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Abstract

The problem of bounding the zeros of a polynomial of degree n > 2, with real or
complex coeflicients, is considered and an improved Cauchy bound is proposed. This
new bound is applied to two examples and compared with existing approaches. The
methodology is then extended to the case of polynomials of degree n > 2 with interval
coefficients. A counter-example to Theorem 3.8 in [2], used in the aBB algorithm
to compute a tight lower bound on the minimum real part of the zeros of an interval
polynomial is also presented. An alternative approach which uses the improved Cauchy

bound as a starting point is developed.

1 Introduction

The ability to determine the roots of polynomials gives access to crucial information
in the analysis of many chemical engineering systems. An area of particular interest
is global optimization, which has numerous applications in chemical engineering, from
the characterization of phase equilibrium to process synthesis and the enclosure of all
solutions of nonlinear systems of equations. In this context, the convexity of functions,
or lack thereof, is of prime importance. It can be determined by examining the eigenval-
ues of the Hessian matrix of a functions, or equivalently the roots of the characteristic
polynomial of the Hessian matrix. In the following, we describe an improvement over
the classical Cauchy bound for the maximal modulus of a complex polynomial of degree
n [5]. We extend the application of this bound to the case of interval polynomials. We
then show how this bound can be combined with the Kharitonov theorem [9] to obtain
a bound on the minimum root of a characteristic polynomial with negative roots. This
approach can be embedded within the aBB global optimization algorithm [2, 3] where

it enables the construction of rigorously valid convex underestimators.
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2 Improved Cauchy bound

2.1 Improved Cauchy bound for polynomials with real or

complex coefficients

2.1.1 Background

Let
PA) = A"+ apAnF (1)
k=1
be a polynomial of degree n with arbitrary complex coefficients ay, £ = 1,...,n. Let
Ak, k =1,---,n, denote the zeros of P(A) and p their maximal modulus. The problem

of finding bounds for p has been recently studied in [12] and [13], see also references
therein. The computational complexity of the methods proposed in [12, 13] is high, i.e.
O(n?*) and O(n?), respectively. These two methods are based on the following Cauchy
bound.

Theorem 2.1 (Cauchy [5], see also Kurosh [10] for a more accessible proof.) The
zeros of P(A) satisfy

p = mMax [Ae] < A+1 (2)
where
A= .
pmax lax] 3)

The computational complexity of Cauchy’s bound is O(n), mainly comparisons. We
derive an improved Cauchy bound which preserves its O(n) computational complexity.
We then present two examples which demonstrate the improvements obtained by using

the proposed bound.

2.1.2 The improved bound

Theorem 2.2 Forn > 2,

p= max [\ <r¥, (4)

23

where

r* = 0.5(1+ aa]) + 0.5v/(1+|ar])? — 4(Jas| - B), (5)



is the largest positive solution of the quadratic equation

r2—7‘(1—|—|a1|)—|—|a1|—B:0 (6)
and
B= max lak). (7)

Proof We will show that if |[A| > r, X cannot be a root of P(}). Let

n

R(A) =) apA™ ", (8)

k=2

Let r = |A|. Assuming that r > 1, we obtain

IR <) lagl|AH (9)
k=2

< an: |AnE| (10)
k=2
n—1| _
< B (11)
< ”;{‘j, (12)
Assuming in addition that r = || > |ay], we find
N4+ a A" = TN e > T (e = ). (13)
Combining Eqgs. (12) and (13), we obtain that if
(r—|a)(r=1)>B&r?— (1+a])r+|as| - B >0 (14)
then,
A"+ a A > zn:am—k : (15)
k=2

Before completing the proof, note that the discriminant of the parabola in Eq. (14)
attains its minimal value, ||a;| — 1|, for B = 0. Therefore, its zeros are always real.
Hence, since Eq. (14) is a minimal parabola, with r* its largest positive zero, || >
max{1,|a;|,rT} implies Eq. (15). In addition, r* > max{1,|a;|}, as can be shown
from the definition of r*, and so |A\| > r* implies Eq. (15). In other words, p must
satisfy Eq. (4) and the proof is completed. "



It remains to show that the modified Cauchy bound (Theorem 2.2) is always better
than Cauchy’s bound. By combining Eqgs. (2) and (4) one has to show that

1+A>rt. (16)

To show that Eq. (16) holds true, we solve the inequality r* < A + 1 noting that
A > B. We find that the inequality is satisfied if A > |a;| which is always true and
proves that the new bound is always better than the Cauchy bound.

