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Abstract

An increasingly popular approach when solving the phase and chemical equilibrium
problem is to pose it as an optimization problem. However, difficulties are encountered
due to the highly nonlinear nature of the models used to represent the behavior of
the fluids, and because of the existence of multiple local solutions. This work shows
how it is possible to guarantee e-global solutions for a certain important class of the
phase and chemical equilibrium problem, namely when the liquid phase can be modeled
using either the Non-Random Two-Liquid (NRTL) equation, or the UNIversal QUAsi
Chemical (UNIQUAC) equation. Ideal vapor phases are easily incorporated into the
global optimization framework. A number of interesting properties are described which
drastically alter the structure of the respective problems. For the NRTL equation, it is
shown that the formulation can be converted into a biconvex optimization problem. The
GOP algorithm of Floudas and Visweswaran [8, 9] can then be used to obtain e-global
solutions in this case. For the UNIQUAC equation, the new properties show how the
objective function can be transformed into the difference of two convex functions (i.e.
a D.C. programming problem is obtained), where the concave portion is separable. A
branch and bound algorithm based on that of Falk and Soland [6] is used to guarantee
convergence to an e-global solution. Examples are presented which demonstrate the

performance of both algorithms.
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1 Introduction

A crucial step in the design of any separation process is the ability to predict the behavior of
the fluids, when there may be several fluid phases and components that may or may not be
reacting. For many separations processes, the assumption that the fluids are in equilibrium
is made. The goal is to effectively model these processes over a potentially wide range of
operating conditions. Such models can yield complex and nonlinear expressions with resultant
difficulties in obtaining the solutions that actually describe the process.

For the phase and chemical equilibrium problem there have been essentially two basic
approaches. The first of these is equation based, and is not considered in this work. A useful
reference in this area is the book of Smith and Missen [21]. An increasingly popular approach
is to explicitly minimize the thermodynamic function that describes the equilibrium condition.
In the context of this work, this function will be the Gibbs free energy, and a global minimum
implies that the system at hand is at equilibrium. Seider et al. [20] provide a review of the
methods used to solve this optimization problem. Ohanomah and Thompson [14, 15, 16] give a
comparative study of the available methods. These methods have typically been second-order
Newton type methods with resultant dependency on starting point in terms of quality of the
final solution. Other approaches have been used. Sun and Seider [22] use a Newton-homotopy
continuation algorithm to obtain the stationary points of the Gibbs free energy surface. Paules
and Floudas [17] employ the Global Optimal Search algorithm of Floudas et al. [7] to find
the equilibrium solution. Eubank et al. [5] provide an interesting alternative approach based
on integrating the area under the Gibbs free energy curve.

It is observed that all these algorithms share one drawback: there is no theoretical guaran-
tee of convergence to the true equilibrium solution — or even to a proper local solution in some
cases. This represents a serious disadvantage in attempting to describe phase equilibrium
with or without chemical reaction. Due to the complex nature of the models used to describe
the equilibrium situation, there may be several local solutions to the problem at hand. Thus,
the certainty of convergence to the global solution for conventional methods will be highly
dependent on starting point.

In this paper, the phase and chemical equilibrium problem is examined for the case where
the liquid phase can be modeled by the NRTL and UNIQUAC equations, and the vapor
phase is assumed to behave ideally. Both of these equations have the ability to predict liquid-

liquid immiscibility and can describe multicomponent mixtures with binary parameters only.



The NRTL and UNIQUAC equations are algebraically complex and lead to highly nonconvex
expressions for the Gibbs free energy function that usually lead to multiple local solutions.
In the following section, the requisite thermodynamic background for the phase and chem-
ical equilibrium problem is provided, describing the assumptions that are made in this work.
Then, a simplifying property for the NRTL equation is presented. It will be shown how the
formulation for the NRTL equation can be transformed from its original nonconvex form into
an optimization problem where a biconvex objective function is minimized subject to a bilin-
ear set of constraints. This induced special structure allows the Global OPtimization (GOP)
algorithm of Floudas and Visweswaran [8, 9] to be used to obtain global solutions to this
problem. Next, the structure of the UNIQUAC equation is examined in detail. Two impor-
tant properties are introduced which simplify the Gibbs energy expression, but still leave it
in a nonconvex form. Additionally, some manipulation of terms reveal how this nonconvex
expression can be transformed into the difference of two convex functions, where the concave
portion of the objective function can be either nonseparable or separable. These changes occur
purely in the objective function, so that it is not necessary to introduce new transformation
variables as is the case for the NRTL equation. Having induced this special structure in the
problem, an algorithm based on the branch and bound algorithm of Falk and Soland [6] is
used to obtain the global solution of this problem. In summary, the main contribution of
this work is to show that for ideal vapor phases and liquid phases whose behavior may be
predicted by the NRTL or the UNIQUAC equation, attainment of an e-global solution can be

guaranteed from any starting point.

2 Problem Formulation

In this section, a general outline of the phase and chemical equilibrium problem will be given.
The focus is on systems that attain equilibrium states under conditions of constant temper-
ature and pressure, where the global minimum value of the Gibbs free energy describes the
true equilibrium state. The set of components is represented by the index set C' = {7} and
the elements that constitute these components are given by £ = {e}. The set of phases is
denoted by P = {k} where it is composed of vapor and liquid phases, labeled P, and P,
respectively, so that P = P, U P,. The problem may then be stated as follows:

Given @ components participating in up to k potential phases under isothermal and
isobaric conditions find the mol vector n that minimizes the value of the Gibbs free

enerqy while also satisfying the appropriate material balance constraints.



For a multicomponent, multiphase system, the criterion of equilibrium dictates that the Gibbs

free energy function, G(n), attain its minimum:

min  G(n) =Y Y nf {AGf’f + RT'In f]j:ko} (1)
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where n¥ is the number of moles of species i present in phase k, fl-k and fz-k’o are the fugacity
coefficients for the mixture and the pure component at the standard state respectively. The
standard state is the fugacity of the component in its pure state at the temperature and
pressure of the system. AGf’f represents the Gibbs free energy of formation of component @
in phase state k at the system temperature.

Difficulties in the use of Eqn. (1) arise due to the complicated expressions available for the
expressions for fugacity. The liquid phase is modeled through the use of activity coefficients
where the fugacity ratio is expressed as:

L
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where z} denotes the mole fraction of species ¢ in the liquid phase, and 4} is the corresponding
activity coefficient at the system temperature and pressure.
The fugacity of the ideal vapor phase can be expressed as follows:
fiv _ v

— Py 3
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where 3 represents the vapor phase mol fraction at a total system pressure P. The standard

state for the vapor phase is taken as an ideal gas at unit fugacity at the system temperature

where this quantity is usually equal to 1 atm.
Material Balances

The objective function as described by Eqn. (1) must yield a solution that will satisfy the
conservation of mass requirements. These can take either of two forms depending on whether
reaction occurs in the system and introduce a set of linear equality constraints into the for-

mulation.

(a) Elemental Constraints: For simultaneous phase and chemical equilibrium where reaction

does occur, conservation of the constituent atoms must be satisfied:

ZZaeinf =b, V eck (4)
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where ag; represents the number of gram-atoms of element e in component z, and b, the total

number of gram-atoms of element e in the system.

(b) Mass Balance Constraints: These constraints are required for those systems where no

chemical reaction takes place, and thus conservation over the components need only hold:

ok =l VvV iecC (5)
keP
where nT is the total number of moles of component 7 in the initial charge.
For notational clarity, the material balance constraints for any system, reacting or non-

reacting, will be written in the following general form:
A-n—-b=0 (6)

where n represents the column vector of the component mol numbers, A is the appropriate
elemental or compound abundance matrix, and b is the column vector of the total amounts

of elements or compounds in the system.

Feasibility Constraints: Obviously a physically realizable solution requires that

0 < n¥ < ¥ VieC,keP (7)
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where n7T is the total number of mols in the system.

The complete formulation of the phase and chemical equilibrium for ideal vapor phases
and liquid phases whose fugacities can be adequately modeled by the NRTL or UNIQUAC
equation, is given by minimizing the expression of Eqn. (1) subject to the material balance

constraints supplied by Eqn. (6) and the feasibility constraints of Eqn. (7). The variables
k

of the formulation are the mol numbers n7,
terms of the mol numbers as z¥ = nf/3; nf for all components and phases. There are two

: =

noting that the mol fractions can be defined in

important observations in regard to the optimization formulation:
(i) The constraint set is of small size and linear.
(ii) The only nonlinearity appears in the objective function as n;In ﬁ-/fio.

If the system is ideal then any local solution will be the global one. However, the main
difficulty is that due to the complex nature of the models used to predict fugacities, highly
nonconvex functionalities result. This may lead to local or trivial solutions that are not true
equilibrium solutions, and may lie far away from the correct optimal solution. The obtained

solution will also be highly dependent on the chosen starting point.



