorithm GLOPEQ is written in C and all the computational results reported in this
paper were performed on a Hewlett Packard 9000/730 machine, which is rated at 76 MIPS
(91 SPECtp). The solver MINOS5.4 is accessed as a subroutine. The executable C program
is available directly from the authors, although prospective users will need a license for MI-
NOS5.4. All the times reported are the total cpu time taken to obtain the equilibrium solution
corresponding to a global minimum of the Gibbs free energy function. It should be noted that
several of the examples are solved using more than one thermodynamic model. The results
will of course be different for these models, and sometimes may yield solutions which have
unequal numbers of phases (e.g. Example 4), as well as significant deviations in the phase
and/or mol fractions. This highlights the importance of employing experimental data as avail-
able to evaluate the solutions to ensure that they qualitatively and quantitatively conform to
the reported experimental behavior. All but one of the examples are for non-reacting sys-
tems. This is because there are very few examples of reacting systems of industrial relevance
that use excess Gibbs free energy models. Most frequently, equations of state are employed
in stoichiometric solution techniques for high pressure systems, which is outside the scope of
this research. A detailed description of how GLOPEQ works for a challenging two component

example is now given, followed by additional examples.

4.1 Illustrative example: n-Butyl Acetate — Water

The NRTL equation was used to model this system using parameters provided by Heidemann
and Mandhane (1973). McDonald and Floudas (1995¢) showed how the global solution con-
tained two liquid phases. The Gibbs surface possesses multiple stationary points, making the
problem very difficult for local solvers. A vapor phase is not considered. The initial charge is

equimolar, so that nf = 0.5 V1.
1. Initialization:

Setting kg = 1 (i.e. solve (G) locally once using MINOS5.4) with P = L, yields a local LL

solution with G* = —0.01961. The values of the mol numbers for this solution are:

n; = 0.00213 n} = 0.49787

14



ny = 0.46547 n} = 0.03453

2. Stability check:

Solve (S) with pf(z) = {—0.03523, —0.00398}. The local search phase with ks =1 (i.e. solve
(S) locally with MINOS5.4 once) yields F* = 0.0. After 2 iterations of the global search, a
negative tangent plane distance of F* = —0.00070 with «* = {0.59425,0.40575} is obtained.

A better equilibrium solution must be sought.

3. Gibbs free energy search:

On the first pass, [ = [+ 1 = 2 and a global Gibbs search with two liquid phases is ini-
tiated. After 47 iterations of the GOP algorithm, an improved equilibrium solution with
G* = —0.02020 is found. The Gibbs energy search is therefore exited, and the next phase of
the stability check is implemented.

4. Stability check:

The new solution supplies pf(z) = {—0.03642, —0.00398}. Solving (S) globally yields a non-
negative tangent plane distance function as the global solution of (S). The candidate equilib-
rium solution therefore corresponds to a global minimum of the Gibbs free energy. The final

solution 1s given as:

n; = 0.00071 n} = 0.49929
ny = 0.15588 n) = 0.34412

This example illustrates some of the guiding principles of GLOPEQ. Firstly, the first stability
check was exited very early after 2 iterations. In addition, the minimization of the Gibbs free
energy was also terminated early. The total time taken was 0.69 cpu sec. For comparison,
the total time taken to minimize the Gibbs free energy with two liquid phases postulated
was 1.23 cpu sec. It is clear that the combined algorithm generates significant computational
savings even though the number of local searches employed was very low at 1. If K = 20 is
used, then GLOPEQ finds the true equilibrium solution in 0.23 cpu secs. The actual input
file used to generate the global solution is shown in Appendix A. Comment lines are begun
using a hash mark (#). There are certain keywords (such as GIBBS MODEL, PROBLEM NAME,
NUMBER OF COMPONENTS, and so on) that must be included in the file. Options are included
between the BEGIN/END OPTIONS statements. The file shown runs the combined algorithm.
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To minimize the Gibbs free energy for two liquid phases, the hash marks of the last three lines
are simply removed to solve (G) alone. The output file generated by the above example is
shown in Appendix A. A complete description of the package can be found in McDonald and
Floudas (1994b).

The global solutions as obtained by the NRTL, UNIFAC and ASOG models are supplied
in Table 1 for an equimolar feed charge at a temperature of 298 K and atmospheric pressure.
A vapor phase is not considered. McDonald and Floudas (1994a,b) discuss this example
extensively in the context of the minimization of the Gibbs free energy and the tangent plane
distance function using the NRTL equation. Even though it is a small two component example,

it demonstrates quite complex behavior, and provides a good test for any algorithm.

4.2 Example 2: SBA - DSBE — Water

This example is drawn from azeotropic distillation. Kovach and Seider (1988) supply a set of
compromise interaction coefficients that can be used to model LLV equilibrium. The data for
the problem is given in McDonald and Floudas (1995a). The Antoine coefficients for calculat-
ing the saturated vapor pressures was supplied by Kovach and Seider (1987). Widagdo et al.
(1992) have supplied the phase diagrams on all five trays which feature complex connections
of multiphase regions. Because of the sensitivity of this example to the data, it represents a
very challenging test of the algorithm GLOPEQ. The solutions on all five trays studied in this
work are given in Table 2, with the corresponding times. In all cases, the global solution was

obtained in very reasonable time (i.e. under 20 cpu secs).

4.3 Example 3: n-Propanol — n-Butanol — Water

This example features a single immiscible pair between butanol and water. Block and Hegner
(1976) obtained the NRTL binary parameters, and the LL interaction parameters for the
UNIFAC equation were obtained from Magnussen et al. (1981). At a feed charge of n7 =
{0.041,0.267,0.692}, corresponding to the conditions in the decanter which separates the
bottom product into an organic and a water phase, the global equilibrium LL solutions for
both models are given in Table 3. The temperature of the decanter is approximately 370
K which is well outside the recommended range of applicability of the UNIFAC parameters.

However, it still provides a reasonable prediction of phase equilibrium at this feed charge.
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4.4 Example 4: Ethylene Glycol — Lauryl Alcohol — Nitromethane
— Water

Null (1970) used an extended version of the van Laar equation to model this system. A
vapor phase does not form and there are a potential of three liquid phases. Chakravarty
et al. (1985) obtained UNIQUAC coefficients and the parameters used in this work are
supplied by McDonald and Floudas (1995a). The system is at a temperature of 295 K and
1 atm pressure. The UNIFAC equation was also used to model this system using the binary
interaction parameters for the prediction of liquid-liquid equilibria supplied by Magnussen et
al. (1981). The global solutions for both the UNIQUAC and UNIFAC equations are given
in Table 4. The UNIFAC equation also predicted the presence of three liquid phases, the
maximum number allowable in the system.

If water is added as a fourth component, and the temperature is increased to T" = 350K
and the pressure is reduced to P = 0.43 atm, then the UNIFAC equation using the LV
binary interaction parameters of Gmehling et al. (1982) predicts two liquid phases and one
vapor phase. If the LI binary interaction parameters of Magnussen et al. (1981) are used,
then a global solution with three liquid phases and a vapor phase is obtained. The global
equilibrium solutions and the computational results are supplied in Table 5. The temperature
of the system does lie outside the recommended range of use for the LL parameters (283-313
K), but it does demonstrate the complex behavior the UNIFAC model is capable of predicting.

4.5 Example 5: Water — n-Propanol — n-Hexane

This is an example used by Fredenslund et al. (1977) to illustrate the calculation of phase
equilibrium. For several values of the feed charge, they report equilibrium solutions with two
liquid phases. This is the maximum number of phases they consider in their calculations.
There are in fact three liquid phases at the global minimum of the Gibbs free energy. Mec-
Donald and Floudas (1995b) report a global solution containing three liquid phases using
the VL parameters of Fredenslund et al. (1977) for two feed charges. ;jFrom experimental
data, it is known that water and hexane is the only partially miscible pair of components
of this system. However, the UNIFAC model predicts that the propanol-hexane binary pair
is partially miscible. This demonstrates the complexity of the UNIFAC model, predicting
phases that do not actually occur experimentally. In fact, Magnussen et al. (1981) observed
that the UNIFAC equation was capable of predicting three liquid phases, quoting the xylene—
acetonitrile—water system as one example and singling out systems involving 1-propanol or
2-propanol as especially troublesome. Special procedures had to be undertaken in order to

avoid erroneous prediction of phase equilibrium for these systems, and interaction parameters
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were individually obtained for both propanols for the prediction of liquid-liquid equilibrium.
Using the UNIFAC parameter table of Magnussen et al. (1981) results in much better pre-
diction of this system, and a two phase solution is obtained. These solutions are reported in
Table 6 for two feed charges. Conditions (i) and (ii) correspond to nf = {0.5,0.1,0.25} and
nT = {0.5,0.4,0.25} respectively. They correlate the experimental data much better than the
original parameters of Fredenslund et al. (1977).