The improvement on the Cauchy bound arises from the use of an additional term
from the polynomial under consideration. It can be expected that as more terms are

taken into account, greater accuracy is achieved.

2.1.3 Examples

Example 1 (Zeheb [12])
Let

PA) = A +3X7 420+ 1. (17)

Applying Theorem 2.1, Cauchy’s bound produces p < 4, whereas applying Theorem 2.2,
we obtain the bound p < 3.732. The following bounds for this example appear in [13]:

Method Bound | Method Bound
Zeheb [12] 2.750 | Marden [11, Theorem 27.3] 3.627
Marden [11, Eq. (27.19)] 3.873 | Marden [11, Eq. (27.25)] 2.828
Marden [11, Eq. (27.26)] 5.414 | Joyal et al. [8, Theorem 1] 4.000
Joyal et al. 3.193 | Joyal et al. 3.000
[8, Theorem 1 (corollary 2)] [8, Theorem 1 (corollary 3)]

Datt and Govil [6, Theorem 1] | 3.951 | Datt and Govil [6, Theorem 2] | 3.953
Boese and Luther [4] 3.951

The authors in [13] transformed the polynomial P(}) into the polynomial
Q) =A% =527 —2) —1 (18)

whose zeros are the square of the zeros of P(A). Applying Cauchy’s bound, they
obtained the bound p < /1 +5 = 2.45. Now, by applying to Q(\) the modified
Cauchy bound we obtain the improved bound p = 2.325. Note that the exact bound is
p = 2.3247.

Example 2 Let

P(A) = A% 4+ 150% 4+ 85X% — 225)% + 274X — 120. (19)



Note that the zeros of P(A) are 1,---,5, therefore p = 5.

By Theorem 2.1, Cauchy’s bound produces p < 275, whereas Theorem 2.2 produces
the bound p < 25.9722. Here, Zeheb’s bound [12] produces p < 144.3148.

To find the bound of [13], one has to transform P () into

Q(A) = N> — 554" + 1023)% — 76450 4 21076 — 14400 (20)

whose zeros are the square of the zeros of P(A), i.e., 1, 4, 9, 16 and 25. Applying
Theorem 2.1 to Q(A), we obtain that p < /1421076 = 145.1792, whereas using
the proposed bound, Theorem 2.2, we obtain the improved bound p < +/175.6652 =
13.2539.

2.2 Improved Cauchy bound for interval polynomials

We first extend the Cauchy bound for the zeros of complex polynomials to interval
polynomials. We then derive a modified and tighter bound for this class of polynomi-
als. Given a twice continuously differentiable function f(x), x € X, we consider the
following characteristic interval polynomial derived from its interval Hessian matrix

over the domain X:
Pf7X(A) = A"+ Z[Qlw Ek]/\n_k7
k=1

with n > 1, and a;, @; real numbers such that a; < @ for all k. This type of polynomial
arises in [2], for example.

For two real intervals [b, b] and [c, €], we define the following relation:

b8 >[cdeb>e

We also define the notation |a|; = max{|a;|, ||}

2.2.1 Cauchy bound for interval polynomials

We follow the proof of the Cauchy bound theorem by Kurosh [10] and extend it to
the case of the interval polynomial Pf x(X). First, we show that the modulus of the
highest degree term is strictly greater than the modulus of the sum of all the other

terms for sufficiently large values of A.
Lemma 2.1 If|A] > A+ 1, with A= [nax |a|k, we have

n

> oy, mIATH.

k=1

(A" >




Proof

O lag, @] <3 (lalg[AmF)
k=1 k:ln (22)
< A E |/\n—k| _ _A|>\n|—1
= [Al-1 "
k=1
For [A| > 1,
=1
. 2
Al/\|—1<A|/\|—1 (23)
Therefore,
; T\ < A 2] 24
Z[kaak] < |A| — 1 ( )
k=1

Thus, Eq. (21) holds when || > A||AA|i|1 and |A| > 1, that is, when |A| > A+ 1. .