3 Analysis for the NRTL Equation

In this section, the Gibbs free energy expression is analyzed for the case of an ideal vapor
phase and liquid phases modeled using the NRTL activity coefficient expression. Renon and
Prausnitz [19] derived the following equation for the liquid-phase activity coefficient:

> TjiG5t; Y ;G
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where 4; is the activity coeflicient at mol fraction z;, 7;; and G;; are non-symmetric binary
interaction parameters. 7;; can be negative but G,; is always positive. One important feature
of the NRTL equation is its capability of representing liquid-liquid immiscibility for multi-
component systems with only binary parameters. Eqn. (8) yields exactly the same expression
for mol numbers as for mol fractions. Substitution of Eqn. (8) into Eqn. (2) yields the correct
liquid phase fugacity term, after rewriting the mol fractions in terms of mol numbers. Eqn. (3)
is assumed to define the vapor phase fugacity. Again, the mol fractions are written in terms of
the vapor mol number variables. Substitution of the resultant vapor and liquid phase fugacity

equations into Eqn. (1) gives the Gibbs free energy function as follows:

AGH nk
min C Z Z n 4+ In—*
i€C keP RT 2 n
JEC (9)
i J%:c 7G5 Gijn > miGung
+ n, + : Tig — S —
;kgL Z g]z ; Z gl_]nl ! E gl_]n;‘:

leC

where (/(n) = G(n)/RT (i.e. dimensionless (7). Note that the pressure term associated with
the fugacity of the vapor phase has been incorporated into the Gibbs energy of formation
term, that is, AG]"”Y = AG}* + RT'In P. This is done in order to collect the linear terms of

the objective function.

3.1 Analysis of the Gibbs free energy function:

As given by Eqn. (9), G(n) is a complex and nonconvex expression. However, the situation

is ameliorated by the following property:
Property 3.1 For each phase k € P, the following relation is true:

%:C’rhgjz gnk I%legljn;c
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Proof: See Appendix A.

This property reduces the complexity of Eqn. (9) greatly, and it brings the crucial advantage
of having bilinear, rather than trilinear, fractional functions in the expression for the objective

function.

Property 3.2 Let p; be positive parameters defined ¥V . Define the real-valued function f;(n)
with n > 0 as follows:

then fi(mn) is conver.

Proof: See Appendix B.

Remark: Based on Property 3.2, if C® is defined as follows:

AGY nk
Cck = nf — 4+ 1In—2 Vkec P
N g(; RT j%:(] n;‘

then the quantity 3 C¥ is convex, since it is a summation of individually linear and convex
k

terms.

This means that the objective function can now be written as a combination of a convex

portion, and a nonconvex portion:

s 5 5 Gijrijn’
min G(n) = ZCN—I—Z Z n; Z J (11)
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The nonconvexities of Eqn. (11) now lie solely in the term to the right of the plus sign. The

following NonConvex Formulation (NCF) is a new formulation:

min  G(n)
st. A-n — b =0 (NCF)

0 <n<n'

V

where G(n) is defined by Eqn. (11) and is a much simpler form for the Gibbs free energy
function than that customarily given by Eqn. (9).



3.2 Transformations and Partitioning

The general form of the optimization problem of interest is given as follows:

3\

min f(z,y)
st h(z,y) = 0
g(z,y) < 0 (12)
r € X
y €Y
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where X and Y are convex sets, f(x,y) is the objective function to be minimized, and h(z,y)
and g(z,y) represent the vectors of equality and inequality constraints respectively. These
functions are assumed to be continuous and piecewise differentiable on X x Y. The GOP
algorithm of Floudas and Visweswaran [8, 9] can be used to to determine an e-global solution

for problems that satisfy the following conditions:
Conditions (A):
e f(z,y) and g(x,y) are convex in z for all fixed y and convex in y for all fixed z,

e h(x,y) is affine in x for all fixed y, and affine in y for all fixed z,

e X and Y C V are nonempty, compact convex sets and a constraint qualification is
satisfied, where V.= { y: h(z,y) = 0,9(z,y) <0, for some z € X}.

It will now be shown how new variables are introduced so as to change the nature of the
nonconvexities in the objective function defined by Eqn. (11). This is known as the trans-
formation phase. Having augmented the variable set in this way, it is then partitioned into
two variable subsets, so that Conditions (A) of the GOP are satisfied. If the following new
variables are introduced:

k
L L
) Y Gjink

jeC

VieC, keP (13)

then the transformed objective function becomes:

min G(n) = Y. CE4+Y Y nk {Zgijﬂ'jq}?} (14)

keP 1€C kePy, jel



This objective function is now subject to the transformation constraints of Eqn. (13) (which
are rewritten by bringing the denominator over to the left hand side so that they will be
of bilinear form, rather than fractional), in addition to the material balance constraints as
defined by Eqn. (6). The objective is to partition the variable set into two subsets so that
if either of these subsets is held constant, an optimization problem with simpler structure
remains. An examination of Eqn. (14) leads to the conclusion that the obvious partition of
variables is that in which the y variable set contains the mol vector, with the x variable set

containing the new variables:

Yy — {nf} T {\I/f} (15)

Notice that if the mol number variable set is held constant, a linear objective function results.
On the other hand, if the transformed variable set is held constant, a convex objective function
is obtained. The equality constraints are of bilinear form and so will yield linear terms if either
of the subsets is held constant. Thus, Conditions (A) of the GOP are satisfied. The form of
the nonconvexities of the objective function have been changed, resulting in the introduction

of additional bilinear equality constraints into the system.

3.3 The Primal Problem

The primal problem is defined as the subproblem that results when the y variable set is held
fixed so that y = y. In what follows, overbars on variables represent their values obtained

from any given primal problem, which is defined as follows:

min Y Cr 430 > A {Z gz’ﬂz’a“l’?}

keP 1€C kePy, jec
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{ﬁf} represents the current value of the mol numbers (the y variable set). The primal problem
(P) is always feasible provided that the mol vector satisfies the material balance constraints
which are functions of the y variables alone. Hence they can be carried directly to the relaxed
dual subproblems. This is the reason the material balance constraints are not included in (P).
Notice that (P) is merely a function evaluation as the x variable set is completely specified
by {fzf}

It will be necessary to use the Karush-Kuhn-Tucker (KKT) conditions for the primal

problem in proceeding sections. The Lagrangian as constructed from the primal problem is



given as:

kcP 1€C kePy, jeC
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where Agr is the multiplier associated with the corresponding constraint that defines the x

variable Wk, The evaluation of the KKT conditions for the primal yields:

V‘I,fL(:C,g,)\) = Zgjﬂ'ﬁﬁ? + )‘\Ilf . Zgﬂ'ﬁf =0 Vi €eC s k € P (17)

JjeC JjeC
The Lagrange multipliers from the primal are then explicitly calculated as:

dpp =% VieC,kePp, (18)

Thus, the multipliers from any primal problem are nonempty and bounded for all y € Y, a
required condition to guarantee e-global convergence. In the special case that }; gﬁnf =0,
it is clear that n* = 0 V ¢ € (, that is, the phase disappears. The corresponding primal
constraints are then of the form W% .0 = 0. This implies that any value for the Lagrange
multipliers can be chosen so that the KK'T conditions will be satisfied for the primal problem
and )‘\I:f = 0V € C isone obvious choice. Thus, if for a given phase k, n®* =0V : € C, then
set )‘\I’f =0V € C; otherwise use Eqn. (18) to calculate the multipliers. This eliminates
the problem of obtaining unbounded values for the multipliers from the primal problem. It is
therefore seen that solving the primal problems and obtaining the corresponding multipliers

amounts to simple function evaluations.

3.4 The Relaxed Dual problem

The primal problem establishes upper bounds on the solution. The relaxed dual subproblems
supply lower bounds on the global solution. The details of the derivation of the Lagrangian

for use in the relaxed dual is described in the following section.

10



3.4.1 Derivation of the Lagrangian

The first step in deriving the Lagrangian is to separate and collect all the = variable terms to

obtain:

L(z,y,\) = Z Z Wk {Z gjiTjin? + 5\‘1,5 > gjinf}

1€C keP;, jec jec (19)
+ D Ch =0 ) nihg
keP 1€C kEPy,

Eqn. (19) is simplified by enacting the following steps:
(i) Subtract Eqns. (17) with Agr = Ags from the terms within the curly braces of Eqn. (19).
(ii) Use Eqns. (18) to modify the term to the right of the minus sign in Eqn. (19).

The following expression is then obtained:

B

i€C keP;, jecC

+OCEHY DT il Y Giymi vk
keP 1€C kEP;, jec

Note that if n¥ = n*¥ Vi € C,k € P,, then the Lagrangian equals the objective function

value supplied by the primal at n¥. By evaluating the gradients of the Lagrangian given by

Eqn. (20) with respect to the x variables, the following equations are obtained:

9 (y) = V\I,fL(:L',y,j\) = Z Gii [Tji + 5\\1,5] . [nf — ﬁﬂ Ve €eC, k € P, (21)

jec

These are the qualifying constraints written in terms of the z variables and describe the
fundamental nature of the interaction of the two variable subsets. Notice that each x variable
multiplies a summation of y variables, so that these constraints form hyperplanes that partition
the y variable space. The next important step in the development is to obtain a much simpler
set of partitioning hyperplanes. This is achieved by simply augmenting the set of x variables,

so that each one of these new x variables will interact with a single y variable, rather than

11



a summation of them. This augmented set of variables, denoted {\i/fj}, is defined for each
{1,k} € C x P, as follows:
E=uF  vjec (22)

The x variables are now allowed to appear within the innermost summation of Eqn. (20) to

yield an equivalent Lagrangian defined as follows:

Hewd) = 3% {Z\I’ (Gai {73 + Aar }] - [} —nﬂ}

(23)
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Eqn. (23) now supplies the new form of the qualifying constraints, labeled gfj(y), obtained
from the modified Lagrangian of Eqn. (23) as:

