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Abstract

In this paper, the deterministic global optimization algorithm, aBB, (a-based
Branch and Bound) is presented. This algorithm offers mathematical guarantees
for convergence to a point arbitrarily close to the global minimum for the large
class of twice-differentiable NLPs. The key idea is the construction of a converging
sequence of upper and lower bounds on the global minimum through the convex
relaxation of the original problem. This relaxation is obtained by (i) replacing all
nonconvex terms of special structure (i.e., bilinear, trilinear, fractional, fractional
trilinear, univariate concave) with customized tight convex lower bounding func-
tions and (ii) by utilizing some « parameters as defined by Maranas and Floudas
(1994b) to generate valid convex underestimators for nonconvex terms of generic
structure. In most cases, the calculation of appropriate values for the o parame-
ters is a challenging task. A number of approaches are proposed, which rigorously
generate a set of a parameters for general twice-differentiable functions. A crucial
phase in the design of such procedures is the use of interval arithmetic on the
Hessian matrix or the characteristic polynomial of the function being investigated.
Thanks to this step, the proposed schemes share the common property of computa-
tional tractability and preserve the global optimality guarantees of the algorithm.
However, their accuracy and computational requirements differ so that no method
can be shown to perform consistently better than others for all problems. Their
use is illustrated on an unconstrained and a constrained example.

The second part of this paper (Adjiman et al., 1997) is devoted to the discussion
of issues related to the implementation of the aBB algorithm and to extensive
computational studies illustrating its potential applications.
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1 Introduction

A large proportion of all optimization problems arising in an industrial or
scientific context are characterized by the presence of nonconvexities in some
of the participating functions. Phase equilibrium, minimum potential energy
conformation of molecules, distillation sequencing, reactor network design,
batch process design are all but a few of the nonconvex nonlinear program-
ming problems (NLPs) relevant to the chemical industry. The nonconvexities
represent major hurdles in attaining the global optimal solution and circum-
venting them is a central theme of nonlinear optimization theory. Recent
progress on global optimization methods and their applications to process
synthesis and design, process control and computational chemistry is re-
viewed in Floudas and Grossmann (1995), Floudas and Pardalos (1996),
Grossmann (1996) and Floudas (1997).

Many of the deterministic methods proposed to date rely on the gener-
ation of valid convex underestimators for the nonconvex functions involved.
Successive improvements of these estimates, together with the identification
of the global solution of the resulting convex programs, eventually lead to
the determination of the global optimal solution of the original nonconvex
problem. The GOP algorithm developed by Floudas and Visweswaran (1990,
1993, see also Visweswaran and Floudas, 1990, 1993, 1996a,b) is an instance
of a decomposition method in which the special structure of the problem is
exploited in order to construct valid underestimators. The branch-and-bound
algorithm of Al-Khayyal and Falk (1983) takes advantage of the properties
of bilinear functions for which the convex envelope can be determined ex-
plicitly (Al-Khayyal, 1990). A branch-and-bound algorithm applicable to
many nonconvex problems relevant to chemical engineering was proposed
by Smith and Pantelides (1996). The generation of convex underestimators
is based on a symbolic reformulation of the problem that transforms com-
plex nonconvex terms into simpler terms such as bilinear, univariate concave,
convex, linear fractional and simple power terms. This is achieved through
the addition of new variables and constraints to the original problem. Fi-
nally, the aBB algorithm (Maranas and Floudas (1994a,b), Androulakis et
al. (1995)) is based on a branch-and-bound scheme in which a convex lower
bounding function is generated at each node. This algorithm is applicable to
the broad class of twice-differentiable functions as shown by Liu and Floudas
(1993), and has been successfully used to identify all solutions of nonlinearly
constrained systems of equations (Maranas and Floudas, 1995). In order to



derive the required valid underestimator for a twice-differentiable function
without making any further assumptions concerning its mathematical struc-
ture, Maranas and Floudas (1992, 1994a,b) suggested the subtraction of a
separable positive quadratic term. Within this term, a nonnegative param-
eter « is assigned to each variable. The magnitude of these a parameters
greatly influences the convergence rate of the algorithm. In the general case,
the determination of @ values which result in the construction of a tight yet
valid convex underestimator is a difficult task. This matter is directly linked
to the properties of the Hessian matrix of the function being studied over
the domain of interest. Successful o computation methods must therefore
curtail the intrinsic complexities of the Hessian matrix analysis. Because of
the vast array of problems that can in theory be tackled by the aBB algo-
rithm, the development of new methods to evaluate « values for arbitrarily
complex twice-differentiable functions is of primary importance. In Part 1
of this paper, a general outline of the basic principles of the «aBB algorithm
is presented. It is followed by the detailed discussion of methodologies that
address the « calculation issue. Finally, these procedures are applied to a
constrained process design example.

2 The aBB Global Optimization Algorithm

The aBB algorithm operates within a branch-and-bound framework and is
designed to solve nonconvex minimization problems of the generic type rep-
resented by formulation (1). The theoretical properties of the algorithm
guarantee that such a problem can be solved to global optimality with finite
€-convergence.

min f(e)
s.t. () <0
Z(m) =0 M)
r € XC R

where f, g and h belong to C?, the set of twice-differentiable functions, and
x is a vector of size n.

Each iteration of the algorithm consists of a branching step and a bounding
step. In the latter, a lower bound is obtained by constructing valid convex
underestimators for the functions in the problem and solving the resulting
convex NLP to global optimality. An upper bound is calculated either by



solving the original problem locally over each subdomain of the solution
space or by performing a problem evaluation at the solution of the lower
bounding problem. The identification of the global optimal solution hinges
on the validity of the lower bounding problems as well as the construction
of increasingly tight lower bounding problems for successive partitions of the
solution space. Such properties lead to the generation of a nondecreasing
sequence of lower bounds which progresses towards the optimal solution.
As can be expected, the convergence characteristics of the BB algorithm
are significantly affected by the quality of the underestimators used. The
derivation of the lower bounding problem from the original problem plays
an important role in the algorithmic procedure. Therefore, the success of
the BB algorithm largely depends on the ability to reconcile two conflicting
goals, accuracy and efficiency, during that phase.

A determining step in the convexification strategy is the decomposition
of each nonlinear function into a sum of terms belonging to one of several
categories: linear, bilinear, trilinear, fractional, fractional trilinear, convex,
univariate concave or general nonconvex. Not only can these terms be read-
ily identified, but techniques can be devised in order to generate valid and
in some cases very tight convex underestimators. Although it is possible
to construct customized underestimators for other mathematical structures
such as signomial expressions, they are not considered in this paper. A de-
tailed description of the treatment of such terms can be in found in Maranas
and Floudas (1997). In constructing a convex underestimator for the overall
function, it is first noted that the linear and convex terms do not require any
transformation. The convex envelope of the bilinear, trilinear, fractional,
fractional trilinear and univariate concave terms can be constructed by fol-
lowing simple rules.

2.1 Underestimating Bilinear Terms

In the case of a bilinear term zy, Al-Khayyal and Falk (1983) showed that the
tightest convex lower bound over the domain [z%, zY] x [y%, yY] is obtained
by introducing a new variable wg which replaces every occurrence of xy in
the problem and satisfies the following relationship:

wp = max{zly + y*z — 2y’ 2Vy +yYz — 2V, (2)



This lower bound can be relaxed and included in the minimization problem
by adding two linear inequality constraints,

wp > zly+ytz—atyh,

U (3)

wg > aVy+yYz —2VyY.

Moreover, an upper bound can be imposed on w to construct a better ap-
proximation of the original problem (McCormick, 1976). This is achieved
through the addition of two linear constraints:

Yy +ylae — 2Vy", (4)

2.2 Underestimating Trilinear Terms

A trilinear term of the form zyz can be underestimated in a similar fashion
(Maranas and Floudas, 1995). A new variable wy is introduced and bounded
by the following eight inequality constraints:

wr > asyLzL + xLyzL + xLyLz - QxLyLzL,

wr > ayVzU + Uyl + aVylz — aVylel — zUyUs0,

wr > zylel + alyl + alyUz — 2lyVU2U — glylal,

wr > nyzL + nyzU + a:LyUz — a:LyUzL — nyUzU,

wp > ayl¥ + zlyzl + aUyls — 2UylU — glybsl, (5)
wr > xyLzU + wLyzU + mUyUz — a:LyLzU nyUzU,

wr > ayYzl + aVyl + atylz — 2VyV2t — alytat,

wr > ayV2V +2VyV + 2VyVz — 22UV 20,

2.3 Underestimating Fractional Terms

Fractional terms of the form z/y are underestimated by introducing a new
variable wr and two new constraints (Maranas and Floudas, 1995) which
depend on the sign of the bounds on z.

o oy + )y — " )yY ?fo >0

= z/yY — xly/ylyY + 2l /yl ifxl <0 (©)
wp > mU/%/—FxéyL—L:cU/yL %foEO

= zfyt —aVy/ylyY + 2V Y ifz¥ <0



2.4 Underestimating Fractional Trilinear Terms

For fractional trilinear terms, eight new constraints are required (Maranas
and Floudas, 1995). The fractional trilinear term zy/z is replaced by the
variable wgr and the constraints for 2, y~, 2 > 0 are given by

wpr > xy"/2Y +aty /Y + atyt [z = 2atyt)2Y,

Wgr Z xyL/ZU +-/L'Ly/ZL +xLyU/Z _ .TLyU/ZL _ ./ELyL/ZU,

wpr > yY /2l +aVy )2V + 2Vyl 2 — aVyl [V — 2UyY /20,

wpr > wyY /2Y + 2Vy /2t + 2lyV [z — 2lyV [V — 2UyU /2E, .
wpr > zy" /27 +aly /2" + aVy" )2 — aUy" 2 — 2yt )Y (7)
wpr > 2y¥ [2Y + 2Vy /2" + aly )z — 2PyU )2V = aTyV )2

wpp > zy" [2Y +aly /2t + aVy )2 — Uyt 2 — 2yt )2

wpp > wy¥ [zl +aVy /2t 4+ 2VyY )z — 22VyY /2L

2.5 Underestimating Univariate Concave Terms

Univariate concave functions are trivially underestimated by their lineariza-
tion at the lower bound of the variable range. Thus the convex envelope of
the concave function ut(x) over [z%, zU] is the linear function of z:

ut(zY) — ut(zl)
U — ok

ut(z") + (x — 2"). (8)

The generation of the best convex underestimator for a univariate concave
function does not require the introduction of additional variables or con-
straints.