Theorem 2.3 The zeros, Ay, of the interval polynomial Py x(X) are such that

p = max Al < A41, (25)
with A = max |a|g.
=1,,n
Proof This theorem follows directly from Lemma 2.1. "

2.2.2 Extension of the improved Cauchy bound to interval polynomi-

als

We now derive an alternative bound on the maximal modulus of Py x(A) and show

that it is at least as good as the extended Cauchy bound.

Theorem 2.4 For n > 2, the mazimal modulus p of Py x(X) is such that

p<rt, (26)
where
rt =051+ |aly) +0.5v/(1+ |a]1)? — 4(Ja|, — B), (27)
and
B = :11217ax7n|a|k (28)



Proof Let

Assuming r = |A| > 1, we obtain

IR <D lalsl A" (30)
k=2
< By 1)
k=2
R
< R — 2
< B 2
A
< o1 (33)
Assuming in addition that r = |A| > |a|;, we find
N+ [ag, @A = T A [ag, @] > " (= Jal). (34)
Combining Eqgs. (33) and (34), we can show that if
(r = lal)(r =1) > B, (35)
or equivalently,
r?2 — (14 aly)r+ |ajy —B >0 (36)
then,
N+ oy, @A > D e, @A (37)
k=2

The minimum value of the discriminant of the parabola in Eq. (36) occurs at B =0
and is equal to |1 — |a|1|. Therefore, its zeros are all real. Since Eq. (36) is a minimal
parabola, the condition in Eq. (36) is satisfied for r = |A| > rT, the largest root of
parabola (36) given by Eq. (27). Since, when Eq. (37) is true, P x(A) cannot have

any zeros and r* > max{1,|al1}, 7T is a bound on the maximal modulus of Pf x()). =

Corollary 2.1 by = r*, the bound given by Theorem 2.4, is at least as good as the
Cauchy bound, by = A+ 1.

Proof Since 0 < B <A, r* < 0.5(1+|ali) + 0.54/(1+ |a]1)? — 4(|al; — A). 0.5(1+
lal1) + 0.54/(1 + |a]1)? — 4(]a]; — A) — (A + 1) is a monotonically increasing function

of |a|y, so its maximum value occurs at |a|; = A and is equal to 0. Therefore, by < by.




3 The Kharitonov theorem in the aBB algo-

rithm

3.1 Counter-example to Theorem 3.8 of [2]

In [2, Theorem 3.8], see also [1], the authors presented the following extension of

Kharitonov’s theorem [9].

Theorem 3.1 Let an interval polynomial family Py x(\) be defined by
PLX(A) = [Q'rwan] + [Qn—ha’ﬂ—l]A + -t [21761]An_1 + An7 (38)

where a; < @;, Vi.
Let P4(X) denote the subset of this family containing the following four real polynomials

(Kharitonov polynomials):

Ki(A) = @, 40, A+ o+ 3N+ a0, N+ 0, X+ A+
Ky(A) = G+ Gnad+a, N 40, N +0 aM + 7,50+ 4, A4
Ks(A) = Gn+a, A+a, N 4+ 3N +@gN +a, 52 +a, A+
Ki(A) = @, +Guoa A+ @uoX 4+ 0, 3N+ g, N + s X+, A+ - -

Then Py x () and Py(X) have the same R(N) i, where R(X)yp is the smallest real
part of the roots of Py x ().