W) =V Ley,N) = Gu[ri+ |- [nh—n] vieC,jec, kepr, (20)

Thus, each qualifying constraint is now a function of a single y variable, with the important
result that the hyperplanes are now orthogonal to each other, and partition the y variable

space into n-rectangles (i.e. simple boxes). The number of connected variables is given as:
Nev = [C] - |P.] (25)

where the braces signify the cardinalities of the appropriate sets.
k—nk).
The only difference is the expression that premultiplies this term. These are constants that

In Eqn. (24), each qualifying constraint shares the same basic form, defined as (n

depend on the parameters of the NRTL model and information from the primal in the form of
the Lagrange multipliers. Eqn. (7) delineates the feasible region as an n-rectangle. The initial
parent region is described by this n-rectangle, and its bounds are represented by R{LE UR},
where LB = {LE} and UR = {UE} comprise the regional bounds for the variables {nf}.
Upon choosing an initial point {ﬁf}: this parent n-rectangle is partitioned by Ngy orthogonal
hyperplanes passing through {n*}, so that 2N¢V new n-rectangles are created. Within each
of these new n-rectangles, the sign of (n¥ — n¥*) will be constant V. 7 € C |, k € P,. The
bounds for each of these n-rectangles are described as the box bounds, denoted B{LB,UB},
with £8 = {£B} and LB = {U5} representing the individual box bounds for the variables
{n*}. The set of all possible combinations of box bounds is denoted by CB, with its 2Ncv

12



members individually referred to as B;. The parameter s;; is used to delineate each of these

box regions and is defined over C' x P, x C'B. It determines the partition of the y variable

space for any given B as follows:

If si'=41 then n!

k_ pk
2 1.
If s'=—1 then n*—n*

kT 2 1

I/\ I\/

8 } Viee C,k e P,

Figure 1 shows how si;' is used to create these regional and box bounds at the first iteration
for the case of 2 connected variables, with C' = {i1,43} and P, = {k;}. The initial point
generates 4 subdomains denoted B; through B,.

This implies that it is possible to construct Lagrangians that validly underestimate the
global solution in each of these n-rectangles, within which an individual relaxed dual subprob-
lem is solved. If the solution is greater than the current best upper bound obtained from the
primal problem, it may be fathomed (i.e. discarded); otherwise, it is added to the set of candi-
date lower bounds. The infimum of all such solutions supplies the point for the next iteration,
where the n-rectangle associated with this node will be partitioned into 2¥¢V n-rectangles to
supply additional lower bounds on the final solution. In the context of Figure 1, suppose the
infimum of the 4 lower bounds lies in By. At the next iteration, B, is divided into 4 regions,
and so on.

A convenient way of describing this partitioning of the y variable space in the branch and
bound approach is through the use of a tree structure. The starting point is represented by
the root node, labeled R, and it generates 2V¢V nodes at the first level of the tree. One of
these leaf nodes becomes the next iteration node, in turn generating a further 2V¢v additional
nodes, and so on. Note that at any given iteration, all generated solution nodes share the
same parent node, so that each n-rectangle is a refinement of its parent n-rectangle implying
that the regional bounds for a given node are supplied by the box bounds of its parent node.
This has the important implication that any given Lagrange function will be valid in any
future n-rectangles that it spawns. In addition, retrieval of previous Lagrange functions for
use in the current relaxed dual subproblem is easily achieved by employing a backward depth-
first traversal through the solution tree from the current node to the root node, extracting
the relevant information required to construct the Lagrange function at each node along the
path. This set of previous iterations to be included in the subproblems of some iteration K is
denoted PL(Kp). Because a Lagrangian is not included for all previous iterations, but only
for those whose nodes define the current node as a subdomain in the y variable space, each
relaxed dual subproblem contains relatively few Lagrangians from previous iterations. Thus,
each relaxed dual subproblem can be both generated and solved efficiently. The manner in
which the x variable bounds are obtained and set on the basis of the qualifying constraints

will now be described.

13



3.4.2 Bounds for the z variables

For any given n-rectangle defined by B{L”,U"}, it is necessary to establish upper and lower
bounds on the x variables within this box. Recall that {U¥} are defined as linear fractionals.
Any linear fractional is a pseudolinear function, that is, it is pseudoconvex and pseudoconcave.
Thus, there is one local minimum and one local maximum that satisfy the KK'T optimality
conditions, and these will be unique global extrema. By examining the KKT conditions for

the problem:
min U¥ st LB <nb<ul vijec | VielC, VkePr (26)

the global minimum value for each U¥ in B{L? U{®} can be evaluated and is labeled Lgr. —WU*
is minimized subject to the same constraints to obtain the corresponding maximum, Ugx. The

globally valid lower and upper bounds for U¥ (and hence \ilfj) within the n-rectangle defined
by B{LB UB} are given as:

Lo Uy
Lyt = : Ui = 1 :
L =2 ) L =2 )

Having established the lower and upper bounds on the x variables it is necessary to decide

at what bounds to set the modified = variable set, {\ilfj}, for some B; € C'B. Each term

. . k o 7k
involving (n} — n;

the bounds at which the = variables are set. The terms that premultiply (n;c —n

) is underestimated individually. This quantity alone does not determine
k
3
be considered. Once the combined sign of the two terms has been established, the sign of the

) must also

qualifying constraints as given by Eqns. (24) is known so that the x variables can be set at

their appropriate bounds for the current and previous iterations as follows:

For each {7,7,k} € C x C x P, perform the following steps:
1. Current Iteration K:

I Gy [ri+ M) i 20 then (i%)" = Lo

ij
If gji [Tji + j\gf] -Sf,iK < 0 then (:i'i-cj)}( = U\I,k

2. Previous lterations K, € PL(K;):
I Gy mit At | () = (#8) ] 20 then (a)" = £a

2

If Qﬁ- |:7'j1' —|— j\gf

14



For any given relaxed dual subproblem, these sets of bounds are denoted by B for the

. . ~gKP . . .
current iteration, and #B: ~ for previous iterations.

3.5 Global Optimization Algorithm for the NRTL model

In what follows, kg represents any node of the solution tree, with k. and k; corresponding to
temporary nodes used in the selection of the set of previous Lagrange functions. I, is the
iteration number, K, at which node kg is generated, with K. denoting the current iteration
number, and K, representing some previous iteration. S. represents the current node under
consideration at any given iteration and is obviously a leaf node. The parent of any of these
nodes is simply indicated by p(k). The complete algorithm for the NRTL equilibrium model

is now given.

STEP 0: Initialization

Select an initial mol vector n® and convergence tolerance ¢.

Initialize R {LE UR}, PU = 400, MY = —c0, Sc = R, ks =0, I, = 0.
STEP 1: Primal Problem

Evaluate (P) to give P(n*). Store \¥, n*.
Solve (NCF) to give (* and update PU = min [PU , P(n™), G*]

STEP 2: Select previous Lagrangians

Set PL([(P) == @ ; kt == Sc.
(1) Set K, = It,. Extract \*7, n*P. Set PL(K,) = PL(K;)U Kp and k¢ = k.
(2) Set kt = p(ke). If ks = R, proceed to STEP 3; otherwise, return to (1).

STEP 3: The Relaxed Dual Phase

(1) Choose a combination of box bounds, B; from the set C'B.
Evaluate B {LB,UP} and {Lyr, Uy }.
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Set 7 and #% " and solve (RD) to give p* and n*.

rglellp Up
“B
s.t. up > L}((Q:Bf(,ﬁ}",y,j\}")
P o RD
pp > L (8% 0Py \P) ¥ K, € PL(K,) (RD)
£B < of < ub VieC,keP,

0 = A-n—-—0b>b

where LK(JA;BlK,ﬁK, y, AX) is given by Eqn. (23).

(i) If % > PY — ¢, then fathom solution.

(i) If pu* < PY — ¢, then set ks = ks + 1, p (ks) = Sc, I, = K, pkFs = u%, nks = n*,
Re LR, U"}Y = B{L", U"}.

(2) Choose another set of box bounds B; from C'B and return to (1).

If there are no remaining unchosen B; in C'B, then proceed to STEP 4.
STEP 4: Select mol vector for next iteration

Select infimum of all p*s, and set S. = ks , the associated node.

Set n**1 = nks | M* = y5¢ and Ry {CB,UR} = Ry (LR, UR}

STEP 5: Check for convergence

Check if \PU—ML

pU

< e. If true, then STOP; otherwise set K = K + 1, and return to Step 1.

It has been shown how all the conditions required to guarantee e-global convergence of the
GOP algorithm (Floudas and Visweswaran [8, 9]) are satisfied.

The main computational effort lies in solving the relaxed dual subproblems. There is a very
simple way to reduce the number of connected variables. The material balance constraints
appear affinely in the relaxed dual formulation. The material balance matrix represented by

A has rank r so that r mol number variables can be written in terms of the others. In other
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words r connected variables are eliminated. Thus, the number of connected variables is now

given as:

New= |[C|-|P| = r (28)

For the phase equilibrium problem r = |C|. The derivation of the relaxed dual is exactly the
same except that now the material balance constraints are not required to maintain feasibility.