2.6 Underestimating General Nonconvex Terms

For the most general nonconvexities, a slightly modified version of the un-
derestimator proposed by Maranas and Floudas (1994b) is used. A function
f(x) € C?(R") is underestimated over the entire domain [z, Y] by the
function L£(x) defined as

L(x) = f(@) + Y ailzy — zi) (@ — ) (9)

where the o;’s are positive scalars.



Since the summation term in Equation (9) is negative over the entire
region [z, U], L(z) is a guaranteed underestimator of f(z). Furthermore,
since the quadratic term is convex, all nonconvexities in the original function
f(x) can be overpowered given sufficiently large values of the «; parameters:
L(x) is therefore a valid conver underestimator. Since L(x) is convex if and
only if its Hessian matrix H.(x) is positive semi-definite, a useful convexity
condition is derived by noting that H.(x) is related to the Hessian matrix

Hy(z) of f(x) by

He(z) = Hy(z) + 2 A, (10)

where A is a diagonal matrix whose diagonal elements are the a;’s. A is
referred to as the diagonal shift matriz, since the addition of the quadratic
term to the function f(x), as shown in Equation (9), corresponds to the
introduction of a shift in the diagonal elements of its Hessian matrix H(x).
The following theorem can then be used to ensure that L(x) is indeed a
convex underestimator:

Theorem 2.6.1 L(x), as defined in Equation (9), is convez if and only if
HfL(a:)U—i- 2 A = Hy(x) + 2 diag (o) is positive semi-definite for all x €
", zY].

A number of deterministic methods have been devised in order to auto-
matically identify an appropriate diagonal shift matrix. They are discussed
in detail in Section 3.

In addition, special expressions for the o parameters have been developed
for the construction of a discontinuous underestimator for bilinear terms
which matches the convex envelope of Section 2.1. This strategy is described
in Appendix A.

2.7 Overall Valid Convex Underestimator

Based on the underestimators discussed for each of the term types identi-
fied, a convex underestimator for any given twice-differentiable function can
now be obtained through a decomposition approach. A function f(x) with
continuous second-order derivatives can be written as

bt tt
f(®) =LT(x)+CT(x)+ '21 bixp,1TB; 2 + X LiTr 10T, 22T 3
1=

=1

It TF;,1 et TFT;,1TFTy,2 ut i nt
+_21f1~ + _Zlftiiwm + _ZIUTz-(x)+ ,ZINTz-(-'B)
1= 1= 2 1= 1=

TF; 2
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where LT (x) is a linear term; CT'(x) is a convex term; bt is the number of
bilinear terms, zp, ; and xp, o denote the two variables that participate in
the #th bilinear term and b; is its coefficient; ¢t is the number of trilinear
terms, Zr,1, T1,2 and x7 3 denote the three variables that participate in
the 7th trilinear term and ¢; is its coefficient; ft is the number of fractional
terms, zp,1 and xp, o denote the two variables that participate in the ith
fractional term and f; is its coefficient; ftt is the number of fractional trilinear
terms, Tp7; 1, Trr;,2 and 7, 3 denote the three variables that participate in
the ith fractional trilinear term and ft; is its coefficient; ut is the number
of univariate concave terms, UT;(z?) is the ith univariate concave term, x’
denotes the variable that participates in UTj; nt is the number of general
nonconvex terms, NT;(x) is the ith general nonconvex term.

The corresponding lower bounding function is

bt
L(z,w)= LT(x)+CT(x)+ X bwp,
t g T
+ 21 tiwr, + ; Jiwr, + ; Jtiwrr,

ut . (i, _ (s .
+Z§ (UE(ZEZ’L) + UT;(x U) UT;(x L) (.’L‘ - xZ,L))

20U —giL

(11)

+ %tjl (NTZ(cc) + f}l oy — ) (2§ — x]))
1= J=

where «;; corresponds to term 7 and variable j and satisfies Theorem 2.6.1.
The wp, variables are defined by Equations (3) and (4). The wy,, wg, and
wpr, variables must satisfy constraints of the forms given by Equations (5),
(6) and (7) respectively.

Every customized underestimator discussed is a function of the size of the
domain under consideration. Because the aBB algorithm follows a branch-
and-bound approach, this domain is systematically reduced at each new node
of the tree so that tighter lower bounding functions can be generated through
updates of Equations (3-9). Thus the lower bounds on the problem form
a non-decreasing sequence, as required for the identification of the global
optimal solution. In addition, the quality of the variable bounds provided by
the user can be expected to greatly influence the convergence of the algorithm
and the investment of computational time in the calculation of tighter bounds
is likely to result in improved performance. This fact will be exemplified in
the computational studies presented in Part IT of this paper.

In theory, any twice-differentiable function can be treated as a single



general nonconvex term. However, the decomposition of functions into terms
can improve the performance of BB algorithm in two ways. First, the use
of tight underestimators for certain types of terms increases the quality of
the lower bounds generated for the optimum solution. Second, it will be
shown in Section 3 that the construction of a convex underestimator for a
general nonconvex term is dependent on the dimensionality of the term to
order O(n?) or higher. The separation of large terms into terms involving a
smaller number of variables therefore results in a decrease in computational
expense. Interestingly, the structure of many physical problems lends itself
naturally to such a decomposition.

2.8 Equality Constraints

In order to generate a valid lower bound on the global solution of the non-
convex problem, the underestimating NLP generated in each domain must
be convex. This implies that all inequality constraints in the lower bounding
problem must be convex, all equality constraints must be linear and that the
size of the feasible region must be increased relative to that of the original
nonconvex problem. One of two strategies can be used to underestimate a
nonlinear equality depending on the type of terms it involves. The first ap-
proach is used for equalities in which only linear, bilinear, trilinear, fractional
and fractional trilinear terms appear. The nonlinear terms are replaced by
new variables which participate linearly in the problem. The equality re-
sulting from the substitution is therefore linear. Moreover, since the set of
values these new variables can take on is a superset of the values that can
be attained by the nonlinear terms, the linear equality corresponds to an
enlarged feasible region. Thus, given the equality

bt tt
LT(x) + X biwp, 1782 + X L, 107, 2073 3

1=1 =1

ft ftt
+ 3 S+ T T = 0,
1= 2 1=

TFT;,3

the following underestimator can be used

bt tt It Jtt
LT(x) + ) bws, + Y tiwr, + Y fiwr, + Y, ftiwpr, =0,
i=1 i=1 i=1 i=1

where the notation is as previously specified, and the appropriate inequality
constraints for the w variables are added to the problem.



If the nonlinear equality constraint contains convex or general nonconvex
terms, the equality obtained by simple substitution of the corresponding
underestimators is nonlinear. If it contains univariate concave terms, it is
linear but it corresponds to a different feasible region. In the presence of
convex, general nonconvex or univariate concave terms, the original equality
h(x) = 0 must therefore be rewritten as two inequalities of opposite signs,

{ h(z) <0
—h(z) <O0.

These two inequalities must then be underestimated independently. The
univariate concave terms appearing in the nonconvex equality become convex
in one of the two inequalities while the convex terms become concave and
the general nonconvex terms become convex or remain nonconvex.

The only remaining obstacle to the rigorous formulation of a valid convex
lower bounding problem resides in the selection of appropriate values for the
« parameters in Equation (9).

3 Rigorous calculation of o for general NLPs

The focus of this section is the development of methods that generate rig-
orously an appropriate diagonal shift matrix, that is, a set of a parameters
satisfying Theorem 2.6.1. This allows the construction of a convex underesti-
mator L(z) for a twice-differentiable function f(x) over a specified domain.
Two classes of approaches to this problem are defined:

e Uniform diagonal shift of the Hessian matrix of f(x),
e Non-uniform diagonal shift of the Hessian matrix of f(x).

Before the proposed procedures are described, two fundamental issues
must be examined: the computational complexity of the a calculation prob-
lem and the design of criteria for the assessment of the calculation methods.

3.1 Tractability of a Calculation Techniques

As seen in Equation (10) and Theorem 2.6.1, the diagonal shift matrix A
is closely linked to the Hessian matrix H(x) of the function being under-
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estimated. For general twice-differentiable functions, the elements of the
Hessian matrix H(x) are likely to be nonlinear functions of the variables,
so that the derivation of a matrix A valid over the entire underestima-
tion domain is a very difficult task. Yet, satisfying the convexity condi-
tion of Theorem 2.6.1 is essential for the preservation of the guarantee of
global optimality. The difficulties arising from the presence of the variables
in the convexity condition can be alleviated through the transformation of
the exact x-dependent Hessian matrix to an interval matrix [H| such that
H;(x) C [Hy], Yz € [zL,2Y]. The elements of the original Hessian matrix
are treated as independent when calculating their natural interval extensions
(Ratschek and Rokne, 1988; Neumaier, 1990). The interval Hessian matrix
family [H/] is then used to formulate a theorem in which the « calculation
problem is relaxed.

Theorem 3.1.1 Consider a general function f(x) with continuous second-
order derivatives and its Hessian matric Hp(x). Let L(x) be defined by
Equation (9). Let [Hy] be a real symmetric interval matriz such that He(x) C
[Hy], V& € [zl 2Y]. If the matriz [H] defined by [He] = [Hf] +2 A =
[Hf] + 2 diag («i) is positive semi-definite, then L(x) is conver over the
domain [z", zY].

The domain of validity of the underestimator, [z, Y], participates in
the interval convexity condition implicitly, through the interval matrix. The
use of interval arithmetic serves two purposes: it reduces the computational
complexity of the a calculations and it allows the preservation and transfer
of global information.