We present a counter-example which was found via a computer search. Let

Prx(N) =[0.15,7.11]4 [1.52, 6.21]A + [0.20, 2.35] A% + [1.14, 3.15]A% + [1.20, 2.73]A\* + A°
f7

(39)
Its four Kharitonov polynomials are:

Ki(X) = 0.15 + 1.52X + 2.350% + 3.150% + 1.200* 4+ A%, (40)
Ka(A) = 711+ 6210 + 0.20A% + 1.140% + 2.730% + A%, (41)
K3(X) = 7.11 + 1.522 + 0.20A% + 3.150% + 2.730% + A%, (42)
K4(X) = 0.15 4+ 6210 + 2.350% + 1.142° 4 1.200* + A, (43)

Now, consider the following counter example:
E(X) =5.82 4+ 1.87A + 1.96A% 4+ 1.19A% 4+ 2.70A* + A° € P; x (). (44)



Using MatLab we obtain
—1.7350 < min R(A(K,)) < 0.8579 (45)
1<4<4
and
min R(A(F)) = —2.5585, (46)

where A(K,) and A(F) denote the sets of eigenvalues of the polynomials K;()\) and
E(X), respectively, and  denotes the real part. Hence, using R(\),.i, as defined in

Theorem 3.1 we obtain

3 - - 3 ins in 9 '
R(A)min = P(A)Ien#?X(A)R(/\(P)) < min R(A(F)) < min, R(A(Ky)), (47)

thus rendering Theorem 3.1 incorrect.

3.2 Alternative approach

In light of the above counter-example, we modify the results of Theorem 3.1 (Theorem
3.8 of [2]) and derive the correct form of the Kharitonov polynomials that must be used
to compute R(A)nin. We then show how this result and the improved Cauchy bound
for interval polynomials can be used in the aBB algorithm.

The identification of (), is based on the following theorem.
Theorem 3.2 Consider the interval polynomial family
PLX(/\) = [anan] + [Qn—han—l]’\ +eeet [leal]/\n_l + /\n7 (48)

which contains at least one polynomial whose zeros are not all in the right-half plane.
A given negative real number, A, is a lower bound on R(X) . if and only if all the

zeros of the interval polynomial
Qrx (X)) = Prx(A+ M) =2y, @] + (@1, @G JAH A) + -+ (A+H A" (49)
lie in the right-half plane.

Proof Let AP ={\ € C:P;x(A\)=0}and A® ={\ € C: Qs x., () =0}. From
the definition of Q; x 1, (),

Ae AP o (A=))eA? (50)

Let Ay < R(A)min < 0. By definition, R(A) —R(A)nin > 0forall X € AP Therefore,
R(A) — A >0, VA € AP.. Hence,

R(A— X)) >0, V(A= \,) € A9, (51)

that is, all the zeros of Qg x 1, (A) lie in the right-half plane.

9



IFR(A—A) >0, V(A= X,) € A, then R(\) > A, V(A = ),) € A9, Using Eq. (50),
we conclude that A, is a lower bound on R(A)ip. "
While the Kharitonov polynomials of Ps x(A) were used in [1, 2], the polynomials
of Q¢ x 1, (A) should instead be used. These two sets of Kharitonov polynomials differ

since A, appears in the coefficients of Q¢ x \,(A). Expanding the above expression for

Qt.x 2, (A) yields

n n—1 7 .
n 7 .
Qs x . (A) = ( B ) AR Ta, g i ( . ) ATEAR S (52)
0 0

k= i=0 k=
0
where =1.
0

Grouping terms with the same power of A, we get

n—1 n . )
Qrxa(A) = A"+ ) (Z[Qn—mﬁn—i] ( ; ) /\i_k) % (53)
k=0 \i=k

where, based on the definition of Py x 1, (), [ag, @] = 1.
We note that we are only interested in finding A, if (). is negative, that is,
if at least one root of a Kharitonov polynomial of Pf x(A) lies in the left half-plane.