4.6 Example 6: Ethanol — Benzene — Water

This example has been extensively studied due to the importance of the azeotropic distillation
process used to separate ethanol and water using benzene as an entrainer. For example, Kovach
and Seider (1983) used the UNIQUAC equation with parameters obtained form Prausnitz et
al. (1980). It should be noted that they found that the predictions of Gmehling and Onken
(1977) led to poor prediction of the liquid-liquid equilibrium data. For comparison, the
results when the UNIFAC equation is used to model the liquid phase activity coefficients
using interaction parameters obtained from Magnussen et al. (1981) are also supplied. These
are results obtained when nf = {0.2,0.4,0.4}, which lies within the region of immiscibility
and the equilibrium solutions are given in Table 7. The temperature is 300 K and is too low to
allow the formation of a vapor phase, and both models predict two liquid phases, in agreement
with the experimental data at atmospheric pressure. The ASOG equation was not used as
there are no interaction parameters for the aromatic and water groups, which represents a

serious drawback of this equation.

4.7 Example 7: Ethanol — Ethyl Acetate — Water

Walraven and van Rompay (1988) used this example to test their phase—splitting algorithm
for liquid-liquid immiscibility employing the NRTL coefficients obtained by van Zandijcke
and Verhoeye (1974). This example was also studied by McDonald and Floudas (1995¢). At
a temperature of 343 K, and a feed charge of n7 = {0.08,0.30,0.62}, two liquid phases are
predicted by the NRTL equation, the ASOG equation, and the UNIFAC equation. For the
UNIFAC equation the LL interaction parameters of Magnussen et al. (1981) were employed,
even though the temperature of the system was outside the recommended temperature range
for these correlations. The results for all these activity coefficient correlations are presented

in Table 8.
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4.8 Example 8: Methanol — Methyl Acetate — Water

This example is considered at a temperature of 325 K and a pressure of 0.965 atm. The UNI-
FAC VLE interaction parameters were used to model the system. With n7 = {0.15,0.45,0.40},
an LLV solution is obtained, and this is reported in Table 9. When the ASOG equation was
used at this value of the feed charge, a one phase vapor solution was obtained. and is thus
incapable of predicting liquid and vapor phases simultaneously. The ability to predict LI and
VL equilibrium simultaneously with a single set of interaction parameters is difficult for any
activity coefficient equation. With nT = {0.05,0.25,0.7}, and no vapor phase postulated, the
ASOG equation predicts two liquid phases and this solution is also given in Table 9.

4.9 Example 9: Heptane — Hexane — Methanol

This example features two hydrocarbons and an alcohol at a temperature of 330 K and at-
mospheric pressure. Methanol forms a partially miscible pair with each of the hydrocarbons
in the system. The NRTL parameters of Sgrensen and Arlt (1980) (Page 133) were used to
model the system as well as the LI, UNIFAC binary parameters of Magnussen et al. (1981)
and the ASOG binary parameters of Kojima and Tochigi (1979). All three activity coefficient

models yield an equilibrium solution of two liquid phases and these are supplied in Table 10.

4.10 Example 10: Toluene — n-Propanol — Water

This example features three components and is modeled using the NRTL parameters of
Sgrensen and Arlt (1980) (Page 580), and the LI, UNIFAC binary parameters of Magnussen
et al. (1981). Note that the ASOG equation cannot be used due to the absence of interaction
coefficients for the aromatic—water pair. Conditions at temperatures of 278 K and 298 K under
atmospheric pressure are examined. A vapor phase does not form at these conditions. The
difficulties associated in systems containing propanol has been mentioned in relation to the
UNIFAC equation, where false predictions of extraneous phases can be obtained. In fact, for
this example at a temperature of 278 K, the NRTL equation predicts three liquid phases; in
addition, it calculates that toluene and water form a partially miscible pair. This discrepancy
occurs because of the rapid change in the slopes of the tielines as the plait point is approached.
On the other hand, the UNIFAC equation predicts two liquid phases and this is to be expected
as the interaction parameters were individually reduced for propanol. The solutions at this
temperature are supplied in Table 11. At the higher temperature, both models predict two
liquid phases, agreeing with experiment, and the global equilibrium solutions are given in

Table 12.
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4.11 Example 11: Hexanol — Nitromethane — Water

This example is interesting as the phase diagram features a type-II curve emanating from the
water corner and at a sufficiently low temperature, 1-hexanol and nitromethane are immiscible.
The experimental data indicates (Sgrensen and Arlt, 1980) that at low enough temperatures,
these two regions coalesce to form three liquid phases. Temperatures of 294 K and 313
K at atmospheric pressure have been selected for analysis. At 294 K, Walas (1985) (Page
376) obtained the binary interaction coefficients and these are given in Table 13. At a feed
charge of nf = {0.2,0.5,0.3}, the UNIQUAC equation predicts three liquid phases (given in
Table 14), while the UNIFAC equation predicts a single liquid phase, that is, the two regions
of immiscibility are separated by a one phase region and never coalesce. At nf = {0.3,0.6,0.1}
which lies within the 1-hexanol-nitromethane type-I region, the UNIFAC equation predicts
two liquid phases and this solution is supplied in Table 14.

When the temperature is raised to 313K, the experimental data indicate that the 1-
hexanol-nitromethane pair becomes miscible. With n7 = {0.1,0.3,0.6}, which lies within
the type-II region, both the UNIQUAC equation using the parameters supplied by Sgrensen
and Arlt (1980) and the UNIFAC equation predict two liquid phases and these solutions are
reported in Table 15. The ASOG equation could not be used as there are no binary interaction

parameters for the water—N O, group pair.

4.12 Example 12: Phenol — Acetone — Water

This example features an “island curve” in the water rich corner of the phase equilibrium
diagram. The NRTL parameters are obtained from Sgrensen and Arlt (1980) (Page ) at
a temperature of 330 K and atmospheric pressure. The LI UNIFAC binary parameters of
Magnussen et al. (1981) were also used to model this system. In both cases, a liquid-liquid
solution was obtained and these are reported in Table 16. Because the group binary interaction
coefficients between the aromatic OH and both the water and and ketone groups were not

available, the ASOG equation could not be used to model this system.

4.13 Example 13: Esterification Reaction

The esterification reaction between ethanol and acetic acid to form ethyl acetate and water has
been extensively studied in the literature. It demonstrates extreme sensitivity to the values
used for the Gibbs free energies of formation. The values as used in this work were calculated
by McDonald and Floudas (1995c¢). At a temperature of 355 K, all the models used predicted
an LV solution. The Wilson parameters were obtained from (Suzuki et al., 1969), the NRTL

parameters were derived from these Wilson parameters as shown by McDonald and Floudas

20



(1995¢), and the UNIQUAC binary interaction parameters were obtained from Gmehling et
al. (1982). The equilibrium solutions are given in Table 17.

4.14 A summary of Computational Experience

Table 18 presents a summary of the computational results for many of the examples presented
in this chapter. Clearly, the most challenging one is Example 4, where times of over 1000
cpu secs are required to obtain the true equilibrium solution. This demonstrates the difficulty
and sensitivity of this particular four component example, whose solution has four phases
present at equilibrium (experimentally it is unknown how many phases will in fact be present
at these conditions). For many systems, it is evident that global solutions can be obtained
in reasonable cpu time given that a global optimization approach is being employed. As the
number of components increases, the computational effort will increase, and this will impose a
practical limit on the size of problems that can be solved efficiently, a limitation of any global
optimization approach. Having said that, the examples were all taken from the literature and
represent important systems in the chemical process industry where problems in obtaining
equilibrium solutions arise.