3.2 Assessment of a calculation methods

The quality of the underestimator generated by any given « calculation
method can be measured in terms of the separation distance between the
nonconvex function and its underestimator: the tighter the lower bounding
scheme, the faster the convergence. For this purpose, the maximum sepa-
ration distance between f(x) and L(x), dy4, can be used. Maranas and
Floudas (1994b), showed that it is directly proportional to the o;’s and given
by

. _ I (2l el
dma:c - :BLrgniggiﬂU(f(w) ‘C(w)) - 4 ;al(mz T; ) (12)
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In addition, the @ parameters and the bounds on the variables can be shown
to affect the maximum number of iterations required in order to achieve
e-convergence (Maranas and Floudas, 1994b).

The maximum separation distance is used in subsequent sections to eval-
uate the accuracy of each calculation method. Accuracy in itself is not suffi-
cient and the trade-off between accuracy and computational expense plays a
pivotal role in the assessment of any given method. Finally, regardless of the
method being used, the size of the intervals within the Hessian matrix affects
the final accuracy of the computation. The interval arithmetic required for
this step should therefore be performed in a way that limits overestimates.

The examples presented in Parts I and II serve to illustrate how each
proposed method affects the overall performance of the BB algorithm, both
in terms of the number of iterations and computational expense. Throughout
the description of the « calculation procedures, the small example presented
in the next section is used as an illustration.

3.3 Illustrative Example

The illustrative example is a nonlinear optimization problem in two variables
with bound constraints.

n;yiynf(x,y) =coszsiny — g/;T
—1<z2<2 (13)
-1<y<1

Three minima were identified with the local optimization software MINOS5.5
(Murtagh and Saunders, 1983) in 1000 runs: f!' = —2.02181 at (z',y') =
(2,0.10578), f2 = —0.99495 at (z?,y%) = (0.63627,—1) and f2 = 0.95465 at
(%, %) = (~1,1).

The objective function is the sum of two nonlinear terms, shown in Fig-
ure 1. Two different approaches are available for the derivation of interval
Hessian matrices: in Case 1, a single Hessian is obtained for the objective
function whereas in Case 2, a Hessian matrix is derived for each term.

3.3.1 Casel

Based on the Hessian matrix H(z,y) of f(z,y), an interval Hessian family
[Hf] which contains Hf(x,y) over the domain of interest is obtained.

12



(A z = cos(x) sin(y) (B) z =-x1 (yr2+1)

(Q  f(x,y) = cos(x) sin(y)-x/(y"2+1)

Figure 1: Tllustrative Example — The objective function (C) is the sum of
two terms (A and B)

13



—coszsiny —sina:cosy+(y—i‘l%)2

H¢(z,y) =
f( v) 2z(y?+1)2—8xy? (y2+1)
(y2+1)4

—sinzcosy + (yf%)z —coszsiny +

is such that

[ [-0.84148, 0.84148]  [-3.00000, 2.84148]
Hy(z,y) € [Hy] = ( [-3.00000, 2.84148] [-40.84148, 32.84148]

for -1 <z <2 and —1 <y < 1. The second-order derivatives in H;(z,y)
were generated by the automatic differentiation package built in the imple-
mentation of the aBB algorithm. Although the expression for the second-
order derivative with respect to y could be simplified further, leading to
more accurate interval calculations, it has been kept as is to ensure accu-
rate representation of the algorithm’s performance. Since [H| was obtained
through natural interval extensions, it is not the smallest interval Hessian
family which contains H(z,y). If the exact minimum and maximum val-
ues of the Hessian elements are calculated through global optimization, the
smallest achievable intervals can be identified. Following this procedure, it
was found that the optimal interval Hessian matrix is in fact

= [-0.84148, 0.84148] [-1.52288,1.38086]
=\ [-1.52288,1.38086] [-2.00608,4.00181] |

The largest overestimate occurs for the most nonlinear term, the second-order
derivative with respect to y.

3.3.2 Case 2
The trigonometric term (Term A) and the fractional term (Term B) are

treated separately.

Term A The Hessian matrix H4(x,y) and the interval Hessian family [H 4|
are given by

Hu(z,y) = (

—cosxsiny —sinzcosy
—sinxcosy —coszxsiny

14



and

H, = [-0.84148, 0.84148]  [-1.00000,0.84148]
A7\ [F1.00000, 0.84148] [-0.84148, 0.84148] )

In this case, [H,| is the smallest interval family that contains H4(z,y).

Term B The Hessian matrix Hg(z, y) and the interval Hessian family [Hp|
are given by

0 2
(¥*+1)?
Hg(z,y) =
2y 20(y?+1)2—8zy?(y?+1)
(¥*+1)° (y>+1)*

and

(00 [-22]
[Hp] = ( [-2,2] [-40,32] ) '

The optimal interval Hessian matrix is

(Hy]" = [0.00000,0.00000]  [-0.64952, 0.64952]
Bl 7\ [-0.64952, 0.64952]  [-2.00000, 4.00000] /
3.3.3 Study of the Illustrative Example

In the following sections, every proposed approach for the calculation of «
parameters for f(z,y) will be applied to the illustrative example in order to
gather the following information:

e Value of « in the initial domain (z,y) € [-1,2] x [-1,1].

e Maximum separation distance d,,,,; between f(z,y) and its underesti-
mator.

e Number of iterations required for convergence with a relative tolerance
of 1073.

These will be obtained for Case 1 and Case 2. Since the CPU time for this
problem is less than 1 second, it cannot be used for a meaningful comparison
of the different methods.

15



3.4 Uniform Diagonal Shift Matrix

For this class of methods, the underestimator £(x) is re-formulated using a
single « value:

L(z) = f(z)+ QZ(%L — z) (] — ). (14)

All the nonzero elements of the diagonal shift matrix A are therefore equal
to a. Maranas and Floudas (1994b) showed that L£(x) as defined by Equa-
tion (14) is convex if and only if

o> max{0,—>  min (@)} (15)
2 xl<e<x?

where the \;(x)’s are the eigenvalues of Hy(x), the Hessian matrix of the

function f(x).

If f(x) is convex, all eigenvalues of H;(x) are nonnegative for any x €
[L, Y] and, by Equation (15), @ = 0: the original function appears un-
changed in the lower bounding problem. For a nonconvex function, a mea-
sure of the degree of nonconvexity of the function is introduced through the
use of the most negative eigenvalue in the construction of the underestima-
tor: the more nonconvex the function, the smaller its minimum eigenvalue
and hence the larger a.

The minimization problem which appears in Equation (15) can be written
explicitly as:

min A
T\
z € [zl 2Y]

where [ is the identity matrix.

This is, in general, a difficult nonconvex optimization problem. Maranas
and Floudas (1994b) suggested that a lower bound on the smallest eigenvalue
of Hy(z) could be obtained by using the measure of the Hessian matrix. How-
ever, this approach requires the solution of a convex programming problem
based on the second-order derivatives of the function being underestimated
and entails a large amount of computational effort. A valid lower bound
on the minimum eigenvalue of H(x) can be more easily obtained when the
interval Hessian matrix [Hy] O Hy(x) is introduced. All the methods pre-
sented in this section generate a single o value which satisfies the following
sufficient condition for the convexity of L(x):

16



o> {0, = A (117)} (16)

where A, ([Hy]) is the minimum eigenvalue of the interval matrix family
[Hy].

One O(n?) method and a variety of O(n?®) methods have been developed
to compute a bound on the minimum eigenvalue of a symmetric interval
matrix. Before they are exposed, the illustrative example is revisited in the
context of the uniform diagonal shift approach.

3.4.1 Eigenvalue Analysis for the Illustrative Example

The minimum eigenvalues for the exact Hessian matrices H(x,y), Ha(z,y)
and Hg(z,y) are compared to the minimum eigenvalues of the corresponding
interval Hessian matrices.

Entire Function The exact minimum eigenvalue of Hy(z,y) is A%, =

—2.3934 for (z,y) € [—1,2] x [-1,1]. For [Hy], the minimum eigenvalue is
—41.0652 and it is —3.0817 for [H/]*. Based on Equation (16), a value of «
of 20.5326 is the best that can be obtained with the uniform diagonal shift
approach. According to the exact eigenvalue calculation, a value of 1.1967
would suffice to guarantee the convexity of the underestimator. This illus-
trates the importance of careful interval calculations during the construction
of the interval Hessian matrix.

Term A The exact minimum eigenvalue of Ha(,y) is Af,;, 4 = —1.0 and
that of [H,] is —1.84148.
Term B The exact minimum eigenvalue of Hg(z,y) is A;,;, 5 = —2.0. For

[Hp|, the minimum eigenvalue is —40.0998 and for [Hg|*, the optimal interval
Hessian matrix for Term B, it is —2.17636.

As both x and y participate in the two terms, the overall exact a param-
eter for each of these variables is derived from the sum of the exact minimum
eigenvalues for Term A and Term B ()}, 4 + A, 5 = —3.0). Whereas the
exact a is 1.1967 in Case 1, the value obtained in Case 2 is a = 1.5. Thus,
considering the two terms separately yields a looser underestimator. This

observation is not maintained for all of the methods to be presented.
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3.4.2 O(n?) Method
Method I.1: Gerschgorin’s Theorem for Interval Matrices

This first method is the straightforward extension of Gerschgorin’s theorem
(Gerschgorin, 1931) to interval matrices. While its computational complexity
is only of order n?, the bounds it provides on the eigenvalues are often loose.

For a real matrix A = (a;;), the well-known theorem states that the
eigenvalues are bounded below by A, such that

J#
In the case of interval matrices, the following extended theorem can be used.