Another computational aid is the fact that at a given stage of the algorithm, if the current
point matches a previous point for some (or all) ¢ € C', k € P,, then there is no need
for a partitioning hyperplane in that dimension. This reduces the number of relaxed dual
subproblems to be solved at that iteration. A significant number of relaxed dual subproblems
are typically eliminated in this way. Note that (NCF) can also be solved locally at each

iteration (as well as evaluating the primal) to give a valid upper bound on the global solution.

3.6 Examples

Two examples are presented which demonstrate the GOP algorithm as it applies to the NRTL
equation. Both these problems have two postulated liquid phases, so that the the Gibbs free
energy of formation terms can be eliminated. The function to be minimized is then given as
Gr =[G — ¥, AGH'nT] /RT. where G is defined by Eqn. (1).

All the examples have a degenerate set of trivial solutions where the component mol
fractions in each of the liquid phases are the same. If one of these points is used to initiate
the search for a local solver, then it will be unable to move from the trivial solution, a major
problem for local optimization algorithms. The results show that the GOP successfully obtains
the global solution even when supplied with such a trivial solution initial point.

It is possible to incorporate a simple local search technique into the framework of the
global optimization algorithm. At the beginning of every iteration, MINOS5.3 is used to
solve (NCF) as a nonconvex nonlinear programming problem, using the current mol numbers
{n*} as a starting point. If the resulting solution supplies a Gibbs free energy level less than
the current best upper bound, then PY is updated to equal this new solution. This is done
because typically a point close to the global solution is generated at a relatively early stage
of the algorithm, but this solution is not refined until a later point in the solution procedure.
The advantage of such a strategy is that immediate refinement of solutions (local or global)
will occur with the attractive benefit of improved upper bounds at an earlier stage of the
algorithm, and a greater fathoming rate. In summary, the local search is an efficient way in
which to generate valid and improved upper bounds, independently of the global optimization

algorithm.
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3.6.1 Example 1: n-Butyl-acetate — Water

The application of the GOP to a simple two component, two phase example is now considered.
This illustrative example is taken from the thesis of Lin [13] and features two components,
n-butyl-acetate (1) and water (2), at a temperature of 298K and a pressure of 1 atm. There
are two possible liquid phases and they are modeled using the NRTL equation. Both phases
share the same standard state, so that G, supplies the function to be minimized. The binary

parameters were obtained from Heidemann and Mandhane [10]:

T12 = 3.00498 | 79 =4.69071
G2 = 0.30794 |, Gy = 0.15904

The initial mixture charge is equimolar (n] = 0.5 V ¢) and no reaction occurs in the system.
It appears to be a simple example but there are multiple stationary points and local solutions.
In fact, there is a local minimum and a local maximum, in addition to the global solution.
There is also a line of trivial solutions that represents physical one phase behavior, but math-
ematically yields two phase solutions, that is, the mol fractions are the same in each distinct
phase. These solutions are given in Table 1 where the superscript I represents the first liquid
phase. The mol numbers for the second liquid phase are obtained as n;" = n] —n; V1. The
Gibbs free energy surface as a function of the mol numbers in liquid phase [ is pictured in
Figure 2, with the trivial solutions lying along the line defined by n{ — ny = 0. Lin [13] em-
ployed a successive continuation method to solve the problem and trace all possible solution
branches. In this manner, all the local and global extrema were obtained. A local solver
will have difficulty obtaining the global solution unless the starting point lies close to it, and
the trivial solution or one of the local optima may be found. To illustrate this point, when
(NCF) was solved using MINOS5.3 from 100 randomly selected starting points, the global
solution was found in only 13 cases. The strong local minimum solution was found in 5 cases,
and the trivial solution was obtained in the remaining 82 cases. The explicit mathematical

formulation is given as:

N

min G, nilnn} + nylnng — [l + ny]In[n] + nj]

n2Inn? + nilnni — [n? 4+ n3]In[n} + n3]

ngTlgnilllé + gzlrglnélll} + gllegnf\Ilg + gngzlnglllf
s.1. Ui{n; + Gany} = ny

W3 {Giany +n3} = ng

U2{n} + Gunj} = n’

U3{Gran} + 13} = nj

+ +
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n} —I—nf =0.5
ny +n3 =0.5

1.1 2 2
0 < nj,ny,ni,n; <0.5

By using the mass balance equality constraints to eliminate the variables of the second liquid
phase, the number of connected variables can be reduced to Ngy = 2. Thus, a maximum of
four relaxed dual problems must be solved at each iteration. Any variables associated with the
eliminated phase are designated with a superscript K. The z-variable set for the eliminated

phase is then defined as:

A n?l —n,
Ve = ——*— VvV 4,5 €C
2] E(an_nl) ) J

leC

where {n;} are the variables of the non-eliminated phase and the formulation, noting that the
superscript [ has been dropped. The explicit Lagrangian was derived as Eqn. (23) and yields

the following expression:

A

— fa E
L(ni, ng, \I/ij, qjij?

A7) = {nilnny +nylnng — (1 + na) In (ng + no)
+ (n] —n1)In (n{ —nq) + (ny —na)In (ny — ny)
(n —n1+ny —na)In (n] —ny +ny — ny)
— md —ngdg — (0] —n)AT — (0] — ng)j\f}
Wi ds [ — 7] + W12G [721 + M [n2 — 7o)
\1121912 [7'12 + 5\2] [y — ng] + \11225\2 [ng — na
— URAE [n1 — ] — U550 [rar + AF| [n2 — 7
— UG [m2 + A | 1 — 1] — WEAL [ — i

>

Notice that the term within curly braces is convex and that the interaction between the x and
the y variable sets is purely bilinear. The derivatives of the Lagrangian with respect to the x
variables yield linear functionalities in the y variables allowing the y space to be partitioned in
a simple manner. The Lagrangian generated in Region 1 of Iteration 1 is shown in Figure 3,
where 0.25 < n, < 0.5 V7.

A local solver will not converge to the global solution from the initial point considered
above. The progress of the upper and lower bounds is charted in Table 2. The total cpu time
required was 1.23 sec. It should be noted that for 33% of the total iterations, only 2 relaxed
dual problems were solved, demonstrating the fact that the maximum number of problems
need not be solved at every iteration of the algorithm. In addition, 66% of the solutions

obtained from the relaxed dual problems were fathomed.
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3.6.2 Example 2: n-Propanol — n-Butanol — Water

This system was one of two studied by Block and Hegner [4] in their modeling of three phase
distillation towers. n-Butanol and water form the only partially miscible binary pair (i.e. it
is a Type I system) with a relatively small domain of immiscibility. The binary parameters
as obtained by them for use in the NRTL equation are supplied in Table 3. G, supplies the
objective function to be minimized, and Ngy = 3. Block and Hegner [4] conducted the liquid
phase splitting computations independently of the vapor phase i.e. the parameters have no
dependence on temperature. It is therefore meaningless to consider a vapor phase for this
example. Walraven and Rompay [23] subsequently used this problem in order to test their
phase splitting algorithm for a number of different feed charges. The explicit formulation is

given below:

min@, = nllnn! +nilnnl + nllnnd — [0} + nl + nd]in[n! + nl 4 0l
+ n2lnn? +nilnng + nilnnd — [0 4+ n2 4+ n2]in[n? + n2 + ni
+ n} [glzrlgkll; + 913713\11},,] + n; [921721\11} + g23723\11§] + ncl,, [gglrgl\ll% + 932732\1@]
+ nf [912712\113 + 913713\113] + ng [gzlrﬂ\l}f + Qggrgglllg] + n:z,, [931731\113 + ggngzlllg]
s.1.
Wi{ng + Gainy + Gaina} = my WH{nI + Gainj + Gainz} = nj
U3 {Giany + n3 + Gaanz} = my W3{G1an] + nj + Gaanz} = n;
U3{G1any + Gaany + 13} = ny U3{G1an] + Gaanj + n3} = n3
ny +ng=ny 0 <njy,ni<ny
ny +n2 =nj 0 < ny,ni<ng
ng +n3 =ng 0 < ng,n3 <ng

Two source feeds from the work of Walraven and Rompay [23] were examined, and these
charges are given in Table 4. The first of these lies well within the immiscibility region —
{n]} ={0.04,0.16,0.80} — and therefore causes little problem for a local solver. However, the
second considered source charge of {n} = {0.148,0.052,0.800} lies close to the plait point,
an area in which it is notoriously difficult to obtain the correct equilibrium solution. The
trivial solution objective function value is -1.1919705, while the two phase global solution has
an objective function value of -1.1919716, a difference of only 11-107"! Solving (NCF) using a
local solver succeeded in obtaining the global solution from only 8 out of 100 random starting
points. Nonetheless, the GOP algorithm generated the global solution for this very difficult

problem when supplied with a trivial solution starting point. This clearly demonstrates the
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effectiveness of the algorithm in generating global solutions for extremely challenging problems.
The equilibrium solutions for the two sets of conditions considered here are given in Table 4.
The difficulty of the problem when the source charge is close to the plait point is evident in

the increased computational effort required to obtain the equilibrium solution for this case.