For those activity coefficient equations that are expressed as the difference of two convex
functions, it is possible to achieve improved computational results by simply incorporating a
portion of the concave portion of the objective function into the convex portion, assuming that

the resulting function remains convex. This results in the following adjustment to Eqn. (A.1):

% = C(=) —n-;goi:z:iln:l:i

with C(z) = C(z)— (1 —1n)- Zapzlenxz
ieC
Numerical experiments indicate that even down to values of n = 0.2, the eigenvalues of the
function C(&) remain nonnegative for thousands of randomly chosen points @, that is, the
function C(&) remains convex. This strategy results in improved lower bounding characteris-
tics with lower computational times as can be seen in Table 19 for the most computationally
intensive UNIFAC examples using various values of 7. In all cases, the same global solution

was obtained as in the rigorous case where n = 1.

5 Conclusions

This work has presented an algorithm which is theoretically guaranteed to converge to the

global equilibrium solution. A new computational tool, GLOPEQ, has been presented for the
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computation of equilibrium solutions corresponding to a global minimum of the Gibbs free
energy function. The approach can be used for liquid phases that can be modeled using the
NRTL, Wilson, modified Wilson, UNIQUAC, UNIFACand ASOG activity coefficient models.
Vapor phases that behave ideally or that can be described by the B-truncated virial equation
can also be handled. The combined algorithm uses two optimization formulations in tandem
for maximum efficiency. The first of these problems is the minimization of the Gibbs free
energy, and the second is the minimization of the tangent plane distance function. Results
for many examples demonstrate that global solutions can be generated efficiently for various

difficult and challenging problems.

Acknowledgement: The authors gratefully acknowledge financial support from the National
Science Foundation under Grants CBT-8857013 and CTS-9221411, as well as support from
Amoco Chemical Co., Exxon Co., Tennessee Eastman Co., Mobil Co., and Shell Development

Co.

References

D.S. Abrams and J.M. Prausnitz. Statistical thermodynamics of liquid mixtures: A new
expression for the excess Gibbs energy of partly or completely miscible systems. AIChE J.,
21(1):116, 1975.

L.E. Baker, A.C. Pierce, and K.D. Luks. Gibbs energy analysis of phase equlibria. Soc.
Petro. Eng. J., page 731, October 1982.

U. Block and B. Hegner. Development and application of a simulation model for three-phase

distillation. AIChE J., 22(3):582, 1976.

B.P. Cairns and I.A. Furzer. Multicomponent three-phase azeotropic distillation. 2. Phase-
stability and phase-splitting algorithms. [&EC' Res., 29:1364, 1990.

J. Castillo and I.LE. Grossmann. Computation of phase and chemical equilibria. Comput.
chem. engng., 5:99, 1981.

T. Chakravarty, C.W. White, III, and W.D. Seider. Computation of phase equilibrium:
optimization with thermodynamic inconsistency. AIChE J., 31(2):316, 1985.

P.T. Eubank, A.E. Elhassen, M.A. Barrufet, and W.B. Whiting. Area method for prediction
of fluid-phase equilibria. I&FEC Res., 31:942, 1992.

22



J.E. Falk and R.M. Soland. An algorithm for separable nonconvex programming problem:s.

Manag. Sci., 15(9):550, 1969.

C.A. Floudas, A. Aggarwal, and A.R. Ciric. A global optimum search for nonconvex NLP
and MINLP problems. Comput. chem. engng., 13(10):1117, 1989.

C.A. Floudas and V. Visweswaran. A global optimization algorithm (GOP) for certain classes
of nonconvex NLPs: I. Theory. Comput. chem. engng., 14(12):1397, 1990.

A. Fredenslund, J. Gmeéhling, and P. Rasmussen. Vapor—liquid equilibria using UNIFAC.
Elsevier, Englewood Cliffs, New Jersey, 1977.

R. Gautam and W.D. Seider. Computation of phase and chemical equilibrium, Part I: Local
and constrained minima in Gibbs free energy. AIChE J., 25(6):991, 1979a.

R. Gautam and W.D. Seider. Computation of phase and chemical equilibrium, Part II:
Phase-splitting. AICRE J., 25(6):999, 1979b.

J.W. Gibbs. A method of geometrical representation of the thermodynamic properties of
substances by means of surfaces. Trans. Connecticut Acad., 2:382, May 1873.

J. Gmehling and U. Onken. Vapor-liquid equilibrium data collection, volume I, Part 1 of
Chemistry Data Series. DECHEMA, 1977.

J. Gmehling, P. Rasmussen, and A. Fredenslund. Vapor-Liquid equilibria by UNIFAC group
contribution. Revision and extension. 2. [&FEC Proc. Des. Dev., 21(1):118, 1982.

A.K. Gupta, P.R. Bishnoi, and N. Kalogerakis. A method for the simultaneous phase equilib-
ria and stability calculations for multiphase reacting and non-reacting systems. Fluid Phase

Equilibria, 63:65, 1991.

R.A. Heidemann and J.M. Mandhane. Some properties of the NRTL equation in correcting
liquid-liquid equilibrium data. Chem. Eng. Seci., 28:1213, 1973.

K. Kojima and K. Tochigi. Prediction of vapor—liquid equilibria by the ASOG method. Flse-
vier, Englewood Cliffs, New Jersey, 1979.

J.W. Kovach and W.D. Seider. Dynamic simulation of azeotropic distillation towers. AIChE
J., 29(6):1017, 1983.

J.W. Kovach and W.D. Seider. Heterogeneous azeotropic distillation: experimental and

simulation results. AIChE J., 33(8):1300, 1987.

23



J.W. Kovach and W.D. Seider. Vapor-liquid and liquid-liquid equilibrium for the system
sec-butyl-alcohol — di- sec-butyl ether — water. J. Chem. Eng. Data, 33:16, 1988.

G. Lantagne, B. Marcos, and B. Cayrol. Computation of complex equilibria by nonlinear

optimization. Comput. chem. engng., 12(6):589, 1988.

T. Magnussen, P. Rasmussen, and A. Fredenslund. UNIFAC parameter table for prediction
of liquid-liquid equilibria. I&FEC Proc. Des. Dev., 26(1):159, 1981.

C.M. McDonald and C.A. Floudas. Decomposition based and branch and bound global
optimization approaches for the phase equilibrium problem. Journal of Global Optimization,

5:205-251, 1994a.

C.M. McDonald and C.A. Floudas. A user guide to GLOPFE(Q. Computer Aided Systems
Laboratory, Dept. of Chemical Engineering, Princeton University, N.J., 1994b.

C.M. McDonald and C.A. Floudas. Global optimization for the phase stability problem.
AIChE J., 41(7):1798, 1995a.

C.M. McDonald and C.A. Floudas. Global optimization and analysis for the Gibbs free
energy function using the UNIFAC, Wilson and ASOG equations. [6FEC Res., 34:1674,
1995b.

C.M. McDonald and C.A. Floudas. Global optimization for the phase and chemical equi-
librium problem: application to the NRTL equation. to appear in Comput. chem. engng.,
1995¢.

M.L. Michelsen. The isothermal flash problem - Part 1. Stability. Fluid Phase Fquilibria,
9:1, 1982a.

M.L. Michelsen. The isothermal flash problem - Part II. Phase-split calculation. Fluid Phase
Equilibria, 9:21, 1982b.

N.R. Nagarajan, A.S. Cullick, and A. Griewank. New strategy for phase equilibrium and
critical point calculations by thermodynamic energy analysis. Part 1. Stability analysis and

flash. Fluid Phase Fquilibria, 62:191, 1991a.

N.R. Nagarajan, A.S. Cullick, and A. Griewank. New strategy for phase equilibrium and
critical point calculations by thermodynamic energy analysis. Part II. Critical Point Calcu-

lations. Fluid Phase Fquilibria, 62:211, 1991b.

H.R. Null. Phase equilibrium in process design. Wiley-Interscience, New York, 1970.

24



M.O. Ohanomah and D.W. Thompson. Computation of multicomponent phase equilibria -
Part 1. Vapour-liquid equilibria. Comput. chem. engng., 8(3/4):147, 1984a.

M.O. Ohanomah and D.W. Thompson. Computation of multicomponent phase equilibria -
Part II. Liquid-liquid and solid-liquid equilibria. Comput. chem. engng., 8(3/4):157, 1984b.

M.O. Ohanomah and D.W. Thompson. Computation of multicomponent phase equilibria -
Part III. Multiphase equilibria. Comput. chem. engng., 8(3/4):163, 1984c.