Amin = Mmin (aii - |aij|) . (17)

Theorem 3.4.1 For an interval matriz [A] = ([a;;,@i;5]), a lower bound on
the minimum eigenvalue is given by

%

a;; — )_max (|Qij|a |5ij|)] :

JF#i

Proof By definition, A, ([A]) > glni[jrql] Amin(A). Therefore,
€

in([4]) = min min | a; — ij
Ain([4]) - 2 Igg%g}milrI(a ,%“”‘)

v

min [nelin (a;;) — max (z |a,«jl>]

{ A€[A] A€[A] \ j#i

v

min [Qii — E max (‘Qij‘a ‘62J|)] :
i j#i

Illustrative Example The application of the extended Gerschgorin the-
orem to the illustrative example is summarized in Table 1. The calculation
of one eigenvalue for the entire function (Case 1) and the use of eigenvalues
for each of the two terms in the function (Case 2) yield the same results.
Because this scheme relies on the addition and subtraction of the matrix
elements, decomposition of the function has no effect on the final outcome
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when all the bounds on the term eigenvalues are negative, as is the case in
this example. If, on the contrary, one of the terms in the decomposition is
convex, its positive eigenvalues need not be taken into account, as indicated
by Equation (16). By neglecting to add positive contributions, such an ap-
proach would result in a decrease of the overall eigenvalues or an increase
in . It therefore seems appropriate not to decompose the nonlinear terms
when using this « calculation procedure. Further, it would appear that for a
function known to involve convex and nonconvex terms, the inclusion of the
convex terms with the general nonlinear terms could lead to an improvement
in the quality of the underestimator. Caution must however be exercised as
the overestimations resulting from the use of interval arithmetic may cause
a failure to identify convexity. If the calculated lower bounds on the positive
eigenvalues are negative, the underestimator will be looser than necessary. In
addition, decomposition of the nonlinear terms may result in the construc-
tion of smaller Hessian matrices and reduce the overall computational effort.
No general conclusions can be drawn on the treatment of convex terms when
using the extended Gerschgorin theorem.

Case | A\pin « dmaz | Iterations
1 -43.85 | 21.93 | 71.24 19
2 -43.85 | 21.93 | 71.24 20

Table 1: Results for the illustrative example using the Gerschgorin theorem.

3.4.3 0O(n®) Methods
The following definitions are needed for O(n?®) methods. Given an interval
matrix [A] with elements [a;;, @;;],

e its radius matrix AA = (Aaq;;) is such that Aa;; = a”_;%,

e its modified radius matrix AA = (Ag,;) is such that

~ ] O ifi=y
Aa;j = { Aa;; otherwise
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[2F +Qij

e its midpoint matrix Ay = (as;) is such that ay;; = =52,

e its modified midpoint matrix Ay = (da;) is such that

T
o aM ij otherwise

e a vertex matrix A, = (a,,;) of [A] is such that a,;; = a;; or a,4; = ;.

Note that A4 = AA + diag(AA) and Ay = Ay + diag(AA).

Method 1.2: E-Matrix Method

This method is an extension of the theorems developed by Deif (1991) and
Rohn (1996) for the calculation of a lower bound on all the eigenvalues of an
interval matrix. While they obtained expressions for the real and imaginary
parts of the matrices, only the real parts are of concern for the symmetric
matrices being considered here.

The following result is required to derive the main result for this method.

Lemma Let [a] = [a,a] be a single interval with midpoint ay, and radius
Aa. Then for all scalars v and all a € [a],

v a > yau — [7]Aa. (18)
Proof If v =0, Equation (18) is trivially valid. For v # 0,

~ B (apy —a) < Aa for vy >0
v(a—ap) > MACHE){_(QM_G)SAQ for y <0

The right-hand side is always true because the distance between the midpoint
and any point in the interval can never be greater than the radius of the
interval. .

Theorem 3.4.2 Let E be an arbitrary real symmetric matriz. Given a sym-
metric interval matriz [A], its modified midpoint matriz Ay and its modified

radius matriz AA, the minimum eigenvalue Apin(A) of any symmetric matriz
A € [A] is such that

where p(M) denotes the spectral radius of a matrix M, i.e. its mazimal
absolute eigenvalue, and |E| is the absolute value taken componentwise.
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Proof For all A = (a;;) € [4],

!l Ax Z aix? + Z Ti0i;T; (19)
J#i

> Z auT; + Y Ti0;. (20)
J#i

Setting z;2; = v and using the Lemma in the second term of the right hand
side of (20), we find

o' Az > aur + ) miamgm; — Y |1 Aagi|zy). (21)
i J#i J#t

The matrix E = (e;;) is now introduced. Since 3 e;;x7 —3 ;x4 Y xi€;2,;—
R 5 i
> xie;jx; = 0, this term can be added to the right hand side of (21) to yield

J#i

Az > Z Qi + €i;)T; —I—ZxZ anij + €ij)T;
J#i

— Z ity Z |zi| Aayj|z;| + ziei525) . (22)
J#i

The right hand side of Equation (22) can be further relaxed:
el Az > Z @i + )T + Y zilan; + €ij)T;

J#i
_Z (0 + [es]) =3 _Z‘$Z| (Aa; + leij]) |- (23)
J#1
This is equivalent to
" Az > 2" (Ay + E)x — |27 |(AA + |E|) ). (24)
Using the Rayleigh quotient, we have A, (A4) = min x” Az. Hence,

rTr=1
Amin(A) > min & (Ay + E)x — max |:I:T|(AA+|E|)|:I:|
rTr=1 xT

> Nnas + B)  p(5A + ).

|

The optimal choice for the matrix E' is a matrix that minimizes the lower

bound A,,;, obtained. Unfortunately, this matrix cannot be determined a

priori. Two choices of the matrix £ have been used to illustrate this «
calculation method:
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o =0,
o E =diag(AA).

The second choice of E matrix yields a result equivalent to the theorems of
Deif (1991) and Rohn (1996), namely:

Amin(A) > Amin (An) — p (AA). (25)

Illustrative Example The modified midpoint matrix is

.o —0.84148 —0.07926
FM =\ —0.07926 —40.84148 )’

while the modified radius matrix is

AH, - ( 0 2.92074 )

2.92074 0

In the example, both choices of E generate similar results as shown in
Table 2.

E=0 E = diag(AHy)

Case | Anin « Amaz | It€r | Apin o Az | Tter
1 -43.77 | 21.89 | 71.11 | 18 | -45.04 | 22.52 | 73.18 | 18
2 -43.85 | 21.93 | 71.24 | 18 | -45.94 | 22.97 | 74.64 | 18

Table 2: Results for the illustrative example using the F-matrix method.

Method 1I.3: Mori and Kokame’s Method

Mori and Kokame (1994) suggested the use of the lower and upper vertex
matrices, A = (a;;) and A = (@;;) respectively, in order to obtain a lower
bound on the minimum eigenvalue of an interval matrix.

Theorem 3.4.3 For any symmetric matriz A in the symmetric interval ma-
triz family [A], the minimum eigenvalue Apin(A) of A is such that
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The Mori and Kokame method can be compared to the F-matrix method
with E = diag(AA). Since A — A = 2AA, the value provided by the Mori
and Kokame method is greater than A,;,(A4) — 2p(AA). Comparing this
with Equation (25), the E-matrix method with E = diag(AA) yields better
results if and only if A\ (A) — Anin (Aar) < p(AA). For any vector x,

T T T T
Amin(A4) < z Az _Zz Avz  x" AAwx .z Ay

Tz T T

+ p(AA).

T

In particular

The E-matrix method with E = diag(AA) is therefore at least as good as
the Mori and Kokame method.

Illustrative Example The lower vertex matrix for the current solution
domain is

g _ [ 084148 —-3.0
;= —3.0  —40.84148 |-

The minimum eigenvalue of Hy is —41.0652 but that of the midpoint matrix,
Hj g, is —0.0016.  Apin(Hy) — Amin(Hy,ar) is negative and much smaller
than the spectral radius of AH 7. The Mori and Kokame technique therefore
leads to the construction of much looser underestimators than the £ matrix
approach with E = diag(AH/). This is corroborated by the results reported

in Table 3.

Case |  Amin Q Apmae | Tterations
1 -131.14 | 65.57 | 213.09 31
2 | -133.65 | 66.83 | 217.18 32

Table 3: Results for the illustrative example using the Mori and Kokame
method.

Method I.4: The Lower Bounding Hessian Method

Unlike other O(n?) methods, this technique requires the construction of a
single real matrix, referred to as a lower bounding Hessian matriz, in order to
determine a lower bound on the minimum eigenvalue of the interval Hessian
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matrix. Using a necessary and sufficient condition proved by Stephens (1997),
a bounding Hessian can be defined in terms of a property of its quadratic
form.

Definition 1 Given a symmetric interval Hessian matrix [A], the real sym-
metric matrix L is a lower bounding Hessian of [A] if and only if 7Lz <
! Az, Vx € R", VA € [A]. Similarly, the real symmetric matrix U is an
upper bounding Hessian of [4] if and only if £” Uz > 7 Az, Vo € R", VA €
[A]-

It follows immediately from this definition that the minimum eigenvalue
of a lower bounding Hessian is a guaranteed lower bound on the minimum
eigenvalue of the interval matrix family.

The procedure proposed by Stephens (1997) for the construction of up-
per bounding Hessians can be appropriately transformed to build a lower
bounding Hessian.

Theorem 3.4.4 Given an interval Hessian matriz [A] = ([a;;, T45]), the ma-
tric L = (l;;) where

a;. —Qik .

L = K
* Qij'f'aij . .
5 L F ]

is a lower bounding Hessian of [A].