4 Analysis for the UNIQUAC Equation

A commonly used activity coefficient correlation is the UNIQUAC equation originally proposed
by Abrams and Prausnitz [1], where the excess Gibbs energy is postulated to be composed of
two contributions: a combinatorial part due to the differences in the sizes and shapes of the
molecules, and a residual portion due to the interactions that take place between them. Thus,
differences in molecular size are taken directly into account. To obtain improved agreement
for systems containing water and alcohols, a modified version of the universal quasi-chemical
equation for the correlation of liquid-phase activity coefficients was proposed by Anderson and

Prausnitz [2, 3] and is given as:

Iny; = Inqf +InAf Vel (29)
i 0; i
where Iny¢ = In (i + iqi In—+1;— (E Z liz; (30)
i 2 0¥ Ti jec
nj&’-
and  Inoft = giql—In| 3wt ) =Y =7 (31)
j€C j€C %:C Oimij

where 4¢ and 42 are the combinatorial and residual contributions respectively to the activity
coefficient at mol fraction z;, 7; are non-symmetric binary interaction parameters, ¢;, ¢; and
r; are pure component structural parameters, and z is a lattice coordination number. [;, 6;,
0! and ¢; are defined by the following relationships:

L= S-(i-g)—(u-1) VieC (32)

&::25%; Viec (33)

o = éﬁ vieC (34)

@::E%%; Viel (35)
JeC

where 6; and §! are the average area fractions for the combinatorial and residual portions of

the activity coefficient expression, and ¢; is the average segment fraction. Note that these
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ratios can be equivalently defined for mol numbers as for mol fractions for any given phase.
In the original formulation of Abrams and Prausnitz [1] ¢! = ¢;.
Eqn. (2) yields the relationship between the fugacities and the activity coefficients. If the

following series of steps are undertaken:
(i) the first logarithmic term in z; of Eqn. (30) is brought over to the left hand side,
(ii) the non-logarithmic term involving ¢; of Eqn. (30) is expanded out,
(iii) the terms involving 6, in Eqn. (31) are expanded out,

then the following expression is obtained:

z z %:c im;
Inyz, = <1__i)1 i+ o@nb + L —r - T——
n~;x 2q no —|—2q nb; + r _E -
, (36)
2. 45Ty I
_q{ In jeC n (]I' _ q{ Z q;TiN
i I i i 1

By substituting Eqn. (36) into the original objective function of Eqn. (1), it is possible to
write the objective function for the case of multiple liquid phases in terms of the mol numbers

in the following form:

Y Link
. AGH/ z z e’
min G(n) = nf i —|—(1——qi)lngbf—l——qilnﬁf—l—li—ri-;
(n) glgj RT 2 2 )y rjn;?
jec (37)
E q;ngn? 7 k
2 1.k ? 2 I .k
j%:C q;n; jec lgj @7

where 0% and ¢¥ are now defined for all phases k. This is a complex expression involving
logarithmic and quadratic quotients, and is clearly nonconvex. However, by exploiting a
number of properties associated with Eqn. (37), it is possible to obtain a more tractable form

for the Gibbs energy. Several interesting new properties of the terms in Eqn. (37) are revealed.

4.1 Analysis of the Gibbs free energy function:

In the foregoing analysis, different ways to express the Gibbs free energy function defined

by Eqn. (37) are presented. The final formulation will cast the minimization problem as the
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difference of two convex functions (a D.C. programming problem), where the convex part is

nonseparable, but the concave portion of the objective function is manipulated in such a way

as to make it separable. In the development that follows, the indices z, 7, [ and m are defined

over the set of components C'.

4.1.1 Simplification of the Gibbs free energy:

Two simplifying properties are now presented.

Property 4.1 The following relation is true Vk € P;:

3 Link
jec 77
E n’-c i—r;-——— 3 =0
' > rink
eC : 7%
t jec
Proof: For each &k € P;:
nk Lk
T i %
k J k k J
E ni li — ;- m = E lini — E Tin,i . m
1€C jec 2 1€C 1eC jec 7

= Zlmf—Zl]nf:O

ieC jec

This implies that the parameter [; need not appear in the Gibbs free energy expression.

Property 4.2 The following relation is true Vk € Py :

- ok
icC jec Yolec QTN

an{ql{_qz{.zﬂ} — 0

Proof: For each &k € P;:

I k
q’-T' nk EC qumJnm
k 1 1 7" _ 1k 1 k) me
Z g G — G Z 72 gk [T Z ;1 Z 4375 S gk
; ; 17157 ; ; 17157
ieC jeC icc 1eC jeC et
_ 1k 1k __
= Zqini _Z%’ni =0
ieC ieC

where the term in braces is seen to equal unity.
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Employing Properties 4.1 and 4.2 in Eqn. (37), the objective function can now be written as

follows:

R AGH!
min G(n) = ) Y nf{ ]?} + (1 — %qz) In ¢F + g% In 6%

1€C keP

+aiin Y ggng —qiIn Y q}mnf}

JjeC JjeC

Some new notation will now be introduced in order to demonstrate the special structure that

Eqn. (38) naturally possesses. The following new parameter, z, is introduced to aid in this

2 )

process and is defined as:

56— 1

Z.R:Mzovzec (39)
T

z is usually taken as 10, with ¢; > 0.2, and therefore z[ is always positive. Using Eqn. (39)

and expanding out ¢¥ in terms of the mol numbers, one obtains:

an (1—g%)ln¢f _ZZ Tany fIn ) ?’nk Vk e P

1€C 1€C jet 3
It is now convenient to make the following definitions:
AF = Zz rin, flp —2—=2 Vkc P (40)
ieC E ’"J
j€C
B* = —qu In V ke P (41)
'LEC E qJ
j€C
Ck:qu ]ln[Zq ] VkeP (42)
1eC 1eC
DE = —qu'-nf anq;Tﬁnf Vkec P (43)

ieC jeC
Note that 8 has been expanded out in terms of the mol numbers ¥ & € P, in the definition
of B*. These definitions allow the objective function of Eqn. (38) to be equivalently written

as follows:
RAGH
min G(n) =Y 3 nk + > {—AF 4Bkt CF 4 D) (44)
1€C kePy, RT kePy,
This objective function still yields a nonconvex optimization formulation but it is simpler than

the objective function customarily employed.
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4.1.2 D.C. Transformation

It will now be shown how the objective function of Eqn. (44) is converted into D.C. form.

Firstly, the following property is required.

Property 4.3 Let p; be a positive parameter defined ¥ i. Define the real-valued function f(n)
with n > 0 as follows:

f(n) = {Z Pini} In {Z Pini}
then f(m) is convex.

Proof: See Appendix C. 0

Remark: A number of observations can be made on the basis of Properties 3.2 and 4.3 in

relation to the terms of Eqn. (44), and are listed as follows:

(i) the term AF as defined by Eqn. (40) is convex V k € P, (apply Property 3.2). This also

implies that —A* is concave,
(i) the term B* as defined by Eqn. (41) is convex V k € P;, (apply Property 3.2),

(iii) The term C* as defined by Eqn. (42) is convex V k € P, (apply Property 4.3).

Property 4.4 Define D’i and D* Y k € P, as follows:

k
n;

I .k
quTJznj
7

D’i = Zq:nf In
D = Zqinf lnni-c

then Di and D* are convex ¥V k € P,. Further, D* as defined by Eqn. ({3) can be equivalently

expressed as the difference of these two convex functions:
DY =D -DF VEkeP (45)

Proof: See Appendix D. O

Thus, it has been demonstrated how the majority of terms in Eqn. (44) are by themselves

convex or concave. In one instance, it was necessary to transform a nonconvex term (Dk)
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into the summation of a convex and a concave term. It is now possible to write the objective

function as follows:

AGE

min G(n {ZZ k +Z{B’°+C’°+D }} {%{Akiﬂ)’i}} (46)

1€C keP

The key feature to notice is that each term within braces is convex. The concave term —D* is
separable. However the concave term —A* is nonseparable. Because it is easier to construct
the convex envelope of a separable concave function than a nonseparable one, the following

definitions are required so that the term —.AF can be written in a radically different form:

zy = min{z}
A = zﬁ —+ Z [ZZR — Zﬁ[] (47)
2eC
zf:Z[zf—zm Viel
J#i

On the basis of these definitions, the following property is derived:
Property 4.5 If A’_‘I_ and A* are defined ¥V k € P, as follows:

— 4 Znn 1n2rzn —|—Zz rin®In —— E Zn czfryInrg
rin;

1€C 1€C 1€C jeo 1€C
k R B k k
AR ="z + 2P] - nfInn]
1€C
then .A’i and A* are convexr functions. Further, —AF can be expressed as the difference of

these two convex functions:

_ AR = Ak Ak (48)

Proof: See Appendix E. O

Property 4.5 allows the nonseparable, concave term —A* to be replaced by the difference of
two convex functions, defined in Eqn. (48). The key change is that the concave part of the

new expression is now separable as shown below:

mmG {EZn g;f+2{,4k + Bk Lk DE }} {Z{AE—I—DE}} (49)

1€C keP keP
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The terms A*, A’j_, Ak, Bk Ck, Dﬁ_ and D* have been shown to be convex. Thus, the terms
contained within the braces of Eqn. (49) are convex, i.e. G(n) is now given by the difference
of two convex functions. At this point, it is convenient to collect the convex portions of the

objective function together, defined as CE V k € P,, to yield:

AGY
Czlj = an{ ]ff} —Zfrilnri}

2eC
k
+ TN ln{ N }—I— 27 Tin Flp ——
g Rt g
k
+ —Zqzn In —*— k {Zq }ln{Zqzz}—l—Zqz{nflnn,i’k
2 g; ‘ZJ j ieC ieC ieC J_;C 457515

Furthermore, if the parameter ; is defined as follows:
pi = qitrile+27] Vied (51)
then (DC) is defined as:

min G Z Cck — Z Z i nf Inng

kePy, 1€C kePy,

s.1. O=A -n—-b (DC)

0<n<n”
where CF is defined by Eqn. (50). The objective function consists of a convex, nonseparable
portion, and a separable, concave portion, with a convex constraint set. The expression for
G(n) in (DC) is very different from the original Gibbs energy function defined by Eqn. (37).
The analysis of the original function has revealed interesting properties in terms of the algebra
and in terms of its convexity properties. It has been shown that this equation can be expressed
as the sum of convex and concave parts. The specially induced structure will be used to full

advantage in solving (DC).