G.E. Paules, IV and C.A. Floudas. A new optimization approach for phase and chemical
equilibrium problems. Paper presented at the Annual AIChE Meeting, San Franciso, CA,
November, 1989.

J.M. Prausnitz, T.F. Anderson, E.A. Grens, C.A. Eckert, R. Hsieh, and J.P. O’Connell.
Computer calculations for multicomponent vapor-liquid and liquid-liquid equilibria. Prentice-

Hall Inc., Englewood Cliffs, New Jersey, 1980.

H. Renon and J.M. Prausnitz. Local compositions in thermodynamic excess functions for

liquid mixtures. AIChE J., 14(1):135, 1968.

W.D. Seider, R. Gautam, and C.W. White, III. Computation of phase and chemical equi-
librium: A review. In Computer Applications to Chemical Engineering, page 115. American

Chemical Society, 1980. ACS Symp. Ser., No. 124(5).

J.V. Smith, R.W. Missen, and W.R. Smith. General optimality criteria for multiphase mul-
tireaction chemical equilibrium. AIChE J., 39(4):707, 1993.

M.E. Soares, A.G. Medina, C. McDermott, and N. Ashton. Non-Uniqueness in phase and
reaction equilibrium computations. Chem. FEng. Sei., 37(4):521, 1982.

J.M. Sgrensen and W. Arlt. Liquid—liquid equilibrium data collection, volume V. Part 2 of
Chemistry Data Series. DECHEMA, 1980.

A.C. Sun and W.D. Seider. Homotopy-continuation Method for stability analysis in the
global minimization of the Gibbs free energy. Fluid Phase Equilibria, 103:213, 1995.

. Suzuki, H. Komatsu, and M. Hirata. Formulation and prediction of quaternary vapor-liquid

equilibria accompanied by esterification. J. Chem. Eng. Japan, 3(2):152, 1969.

D.J. Swank and J.C. Mullins. Evaluation of methods for calculating liquid-liquid phase-
splitting. Fluid Phase Equilibria, 30:101, 1986.

25



T. Tsuboka and T. Katayama. Modified Wilson equation for vapor-liquid and liquid-liquid
equilibria. J. Chem. Eng. Japan, 8(3):187, 1975.

F. van Zandijcke and L. Verhoeye. The vapor-liquid equilibrium of ternary systems with
limited miscibility at atmospheric pressure. J. appl. Chem. Biotechnol., 24:709, 1974.

V. Visweswaran and C.A. Floudas. A global optimization algorithm (GOP) for certain classes
of nonconvex NLPs: II. Application of theory and test problems. Comput. chem. engng.,
14(12):1419, 1990.

S.M. Walas. Phase equilibria in chemical engineering. Butterworth, 1985.

F.F.Y. Walraven and P.V. van Rompay. An improved phase-splitting algorithm. Comput.
chem. engng., 12(8):777, 1988.

W.B. White, S.M. Johnson, and G.B. Dantzig. Chemical equilibrium in complex mixtures.
J. Chem. Phys., 28(5):751, 1958.

S. Widagdo, W.D. Seider, and D.H. Sebastian. Phase equilibria for heterogeneous azeotropes
with two partially-miscible binary pairs. submitted to Fluid Phase Fquilibria, January 1992.

G.M. Wilson. Vapor-liquid equilibrium. XI: A new expression for the excess free energy of

mixing. J. Am. Chem. Soc., 86:127, 1964.

J.S. Wu and P.R. Bishnoi. An algorithm for three-phase equilibrium calculations. Fluid
Phase Equilibria, 10(3):269, 1986.

26



Solution for n-Butyl-Acetate (1) — Water (2)
T=298K, P=1.0 atm

Components

Feed
(mols)

Liquid I

(—)

Liquid II
(=)

cpu

(sec)

Solution using NRT

L (Heidemann and Mandhane, 1973)

CeH1,0, (1) | 0.50 | 0.59199 | 0.00456 | —0.02020 | 0.23
H,0 (2) 0.50 | 0.40801 | 0.99544
o* (—) 0.84341 | 0.15659
Solution using UNIFAC (Magnussen et al., 1981)
CeH1,0, (1) | 0.50 | 0.91717 | 0.00036 | —0.03407 | 0.37
H,0 (2) 0.50 | 0.08283 | 0.99964
oF (—) 0.54498 | 0.45502
Solution using ASOG (Kojima and Tochigi, 1979)
CeH1,0, (1) | 0.50 | 0.80908 | 0.00152 | 0.28919 | 0.32
H,0 (2) 0.50 | 0.19092 | 0.99848
¢* (—) 0.38273 | 0.61727

Table 1: Solutions for Example 1
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Solutions for SBA (1) — DSBE (2) — Water (3) on five trays

Tray No. Feed Liquid I | Liquid IT | Vapor cpu
Comp. G* (mols) (—) (—) (—) (sec)

1=1 Tray 28 40.30707 | 0.51802 | 0.05667 | 0.34024 | 19.67

1=2 | —70.75208 || 5.14979 | 0.05110 0.0 0.08762

1=3 54.54314 | 0.43088 | 0.94333 | 0.57214

o* 0.60729 | 0.15916 | 0.23355

1=1 Tray 25 35.18411 | 0.52037 | 0.04401 | 0.30236 | 16.41

1 =2 | —81.89074 || 12.55338 | 0.15429 0.0 0.13931

1=3 52.26247 | 0.32534 | 0.95599 | 0.55833

Pk 0.39439 | 0.14128 | 0.46433

1=1 Tray 7 33.45195 | 0.48182 | 0.03759 | 0.28014 | 15.26

1 =2 | —90.29375 || 18.21254 | 0.24579 0.0 0.16430

1=3 48.33661 | 0.27239 | 0.96241 | 0.55556

o* 0.34476 | 0.06248 | 0.59276

1=1 Tray 5 31.39202 | 0.45250 | 0.03474 | 0.26923 | 14.48

1=2 | —91.64367 || 20.35994 | 0.29858 0.0 0.17512

1=3 48.24804 | 0.24892 | 0.96526 | 0.55565

B* 0.36524 | 0.09488 | 0.53988

1=1 Tray 2 31.28600 | 0.44619 | 0.03419 | 0.26708 | 15.16

1 =2 | —92.61758 || 21.00538 | 0.30924 0.0 0.17717

1=3 47.70862 | 0.24457 | 0.96581 | 0.55575

o* 0.46349 | 0.15989 | 0.37662

Table 2: Solutions for Example 2
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T =370K, P=1.0 atm

Solution for n-Propanol (1) — n-Butanol (2) — Water (3)

Feed | Liquid I | Liquid II G* cpu
Components | (mols) (—) (—) (—) (sec)
Solution using UNIFAC (Magnussen et al., 1981) equation

C3H,OH (1) | 0.041 0.00629 0.06737 | —0.34703 | 6.32
C4HyOH (2) | 0.267 0.02820 0.37966
H,O (3) 0.692 0.96551 0.56297
#* (—) 0.32054 | 0.67946

Solution using NRTL (Block and Hegner, 1976)

C3H,OH (1) | 0.041 0.00746 0.04432 | —0.29723 | 1.33
C4HyOH (2) | 0267 || 0.02139 | 0.29134
H,O (3) 0.692 0.97115 0.66434
o* (—) 0.09016 | 0.90984

Table 3: Solutions for Example 3

Solution for Ethylene Glycol (1) — Dodecanol (2) — Nitromethane (3)

T =295K, P =1.0 atm

Feed Liquid I | Liquid IT | Liquid III G* cpu
Components (mols) (—) (—) (—) (—) (sec)
Solution using UNIFAC (Magnussen et al., 1981)

(CH,OH), (1) 0.4 0.10139 0.94758 0.35109 | —0.13110 | 17.0
C12Hs0H (2) 0.1 0.00879 0.01323 0.42389
CH3CN (3) 0.5 0.88982 0.03918 0.22503
o (—) || 0.49440 | 0.28896 | 0.21664

Solution using UNIQUAC (Chakravarty et al., 1985)

(CH,OH), (1) 0.4 0.02776 0.69280 0.27899 | —0.16085 | 20.65
C12Hs0H (2) 0.1 0.00206 0.00399 0.49191
CH3CN (3) 0.5 0.97018 0.30321 0.22910
e (—) || 0.31705 | 0.48492 | 0.19803