Proof Let [A] be an n x n symmetric interval matrix. Recall that a vertex
matrix A, of [A] is defined by (4,)i; = a;; or (A,)i; = @i;.
Let X be the set of n-dimensional vectors with unit norm. For any & € X,
the vertex matrix Ay = (a; ;;) is defined as
% _{ Qij 1f$Z$JZO

Q;j if Ty < 0

n n
Then, " Alx < x’Az = Y aux? + Y. 3 aijjzizj, Vo € X, where A € [A] is
i=1 i=1 jZi
a real symmetric matrix. Consequently, L is lower bounding Hessian if and
only if £7Le < 2T Az, Yz € X.
Given a vector & € X, the quadratic form for the matrix L defined in
Theorem 3.4.4 is expressed as
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'L = E lnac + Z > iz

1= 1]#1
- Za“x—i-zz_—f—l 224y Y
=1 j#4 i=1 j#i

Using the fact that [A] is symmetric, this is equivalent to

'Lz = ZCL”.’L‘ + QZZ (_” _i (27 + 23) + @xi@-) . (26)

i=1 j>¢

For the vertex matrix A}, we have

n
mTA:w = z 'un z +22%zﬂz%
=1 =1 j#i
n
= Zazzx?_l_zza’vu'%x]
= lg;éz
n
= Zamxf—l-QZZaM]xzxj. (27)
=1 j>1

Comparing Equations (26) and (27), we find that 27 Lz < z” A}z if and
only if

ZZ ( (zF +27) + Wxﬂj) <D ay i (28)

=1 j>¢ i=1 5>t
In order to prove that this relation holds for all & € X, we first note that,
since (z; &= x;)* > 0, 27 + 27 > 4+22,2;. Hence,

a;; — Tij aij — i
L4g i ](-TZZ'F.T?) S + L) 5 inxj
and
;i — jj Q;i + ;4 Qi — Qjj a;: + ;;
=] tJ 2 2 “1j 1] Y47 1] Yig i
—(r; +x;)+ ———x,;%; S ———I;T; + —————T;T;
4 ( 1 ]) 9 J 9 J 2 J
<

Eij.T'iEj
< a L.

v,8]

Summing over all 2 and j > 7, the desired relation is obtained, proving that
L is a lower bounding Hessian of [A]. n
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Rather than calculating the minimum eigenvalue of L in order to con-
struct an underestimator of the form given in Equation (9), Stephens (1997)
recommends the incorporation of the lower bounding Hessian in the lower
bounding function. He proves that given any twice-differentiable function
f(z) and its lower bounding Hessian L; over the solution space, the function
f(x)—1/2&"L;x is convex. However, this expression is not everywhere less
than f(z) and the addition of a constant c is necessary to ensure that a valid
convex underestimator is indeed obtained. The underestimating function is
then expressed as

flz) — %mTwa +c (29)

where the condition ¢ < 1/2 min&” L;x must be satisfied in order to guar-
antee valid underestimation throughout the solution domain.

This type of underestimator has not been tested on any examples. The
rigorous calculation of ¢ requires the solution of an indefinite quadratic pro-
gram. The underestimator thus obtained differs from the general BB un-
derestimators in several ways: Equation (29) does not match the original
function at the end points and no bound can be provided for the maximum
separation distance between f(x) and its underestimator. In addition, the
function f(x) is underestimated even when its lower bounding Hessian is
positive semi-definite.

Illustrative Example The lower bounding Hessian matrix for the illus-
trative example is

I.— —3.48355 —0.07926

F=\ —0.07926 —43.7622 |-

Its minimum eigenvalue is —43.7624. The results are shown in Table 4. In
this example, the interval Hessian matrix is such that the widths of the off-
diagonal elements are small compared to the lower bounds on the diagonal
elements. Furthermore, the midpoint of the off-diagonal intervals, which is
used to determine the off-diagonal elements of L, is close to zero. These two
factors lead to the construction of a lower bounding matrix which is almost
diagonal and whose diagonal entries are almost equal to the lower bounds
on the interval diagonal elements. In such a situation, the bound on the
minimum eigenvalue is very accurate. This is not the case if the width of the
off-diagonal intervals is large, or if their midpoint is not close to zero.
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Case | A\min o dmaz | Iterations
1 -43.77 | 21.89 | 71.11 18
2 -43.85 | 21.93 | 71.24 18

Table 4: Results for the illustrative example using the lower bounding Hessian
method.

Method 1I.5: A Method Based on the Kharitonov Theorem

The Kharitonov theorem (Kharitonov, 1979) is used to determine whether
an interval polynomial family P()\) is stable or not by testing the stability
of only four real polynomials in the whole family. Considering the set of all
the roots of the interval polynomial family, let A, re denote the root with
the smallest real part. Adjiman et al. (1996) showed that the Kharitonov
theorem can be used not only to determine the stability of the family, but
also to compute the value of A\, ge-

Theorem 3.4.5 Let an interval polynomial family P(X) be defined by
where aF < aY, Vi.

Let Py()) denote the subset of this family containing the following four
real polynomials (Kharitonov polynomials):

) ..
LXA) =aY +aP X+ alX? +al X3+ af X+ af N + af X6 + - -
LX) =aY +al A+ a2+ a3+ al X +af X +ak X6+ -
[ X0 = ag + af A+ ag N + ag N’ + af X' + af A+ agf Ao+ - -

Then P(A) and Ps(X) have the same Apin, Re-

This result greatly decreases the complexity of the A\, re calculation as the
number of polynomials to be considered is reduced to four. The following
procedure can then be used to calculate a lower bound on the minimum
eigenvalue of the Hessian matrix H(x):

1. Construct H(x) — AI, where [ is the identity matrix.
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2. Derive the determinant of H(x) — AI and set it to zero. The resulting
polynomial is of the form

Pz, \) = ao(e) + a1 ()X + az(2) A2 + as(@) N> + - --

3. Using interval arithmetic, obtain an interval polynomial family, P ()
which contains P(x, \).

4. Using Theorem 3.4.5, calculate A, re Whose real part gives a lower
bound on the minimum eigenvalues of H(x).

The recourse to interval arithmetic in Step 3 is necessary as it transforms
a tremendously difficult problem into a tractable one. However, the family of
polynomials is enlarged by the process and while A ge is the root of a poly-
nomial in P()), it may not be the root of any of the polynomials in P(x, \).
Thus, the value obtained is a valid lower bound on the minimum eigenvalue,
whose quality depends on the type of interval calculations that are involved
in the construction of the interval polynomial family. Since the coefficients
of P(x, ) are the result of numerous multiplications, their dependence on
x as well as their interdependence may be quite intricate, leading to large
overestimates of the intervals they cover. An alternative to the procedure
presented above is to perform the interval extensions on the Hessian matrix,
prior to the determinant computation. This is likely to aggravate the accu-
racy problem. Whether one starts from the exact Hessian matrix or from
a Hessian matrix that contains it, the final interval polynomial may gener-
ate a larger spectrum of eigenvalues than the interval Hessian matrix, as its
derivation entails a larger number of operations.

Illustrative Example If the interval calculations are performed after the
derivation of the characteristic polynomial of H(z,y), the four Kharitonov
polynomials are

Ki(f,\) = —42.65921 — 33.68296\ + \?,
Ky(f,\) = 3836728 + 41.68296\ + N2,
Ks(f,)\) = 38.36728 — 33.68296\ + A2,
Ky(f,\) = —42.65921 + 41.68296)\ + \%.

The minimum roots of the four polynomials are —12.2215, —40.7412,
1.1804, —42.6824, and therefore o = 21.3412. For this small example, a more
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accurate value can be obtained by using global optimization to compute the
tightest possible intervals for the coefficients of the polynomial. The optimal
interval polynomial is [—2.3382,0.6744] + [—4.0073,2.0245]\ + A\? and the
Kharitonov polynomials give a minimum eigenvalue of —2.8460, a value which
is very close to the exact minimum eigenvalue of —2.3934.

If, on the other hand, the interval Hessian matrix is used, the following
four polynomials are obtained:

Ki(f,\) = —43.36729 — 33.68296) + A2,
Ko(f,A) = 3436729 + 41.68296) + A2,
K3(f,A) = 34.36729 — 33.68296) + A2,
Ki(f,\) = —43.36729 + 41.68296) + A2,

The corresponding set of minimum roots is
{—1.2418, —40.8415,1.0532, —42.6986},

giving o = 21.3493. As shown in Table 5, this method performs well when
applied to this small example.

Case | Muin «o dmez | Iterations
1 -42.69 | 21.35 | 69.36 19
2 -42.50 | 21.25 | 69.06 18

Table 5: Results for the illustrative example using the Kharitonov theorem
method.

Method 1.6: Hertz’s Method

The methods described so far either provide a lower bound on the minimum
eigenvalue of the interval Hessian matrix or the smallest real part of the
roots of the interval characteristic polynomial. The Hertz method allows the
computation of the eract smallest eigenvalue of the interval Hessian matrix.
This gain in accuracy comes at a cost since the number of matrices that need
to be constructed in order to arrive at this value is no longer independent
of the dimensionality of the problem. As this technique calls for 2"~ vertex
matrices, its computational cost may become prohibitive for larger problems.
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The Hertz method has been described in detail in Hertz (1992) and Adji-
man and Floudas (1996). In essence, it is similar to the Kharitonov theorem:
a finite subset of real matrices is constructed from the interval matrix, with
the property that its minimum eigenvalue is equal to the minimum eigenvalue
of the interval matrix. The required real matrices can be obtained through
a systematic procedure.

Theorem 3.4.6 Let [A] = ([a;;,Ty;]) be a symmetric interval Hessian ma-
triz. Consider a vector € € R"™. There are 2" possible combinations for
the signs of the x;x; products (i # j). For the kth such combination, let the
vertex matriz Ay, € [A] be defined by Ay, = [af;] where

. Qi ifi=j,
ai; =4 Gij if z;2; > 0,1 # 7,
Qi if ;T < 0,1 75 j-

Then the smallest eigenvalue of the set of matrices {Ax} is the minimum
eigenvalue of [A].

Illustrative Example Two vertex matrices are required for problems in
two variables. For the illustrative example, they are

o _ [ 084148 —3 @ g [ 084148 2.84148
H= —3  —40.84148 | ¢ 2=\ 984148 —40.84148 |-

Their minimum eigenvalues are —41.0652 and —41.0423 respectively. The
results are shown in Table 6. The o parameter calculated with the Hertz
method is based on the exact minimum eigenvalue of the interval Hessian
matrix. Consequently, any other uniform diagonal shift method relying on
the interval Hessian matrix produces « values greater than or equal to the
value generated with the Hertz method.