Thus, assuming that A is negative, we can get the interval coefficients of Q¢ x 1, (A),

given by
n—1 n
Qpx (V) = A"+ ey w] M, (54)
k=0 i=k
where
i :
( ) N~kq .. if i — keven
k
Cix = . (55)
( ! ) NG, s if i — k odd
k
i :
( ) /\"*_kﬁn_i, if 7+ — &k even
_ k
i = , (56)
( ;C ) Nka . if i — kodd

The coefficients of Q; x 1, (A) are thus given by polynomials in A.. The Kharitonov

polynomials of Q¢ x 1, () can now be derived using the standard formula:

Koxna(AN) =) co+ Y cad+ D @l +) @+ ) e+ + 2" (57)
=1 =2 =3 =4

=0
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Kox2() =) T+ ) Gad+ > X+ ch+ ) @l +--+ 2" (58)
=0 =1 =2 =3 =4

Kop.3() Zmﬁz 21A+Z i\’ +Z%A +ZcZ4A FeoF AT (59)

=0

Ko Z Zo+ZcﬂA+ZczzA +Z cisA? +Z et AT (60)

=0

These Kharitonov polynomials replace those used in Theorem 3.1 of [2] to yield the

following theorem:

Theorem 3.3 If Psx () has at least one zero in the left-half plane, A, is a lower
bound on R(X)pmin if and only if all the zeros of the Kharitonov polynomials Ko\, ;,
j=1,---,n, defined by Eqs. (57-60), lie in the right-half plane.

This theorem can be combined with the improved Cauchy bound for interval poly-
nomials to give an arbitrarily tight bound on R(A),.,. Since the improved Cauchy
bound does not provide information on the sign of the roots, we start by applying
the Kharitonov theorem to Py x()) to ascertain whether at least one of its zeros is
negative. If so, we then use bisection to refine the first estimate of a lower bound on
R(A)min given by Theorem 2.4.

Step 1 Check whether at least one of the Kharitonov polynomials of Ps x(A) has a
negative root. If all roots are in the right-half plane, terminate: the function is

convex.
Step 2 Set i =1, AP = —by, AU = 0. Set [; = A/2. Set tolerance e.
Step 3 Compute the real coefficients of Koy, ;(A), for j =1,..., 4.

Step 4 If all the zeros of these four Kharitonov polynomials lie in the right half-plane,
l; is a lower bound on R(\),in: set A = 1;. Go to Step 6.

Step 5 Otherwise, set AU = 1;.
Step 6 Set i =i+ 1. If A\U — Al < ¢, set A\, = A" and terminate. Else, set [; = #
and go back to Step 3.

This procedure is exemplified on the counter-example presented above. In this case,

the interval polynomial Q¢ x \,()) is given by

Qs x 2. (A) = A5+ {[1.20,2.73] + 5A.} A* + {[1.14,3.15] + [4.80, 10.92] A, + 10A2} A®

[
+ {[0.20, 2.35] + [3.42, 9.45) A, + [7.20, 16.38]A2 4+ 1022} A
+ {[1.52,6.21] 4 [0.40,4.70]\, + [3.42,9.45] A2 + [4.80, 10.92]A3 + 5 2} A
+ {[0.15,7.11] 4 [1.52, 6.21] A, + [0.20, 2.35]A% + [1.14, 3.15]A2 + [1.20, 2.73]A2 4+ A2} .

(61)
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To get an initial guess for A., we note that A = B = 7.11 and |a|; = 2.73. Thus,
by = 4.6683. We set A\l = —4.6683 and I; = —2.33415. We find that all the Kharitonov
polynomials of Q¢ x,_2.33415(A) have at least one zero with a negative real part. Hence,
Iy is an upper bound on R(A).i,. We set AU = —2.33415. A new guess is given by
l; = —3.50123. In this case, the Kharitonov polynomials of Q¢ x _350123(A) are all anti-
stable, that is, all their zeros lie in the open right-half plane. Hence, A' = —3.50123
and I3 = —2.91769. We may continue this procedure until the desired accuracy is
obtained. For instance, after 7 iterations, we have —3.35535 < R(\A),im < —3.31888
and we may set A\, = —3.35535.