Table 4: Solutions for Example 4
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Solution for Ethylene Glycol (1) — Dodecanol (2) — Nitromethane (3) — Water (4)
T = 350K, P = 0.43 atm

Feed Liquid I | Liquid IT | Liquid III | Vapor G* cpu
Components (mols) (—) (—) (—) (—) (—) (sec)

Solution using UNIFAC (Magnussen et al., 1981)

(CHOH), (1) 0.3 0.08338 0.70581 0.24274 | 0.00837 | —3.43040 | 1921.6

C12Hs0H (2) 0.1 0.01565 0.00680 0.40924 | 0.00033

CH3CN (3) 0.5 0.88822 0.03099 0.31537 | 0.95268

HyO (4) 0.1 0.01275 0.25640 0.03264 | 0.03862

oF (—) || 0.23277 | 0.31581 | 0.23002 | 0.22139

Solution using UNIFAC (Gmehling et al., 1982)

(CH,0H), (1)| 0.3 | 0.79546 | 0.18400 (—) |0.01166 | —3.26552 | 1439.3
Ci2Hys0H (2) | 0.1 0.00693 | 0.22059 (—) | 0.00031
CHsCN (3) 0.5 | 0.06917 | 0.55733 (—) | 0.81852
HyO (4) 0.1 0.12843 | 0.03808 (—) | 0.16951
oF (—) || 027016 | 0.44443 (—) | 0.28541

Table 5: Solutions for Example 4
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Solution for Water (1) — n-Propanol (2) — n-Hexane (3)
T =311K, P=1.0 atm

Feed Liquid T | Liquid IT | Liquid III G* cpu
Components | (mols) (—) (—) (—) (—) (sec)
Solution using UNIFAC (Fredenslund et al., 1977)
H,0 (1) 0.5 0.00282 0.92272 0.45295 | —0.08812 | 257.1
C3H,OH (2) 0.1 0.06676 0.07715 0.48501
CeH1a (3) 0.25 0.93042 0.00013 0.06204
o (—) | 0.30888 | 0.58396 | 0.10716
Solution using UNIFAC (Magnussen et al., 1981), Conditions (i)
H,0 (1) 0.5 0.05088 0.92300 (—) —0.16650 | 101.7
C3H,0H (2)| 0.1 | 0.18431 | 0.07612 (—)
CeHis (3) | 0.25 | 0.76481 | 0.00089 (—)
oF (—) 0.38385 | 0.61615 (—)
Solution using UNIFAC (Magnussen et al., 1981), Conditions (ii)
H,0 (1) 0.5 0.84154 0.31021 (—) —0.50383 | 213.5
C:H,0H (2)| 0.4 | 0.15379 | 0.40725 (—)
CeHis (3) | 0.25 | 0.00467 | 0.28254 (—)
¢* (—) 0.23446 | 0.76554 (—)

Table 6: Solutions for Example 5
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Solution for Ethanol (1) — Benzene (2) - Water (3)
T =298K, P=1.0 atm

Components

Feed
(mols)

Liquid I
(=)

Liquid II
(—)

(—)

cpu

(sec)

Solution using UNIFAC (Magnussen et al., 1981) equation

C,HsOH (1) | 0.2 0.16195 | 0.23552 | —3.02954 | 15.25
CsHs (2) 0.4 0.80995 | 0.01731
H,0 (3) 0.4 0.02810 | 0.74717
oF (—) 0.48280 | 0.51720

Solution using UNIQUAC (Prausnitz et al., 1980)

CyHsOH (1) | 0.2 0.13566 | 0.25660 | —2.99483 | 13.4
CsHs (2) 0.4 0.82005 | 0.03045
H,0 (3) 0.4 0.04429 | 0.71295
oF (—) 0.46802 | 0.53198

32

Table 7: Solutions for Example 6




Solution for Ethanol (1) — Ethyl Acetate (2) — Water (3)
T =343K, P =1.0 atm

Feed Liquid T | Liquid II G* cpu
Components (mols) (—) (—) (—) (sec)
Solution using UNIFAC (Magnussen et al., 1981) equation
C>HsOH (1) 0.08 0.03127 0.12436 | —0.27823 | 7.8
C2HsCOOCH; (2) 0.30 0.01446 0.55993
HyO (3) 0.62 0.95427 0.31571
oF (—) 0.47653 | 0.52347
Solution using NRTL (van Zandijcke and Verhoeye, 1974)
C:Hs0H (1) 0.08 0.05601 0.10376 | —0.30125 | 1.4
C>HsCOOCH; (2) 0.30 0.08472 0.51320
H,O (3) 0.62 0.85927 0.38305
o (—) | 0.49757 | 0.50243
Solution using ASOG (Kojima and Tochigi, 1979)
C2HsOH (1) 0.08 0.06968 0.10288 | —0.25457 | 2.1
C2HsCOOCH; (2) 0.30 0.07645 0.79539
H,O (3) 0.62 0.85387 0.10173
oF (—) 0.68906 | 0.31094

Table 8: Solutions for Example 7
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Solution for Methanol (1) — Methyl Acetate (2) — Water (3)

T = 325K, P = 0.965 atm

Feed Liquid I | Liquid IT | Vapor G* cpu
Components (mols) (—) (—) (—) (—) (sec)
Solution using UNIFAC (Gmehling et al., 1982)
CH;0H (1) 0.15 0.17493 0.16602 | 0.11789 | —1.33446 | 8.8
CH3;COOCH;3 (2) 0.45 0.10661 0.72941 | 0.76490
H,O0 (3) 0.40 0.71846 0.10457 | 0.11720
o* (—) 0.47259 | 0.10700 | 0.42041
Solution (LL only) using ASOG (Kojima and Tochigi, 1979)
CH;0H (1) 0.05 | 0.04953 | 0.05081 | (—) | 0.24980 | 2.1
CH;COOCH; (2)| 0.15 || 0.08204 | 053740 | (—)
H,0 (3) 0.60 | 0.86753 | 0.41179 | (—)
oF (—) 0.63241 | 0.36759 (—)

Table 9: Solutions for Example 8
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Solution for Heptane (1) — Hexane (2) — Methanol (3)
T =330K, P=1.0 atm

Feed Liquid T | Liquid II G* cpu
Components | (mols) (—) (—) (—) (sec)
Solution using UNIFAC (Magnussen et al., 1981) equation

CzHie (1) 0.2 0.32519 0.07709 | —0.40584 | 11.1
CeH1s (2) 0.2 0.31631 0.08581
CH;0H (3) 0.6 0.35849 0.83709
oF (—) 0.49539 | 0.50461

Solution using NRTL (Sgrensen and Arlt, 1980)

CzHi6 (1) 0.2 0.34182 0.11313 | —0.45738 | 1.8
CeH1s (2) 0.2 0.32552 0.12311
CH;0H (3) 0.6 0.33266 0.76376
oF (—) 0.37986 | 0.62014

Solution using ASOG (Kojima and Tochigi, 1979)

CzHi6 (1) 0.2 0.42916 0.05265 | —0.33066 | 3.4.
CsHis (2) | 02 | 041604 | 0.06108
CH;0H (3) 0.6 0.15480 0.88627
oF (—) 0.39136 | 0.60864

Table 10: Solutions for Example 9
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Solution for Toluene (1) — n-Propanol (2) — Water (3)
T=278K, P=1.0 atm

Table 12: Solutions for Example 10
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Feed Liquid T | Liquid IT | Liquid III G* cpu
Components | (mols) (—) (—) (—) (—) (sec)
Solution using NRTL (Sgrensen and Arlt, 1980)
C-Hg (1) 0.3 0.00154 0.69270 0.40457 | —0.26734 | 4.0
C3H,OH (2) 0.2 0.04372 0.24270 0.38868
H,O0 (3) 0.5 0.95473 0.06460 0.20653
o (—) || 0.44006 | 0.25262 | 0.30732
Solution using UNIFAC (Magnussen et al., 1981)
C-Hg (1) 0.3 0.52987 0.00040 (—) —0.36462 | 8.9
C:H,0H (2)| 02 | 0.32588 | 0.03594 (—)
H,0 (3) 0.5 | 0.14425 | 0.96366 (—)
oF (—) 0.56584 | 0.43416 (—)
Table 11: Solutions for Example 10
Solution for Toluene (1) — n-Propanol (2) — Water (3)
T =298K, P=1.0 atm
Feed | Liquid I | Liquid II G* cpu
Components | (mols) (—) (—) (—) (sec)
‘ Solution using NRTL (Sgrensen and Arlt, 1980)
CzHg (1) 0.3 0.55463 0.00254 | —0.27606 | 3.1
C3H,OH (2) 0.2 0.32398 0.05517
H,0 (3) 05 | 0.12139 | 0.94228
oF (—) 0.53878 | 0.46122
Solution using UNIFAC (Magnussen et al., 1981)
CzHg (1) 0.3 0.53377 0.00064 | —0.35798 | 9.1
C3H,OH (2) 0.2 0.32086 0.04523
H,O (3) 0.5 0.14537 0.95413
o* (—) 0.47721 | 0.52279