Case | A\min o dmaz | Iterations
1 -41.07 | 20.54 | 66.73 18
2 -41.95 | 20.98 | 68.15 18

Table 6: Results for the illustrative example using the Hertz method.
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3.5 Non-Uniform Diagonal Shift Matrix

This class of methods allows the calculation of a different o value for each
variable in order to construct an underestimator of the form shown in Equa-
tion (9). The non-zero elements of the diagonal shift matrix A can no longer
be related to the minimum eigenvalue of the interval Hessian matrix [H|.
The condition presented in Theorem 3.1.1 for the convexity of the underes-
timator cannot be simplified.

Before presenting rigorous procedures for the derivation of a diagonal shift
matrix A such that [Hf] + 2A is positive semi-definite, a few definitions are
introduced.

Definition 1 A square matrix A is an M-matrix if all its off-diagonal
elements are non-positive and there exists a real positive vector u such that
A u > 0. Inequalities are understood component-wise.

Definition 2 The comparison matrix (A) of the interval matrix [A] =
([aij, @;s]) is

(A)ij = ¢ min{|agl, [@;} %f l =j and 0 ¢ [a;;, Gy]
—lalg if i # j

where |a|; = max{|a,;|, [@;]}-

Definition 3 A square interval matrix [A] is an H-matrix if its comparison
matrix (A) is an M-matrix. It can be shown that if [A] is an H-matrix, it is
regular and 0 is not an eigenvalue of [A] (Neumaier, 1992).

The first rigorous method belonging to this class is a O(n?) method,
while the two other methods presented are iterative, with varying degrees of
complexity.

3.5.1 O(n?) Method
Method II.1: Scaled Gerschgorin Theorem

Theorem 3.5.1 For any vector d > 0 and a symmetric interval matriz [A],
define the vector o as
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1 d;
Q; = max {0; 3 (Qz'i - g |alijd_z-> }

where |al;; = max{|a;;|, [@;|}.
Then, for all A € [A], the matriz Ay = A + 2A with A = diag(«;) is
positive semi-definite.

Proof First, we show that the diagonal elements of A, are non-negative.
By definition,

a/;,iidi = a”dz + max {0, _Qiidi + Z \a|z~jdj} .
J#i
If aj; > 0: Since d; > 0, agd; is the sum of two non-negative terms and
therefore a, j; > 0.
If a;; < 0: Since a;; < a4, a;; < 0. Therefore,

Qudz — Z |a\,~jdj < 0.
J#i
Hence,
acidi = aid; — a;;d; + Y |alizd; > 0.
i#i
The diagonal elements of A, are therefore non-negative. Using this property,
the comparison matrix (A,) of A, is given by

Qg ii ifi=j
(Ag)ij = { o

—|a£|i]- if ¢ 75']
— a;; + max {Oa —a; + X |a|zkz—k} ifi=7
= ki i

—lali; ife#j

We now prove that (Az)d > 0. The ith component of the vector (A.)d
is given by

k#i ki

((Ag)d); = a;d; + max {Oa —a;di + \a|ikdk} =" |a|ids. (30)
Two cases must now be discussed.
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Case 1: —a;;d; + ¥ |alixdy > 0
Equati](g)?lélz (30) becomes ((Az)d), = 0.
CASE 2: —a;d; + ¥ |a|idy < 0.
Equation (30) becomes ((A¢)d), = auds — 3 |alid > 0.
This proves that (Az)d > 0. Let (A, ) be any eigenpair ofljz so that Az =

Ax. Since A, is symmetric, all its eigenpairs are real and the eigenvector x

can be scaled in such a way that max ‘% = 31: =1, for some j. Then,
7 ? J

M = Ar; = agjkak
k

> Nag,gjlle;| =Y lacnl|ze|
Py
> agild; — Z lac,jklde > 0.
Py

Therefore, A > 0. .

The choice of the non-negative vector d in Theorem 3.5.1 is arbitrary. If
all its elements are set to 1, the o vector becomes:

1
o; = max {0, —— (Qu‘ - E : |a‘ij> } ;
2 -y
JF#i

where the second term is the expression used in Method 1.1 for the extended
Gerschgorin theorem. As a result, the elements of the non-uniform diagonal
shift matrix obtained using Method II.1 with d; = 1 Vi are less than or equal
to the elements of the uniform diagonal shift matrix of Method I.1.

A second choice of d is based on the variable ranges. If d = £V — x’, the
off-diagonal contributions to the value of «; are divided by z¥ — zF. This
reflects the fact that variables with a wide range have a larger effect on the
quality of the underestimator than variables with a smaller range.

Similar scaling can be used for all Type I methods. The interval Hessian
matrix [A] is replaced by the matrix [B] with By, = d;Aidg, where d; =
z¥ — L. With the resulting « value, ag, one a; parameter is then computed

for each variable using the expression o; = ap/d?.
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Illustrative Example Both choices for vector d, d; = 1 and d; = z¥ — 2},

are considered. As the results in Table 7 show, the use of a non-uniform
shift is a very effective way to reduce the number of iterations and the max-
imum separation distance between f and its underestimator. For d; = 1,
the « corresponding to variable y, o, is the same as that obtained using
the Gerschgorin bound on the minimum eigenvalue (Method 1.1). However,
the value «, is decreased by 91%. This results in a 63% decrease in the
maximum separation distance for the initial domain. Although the use of
d =zV — xF = (3,2)T does not change the required number of iterations,
it shifts a larger part of the underestimation to the y variable as its range
is smaller than that of x. This results in a small decrease in the maximum
separation distance. Finally, as was the case for Method I.1, the results are

the same for Case 1 and Case 2.

Case | ay Qy Amax | Tter | oy Oy Amaz | Tter
1 1.93121.93 |26.24 | 13 | 1.43 | 22.68 | 25.87 | 13
2 1.93 1 21.93 | 26.24 | 13 | 1.43 | 22.68 | 25.87 | 13

Table 7: Results for the illustrative example using the scaled Gerschgorin
method.

3.5.2 TIterative Methods
Method I1.2: H-Matrix Method

In this method, the properties of H-matrices are used to obtain a valid non-
uniform diagonal shift matrix.

Theorem 3.5.2 Consider the symmetric interval matriz [G] and its modified
midpoint matriz Gy Let C = G,/ . If

o Gy is positive definite, and
e the pre-conditioned matriz C|G) is an H-matriz,

then [G] is positive definite.
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Proof If Gy is positive definite, all its eigenvalues are positive and the
matrix C is regular. If C[G] is an H-matrix, it is regular and hence 0 is not
an eigenvalue of [G]. The eigenvalues of an interval matrix are a continuous
function of the matrix elements. Thus if there exists G € [G] such that
at least one of the eigenvalues of GG, or equivalently CG, is negative, and
G € [G] has positive eigenvalues, there must exist a matrix G’ on the path
between G and G, such that at least one eigenvalue of CG' is equal to 0.
This contradicts the H-matrix property of C[G]. If the two conditions of
Theorem 3.5.2 are met, [G] must therefore be positive definite. .

This theorem can be used for the identification of an appropriate diagonal
shift matrix A for the interval matrix [A] by setting [G] = [A] + 2A. The
modified midpoint matrix of [G] is then Ay + A, where A, is the modified
midpoint matrix of [A]. The conditions for the positive definiteness of the
interval matrix [A] 4+ 2A are then

1. Ay + A is positive definite, and

2. the pre-conditioned matrix C[A] + 2CA is an H-matrix, where C' =
~ -1
(AM + A) }

An iterative approach can be used to compute a matrix A which satisfies

the above conditions. While the details of this approach are described in
Appendix B, the main steps are given below.

1. Use Method 1.2 to construct a uniform shift matrix A¥ and calculate

the corresponding maximum separation distance, dZ_ . Set k = 0.

2. Compute a modified Cholesky decomposition (Neumaier, 1997) of Ay
to determine if it is positive definite. If not, the results of the decom-
position provide an initial guess A, for the diagonal shift matrix.

3. Check whether C[A] + 2CAy is an H-matrix. If so, A is returned as
the diagonal shift matrix. Otherwise, proceed to Step 4.

4. Construct a new guess Ag,; such that the corresponding maximum
separation distance is dff! with d¥ < drtl < dF = Set k =k + 1.
Go to Step 3.

If no matrix A such that C[A] +2CA is an H-matrix has been identified
after a fixed number of iterations, the matrix A¥ is returned. As a result,
the H-matrix method is at least as accurate as the E-matrix method. It is
also more computationally expensive.
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Illustrative Example As shown in Table 8, the overall results for Case 1
are the same as for Method 1.2, the F-matrix method with £ = 0. The
H-matrix method consistently fails to identify a diagonal shift matrix bet-
ter than that of Method I.2. For Case 2, however, the number of required
iterations is reduced and a significantly improved non-uniform diagonal shift
matrix is generated by the H-matrix method.

Case | «ay Qy dmez | Iterations
1 21.89 | 21.89 | 71.11 18
2 0.93 | 21.93 | 23.99 16

Table 8: Results for the illustrative example with the H-matrix method.

Method I1.3: Minimization of Maximum Separation Distance

Since the maximum separation distance between the original function and
its underestimator reflects the quality of the underestimator, this method
aims to derive a non-uniform diagonal shift matrix A which is optimal with
respect to dnq.. This goal can be expressed as an optimization problem of
the form

min (z¥ — z1)TA(2V — zb)
st. Hp(z)+2A>0
z € [zF, 2]

where A is a diagonal matrix, and M > 0 means that the matrix M is
positive semi-definite.