The procedure presented here for the evaluation of a valid lower bound on the
minimum real part of the roots of an interval polynomial is more computationally
intensive than that based on Theorem 3.1. The usefulness of Theorem 3.1 for the
derivation of underestimators within the aBB algorithm has been studied in [1, 2]. In
the light of the counter-example, we tested the validity of the underestimators obtained
using Theorem 3.1 for the examples previously addressed, by comparing them with
those derived rigorously using Hertz’s method of computing minimum eigenvalues. In
all the problems studied in [1, 2, 3], the underestimators were found to be strictly valid.

As reported in [3], computational experience within the aBB algorithm has shown
the use of the Kharitonov polynomials to be a very costly process in terms of num-
ber of iterations and CPU time. Not only is the calculation of the coefficients of the
interval polynomial intensive, but the resulting « values lead to relatively loose under-
estimators, therefore slowing down the progress of the algorithm. These conclusions
are accentuated by the iterative nature of the revised approach. Significantly more
successful techniques, such as a modification of the Gerschgorin theorem [7], have been
proposed in [3, Method II.1].

4 Conclusions

We derived a new bound on the maximal modulus of the zeros of the polynomial with
real or complex coefficients. This bound is at least as good as the Cauchy bound, is
computationally efficient (O(n)), and was shown on two examples to compare well to
other approaches. We also derived the correct Kharitonov polynomials which allow us
to obtain an arbitrarily tight lower bound on the minimum real part of the zeros of an
interval polynomial. This is achieved through an iterative procedure which relies on

an extension of the improved Cauchy bound to interval polynomials.

References

[1] C.S. Adjiman, I.P. Androulakis, C.D. Maranas and C.A. Floudas, (1996), “A

12



global optimization method, aBB, for process design,” Computers and Chemical
FEngineering, 20, S419-5424.

C.S. Adjiman, S. Dallwig, C.A. Floudas and A. Neumaier (1998), “A global op-
timization method, aBB, for general twice-differentiable constrained NLPs — I.

Theoretical advances,” Computers and Chemical Engineering, 22(9), 1137-1158.
C.S. Adjiman, I.P. Androulakis and C.A. Floudas (1998), “A global optimization

method, aBB, for general twice-differentiable constrained NLPs — II. Implemen-
tation and computational results,” Computers and Chemical Engineering, 22(9),

1159-1179.

F.G. Boese and W.J. Luther (1989), “A note on a classical bound for the moduli
of all zeros of a polynomial,” IEFFFE Trans. on Automatic Control, 34, 998-1001.

A.L Cauchy (1829), Fzercices de Mathématiques, IV Année de Bure Freres.

B. Datt and N.K. Govil (1978), “On the location of the zeros of polynomial,” .J.
Approx. Theory, 24, 78-82.

S. Gerschgorin (1931), “Uber die Abgrenzung der Eigenwerte einer Matrix,” Izv.
Akad. Nauk SSSR, Ser. fiz.-mat., 6, 749-754.

A. Joyal, G. Labelle and Q.I. Rahman (1967), “On the locations of zeros of poly-
nomials,” Canadian Math. Bulletin, 10, 53-63.

V.L. Kharitonov (1978), “Asymptotic stability of an equilibrium position of a
family of systems of linear differential equations,” Differential’nye Urvaneniya,
14, 2086-2088.

A. Kurosh (1972), Higher Algebra, MIR Publishers, Moscow.
M. Marden (1966), Geometry of Polynomials, Math. Surveys 3, Providence (RI),

American Mathematical Society.

E. Zeheb (1991), “On the largest modulus of polynomial zeros,” IEEE Trans. on
Circuits and Systems, 38, 333-337.

M.S. Zilovi¢, L.M. Roytman, P.L.. Combettes and M.N.S. Swamy (1992), “A bound
for the zeros of polynomials,” IEFE Trans. on Circuits and Systems-I: Fundamen-

tal Theory and Applications, 39(6):476-478.

13