Hexanol (1) — Nitromethane (2) — Water (3)
Comp. % =q ; t—J | Auj/R | Auj/R
CeH.130H | 4.132 | 4.8031 || 1 -2 | 331.76 | 468.898
CH3;CN 1.868 | 2.0086 || 1 —3 | 64.177 | 360.85
H,0 1.4 0.92 2-3 | 499.65 | 159.11

Table 13: Pure component and binary data for Example 11

Solution for Hexanol (1) — Nitromethane (2) — Water (3)
T =294K, P =1.0 atm

Feed Liquid I | Liquid II | Liquid III G* cpu
Components (mols) (—) (—) (—) (—) (sec)
Solution using UNIQUAC (Walas, 1985)
CsH.130H (1) 0.2 0.66132 0.00064 0.00017 | —0.10229 | 7.0
CH3CN (2) 0.5 0.04693 0.04464 0.95110
H,0 (3) 0.3 0.29175 0.95472 0.04872
o (—) || 0.30210 | 0.19631 | 0.50159
Solution using UNIFAC (Magnussen et al., 1981)
CsH.130H (1) 0.3 0.51308 0.07921 (—) —0.28494 | 11.0
CH;CN (2) | 0.6 | 0.36804 | 0.84035 (—)
H,0 (3) 0.I | 0.11888 | 0.08044 (—)
¢* (—) | 0.50888 | 0.49112 (—)

Table 14: Solutions for Example 11
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Solution for Hexanol (1) — Nitromethane (2) — Water (3)
T=313K, P=1.0 atm

Feed Liquid T | Liquid II G* cpu
Components (mols) (—) (—) (—) (sec)
Solution using UNIQUAC (Sgrensen and Arlt, 1980) ‘
CsH.130H (1) 0.1 0.19458 0.00127 | —0.15819 | 9.5
CH3CN (2) 0.3 0.55029 0.03872
H,O (3) 0.6 0.25513 0.96001
o* (—) 0.51074 | 0.48926
Solution using UNIFAC (Magnussen et al., 1981)
CsH.130H (1) 0.1 0.17404 0.00114 | —0.16503 | 9.6
CH3CN (2) 0.3 0.52467 0.00004
H,O (3) 0.6 0.30129 0.99881
#* (—) 0.57175 | 0.42825
Table 15: Solutions for Example 11
Solution for Phenol (1) — Acetone (2) — Water (3)
T =330K, P=1.0 atm
Feed || Liquid I | Liquid II G* cpu
Components (mols) (—) (—) (—) (sec)
Solution using NRTL (Sgrensen and Arlt, 1980)
CeHsOH (1) | 0.10 | 0.27502 | 0.01663 | —2.45737 | 0.9
CH3;COCH;3 (2) 0.05 0.13682 0.00864
H,O (3) 0.85 0.58816 0.97473
o* (—) 0.32265 | 0.67735
Solution using UNIFAC (Magnussen et al., 1981)
CsHsOH (1) | 0.10 | 0.44011 | 0.00334 | —2.39238 | 4.7
CH3;COCH;3 (2) 0.05 0.21480 0.00316
H,O (3) 0.85 0.34509 0.99350
oF (—) 0.22131 | 0.77869

Table 16: Solutions for Example 12
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Ethanol (1) — Acetic Acid (2) — Ethyl Acetate (3) — Water (4)

T = 355K, P =1 atm.

Liquid Vapor G* cpu
Component | (mol fraction) (mol fraction) (—) (sec)
Solution using NRTL (McDonald and Floudas, 1995c¢)

EtOH (1) 0.03980 0.07830 -90.7795 | 3.0
HAc (2) 0.20181 0.06984
EtAc (3) 0.08163 0.44147
H,O (4) 0.67676 0.41038
PF 0.04964 0.95036

Solution using UNIFAC (Gmehling et al., 1982)

EtOH (1) 0.08678 0.09382 —90.78438 | 90.1
HAc (2) 0.27450 0.05773
EtAc (3) 0.19776 0.44760
H,0 (4) 0.44096 0.40085
PF 0.16124 0.83876

Solution using Wilson parameters (Suzuki et al., 1969)

EtOH (1) 0.04898 0.08289 —90.7816 | 0.03
HAc (2) 0.20419 0.06570
EtAc (3) 0.11719 0.45408
H,O (4) 0.62965 0.39733
PF 0.09970 0.90030

Table 17: Global solutions for Example 13 at T=355K
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Computational requirements for all examples in seconds
Example | NRTL | UNIQUAC | UNIFAC ASOG
Ex. 1 0.23 (—) 0.37 0.32
Ex. 2a (—) 19.67 (—) —)
Ex. 2b (—) 16.41 (—) (—)
Ex. 2¢ (—) 15.26 (—) (—)
Ex. 2d (—) 14.48 (—) (—)
Ex. 2e (—) 15.16 (—) (—)
Ex. 3 1.33 (—) 6.32 (—)
Ex. 4a (—) 20.65 17.0 (—)
Ex. 4b (—) (—) 1921.6 (—)
Ex. 4c (—) (—) 1439.3 (—)
Ex. 5 (—) (—) 257.1 (—)
Ex. 5 (i) (—) (—) 101.7 (—)
Ex. 5 (i) | (—) (—) 213.5 (—)
Ex. 6 (—) 13.4 15.25 (—)
Ex. 7 1.4 (—) 7.8 2.1
Ex. 8 (—) (—) 8.8 2.1
Ex. 9 1.8 (—) 11.1 3.4
Ex. 10a 4.0 (—) 8.9 (—)
Ex. 10b 3.1 (—) 9.1 (—)
Ex. 11a (—) 7.0 11.0 (—)
Ex. 11b (—) 9.5 9.6 (—)
Ex. 12 0.9 (—) 4.7 (—)
Ex. 13 3.0 (—) 90.1 (—)

Table 18: Summary of Computational results for all examples

40



Computation time (secs) for UNIFAC examples

Example‘77:1.0‘7]:0.5‘77:0.35‘77:0.2‘

Ex. 4b | 1921.6 | 360.8 | 199.0 | 87.5
Ex. 4c | 1439.3 | 305.3 | 154.8 | 65.7
Ex.5 | 257.1 | 85.3 51.9 24.0

Ex. 5 (i) | 101.7 | 85.3 51.9 24.0

Ex. 5 (i) | 2135 | 75.2 47.8 29.0
Ex.13 | 90.1 | 3338 19.7 11.6

Table 19: Summary of results for some UNIFAC examples
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Figure 1: Outline of the combined algorithm GLOPEQ
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Appendix A

Expressions for the Gibbs free energy

In this section, the expressions for the Gibbs free energy for the fugacity models used in
GLOPEQ are given. The Gibbs functions can be transformed so that the objective function
to be minimized will be either (i) bilinear, or (ii) the difference of two convex functions (D.C.).
For the first of these classes, the Global OPtimization (GOP) of Floudas and Visweswaran
(1990,1993) is used for cases where the nonconvexities of the formulations are of a bilinear
form. which involves introducing a set of bilinear constraints into the formulation, and this
is discussed in McDonald and Floudas (1995¢) for the minimization of the Gibbs free energy,
and in McDonald and Floudas (1995a) for the phase stability problem. For the second class,
the branch and bound algorithm of Falk and Soland (1969) is used to obtain global solutions

for the case when the nonconvexities are of a separable form.

Molar Gibbs function leading to a bilinear formulation

1. NRTL Equation (Renon and Prausnitz, 1968):

McDonald and Floudas (1995c¢) showed how the total Gibbs free energy could be transformed
into the summation of a convex portion and a bilinear fractional portion. The molar Gibbs

free energy when the NRTL equation is used to model the liquid phase is given by:

" 3 i

IE) S NG 4+

RT ; lz;] Gz
€

Nonconvexities arise through the bilinear fractional term.