Due to the nonconvexity of the above problem, the formulation is relaxed
to

min (z¥ — z1)TA(2V — zb)
s.t. [Hf] + QA 2 0

The presence of the interval Hessian matrix in the constraint makes the
identification of the solution of this problem difficult. To further simplify it,
[H] can be replaced by a real matrix whose minimum eigenvalue is smaller
than the minimum eigenvalue of [H|. The lower bounding Hessian L defined
in Theorem 3.4.4 is a natural choice and the maximum distance minimization
problem becomes
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min (zY — z")TA(zV — z¥)

st. L+2A>0 (31)

Problem (31), a semi-definite programming problem, is convex and can
therefore be solved to global optimality using interior-point methods which
have a polynomial worst-case complexity (Vandenberghe and Boyd, 1996).
Because of the use of the lower bounding Hessian matrix, the A matrix
is rigorously valid but not strictly optimal. As far as the quality of the
underestimator is concerned, the minimization of maximum distance method
is at least as good as the lower bounding Hessian method but no a prior:
comparison with other methods is possible.

Illustrative Example For the illustrative example,

a 0 [ —3.48355 —0.07926
8= ( 0 o ) and L = ( ~0.07926 —43.7622 ) '

The results are shown in Table 9. Although the maximum separation
distance is explicitly minimized in this method, the results are slightly worse
than those given by Method I1.1 which uses the scaled Gerschgorin approach.
This can be attributed to the use of the lower bounding Hessian matrix rather
than the interval Hessian matrix in Method II.3. This method is the only
one for which the treatment of the two nonconvex terms as separate entities
(Case 2) yields worse results than the analysis of the entire function (Case 1).

Case | ay Oy dmar | Iterations
1 1.91 | 21.95 | 26.23 14
2 1.91 | 21.95 | 26.23 16

Table 9: Results for the illustrative example with minimization of maximum
distance.

3.6 On the Role of Interval Calculations

The tractability of all the a calculation methods presented in this paper
is ensured through the use of interval arithmetic to obtain bounds on the
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second-order derivatives. Since the mutual dependence of the Hessian ma-
trix elements is neglected in such an analysis, a certain degree of inaccuracy
is introduced. Regardless of the chosen procedure, the quality of the con-
structed underestimator depends to a large extent on the accuracy of the
intervals generated for each Hessian matrix element. As was stated in the
presentation of the illustrative example (Section 3.3), an optimal interval
Hessian matrix can be computed by using global optimization to determine
the minimum and maximum values each matrix element can take given a
bounded solution space. The resulting matrix is then optimal in the sense
that the tightest possible bounds have been obtained for each element. How-
ever, this optimal matrix cannot be derived for the general case. Wider
but guaranteed intervals can be generated using classical interval arithmetic
techniques. One of the main characteristics of such an approach is that the
final result differs depending on the initial analytical representation of the
matrix elements. For instance, if the same term appears in the numerator
and the denominator of a division, natural interval extensions will evaluate
these quantities independently, most probably leading to an overestimate.
This is the case for the small illustrative example used throughout Section 3.
If the analytical Hessian matrix for Term B is expressed as

2
0 (y“’f—ll)2

HB(xa y) =
2y 2 ( _ 4y2 )
P WP T

the interval Hessian matrix obtained through standard interval arithmetic is

now
— [an] [_252]
1Ha] = ( 22] [126] )

The second-order derivative with respect to y is found to belong to a much
smaller interval than that obtained through automatic differentiation. The
minimum eigenvalue of the above interval matrix is -12.3246 and the best «
value which can be derived by any of the uniform diagonal shift matrix meth-
ods is 7.0831. This represents a significant improvement over the value of
20.9707 obtained in Section 3.4.1 with different analytical expressions. Great
care should therefore be taken when carrying out automatic differentiation.

To reduce the occurrence of such overestimation, it may be possible to
exploit the structure of the problem and thus supply second-order deriva-
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tives which are more appropriate for interval evaluation than those gener-
ated through automatic differentiation. This is the case, for example, of the
minimization of the potential energy of the pseudoethane molecule presented
by Maranas and Floudas (1994b). The highly nonlinear objective function
can be expressed in the dihedral angle space or in the inter-atomic distance
space. Although the first formulation is more desirable as it results in a
one-variable optimization problem, the corresponding Hessian expression is
grossly overestimated by natural interval extensions. The « value at the
first level of the branch-and-bound tree is 37378.9 and the global optimal
solution is identified in 21 iterations and 1.2 CPU sec. On the other hand,
if the Hessian is first obtained in the distance space and then transformed
to the dihedral angle coordinate system, a substantial improvement in the
accuracy of the eigenvalue bound is achieved. The first « is then 620.8 and
the algorithm converges in 15 iterations and 0.6 CPU sec. Finally, using
the exact minimum eigenvalue at each iteration, the solution is found in 10
iterations, with an initial o value of 6.7. The importance of computing an
accurate interval Hessian matrix cannot be overemphasized.

4 A Constrained Process Design Problem

This example, which involves 7 variables, 12 nonlinear constraints and 4
linear constraints, provides an illustration of the performance of the aBB
algorithm and the different o calculation methods for a larger problem than
the illustrative example used in the previous section.

The simplified alkylation process considered for this example was dis-
cussed in detail by Bracken and McCormick (1968). As shown in Figure 2,
an olefin feed (100% butene), a pure isobutane recycle and a 100% isobutane
make up stream are introduced in a reactor together with an acid catalyst.
The reactor product stream is then passed through a fractionator where the
isobutane and the alkylate product are separated. The spent acid is also
removed from the reactor.

Bracken and McCormick (1968) proposed a model for this process which
allowed the formulation of a profit-maximization problem. The 10 variable
NLP they derived was transformed to a 7 variable problem by Dembo (1976).
A slightly modified version of his formulation is used here.

The variables are defined as follows: x; is the olefin feed rate in barrels
per day; s is the acid addition rate in thousands of pounds per day; x5 is
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the alkylate yield in barrels per day; x4 is the acid strength (weight percent);
T5 is the motor octane number; zg is the external isobutane-to-olefin ratio;
x7 is the F-4 performance number. The profit maximization problem is then
expressed as:

Profit = —min 1.7152; + 0.035z,26 + 4.056523 + 10.025 — 0.063z325

subject to:
0.0059553571z;2, + 0.88392857z5 — 0.1175625z6z, — 3
1.1088z; + 0.1303533z 126 — 0.0066033z1 75 — 3
6.66173269z; + 172.39878x5 — 56.59666974 — 191.20592z — 10000
1.08702x6 + 0.32175x4 — 0.0376212 — x5 + 56.85075
0.006198x7x4x3 4+ 2462.312129 — 25.125634x924 — T324
161.18996x3x4 + 5000.0x924 — 489510.029 — 237427
0.33z7 — x5 + 44.333333
0.022556x5 — 0.00759527
0.00061z5 — 0.0005z
0.819672x1 — x3 4+ 0.819672
24500.0x9 — 250.0z914 — T324
1020.4082x 429 + 1.2244898x3x4 — 10000025
6.25z1x6 + 6.25x1 — 7.625x3 — 100000

122.1'3 — TgT1 — T1 + 1

VAN AN VAN VAN VAN VAN VAN VAN VAN VANR VAN VAN VAN VA
=R R i BSOS e I < S e S S < B < S

1500 < z; < 2000
1 < 2, < 120
3000 < z3 < 3500
8 < =z, < 93
90 < x5 < 95
3 < 25 < 12
145 < z; < 162

The maximum profit is $1772.77 per day, and the optimal variable values
are 7 = 1698.18, x5 = 53.66, 5 = 3031.30, z; = 90.11, =z = 95.00,
zg = 10.50, z7 = 153.53.
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Figure 2: Simplified alkylation process flowsheet.

The presence of constraints allows the introduction of some enhancements
of the algorithm such as variable bounds updates. These are performed via a
reformulation of the original problem into a bound problem where the objec-
tive is to maximize or minimize one of the variables and where the original
constraints have been underestimated and convexified. In this example, an
update of all the variable bounds therefore necessitates the solution of 14
convex problems. Such an operation entails considerable computational ex-
pense. Although bound tightening is likely to result in the construction of
more accurate underestimators, its cost may outweigh the benefits. Two
bounding strategies were used for this example: an update of all variable
bounds at the onset of the algorithm, or an update of all bounds at each
iteration of the branch-and-bound tree. Between these two extremes, several
approaches could be selected: one could choose to update the bounds of a
fraction of the variables — those that are thought to affect the underestima-
tors most significantly — or updates could be performed only at a few levels
of the branch-and-bound tree. These alternatives are not explored in this
paper. The results are summarized in Table 10.

All calculations were performed on an HP9000/730. The results presented
in the ‘Single Up.” column were generated by updating all variable bounds
before the first iteration. The ‘One Up./Iter’ results were obtained by updat-
ing all bounds at every iterations. Although the second approach results in
tighter underestimators, and hence a smaller number of iterations, the time
requirements for each iteration are significantly larger than when no bounds
updates are performed. Thus, the overall CPU requirements may be larger
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when all variable bounds are updated at each iteration. A comparison of
the progress of the lower bound for each strategy as a function of iteration
number and as a function of CPU time for the scaled Gerschgorin theorem
method with d; = (z¥ — 2F) (Method II.1), shown in Figure 3, illustrates
this point. The percentage of overall computational effort dedicated to the
construction of the convex lower bounding problem, t;, is small for almost
all methods. It is significantly larger for Methods 1.5 and 11.3 as they require
the solution of a polynomial and a semi-definite programming problem re-
spectively. ty decreases when bound updates are performed at each iteration
as a large amount of time is spent solving the bound updates problems.

In this example, the scaled Gerschgorin approach (Method II.1) with
d; = (¥ —al) gives the best results both in terms of number of iterations and
CPU time. Its performance and that of other methods are further assessed
by solving a variety of problems presented in Part II of this paper (Adjiman
et al., 1997).