4.2 Branch and Bound Algorithm

It is worthwhile to point out the salient features of the formulation for the phase and chemical

equilibrium problem, as given by (DC):

(i) the objective function is D.C. with a separable concave portion,
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(ii) the feasible region is an n-rectangle,

(iii) the constraint set is closed and convex (a set of linear equality constraints).

One of the first algorithms proposed to solve problems of the above nature was that of Falk and
Soland [6]. It is a branch and bound type algorithm, where a branching scheme successively
refines the feasible region into smaller and smaller n-rectangles, in each of which a convex
subproblem is solved that supplies a lower bound on the global solution of (DC). In this
manner, a sequence of nondecreasing lower bounds is generated that converges under certain
conditions to the global solution. The algorithm used to solve (DC) in this work is based on
the original paper of Falk and Soland [6]. The approach of this algorithm and several others
has been generalized and discussed in the book of Horst and Tuy [11]. The algorithm shares
many similarities with that used for the NRTL equation, except for slight variations in the
partitioning scheme, and significant differences in the structure of the subproblems used to
provide lower bounds for the global solution. Thus, in what follows, the notation used will in

as far as possible be the same as that of Section 3.

4.2.1 Convex envelope of the Gibbs free energy

In order to obtain valid lower bounds, the approach is to derive convex underestimators for
the concave portion of the objective function in successive partitions of the feasible region.
Suppose that at a given stage in the algorithm, the partition currently under consideration is

an n-rectangle defined as follows:
LB <nf<UB VieC,kep (52)

The manner in which the partition defined by these box bounds is obtained is described in
the next section. A lower bound is required for the objective function defined in (DC). The
simplest such bound can be obtained by constructing the convex envelope of G(n) The
concave portion of the objective function is replaced by its convex envelope, which for a
separable concave function is simply the affine function that joins the two endpoints of the
region under consideration. This is shown for the one variable case in Figure 4 where the
concave function —nlInn and its convex envelope, ¥(n), are plotted between the lower and
upper bounds £Z and UP. Thus, the convex envelope of each concave function, labeled W¥,
in the region whose bounds are given by Eqn. (52) is:

£8 105, — UE U,

k B B '
\Ili = _/:'nf lnﬁnf —|— UBk —,ka

pE-Lh| vieC ke, (53)

n

Thus, the convex envelope of the concave portion of the objective function is then the sum-

mation of these individual affine functions. The convex envelope of the convex portion of the
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objective function is obviously the function itself; this implies that the convex envelope of

(DC) is a convex function and any local solution to the following problem will be a global one:

)

min g = ZC’“—I—ZZ%\IJ:-“

keP 1€C keP;,
UES
s.1. LB <nf <ub (UES)
0=A-n-b

Vs

Formulation (UES) provides a lower bound on the global solution in the region defined by
B{LB UB}. Solving subproblems of type (UES) in successive refinements of the feasible region

will generate a nondecreasing subsequence of lower bounds.

4.2.2 Partitioning Scheme

When the GOP was used to solve the phase and chemical equilibrium problem for the NRTL
equation, the initial n-rectangle defined by Eqn. (7) was successively subdivided into more
and more n-rectangles. For the case of the UNIQUAC equation, the branching scheme is
similar but there is one major difference. For the UNIQUAC as few as 2 subproblems need
be solved at each iteration to guarantee convergence to the e-global solution, whereas for the
NRTL, upto Negy hyperplanes were used to partition the current partition into as many as
2Nev regions. For consistency, the number of variables that appear in the concave portion of
the objective function is also labeled Ngy. Obviously, Ney = |C| - |P,|.

The same basic tree structure that was used for the NRTL equation is also employed here.
Each n-rectangle within which a subproblem of type (UES) is solved has a node, kg, associated
with it. An initial point is chosen labeled {n%}. This parent n-rectangle is then partitioned by
a number of hyperplanes, labeled N, passing through the point {n¥}. The number of these
hyperplanes can vary as follows:

1 < Np < Nev

This means that 2¥7 box regions are created at each iteration. In each of these subrectangles
Problem (UES) is solved to provide a lower bound; if this lower bound lies below the current
best upper bound, then the solution is stored as y*s and n*s, so that each solution node kg
has these quantities, as well as its box bounds, associated with it. It is important to realize
that Ny is a user specified parameter, and that it can vary from one iteration to the next. The
trade-off is tighter lower bounds for higher values of N, and less subproblems to be solved for

lower Np. If it is set at one, then only two subproblems are solved for that iteration.
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The important question of how to decide the partitioning remains. One natural means is
to measure the distance, labeled 6%, between the concave function and its convex envelope at
the value of the current point:

6F = |—n¥Innf — wk(nk)

2 2

VieC,keP,

k

where n? represents the solution value obtained as the solution of the current node, S¢. Intu-
itively, one expects that the larger this distance, the greater the need for further refinement.
Horst and Tuy [11] prove (see Chapter VII.4) that if the current n-rectangle is divided into
two (or more) n-rectangles about the variable with the largest value of ¥, then the branch
and bound algorithm to be defined in the next section will converge to an e-global solution of
(DC). In the version of the algorithm used here, more than two n-rectangles may be created
at each iteration, if desired. Therefore, the distances 6* are rank-ordered from highest to
lowest. The set of parameters {H®} determines if there is a partitioning hyperplane for the
corresponding variable nk. If H¥ = 1 then a hyperplane is used to divide the region for that
particular variable as n¥ < 7 and n¥ > n%*. This is shown in Figure 5 for the first iteration
where N, = 1. Suppose that the greatest distance between the concave function and its
convex envelope occurs for the variable ny, so that H; = 1 and Hy; = 0. This means that the
initial feasible region is divided into two box regions, labeled B} and Bj, where the superscript
corresponds to the iteration number, and two subproblems are solved. In the general case,
Np hyperplanes are used to divide the current region into 27 n-rectangles for the largest
N, distances. For the remaining variables, no dividing hyperplane is used so that H* =
and the box bounds for these variables are simply their regional bounds, i.e. ,Cf‘ = th and
UB = UL, o

t Havir;g solved a set of subproblems of type (UES) at a given iteration, the manner in which
the value of the y variables is chosen for the next iteration is exactly the same as the GOP
algorithm for the NRTL. Having chosen the infimum of all lower bounds, the region associated
with this particular node is divided into 2" new n-rectangles to obtain successively tighter
lower bounds. In the context of Figure 5, assume that the infimum of the lower bounds occurs
in box region 1 of Iteration 1. At Iteration 2 with N, = 1 again, suppose that the distance
is now greatest for ny, so that Hy = 1, but H; = 0. This implies that at Iteration 2, the
region is divided into two box regions, B? and B2 (see Figure 5), wherein (UES) is solved to
obtain two new lower bounds on the global solution. Thus, 27 new nodes are generated in
the solution tree at a given iteration. Experience has shown that convergence properties are
not significantly altered by tinkering with Np. It is worthwhile to set N, higher in earlier
iterations to get tighter bounds, and reduce it as the algorithm proceeds to avoid adding

excessive numbers of nodes to the solution tree.
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4.2.3 Branch and Bound algorithm

The algorithm shares many similarities with that used for the NRTL equation, and the nota-
tion 1s therefore the same as that used in Section 3. The main difference lies in how it obtains
lower bounds on the global solution. In this case, only one underestimating function is in-
cluded when generating lower bounds for (DC). The complete branch and bound algorithm
for the phase and chemical equilibrium problem when the liquid phase is modeled using the

UNIQUAC equilibrium model is now given.
STEP 0: Initialization

Select an initial mol vector n® and convergence tolerance ¢.

Initialize R {LB UR}, PU = 400 , MY = —00, Sc =R, ks =0, {H*} =0, N, = 0.

STEP 1: Primal Problem

Solve (DC) locally to give (* and update PU = min [PU , G*]

STEP 2: Convex underestimation phase

(1) Choose a combination of box bounds, B; from the set CB ( |CB| = 2V7).
Use Sf]lc, HE and R {LE U} to set B {LB UB}.
Construct W¥ based on B, {LB,UB} and solve (UES) to yield p* and n*.

(i) If p* > PY — ¢, then fathom solution.

(i) If p* < PY — ¢, then kg = ks + 1, p (ks) = S, p*s = p*, nks = n*, R, {L®U"} =
B {LP UP}.

(2) Choose another set of bounds B; from C'B and return to (1).

If there are no remaining unchosen B; in C'B, then proceed to Step 3.

STEP 3: Select mol vector for next iteration

ks

Select infimum of all x7s,

and set S. = kg , the associated node.
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Set n**1 = nks | M* = 45¢ and Ry {LB,UR} = Ry (LR, UR}

Choose 1 < N» < Ngy. Set D = {i,k} =C x P, , {HF} = 0.
form=1,....N;,
{i*,k*} = *TEDA |k Innk — Wh(nk)
D =D\{i*k}

end

STEP 4: Check for convergence

Check if \PU—ML

PU

< e. If true, then STOP; otherwise set K = K + 1, and return to Step 1.