Molar Gibbs function leading to D.C. formulations

For the equations considered in this section, the objective function can be written as the
difference of two convex functions, where the concave portion is separable. The convex portion
is signified by C(«) and the coefficient designating the concave portion is g; so that the molar
Gibbs function is defined as:

% =C(e) — gcpixi In z; (A1)

The definitions of C(x) and ¢; are now given for some activity coefficient correlations.
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1. UNIQUAC Equation (Abrams and Prausnitz, 1975):

McDonald and Floudas (1994a) showed how the Gibbs free energy function can be transformed

into the difference of two convex functions, leading to the following expressions:

Cle) = Z T5 {AGf —zl'riInr; + zqi lnqi}

1€C
+ 4 Z r;z; In E rx; + Z zlrx;In
2€C 1€C 1€C E TJ$J
jec
+ —szln —I—quwlanqzxz—l—qusLyln
zEC %:C 45T  ec e ieC E (]JTle'J
3

with ¢, = ¢ +r;-2*

The parameters of the model are ¢;, ¢; and r; with binary interaction parameters 7;;. z = 10
is the coordination number. The introduced parameters (McDonald and Floudas, 1994a) are

defined as follows:

g — 1
R _
zf =
B __ R . R __ - R
2= [z M] with 27 = mim{zi }
J#a
A B
P zl- + z;

2. UNIFAC Equation (Fredenslund et al., 1977):

McDonald and Floudas (1995b) derived the following expressions for the UNIFAC equation:

AGf R z (1) A
Cle) = Zl’z —Zirilnri—l——qilnqi—v + z -Zriwianrixi
1eC 1eC 1eC
+ z7riz;In + = G; x5 In
g(; E riT; 2 g(:; E ;25
jec
+ Z iq; In Z T5q; + Z x; Z v Q1 ln
ieC ieC ieC  leG 3015

JEC
with ¢, = ¢ +ri-2"

The parameters of the original model are )y, R; and vy; with binary interaction parameters

Ujm. The remaining parameters are defined as follows:

= Z Qi

leG
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ri = > vl

leG

0 = Y, QumvmiVm
meG

) = Z’Uli In ng)
leG

: 2 mi m\I}m
lnfgl):Q{l—l U—I—Zv Q l}
ql meG Um?.

2%, z[* and z] are defined exactly as for the UNIQUAC equation.

3. Wilson Equation (Wilson, 1964):

McDonald and Floudas (1995b) proved that the Wilson equation leads to a convex expression
for the Gibbs energy. It is therefore incapable of describing liquid phase—splitting and a global

optimization algorithm is not required. In this case:

g(z) z;
AAGhym " A2
RT ZT{ ¢ —I_HEQ;JA”} (4.2)

eC
7 jec

where A;; are the binary interaction parameters of the system.

4. Modified Wilson Equation (Tsuboka and Katayama, 1975):

McDonald and Floudas (1995b) obtained the following expressions for the modified Wilson

equation:

Z xJpJ’L] In [ Z xJIOJ’L]

jec jeC

_ !
Cle) = sz {AG + In > xJAﬂ} —I_%(;

.eC
2 JEC

22 wansiln Z Tpy

1€C j#2 icc

Wlth 991' = Zpﬁ
J#i

The binary interaction parameters are given by A;;. p;; are the liquid volume ratios.

5. ASOG Equation (Kojima and Tochigi, 1979):
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McDonald and Floudas (1995b) derived the following expressions for the ASOG equation:

Cle) = Z T; {AG{ +Iny — v(i)}

1€C
+ Zrzln —I—ersanx‘v —I—Zquhln
ieC E TiV5  ec ieC i€C  1eG E 501
s

with o, = v

2

The parameters of the model are v;, vy; and g, with the introduced parameters defined as:

vf = ZUH

leG
O = Y Umilim
meG
’U(z) = Z’Uh' In ng)
leG
; Ul Ums ° Oml
T = 1 —n % y i Ot
Ui rUmz
meG
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Appendix B

Both the input file used for Example 1 and the resulting output file are given in this Appendix.

#

# Example input file for GLOPEQ
#

# Example 1: n-Butyl-Acetate -- Water
#

# Parameters obtained from Heidemann and Mandhane (1973)
#

GIBBS MODEL

NRTL

#

PROBLEM NAME

n-Butyl Acetate (1) -- Water (2)
#

NUMBER OF COMPONENTS

2

#

TAU BINARY DATA

0.0 3.00498
4.69071 0.0

#

ALPHA BINARY DATA

0.0 0.391965
0.391965 0.0

#

BEGIN OPTIONS

#

TOTAL MOLS

0.5

0.5

#

LOCAL SOLVES

20

#

EPSA

0.0001

#

EPSR

0.0005

#

MAXIMUM ITERATIONS

1000

#

END OPTIONS

#

#MINIMIZE GIBBS

#NUMBER OF LIQUID PHASES
#2
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Welcome to GLOPEQR, Version 1.0.

A GLobal Optimization package for the Phase and chemical EQuilibrium problem.
Copyright (c) Conor M. McDonald and Christodoulos A. Floudas.

Department of Chemical Engineering, Princeton University, Princeton, N.J.

All rights reserved.

All queries and bug reports should be sent to conor@titan.princeton.edu

PROBLEM TITLE:

n-Butyl Acetate (1) -- Water (2)

HERE IS THE DATA YOU SUPPLIED FOR THE PROBLEM:

PLEASE CHECK THE INPUT FOR POSSIBLE MISTAKES

ACTIVITY COEFFICIENT MODEL USED IS NRTL

BINARY COMPONENT INTERACTION PARAMETERS, TAU[I,J]

Cc-1 C-2
Cc-1 0 3.00498
C-2 4.69071 0

BINARY COMPONENT INTERACTION PARAMETERS, G[I,J]

Cc-1 C-2
Cc-1 1 0.307941
C-2 0.159041 1

nT[i] dG[L] dG[v] LIN[L] LIN[V]
c-1 0.500000 0.000000 0.000000 0.000000 0.000000
c-2 0.500000 0.000000 0.000000 0.000000 0.000000

TEMPERATURE NOT SUPPLIED
PRESSURE = 1.00000 ATHM

NUMBER OF LOCAL SOLVES 1
MAXIMUM ITERATIONS ALLOWED 500
MAXIMUM SUBPROBLEMS ALLOWED = 50000

ABSOLUTE CONVERGENCE TOLERANCE = 0.00010
RELATIVE CONVERGENCE TOLERANCE = 0.00050

***x*x* PHASE 1: GENERATING BEST SOLUTION USING 1 LOCAL SEARCH

MINIMIZING GIBBS FREE ENERGY FUNCTION LOCALLY

TOTAL NUMBER OF PHASES

NUMBER OF LIQUID PHASES
NUMBER OF VAPOR PHASES
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BEST SOLUTION AT PHASE 1 IS GIVEN AS:

MOL NUMBER VARIABLES:

P-1 P-2
Cc-1 0.497866 0.00213431
C-2 0.0345301 0.46547

PHASE FRACTIONS:

P-1 P-2
B-1 0.532396 0.467604

MOL FRACTION VARIABLES:

P-1 P-2

Cc-1 0.935142 0.00456436

C-2 0.0648579 0.995436

CHEMICAL POTENTIALS:

P-1 P-2
Cc-1 -0.0352296 -0.0352296
C-2 -0.003983 -0.003983

CHEMICAL POTENTIALS FOR USE IN NEXT PHASE:

Cc-1 C-2
Y-1 -0.0352296 -0.003983

*#x**x END OF PHASE 1 (CURRENT BEST SOLUTION DOES NOT CONTAIN A VAPOR PHASE)

*#****x PHASE 2 (i) STABILITY CHECK FOR LIQUID PHASE

MINIMIZING TANGENT PLANE DISTANCE FUNCTION FOR LIQUID PHASE

sk ok ok ok ok sk ki ok ook o ok o ko skok sk ok sk Kok ok ok ok ok ok
**kk*x*% BEGINNING GLOBAL SEARCH **¥¥*

3k 3k 3k 3k 3k 3 3k 3k ok 3k ok 3k 3k ok 3k ok ok ok 3k ok 3k ok 3k 3k dk ok ok ok ok ok kK k