Single Up. One Up./Iter

Method Iter. | CPU | ty | Iter. | CPU | ty

sec. | (%) sec. | (%)

Gerschgorin (I.1) 74 | 375 | 05 | 31 | 416 | 0.0
E-Matrix (1.2) E=0 61 | 306 | 1.6 | 25 | 37.2 | 0.2
E-Matrix (1.2) | E = diag(AH) | 61 | 292 | 1.0 | 25 | 354 | 0.1
Mori-Kokame (I.3) 69 | 328 | 1.9 | 25 | 31.5 | 0.2
Lower bounding Hessian (I.4) 61 | 316 | 1.4 | 25 | 33.1 | 0.2
Kharitonov (L.5) 61 | 32.8 |12.3| 25 | 36.7 | 1.7
Hertz (L6) 50 | 32.9 | 1.4 | 25 | 32.8 | 0.5
Scaled G. (IL.1) di=1 56 | 249 | 03 | 30 | 36.5 | 0.3
Scaled G. (IL1) | d; = («V —zF) | 38 | 136 | 1.7 | 17 | 19.9 | 0.5
H-Matrix (IL2) 62 | 327 | 06 | 25 | 345 | 0.3
Min. Max. distance (I1.3) 54 | 21.8 | 16.7 | 23 | 304 | 5.0

Table 10: Alkylation Process Design Results for different o computation
methods. ty denotes the percentage of total CPU time spent generating
convex underestimators.
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5 Conclusions

As demonstrated in this paper, the aBB algorithm can rigorously identify
the global solution of twice-differentiable nonconvex programming problems
based on a general convex underestimating scheme. Several methods have
been developed for the calculation of the a parameters necessary for the
construction of a tight valid convex underestimator. They fall within two
classes: a uniform diagonal shift approach which requires the computation
of a lower bound on the minimum eigenvalue of an interval Hessian matrix;
a non-uniform diagonal shift approach in which a set of o parameters that
ensures the positive semi-definiteness of an interval matrix is obtained. The
decomposition of the nonlinear functions into a sum of terms constitutes a
central concept for the generation of tight underestimators and the success-
ful operation of the algorithm: the general nonconvex terms should involve
few variables, reducing the cost of the o computations. In addition, the
construction of customized lower bounding functions for different classes of
terms, such as bilinear, trilinear, fractional, fractional trilinear or univariate
concave, enhances the convergence characteristics of the aBB. The algo-
rithm and all the underestimating techniques were successfully tested on an
unconstrained example and a constrained design problem. Algorithmic and
implementation related issues, as well as extensive computational studies,
are reported in the second part of this paper (Adjiman et al., 1997).
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A Underestimating Bilinear Terms

The relationship between the general underestimators of the BB algorithm
and the convex envelope for bilinear terms used by McCormick (1976) and
Al-Khayyal and Falk (1983) is explored in this Appendix.

A.1 The Convex Envelope of Bilinear Terms
The convex envelope for a bilinear term zy with x € [z%, 2Y] and y € [y", yY]
is given by Equation (2). This discontinuous function is piecewise linear
and the following theorem defines the regions of applicability of each linear
expression.
Theorem A.1.1 The convez envelope of a bilinear term xy with x € [z", zV]
and y € [y, yY] is

_ [ ety +yte—atyt ity < —Ytle 4 Tt

2Vy +yYz — 2YyY  otherwise

Proof Using the definition of w given by Equation (2), let us determine
when w = 2ly+ytr —2ly? ie. when aly+yle—alyt > 2Vy+yVz—2VyY.

xLy+ny_xLyL > ny+yUx_nyU
o —(:CU _ acL)y _ (yU _ yL)x > :L‘LyL +nyU
yU _ yL nyU _ xLyL

x +

= yS_xU_xL 2U — L

Geometrical Interpretation From Theorem A.1.1, the line separating
the two regions of applicability of the linear underestimators is given by
yU — yb gUyl — glyl

y=- z+
xU—xL .Q’)U—LL'L

This can be equivalently expressed as
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yU — yb aUyU — glyl  glylU — glyU

vo= _:CU—J:LQH— 2V — xl * 2V — gl
B _yU_yLm+yU_yL L+IUyU_xLyU
B U — L U — L U — L
U_ L
y -y
= To@—r)+y’

This is the equation of a line passing through (z%,yY) and (zY,y%). As
shown in Figure 4, it crosses the rectangle [2L, zV] x [y, yV] diagonally, from
the top left corner to the bottom right corner. Region (1) corresponds to
the domain of applicability of %y + y*x — 2%y” and region (2) to that of
2Vy +yYz — 2VyY.

y
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L u
X X

Figure 4: Geometrical Interpretation of Theorem A.1.1.

A.2 Discontinuous a Parameters

Because the convex envelope for bilinear terms is a discontinuous function, no
continuous function can define an underestimator of comparable quality. To
generate a tight lower bound, the o values used to construct an underestima-
tor of the form given in Equation (9) must be discontinuous. For region (1),
the following expressions are suggested:




while for region (2), the following can be used:

-y _1x—xL

1
2z — gL’ CYy_§yU—y'

<

Oy =

The values of o, and «, are non-negative for all z € [z¥,2Y] and all
y € [y*,yY]. Using the proposed o values therefore generates a valid un-
derestimator throughout the domain of interest. Although the denominators
of the « expressions in region (1) vanish along two borders of the rectangle
(z = 2¥ and y = yY) it can be seen from Figure 4 that this does not pose
any problem as the region (2) expressions can be used along these lines in
order to evaluate «, and . Similar observations hold for the region (2)
expressions.

The underestimator

L(z,y) = 2y + ag(z — 27)(z — ") + ay(y — y") (y — ¥")
then becomes zly + yXz — zPy” in region (1) and zVy + yYz — 2VyY in

region (2). It is therefore equivalent to the convex envelope of a bilinear
term as defined in Theorem A.1.1.
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B The H-Matrix Method — Implementation
Issues

The central result of the H-matrix method, presented in Section 3.5.2, is
used to define sufficient conditions on the diagonal shift matrix A so that
[A] + 2A is positive definite. This Appendix describes how these conditions
can be applied to the computation of a valid A. The notation used here is the
same as in Section 3.5.2. The following remarks on the sufficient conditions
are made in order to facilitate the design of an iterative procedure:

Condition 1: Checking the positive definiteness of a real symmetric
matrix The positive definiteness of some real symmetric matrix A can
be tested by constructing a Cholesky decomposition of the matrix. If this
decomposition fails, the matrix A is not positive definite. Such an approach
does not provide any insight on how far the matrix A is from being positive
definite and therefore does not guide the choice of an appropriate diagonal
shift matrix A. The modified Cholesky decomposition of Neumaier (1997)
can be used to obtain quantitative information. The results of this modified
Cholesky decomposition are a lower triangular matrix L and a vector p such
that
A= LL" — diag(p).

The matrix A + diag(p) is therefore positive definite. This result can be
used for an initial guess of A, namely Ay = 1/2 diag(p). Interestingly, while
the modified Cholesky decomposition is more conclusive than the traditional
Cholesky decomposition, the number of operations it requires is almost the
same as that required by the traditional Cholesky decomposition. More-
over, when A is positive definite, the vector p vanishes and the result of the
traditional Cholesky decomposition is recovered.

Condition 2: Checking the H-matrix property Whether the matrix
[A] + 2A is an H-matrix can be tested as follows:

Construct [B] := C ([A] + 2A), where C is the pre-conditioning matrix
(Apr + A)~'. If 0 € By for some i, [A] + 2A is not an H-matrix.
Otherwise, compute [Ble where e = (1,---,1)T and [B]u where u =
((Bi1) ™+, (Bua) )T and (B) is the comparison matrix of [B]. If
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all the elements of at least one of the resulting vectors are positive,
[A] + 2A is an H-matrix.

It should be noted that this test constitutes a sufficient condition of the H-
matrix property. It may therefore fail to recognize that [A] + 2A is indeed
an H-matrix. The use of the pre-conditioning matrix C is an important
factor in reducing the failure rate of this test as it helps to diagonalize the
matrix [A] + 2A. Choosing the identity matrix for C' would not change
the theoretical analysis but would have a negative effect on the numerical
aspects of the method. An exact check for the H-matrix property can be
performed using Proposition 3.7.3 of Neumaier (1990). However, this check
is much more computationally expensive than the simple matrix and vector
multiplications used in the above procedure.

Bounds on A: Since the fact that a valid diagonal shift matrix A has been
identified may not be recognized by the proposed tests, an upper limit should
be imposed on the elements of A to ensure that the quality of the constructed
underestimator is no worse than that obtained with other techniques. As pre-
viously mentioned, the maximum separation distance is an effective measure
of the tightness of the underestimator. In practice, Method 1.2, the E-matrix
method with £ = 0, has been used to determine the largest maximum sep-
aration distance dZ__ allowed. If no suitable A matrix with a maximum
separation distance smaller than dZ _ is found by the H-matrix method,
AP the uniform diagonal shift matrix of Method 1.2, is returned.

Based on the above observations, the following procedure can be set up
for the computation of a non-uniform diagonal shift matrix:

Step 1 Given the interval Hessian matrix [A], compute a valid uniform shift
matrix A¥ using Method 1.2. All diagonal elements of A¥ are equal to
some non-negative scalar af. If ¥ = 0, [A] is positive semi-definite:
return A = 0. Otherwise, compute d2 = = ||z —zL|%. Set iteration
counter k = 0.

Step 2 Compute the modified midpoint matrix A, of [A] and its modified
Cholesky decomposition LLT — diag(p). Set Ay = 1/2diag(p). Check
that

mazx-*

dmaz,O = Z AO,M(:C? - xZL)2 < dE
i
If this is not satisfied, return A = AP,
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Step 3 Compute the pre-conditioning matrix Cy = (AM + Ak) and the
interval matrix [Bg] = Ck([A] + Ag). If [Bg] is an H-matrix, return
A == Ak-

Step 4 If the maximum number of iterations has been reached, return A =
AE,

Step 5 Since [By]| is not an H-matrix, a new guess for A is needed. Specif-
ically, the elements of A must be augmented. Compute a step-size ¢

such that .
5 — dma,w - dmaw,k
|2V — 2|2

Then, Ayt = Agii + 9. Increase the iteration counter k£ by 1. Go to
Step 3.
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