Convergence to an e-global solution of (DC) by the above algorithm has been proven by Horst
and Tuy [11].

Note that it is also possible to use the GOP algorithm for the case of the UNIQUAC
equation. New variables, labeled W%, would be introduced so that ¥* = n* Vi ¢ Ck ¢
P,. The nonconvex terms of the objective function then take the form —n®In U¥ This
transformation will clearly satisfy Conditions (A) of the GOP. If the y variables (i.e. nF)
are held fixed, then a convex objective function results. If the = variables (i.e. U¥) are kept
constant, then a convex objective function is also obtained. However, because the linear convex
envelope derived in Section 4.2.1 represents the tightest possible convex underestimator of the
objective function, it is clear that the bounds generated by the GOP algorithm will not be as

tight as those generated in the branch and bound algorithm just described.

4.3 Example 3: Toluene (1) — Water (2)

This example was studied by Lantagne et al. [12]. They used the modified version of the
UNIQUAC equation for systems containing alcohols or water as proposed by Anderson and
Prausnitz [3]. It is assumed that there is an equimolar charge of toluene and water (n] =
ny = 0.5). There are two postulated liquid phases, so that P, = {k;, k2 }; these phases share
the same standard state so that the Gibbs free energy of formation terms can be eliminated
as for Example 1. The pure component structural parameters and the binary interaction data

were obtained from Prausnitz et al. [18] and these are given as:

G =297 ¢ =297 r =392 I, = 1.83

g2 = 140 ¢, = 1.00 ry = 0.92 [, = —2.32

32



The parameters [; are supplied even though they are not used in the formulation. The inter-

action parameters are given as:
T12 = 009867 , To1 = 059673

The parameters introduced to convert the original formulation into a D.C. programming

problem are then defined as:

2F = —5‘1;1—1 2R = _5‘132—1
= 3.53316 = 6.52174
2 = min { 20,24 }
= 2R
= 3.53316
2 = 2R (o - 2E) o (- D)
= F
= 6.52174
z{ = z3 —zp zy = 21— 25
= 2.98858 =0

01 = ¢4+ (2f +27) = 28.53522
w2 = qy+r2- (25 +27) =170

This allows the explicit formulation to be written as follows:

min G; = —njz{riInry —nyz;ralnr,
nl
A 1 1 1 1 B 1 1
+ =z [rlnl + rznz] In [rlnl + rgnz] +zringIn ————
riny + rany
2

n
+ z° [rlnf + rzng] In [rlnf + rgng] + 28rn? lnﬁ
riny + ranj
1 1
z 1 qiny Z 1 qa2ny
+ comIn———5 + sgnyIn —5——
20 gl gend 27 ind 4 gand
2 2
z 2 qiny Z 2 qa2Ny
+ caniIn —5——— + S@nyln —5——
20 T gmitgend 27 ind 4 a3
-I-['l-l-'l]l[ll—l-'l]—l-'ll n% 4 gl n%
gn Gany| In |qyn Gyn ginyIln ————— + gony In ——
v T Y ginl 4 maggnd 272 ragind + gn}
_I_[12_|_12]1[12_|_12]_|_121 n% +g'n?l ng
g n gons| In |gin Gy ginyln ——— + gonyln ——=——
v e v Y gind + mughnd 272 ragind 4 gyn

- ¥ [ni Inn} +niln nf] — 2 [n; Innjy + n3lnn2
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s.1.
ny+n2=0.5
ny +ny = 0.5

0< n%,né,n%,ng <0.5

The last line of the objective function contains the nonconvex portion (which is separable and
concave). The equality constraints can be used to eliminate the variables of the second liquid
phase in the same manner as was done in Examples 1 and 2. This reduces the number of
connected variables to Ngy = 2. If a trivial solution starting point is used, the algorithm
converges in 343 iterations to the global solution which is given in Table 5. If such a starting
point is supplied to a local solver, it will fail to converge to the global solution. The total
time taken to solve the problem was 3.3 cpu sec and 64% of the solutions were fathomed.
Because the size of the problem is small, 22 = 4 subproblems were solved at each iteration
(i.e. Np = Ngy for all iterations), even though it is necessary to solve only two at each
iteration

The algorithm has been used to solve several other examples with more components and
phases. The number of variables stays relatively small so that the tested problems stay
of manageable size. This is because the effort of obtaining the interaction coefficients, 7;;,

becomes prohibitive for more than four components.

5 Conclusions

It has been demonstrated how the Gibbs free energy function can be radically altered when the
liquid phase is modeled using the NRTL or UNIQUAC equations (and an ideal vapor phase).
Numerous simplifications and properties of the equations have been revealed that allow the
structures of the problems to be fully exploited. The GOP algorithm was used to obtain an
e-global solution for the NRTL equation, where a biconvex function is minimized over a set
of bilinear equality constraints. A branch and bound algorithm based on that of Falk and
Soland [6] was used to likewise guarantee obtaining an e-global solution for the UNIQUAC
equation. Examples were presented which demonstrate the effectiveness of the algorithms in
obtaining global solutions of a number of difficult phase equilibrium problems, for which no

previous approaches could make the same guarantees.
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Appendix A

In what follows the mol number phase superscripts are dropped for clarity of presentation. It

is required to prove that the following relation is true:

2 T35 Gons 2 TG

7 13°°7 lec

Yol oy ly ~0 (A1)
. Giins , _ Giin Grin

ieC gc gilty ieC jec lgé Iy’ Z;C 3"t

The basis of the proof is to extract the common term }°;Gjn; from the denominator of
Eqn. (A.1). Rewriting the term to the left of the minus sign of Eqn. (A.1) yields:

E szgjznj . 1
Z { E gﬂnj } Z Egaznj ZTﬂgﬂnJ (A.Q)

%

The first term in the denominator of the term to the right of the minus sign of Eqn. (A.1),
Y1 Giin, 1s extracted and summed over the index ¢, that is, it is changed to >, Gminm. In
doing so, the indices of G;; in the numerator of the term to the right of the minus sign of
Eqn. (A.1) are swapped to give G and the second indices in the [ summation terms change

from 5 to ¢ as follows:
Gign; 2 Y™
" i
Z Z El: Gijn Xl: Gijn

1eC jeC
1 E leglznl

B ZL: Egmznm Zgﬂn] ‘ Eglznl

= Z Egﬂnj zl:leglznl (A?))

noting that the indices of the terms 37, Gjn; and 37, Ging run independently of each other
and therefore cancel. Subtracting Eqn. (A.3) from Eqn. (A.Z) yields the desired result:

Z E gﬂnj Z TJ’ﬂgJ’LnJ - Z E gﬂnj Z leglznl

i

1

B 21: > Gjing e {EJ: 7G55 — zl: Tliglinl}
7

=0

realizing that the indices of the terms in braces run independently of each other and are

therefore equal to zero. The same result can be obtained for any phase k. a
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Appendix B

It is required to establish if the following function is convex:

ng _
fi=ngln ———— forany ¢=1,...,p
P31
J=1,...,p

where p represents the number of variables of the problem. There are a number of ways to
prove its convexity. The chosen method here is to explicitly evaluate the eigenvalues for f;.
For notational convenience, u = 3> p;n; in the foregoing. A necessary and sufficient condition
for convexity requires that all the eigenvalues of the Hessian, H, be nonnegative. These are
obtained by evaluating the roots of the characteristic equation of the matrix (H — AI). The

approach utilizes the following two properties:
(i) The determinant of a matrix changes sign if two rows (or two columns) are exchanged,

(ii) Adding a multiple of one row to another leaves the determinant unchanged (viz. for

columns).

Step 1: Evaluation of (H — AI)

As a first step, the second order derivatives of the function f; are given as follows:

(pimi—u)® - . _
82](‘_ nyu? t=7]=1
— = By — T #
On:On. Pi~ 2 =]
Uy

pip]% U 7£ Z,j 7& L
If n is substituted for pzn; and n for ng, then (H — AI) is given explicitly as:

fi—u)? A—u A—u
/ ( r_ A P22 P32

TL’LL2
PG P A s P
(H — )\I) = Pzﬁu;zu P3P21% Pﬁ% - p3f)4ul2

PiPays  PaPags  Piygs — A

The ¢’th row and column have been pivoted into the first row and column, leaving the deter-
minant unchanged because of Property (i). The set of parameters {p,,...,p,} are assumed to
be equivalent to the set {p;,...,p,} \ pz. Thus, the above form can be equivalently obtained
forany e =1,...,p. a
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Step 2: Transformation of (H — AI)

By Property (ii), the following operations change the structure of (H — AI) without changing

its determinant:

for:=3,....p

fors =14,...,p
for y=1,...,p
Qg5 = Q15 — [pp—_'l] -1,
end
end

end

where a;; is the ¢ — 7'th entry of the matrix (H — AI). This yields the following result:

!ﬁ—uf o )\ n—u n—u

nu? P2z Parga
P2 ﬁ1:2u Prge — P2Pays  PaPiys
|H— X |= 0 z—z)\ —A 0
0 0 2L A 0

p3

One more operation on the second row is required:

for : =2
for y=1,...,p
Qi = aij — |prtg] a1
end

end

The characteristic equation is then equivalently given by the following determinant:

N
Pt =X 00
|H- )\ |= 0 A=A
0 0 2x X 0

This determinant is evaluated by expanding the cofactors down the first column so that:

H— M |= l%—xl | Ay | —I—[annj] (=2) | Agt | (B.1)
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where A;; is the appropiate minor obtained by deleting the ¢’th row and j’th column of
(H — AI). O

Step 3: Evaluation of | Aj; | and | Ay |

Because A is lower triangular, it is clear that:
| An = (=) (B.2)

Agpisa (p—1) x (p—1) square matrix. By extracting the common term in the first row, its

determinant is given as:

P2 Ps3 Pa
)\ X 0
‘fl_u 4
0 0 22X —A
P4
n—u _
= e (B.4)

where AP71 is the (p — 1) x (p — 1) matrix of the form given in Eqn. (B.3). Its determinant
can be determined inductively by expanding across the top column, noting that the minors

will be upper triangular to yield:

po | AT = (SN [t g2 (B.5)
= (0T
where 7 = Y p’ (B.6)
S

in the general case. This simple relation allows the determinant of the original matrix to be

easily calculated. a
Step 4: Evaluation of | H — AI |

The original determinant may now be obtained by substituting Eqns. (B.2) and (B.4) into
Eqn. (B.1) — noting that p, | AP7! |= 7 - (=A)P~2 by Eqn. (B.6) — to yield:

n—u u?

I | R P | =S [

U
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The eigenvalues are calculated as ‘H — )\I‘ =0:

_ N2 o2
/\Z:(n u)—l—n’]’zo

nu?

A o= 0V j#1

Recall that n = pzng, u = Y pjnj,n= ng,and T = 3 p’.
J=1,...,p J=1,....p
J#T

As a check, notice that A\; = trace H, because 3 ,.;A\; = 0. Thus, there is exactly one
nonnegative eigenvalue and the rest are zero. This is precisely the necessary and sufficient

condition for convexity. O

Appendix C

A proof of the convexity of the following function is required:

- 2w 5 )

2=1,...,p 2=1,...,p

The method used is essentially the same as that employed in Appendix B. For notational
convenience, u = . p;n; in the foregoing. As a first step, the second order derivatives of the
function f(n) are given as follows:

O*f _ pips
On;0n; u

(H — A1) is constructed as for Appendix B, and the following operations will leave this matrix

unchanged:

for:=2,...,p
foris =14,...,p
for y=1,...,p
ajrj = Qi1 5 — [pp—_'l] ai—1,5
end
end

end
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where a;; is the 7 — 7'th entry of the matrix (H — AI). This yields the following result:

2
P )\ Lip2 p1pP3
u u u

25 W
IH-)M|=| 0 23 —)

P2

0 0 22X —Xx 0

This determinant is evaluated by expanding the cofactors down the first column so that:

2
Han = [ B+ 2] o0 )
U )01
where A1y is given by Eqn. (B.2) and Aj; is defined as:
A21 - % | Ap—l | (02)
with AP~! defined by Eqn. (B.5). This means that the determinant can be calculated as:
1| P 1
|H- )| = (=) [%_ ] T [;] (=Pt [P§+"'+p12>
T
= ([
- [F

but with 7 now defined as:

2=1,...,p
The eigenvalues are calculated as ‘H — )\I‘ =0:
T
)\1 == — 2 0
u

Aj = 0V g=2...,p

As a check, notice that A\; = trace H, because 3,4, A\; = 0. Thus, there is exactly one

nonnegative eigenvalue and the rest are zero. This is precisely the necessary and sufficient

condition for convexity. a

Appendix D

Add and subtract the term ¥, ¢/n¥ Inn¥ to the original term DF of Eqn. (44):

D = Z ql'nf In nf - Z ql'nf In Z q;Tjinf — Z ql'nfc In nf

1eC 1€C JeC 1eC
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= Zqz'-nfln an Inn¥

icC E anﬂ J ieC

nk
= Zqz{nflni [an lnnf]

ieC E anﬂ ieC

The first term in square brackets is the term defined as D+, while the second term is D*.
Therefore Eqn. (45) is seen to be valid. It remains to prove that the terms D’i and DF are
convex. Setting and ¢;7;; = p V j, each individual ’th term of the nonlinear part of Di is seen
to be convex. The sum of linear and convex functions is itself a convex function. Hence D’i
is convex. DF is a summation of separable terms of the form nInn, which are clearly convex

terms because ¢! > 0V ¢, i.e. D* is convex. O

Appendix E

The original term A* of Eqn. (44) is defined as:

—A*F = —Zz rin; Flp —— E
"
C J J
€ j€C
R k R k k
= —> zf'rinfIn rin® 4 Yo zfriniIn )] TN
ieC ieC JjEC

A term is now added and subtracted from each :’th term as follows:

ko R k.. .k
—A* = = 2frnf Inrn)

1eC

+ Z {zfrinf In Z rjnf

ieC jeC

i leC G4

) S (k) + () S kot
—zy) Y rinsIn (Z rmf) — (F = ) S rnkin nf}

G4 leC G4

This expression can be equivalently written as follows:

—AF = — > zFrmFInrnk + lzﬁ + ) (2 = =y) (Z rin ) In (Z rin )
ieC i€C 1 \jec 7€C

ot
+ > [Z (= - Zﬁ)] ”"flﬂm -2 |2 (Zf—zﬁ)] ring Innj

cC | iz cC |5z
2€ FE) jec 1€C | j#2
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R

® z* and zf as given by Equs. (47), the following relation is

Recalling the definitions of z

obtained:

k
A = Z nfzfri Inr; + 24 (Z rjn;?) In (Z rjn?) + Z zfrinf In %
rjn

ieC jec jec 1eC jeo J

- {an In nkry [+ 4 zf]}

1eC

The first term within curly braces corresponds to the definition of A’i. Its first term is linear.
The next 1s convex by Property 4.3, while the third term is convex by Property 3.2. Thus the
first term within curly braces is convex. The second term within curly braces is seen to be
the definition of A*. It is clearly separable and convex. These two terms correspond to the

definitions of A% and A* as given in Property 4.5 so that:
— A* = .Ali — A* (E.1)

where A’j_ and A* have been shown to be convex.
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Solution for n-Butyl-Acetate (1) — Water (2)
T =298K, P =1.0 atm

Feed Liquid I Liquid 11 Gy
Components (mols) (mols) (mols) (—)
CeH120, (1) 0.50 0.00071 0.49929 —0.02020
H,O (2) 0.50 0.15588 0.34412 (Global minimum)
CoH130; (1)]  0.50 0.00213 0.49787 —0.01961
H,O (2) 0.50 0.46547 0.03453 (Local minimum)
CoH1207 (1) ]  0.50 0.00173 0.49827 —0.01730
H,O (2) 0.50 0.37544 0.12456 (Local maximum)

Table 1: Solutions for Example 1

Iteration M* P(n")
1 —0.42615 | —0.01758
2 —0.23027 | —0.01758
3 —0.22209 | 0.00507
4 —0.11446 | —0.01754
48 —0.02408 | —0.01980
74 —0.02166 | —0.01988
87 —0.02059 | —0.02002
91 —0.02042 | —0.02018
106 —0.02021 | —0.02020
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n-Propanol (1) — n-Butanol (2) — Water (3): 7;; and a;; dimensionless

Components 23 || 2 | J Tij Tji = Qi
C3HsO — CyH100 || 1 | 2 —0.61259 0.71640 0.30

C3HsO — Hy,O 113 —0.07149 2.7425 0.30

CaH100 — H,O || 2|3 0.90047 3.51307 0.48

Table 3: Binary data for Example 2

Solutions for n-Propanol (1) — n-Butanol (2) — Water (3) at 7', P = 1 atm

Feed Liquid T | Liquid IT G, cpu | Ni | Nr
Component (mols) (mols) (mols) (—) (sec) | (—) | (%)
C3HgO (1) 0.040 0.0049 0.0351 —1.24112 5.2 268 65
CaH100 (2) 0.160 0.0095 0.1505
H,O (3) 0.800 0.4153 0.3847
C3HgO (1) 0.148 0.1280 0.0200 —1.1919716 | 17.31 | 932 26
CaH100 (2) 0.052 0.0456 0.0064
H,O (3) 0.800 0.6549 0.1451

Table 4: Global solutions for Example 2
G* nj ng
Global Minimum | —0.01976 | 0.00045 | 0.47733
Local Minimum 0.30919 0.25 0.25

Table 5: Solutions for Example 3
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Iteration || Lower bound | Upper bound
1 —3.77305 0.30923
2 —3.65550 0.18812
3 —1.28319 0.18812
4 —1.13669 0.05711
12 —0.40768 0.00389
22 —0.15547 —0.00787
36 —0.06343 —0.00760
42 —0.04459 —0.00657
49 —0.03744 —0.00547
52 —0.03553 —0.01968
122 —0.02088 —0.01975
190 —0.02004 —0.01976
343 —0.01978 —0.01976

Table 6: Progress of bounds for Example 3
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Figure 1: Example for two connected variables
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Figure 3: Gibbs surface and Lagrangian for Region 1 of Iteration 1 of Example 1

Figure 2: Gibbs energy surface for Example 1
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Figure 4: Concave function and its convex envelope
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Figure 5: Box regions of UNIQUAC example
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