MINIMIZING TANGENT PLANE DISTANCE FUNCTION FOR 2 COMPONENTS

NEGATIVE TANGENT PLANE DISTANCE FUNCTION FOUND

RETURNING CONTROL TO MAIN PROGRAM

%% SUMMARY OF GLOBAL SEARCH ***
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BEST SOLUTION AFTER O ITERATIONS HAS OF = -0.000703300

MOL FRACTION VARIABLES:

Cc-1 C-2
M-1 0.594248 0.405752

CHEMICAL POTENTIALS:

Cc-1 C-2

M-1 -0.0359329 -0.00468629

LOWER BOUND = -100000000.000000000

UPPER BOUND = -0.000703300

ABS DIFF = 99999999.999296695

ABSOLUTE CONVERGENCE TOLERANCE = 0.000100
RELATIVE CONVERGENCE TOLERANCE = 0.000500
NUMBER OF ITERATIONS = 0
NUMBER OF SUBPROBLEMS SOLVED = (o]
NUMBER OF SUBPROBLEMS STORED = (o]
NUMBER OF SUBPROBLEMS FATHOMED = (o]
NUMBER OF SUBPROBLEMS ELIMINATED = (o]
FATHOMING RATE = 0.00
TIME TAKEN (in secs) = 0.00

3k 3k 3k 3k 3k 3 3k ok ok 3k ok 3k 3k ok 3k ok ok ok 3k 5k 3k ok 3k ek ok ok ok k kK

*%*x*x* END OF GLOBAL SEARCH *****
sk sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok sk skok ok ok ok Kok K

*%*xx* ENDING PHASE 2 STABILITY CHECK
***x*x* LIQUID PHASE UNSTABLE

**x*x* PHASE 2 -- SEARCH FOR LOWER GIBBS ENERGY

MINIMIZING GIBBS FREE ENERGY FUNCTION LOCALLY

TOTAL NUMBER OF PHASES

NUMBER OF LIQUID PHASES
NUMBER OF VAPOR PHASES

3k 3k 3k 3k 3k 3 3k ok 3k 3k ok 3k 3k ok 3k ok 3k ok 3k ok 3k ok 3k ek ok ok %k ok ok ok kK k

*%kx*x* BEGINNING GLOBAL SEARCH **¥¥*
sk sk ok ok ok ok sk ok ok ok ok ok ook kokok skok ok ok sk Kok ok ok ok ok ok

MINIMIZING GIBBS FREE ENERGY FUNCTION FOR 2 COMPONENTS

TOTAL NUMBER OF PHASES
NUMBER OF LIQUID PHASES
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NUMBER OF VAPOR PHASES = 0

NO IMPROVEMENT FOUND USING 1 LOCAL SEARCHES

NO IMPROVEMENT FOUND USING 1 LOCAL SEARCHES

IMPROVED SOLUTION FOUND FOR GIBBS FREE ENERGY

RETURNING CONTROL TO MAIN PROGRAM

*%* SUMMARY OF GLOBAL SEARCH ***

BEST SOLUTION AFTER 47 ITERATIONS HAS OF = -0.020198312

MOL NUMBER VARIABLES:

P-1 P-2
Cc-1 0.499286 0.000713609
C-2 0.344121 0.155879

PHASE FRACTIONS:

P-1 P-2
B-1 0.843407 0.156593

MOL FRACTION VARIABLES:

P-1 P-2
Cc-1 0.591987 0.00455711
C-2 0.408013 0.995443

CHEMICAL POTENTIALS:

P-1 P-2
Cc-1 -0.0364191 -0.0364191
C-2 -0.00397755 -0.00397755

LOWER BOUND = -0.025007944

UPPER BOUND = -0.020198312

ABS DIFF = 0.004809633

ABSOLUTE CONVERGENCE TOLERANCE = 0.000100
RELATIVE CONVERGENCE TOLERANCE = 0.000500
NUMBER OF ITERATIONS = 47
NUMBER OF SUBPROBLEMS SOLVED = 152
NUMBER OF SUBPROBLEMS STORED = 98
NUMBER OF SUBPROBLEMS FATHOMED = 54
NUMBER OF SUBPROBLEMS ELIMINATED = 2
FATHOMING RATE = 35.53
TIME TAKEN (in secs) = 0.50
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3k 3k 3k 3k 3k 3k 3k 3k ok 3k ok 3k 3k ok 3k ok ok ok 3k ok 3k ok 3k 3k dk ok k k kK

*%*xx* END OF GLOBAL SEARCH *****
sk sk ok ok ok ok ok sk ok ok ok ok ok ook ok ok ok sk skok ok ok ok Kok K

MOL NUMBER VARIABLES:

P-1 P-2
Cc-1 0.499286 0.000713609
C-2 0.344121 0.155879

PHASE FRACTIONS:

P-1 P-2
B-1 0.843407 0.156593

MOL FRACTION VARIABLES:

P-1 P-2
Cc-1 0.591987 0.00455711
C-2 0.408013 0.995443

CHEMICAL POTENTIALS:

P-1 P-2

Cc-1 -0.0364191 -0.0364191

C-2 -0.00397755 -0.00397755

CHEMICAL POTENTIALS FOR USE IN NEXT PHASE:

Cc-1 C-2
Y-1 -0.0364191 -0.00397755

*#x**x END OF PHASE 2 (CURRENT BEST SOLUTION DOES NOT CONTAIN A VAPOR PHASE)

*#x**x PHASE 3 (i) STABILITY CHECK FOR LIQUID PHASE

MINIMIZING TANGENT PLANE DISTANCE FUNCTION FOR LIQUID PHASE

sk sk ok ok ok ok sk Kk ok ook ok ko ok ko sk sk sk Kok ok ok ok ok ok
*kk** BEGINNING GLOBAL SEARCH **¥¥*

3k 3k 3k 3k 3k 3 3k 3k ok ok ok 3k 3k ok 3k ok ok ok 3k ok 3k ok 3k ok ok %k ok ok ok kK k

MINIMIZING TANGENT PLANE DISTANCE FUNCTION FOR 2 COMPONENTS

*%*% SUMMARY OF GLOBAL SEARCH ***

52



CONVERGENCE AFTER 25 ITERATIONS HAS OF =

MOL FRACTION VARIABLES:

Cc-1
M-1

C-2
0.591987 0.408013

CHEMICAL POTENTIALS:

Cc-1
M-1

C-2
-0.0364191 -0.00397757

LOWER BOUND
UPPER BOUND =

-0.000082477
0.000000000

ABS DIFF

0.000082477

ABSOLUTE CONVERGENCE TOLERANCE
RELATIVE CONVERGENCE TOLERANCE

NUMBER OF ITERATIONS

NUMBER OF SUBPROBLEMS SOLVED
NUMBER OF SUBPROBLEMS STORED
NUMBER OF SUBPROBLEMS FATHOMED

NUMBER OF SUBPROBLEMS ELIMINATED
FATHOMING RATE

TIME TAKEN (in secs)

3k 3k 3k 3k 3k 3k 3k ok ok 3k ok 3k 3k ok 3k ok ok ok 3k ok 3k ok 3k sk ok ok ok ok k ok k

%k %k %k k

END OF GLOBAL SEARCH *****

3k 3k 3k 3k 3k 3k 3k ok ok 3k ok 3k 3k ok 3k ok ok ok 3k ok 3k ok 3k sk ok ok ok ok k ok k

& %k %k %k k

&k %k %k k

&k %k %k k

%k %k %k %k k

0.000100
0.000500

25

50

30

20

0
40.00

ENDING PHASE 3 STABILITY CHECK

LIQUID PHASE STABLE

GLOBALLY STABLE EQUILIBRIUM SOLUTION FOUND:

GIBBS FREE ENERGY VALUE IS:

MOL NUMBER VARIABLES:

P-1 P-2
Cc-1 0.499286 0.000713609
C-2 0.344121 0.155879
PHASE FRACTIONS:

P-1 P-2
B-1 0.843407 0.156593

MOL FRACTION VARIABLES:

-0.020198312

0.000000000
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P-1 P-2
Cc-1 0.591987 0.00455711
C-2 0.408013 0.995443

CHEMICAL POTENTIALS:

P-1 P-2

Cc-1 -0.0364191 -0.0364191
C-2 -0.00397755 -0.00397755

TOTAL TIME TAKEN (in secs) =

0.

66
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